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Abstract

Nowadays, dynamic legged robots are one of the major fields of research in robotics thanks
to their capability of movement in various and challenging scenarios. They are used in outdoor
environments to help human and collaborate with them. They perform tasks in situations that are
critical and even hazardous for human safety. The demanding work for researchers is to develop
techniques to maintain a robust motion in difficult terrains that allow the robot to accomplish
the desired tasks.
The robot’s motion is performed using innovative methods based in trajectory planning, optimiza-
tion, control and state estimation. Although several studies in these fields and optimal results
achieved, shin collision can occur during the locomotion, causing the robot to get stuck and
preventing, as a consequence, the achievement of the predetermined goals. One solution is to
evaluate and estimate the contact point along the shin when the leg collides an object,in order to
use this information as a feedback to stabilize the trunk controller and help the robot to overcome
the obstacles.
This thesis extends the work about contact detection and localization during shin collisions,
developed in a 2D approximation. The approach is based on a novel model performed in a 3D
environment, considering both velocity and acceleration to detect in a more accurate way the
contact point. The estimation of this point is performed using the Kalman Filter, one of the most
common technique of filtering, in order to avoid noise corruption due to the usage of sensors and
to determine the optimal output, following the trial and error procedure based mainly on the
tuning of the parameters.
The results are validated both in simulation and on the Hydraulically actuated Quadruped robot
(HyQ), including experiments with a pallet. This thesis is the outcome of a one year project
performed at the Dynamic Legged Systems Lab (DLS) at IIT in Genova.
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B.7 Check contact velocity Ċs of RH/LH/LF/RF legs . . . . . . . . . . . . . . . . . . 72



List of Tables

1.1 Recursive Algorithm of Particle Filter. . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Algorithm for velocity-based model [58]. . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Algorithm for Bayes Filter [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Table of HyqGreen and HyQReal Parameters . . . . . . . . . . . . . . . . . . . . 28

4.1 Hybrid model EKF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Table of tuning Parameters for Kalman Filter during PushUp motion . . . . . . 52
5.2 Table of tuning Parameters for Kalman Filter during trot motion in Simulation . 53
5.3 Table of tuning Parameters for Kalman Filter during PushUp motion in experiments 54
5.4 Table of tuning Parameters for Kalman Filter during trot motion in experiments 55
5.5 Table of tuning Parameters for Kalman Filter during collision . . . . . . . . . . . 57
5.6 Table of tuning Parameters for Kalman Filter during experiment collision with pallet 59
5.7 Algorithm for feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



Acronyms

DLS Dynamic Legged System

IIT Istituto Italiano di Tecnologia

HyQ Hydraulically actuated Quadruped robot

PDF Probability Density Function

RV Random Variable

FDI Fault Detection and Isolation

CPF Contact Particle Filter

DH Denavit Hartenberg Convention

ISA Integrated Smart Actuators

IMU Inertial Measurement Unit

ROS Robot Operating System

HAA Hip Abduction-Adduction

HFE Hip Flexion-Extension

KFE Knee Flexion-Extension

EKF Extended Kalman Filter

RCF Reactive Controller Framework

VO Visual Odometry

viii



Chapter 1

Introduction

The first works about legged robots appeared in the late ’60s with the contribution of Robert
McGhee who started the study of quadruped and hexapod robots at the University of South
California [50]. A significant change occured in the beginning of ’80s due to the transition from
quasi-static gaits to dynamic locomotion for all legged robots. Since that event, legged robots
became one of the major field of interest outperforming wheeled and tracked systems in specific
environments as uneven,unstructured and irregular terrains. More precisely, quadruped legged
robots present high mobility in case of rough, damaged and hostile area wherefore they are mainly
used to explore and work in these types of scenarios. For their characteristics they can substitute
humans in rescue and discovery operations,providing informations about disaster and dangerous
zones, thanks to the usage of sensors like LIDAR or cameras.
The difficulty in the motion of autonomous legged robot is to always maintain stability even in
such difficult terrains and to keep going on in order to satisfy the desired tasks. To accomplish this,
it is important to establish a close relationship between locomotion and perception. Therefore the
robot has to be able to analyze the whole area and then elaborate the signals coming from itself
and from the environment. For this purpose, the detection and localization of contact points, due
to the presence of obstacles, can be very useful to improve the robustness of robot’s motion.

1.1 Aim
The objective of this thesis is to propose an improvement on the detection and localization of

shin collisions during the locomotion [10]. This is the result of a project fulfilled at the Dynamic
Legged System (DLS) at Istituto Italiano di Tecnologia (IIT), in Genova.
The thesis is based on three important aspects:

• a novel model,based on the kinematics, for finding the collision during the motion of the
robot. Starting from the work performed in 2D, this thesis present an extension in a 3D
model.

• The usage of velocity-based model and acceleration-based model to be more precise and
accurate in the evaluation and detection of the contact point along the shin. In this way,
it is possible to switch from one model to the other, providing a better estimation of the
contact point.

1



CHAPTER 1. INTRODUCTION 2

• a variant approach to estimate the shin collision with the contribution of the Kalman filter,
in order to reduce and remove the noise given by the usage of sensors. This estimation is
then used as a feedback for stabilizing the trunk controller of the robot.

As said before the starting point of this thesis is the model in 2D performed [10] with the purpose
of localize a single contact point when the robot enters in collision with obstacle during the
locomotion. Extending the model in a 3D environment has the advantage of using velocity and
acceleration to localize the point in a more accurate way, building as a consequence two systems,
the first based on the velocity and the second based on the acceleration with the purpose of
choosing the best one to obtain a better perfomance.
Since this work is about the estimation of the contact point, the last part is related to the filtering
of the signal, developed with the contribution of the Kalman Filter,one of the most common
technique used for estimating a state.
Provide a correct estimation of the contact point is useful to help the robot to overcome a step or
an obstacle, avoiding the slippage of the shin along the surface and improving as a consequence
its motion in a difficult environment.

1.2 Methodologies
The obtained model was initially analyzed and run through simulations, using the 3D visualizer

RVIZ and the software simulator Gazebo. To check if the results were consistent with the reality,
the Signal Scope tool was used to study the real-time behaviour of the robot. Then all the datas
collected from the simulations were developed on Matlab in order to improve the phase of filtering,
providing, as a consequence, a desired output thanks to a manually tuned procedure. At the end
of simulation-based validation, the experiments were performed using Hyq green robot, following
the sanity check and guaranteeing the safety for all the operators.
Doing experiments the robot was able to detect the collision in Real-Time, providing the
localization of the contact point along the shin.

1.3 Outline
The thesis is organized in the following fashion:

Chapter 2 introduces the concepts of state estimation and filtering,focusing on probability
theory, modelling theory and Bayes filter.
Chapter 3 describes the target platform HyQ used in this dissertation.
Chapter 4 explains how to obtain the model for detecting the shin collision, starting from
the kinematics. After finding the model, it will be filtered using the Kalman Filter to have an
estimated output for the contact point during the locomotion.
Chapter 5 shows the obtained results both in simulation and on the robot.
Chapter 6 is a review of the concepts investigated in the previous chapters and it presents a
section dedicated to the future works.
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1.4 State of the Art
In the last 30 years, dynamic legged robots are mainly used instead of wheeled robots with

the purpose of going through unstructured,uneven and rough terrains. Considering these types
of environment and situation,it is very likely that shin collisions occur during the locomotion.
A solution to avoid fall, slippage or the getting stuck of the robot is to detect and estimate the
contact point along the shin, in order to use it as a feedback to stabilize the trunk controller.

This thesis has the aim to investigate and analyze the contact points along the shin of a
quadruped legged robot during its motion, due to the presence of obstacles or undesired and
unexpected objects that collide with it. First of all it is important to explain how the motion
of the robot happens, its working principle and its limitations, for then understanding why it is
necessary to detect the collisions as fast as possible, analyzing the advantages in terms of robot
performance.

The robot locomotion is perfomed using innovative methods based on Trajectory Planning
Optimization [39] for improving its motion, Control algorithms and foothold adaptation for
guaranteeing robustness [34] and State Estimation [17] for detecting its pose in the environment.
The motion of a quadruped legged robot is based on two main phases: i) the stance phase in which
the foot is in contact with the terrain, ii) the swing phase in which the foot doesn’t touch the
ground and as a consequence no force is applied. Analyzing the locomotion of HyQ, it is able to
perform different types of movements,even in difficult scenarios: trotting [9], crawling [59],climbing
on two surfaces [26], bounding [37] and walking on soft terrains [24]. The combination between
control algorithms and perceptions allows the robot to perform advanced locomotion skills. An
example is the study of Focchi et al. [25] in which, on the basis of the forces evaluated at the feet,
the trajectory is then generated accordingly in order to adjust the step and get over the obstacles.
The locomotion of HyQ robot over challenging terrains was also analyzed in the work of Winkler
et al. [59]. For their work, based on the force foothold adaptation, a map of the environment is
pre-acquired with a depth sensor and then collected in an OctoMap data structure. After finding
the map, the feasible foothold is chosen appropriately, optimizing the whole body trajectory,
in order to perform the motion of the robot in challenging scenarios. To improve the robot
motion in difficult terrains and increase its robustness, Bratta et al. [16] proposed a model based
on trajectory optimization. Adding two constraints in the Single Rigid Body Dynamics-based
trajectory optimizer, the robot is able to avoid leg collisions with obstacles.
All these works don’t analyze the case in which a possible collision happens, due to the presence
of an unexpected or undetected object. They are mainly based on the study of the optimal
trajectory,followed by the robot, in order to avoid obstacles. However, during a locomotion, it is
likely that the legs of the robot collide with barriers, rocks or steps especially in rough terrains.
Moreover it is important to detect the collision, only using proprioceptive sensors, because: i) it
simplifies the model increasing the efficency, ii) it considers the case in which the robot is blind,
due to, for example, the presence of interference or malfunction in exteroceptive sensors. The
detection of the collision can also be used as a feedback for improving the motion of the robot,
allowing it to overcome the step. These are the reasons why the field of contact detection and
localization is important for a better locomotion of the robot.

Several studies were performed about detection and estimation of contact points, using dif-
ferent methods. Before entering in the details, it is necessary to briefly describe the sensors
used for the estimation. They can be of two types: interoceptive, sensors that are related to the
internal state of the robot, such as accelerometer or gyroscope and exteroceptive like cameras
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or time-of-flight transmitter/receiver that provide informations about the external environment.
Interoceptive sensors are used to estimate velocity and accelerations, while exteroceptive sensors
are mainly used to properly estimate the pose of the robot; the fusion of the two provides the
best description and estimation of the state of the robot.

It is important to take into account that in the field of contact detection, in which it is
necessary to detect the collision as early as possible, specific approaches are adopted to promptly
act and obtain the estimation in the least possible time, in order to control the robot and take
countermeasures to stabilize it.
The different methods performed to detect and localize the contact point,when the robot enters
in collision with an obstacle, are analyzed in the following sections.

1.4.1 Force Torque Sensors and Tactile Sensor Skin
A F/T sensor is an electronic device used for monitoring, detecting, recording and regulating

linear and rotational forces. As a contact sensor, it is specifically designed to interact with physical
objects in its environment. This type of sensor,with the contribution of a distributed skin [36],
can be used to detect the contact point, analyzing external forces that are applied in a specific
area [54]. The tactile skin is composed by tiny pressure-sensitive elements, in communication
each other through serial bus. They are able to detect the contact either is a light touch or
a total-body weight,this is why they are mainly used to cover the surface of humanoid robot,
involved for precision tasks in human-robot interaction. To measure the contact localization and

(a) mounted skin on the right Arm of iCub. (b) iCub with mounted skin on torso, arm,
fingertips.

Figure 1.1: iCub humanoid robot [22]- Italian Institute of Technology.

the contact forces, it is necessary to have two elements: i) external forces sensor set on the contact
area, ii) geometric model of environment and robot.

One of the study about the combination of F/T sensors and tactile skin, is analyzed in the
work of A. Del Prete et al. [22]. The accurate detection and localization of the contact point
using these types of sensors is a demanding task. In fact, in order to do this exhaustively, it is
important to take into account two considerations: i) the measured contact forces are corrupted
by noise, and as a consequence, they are affected by errors, ii) the tracking of the contact forces
may be not so accurate. A. Del Prete et al. demonstrate how the errors, during the estimation
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of the contact point in the iCub robot, may affect also the contact forces. Moreover, in their
work, it is also shown that adding a feedback term, corrupted by noise, is not necessarily useful
to reduce the errors given by the estimation.

The usage of this type of sensors, for contact detection and localization, requires complexity
of the platform, high costs and limited material choices, this is why most of the robots don’t use
this approach. Moreover, since they are mainly used for tasks concernig human-robot interaction,
they are designed for handling small contact forces, a situation that doesn’t happen during the
locomotion of the robot.

1.4.2 Generalized Momenta Approach G/M
The dynamic model of a robot can be represented using two methods:

1. Lagrangian formulation in which the equations are obtained using generalized coordinates
and generalized forces, in a systematic way not depending on the reference coordinate frame.
The Lagrangian is:

L = T − U (1.1)
where T is the kinetic energy, while U is the potential energy. The Lagrange equation is
expressed as :

d

dt

1δL
δq̇

2T
−

1δL
δq

2T
= ξ (1.2)

2. Newton-Euler Formulation in which the equations are obtained using a recursive algorithm,
starting from the evaluation of forces and moments applied in the end-effector. The
translational motion of the centre of mass can be represented as:

fi − fi+1 +mig0 = mip̈Ci (1.3)

The generalized forces are computed as:

τi =
I

fTi zi−1 + kriImiω̇
T
mizmi + Fviḋi + Fsisgn(ḋi) prismatic joint

µTi zi−1 + kriImiω̇
T
mizmi + Fviθ̇i + Fsisgn(θ̇i) revolute joint (1.4)

From the equations above, it is possible to express the generalized momentum as p = M(q)q̇. The
idea of this approach is to detect collisions between robot and obstacles without the usage of
extra sensors [21]. For this purpose only proprioceptive sensors, as joint encoders, are used to
identify contact isolation, comparing the computed torque with the real one,in order to deduce
the action of external forces.

In the work of A. De Luca et al., the FDI technique [20] is applied to detect the collision at
any point along the robot arm, without knowing neither the measurements of acceleration nor
the inversion of the robot inertia matrix.The FDI method is based on the detection of residuals
according to potential faults that can corrupt the system. These residuals are obtained using
observers, comparing the filtered output with the measured one. In the end, all the informations
about the contact detection and contact force intensity are contained inside the residual vec-
tor,useful for then design a hybrid force/motion controller that allows to have the interaction
task which follows the detected collision.

The disadvantages of this approach are that:
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(a) humanoid robot Atlas per-
forming a manipulation task
and entering in collision with
an unwanted object on the
knee.

(b) Distribution of three types of con-
tact:i)true contact rC , ii)estimated
contact using G/M approach rC(τ̂ξ),
iii)estimated contact using F/T ap-
proach rC(F̂ext,S) .

Figure 1.2: Atlas robot [57] - Boston Dynamics.

1. the detection of the collision is not localized;it is possible to find the contact link instead of
the contact point.

2. it is mainly applied to fixed-base robots. As a consequence this method is not useful for
shin collisions occuring during the locomotion of the robot.

Vorndamme et al., to find a model also for floating-base robots, in particular humanoids robot,
combined the G/M approach with F/T sensor-based technique [57].Their work is implemented on
Atlas robot and it is based on the detection of the collision point,considering three types of possible
contact: i) the feet via ground contact, in which the robot is in touch with its environment, ii) the
hands contact during the execution of a specific task, iii) the unwanted contact due to a colliding
object in the knee Fig. 1.2.
Despite the precision and accuracy of this proposed model, it was perfomed in simulation with a
stationary robot, considering an applied external force as an unexpected collision.

1.4.3 Particle Filters and Proprioceptive Sensors
More complex is the model of Manuelli et al. [35], based on CPF, a contact particle filter in

order to detect and localize the contact point.
The particle filter is a different implementation of Bayes filter, in which the posterior bel(xt) is
composed by a set of random state samples called particles [53], defined as:

X := x
[1]
t , x

[2]
t , ..., x

[M ]
t (1.5)

In comparison with Gaussian, this representation is approximate and non-parametric, providing
more freedom in the choice of the posterior distribution shape. At each particle is assigned
a specific weight which corresponds to the probability of that particle will be sampled by the
probability density function. The algorithm followed by the particle filter is:
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Table 1.1: Recursive Algorithm of Particle Filter.

1: X̄t = Xt = 0
2: for m = 1 to m= M do
3: sample x[m]

t ∼ p(xt|ut, x[m]
t−1)

4: w
[m]
t = p(zt|x[m]

t )
5: X̄t = X̄t + (x[m]

t , w
[m]
t )

6: end for
7: for m = 1 to m= M do
8: draw i with probability ∝ w[m]

t

9: add x[i]
t to Xt

10: end for
11: return Xt

The starting point of their work is the usage of the generalized momentum observer, in order
to provide the estimation of the external joint torque, as in the work of De Luca et al. [21]. In
the approach of Manuelli et al. the contact localization problem is considered as a nonlinear
optimization problem, furthermore, fixing the contact location rc, it can be formulated as a
convex optimization problem:

min(γ − Jrc(q)TFc)T (γ − Jrc(q)TFc)
subject to Fc ∈ F(rc).

(1.6)

Considering the equation above,it is possible to use the particle filter, in which each particles
corresponds to a specific contact location on the surface of the robot. This method can work with
the contribution of three elements:

1. measurement model, obtained as a residual from the observer.

2. motion model, it corresponds to a zero velocity assumption when the link of the robot enters
in contact with an obstacle.

3. Contact Particle Filter that is a combination of measurments and motion models. As in [29]
it is necessary to specify a threshold for determining when an external contact happens.

Despite the high performance of this model Fig. 1.3, CPF approach presents relevant limitations:

1. Model Error. The main problem related to this technique is that the dynamic model should
be very accurate to avoid errors in the measured states and as a consequence in the residuals.

2. Identifiability. If the contact situation is not identifiable, there exist multiple sets of
contact with their associated contact forces, that produce the same observed residual.As a
consequence this model doesn’t work properly if there is more than one contact point.

3. Point Contacts. It is not considered the case in which multiple,simultaneous and continuous
contacts happen (for example when the robot is sitting).

4. Filter Divergence. The filter can diverge if there is a bad estimation of the contact point.

Moreover this work was only performed in simulation and it was not considered the case in
which the contact occurs during the motion of the robot.
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(a) (b)

(c) (d)

Figure 1.3: In the figure are shown four iterations using CPF approach - Red arrows represent
particles while the green arrow is the real contact force [35] - MIT.

1.4.4 Contact localization using velocity constraints
Another approach to localize contacts and collisions is proposed in the recent work of Wang

et al. [58], submitted at the 2020 IROS Conference.

Figure 1.4: scheme of the velocity-based contact localization in the Minitaur quadruped robot
[58]

Their method, implemented in 2D, is based on two assumptions: i) the contact velocity that
is in direction normal to the surface of the link must be zero, as shown in Fig. 1.4 and ii)the
contact velocity, just before the collision, must be positive. Their approach is simple because
with only the usage of proprioceptive sensors, it is possible to detect the collision, providing a
set of contact points, not only just one point, along the robot link. It can also be implemented
easily, in order to obtain a single contact point, adding filtering or additional dynamic constraints
such as acceleration. Moreover, they proposed extensions to their model to be more accurate
in the evaluation of the contact point: i) numerical method, in which it is presented an
algorithm to solve numerically the contact point Tab. 1.2, ii) particle filter in order to reduce
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the uncertainties,considering the set of contact points obtained with the velocity-based method.

Table 1.2: Algorithm for velocity-based model [58].

1: B̄ ← discretized surface
2: C ← 0
3: for c ∈ B̄ do
4: if |ċn(t)| < ξ then
5: C = C∪ c
6: end
7: end
8: if t = t0 then
9: for c ∈ C̄ do
10: if ċn(t−0 ) < 0 then
11: C = C \ c
12: end
13: end
14: end



Chapter 2

Background Theory

2.1 State Estimation

Figure 2.1: General block scheme of State Estimation with feedback

State estimation and control are the key elements of robot’s motion. One method to perform
State Estimation is the so called probabilistic robotics, a technique of estimating state and
computing the belief from sensor data [53]. Since the usage of sensors, provides uncertainty in
the measurements, the main purpose of State Estimation is to describe the state of the robot in
the best possible way. In order to do that, probabilistic state estimation algorithms have the role
to infer and estimate quantities that are not directly observable or measurable from sensor data.
To properly understand the concepts of State Estimation and recursive estimation algorithm, it
is important to do a brief introduction on probability theory and on robotics modelling theory.

2.1.1 Probability Theory
The main idea of probabilistic robotic is to use probability theory in order to represent

explicitly uncertainty in robot perception and action.
Uncertainty in robotics is related to different factors:

1. environments - the robot surrounding world is dynamic and unpredictable.

10



CHAPTER 2. BACKGROUND THEORY 11

2. sensors - the usage of sensors provides limitations and corrupts the measuremnts due to:
i)resolution of sensor itself, ii)presence of noise.

3. robots - robot actuators may be inaccurate due to their quality of manufacturing.

4. models - building a model is a sort of simplification of the real scenario, as a consequence
it gives rise to errors in the system.

5. computation - the algorithms used to describe and model the robot are an approximation
of real-time system, providing as a consequence less accuracy in the results.

A solution to deal with it is to estimate the measurements coming from sensor data, following
filtering algorithms based on probability theory. This is the reason why in this Chapter the basic
concepts of probability are explained, in order to better understand later the working principle of
filtering, analzyed in Chapter 2.2.

At the basis of Probabilistic Robotics there is the assumption that all the quantities can be
consdered as random variables. Considering x as a random variable, p(x) is the PDF of the
random variable x over the interval [a, b] [12]. P (x) is a non-negative function that satisfies the
axiom of total probability: Ú b

a

p(x)dx = 1 (2.1)

Taking into account N-dimensional continuous variables as p(x) = p(x1, x2, ..., xN ) where
x = (x1, ..., xN ), in an interval [ai, bi], the axiom of joint probability densities is:Ú b

a

p(x)dx =
Ú bN

aN

...

Ú b2

a2

Ú b1

a1

p(x1, x2, ...xN )dx1dx2...dxN = 1 (2.2)

In probability theory it is important to show two main properties linked to PDF:
1. the mean µ

µ = E[x] =
Ú
xp(x)dx (2.3)

2. the covariance matrix Σ

Σ = E[(x− µ)(x− µ)T ] (2.4)

Running the experiment N times and using a random variable x with an associated PDF p(x), it
is useful to consider the sample mean and the sample covariance, representing the realization of
the random variable:

µmeas = 1
N

NØ
k=1

xk,meas

Σmeas = 1
N − 1

NØ
k=1

(xk,meas − µmeas)(xk,meas − µmeas)T
(2.5)



CHAPTER 2. BACKGROUND THEORY 12

Two random variables, x and y, are statistically independent if their joint density factor is:

p(x, y) = p(x)p(y) (2.6)

while the variables are uncorrelated if:

E[xyT ] = E[x]E[y]T (2.7)

At the basis of the working principle of the Kalman Filter there is the theory about Gaussian
Filter and Gaussian probability density functions. A gaussian PDF is in the following fashion:

p(x|µ, σ2) = 1√
2πσ2

exp
1
− 1

2
(x− µ)2

σ2

2
(2.8)

where µ is the mean,σ2 is the variance and σ is the standard deviation. A multivariate Gaussian
PDF can be expressed ,using the mean µ and the covariance Σ,as follows:

p(x|µ,Σ) = 1ð
(2π)NdetΣ

exp
1
− 1

2(x− µ)TΣ−1(x− µ)
2

(2.9)

Figure 2.2: Gaussian Probability Density Function in 3D

In case of Gaussian PDF,uncorrelated variables are also statistically independent and statistically
independent variables are also uncorrelated. As a consequence,the following equation is valid:

E[xyT ] = E[x]E[y]T (2.10)

Gaussian distribution is at the basis of Bayes Filter. In the Chapter 2.2, starting from Gaussian
Filters, the procedure of Kalman Filter will be analyzed in details, considering that the belief are
represented by Gaussian distribution.

The concept of the belief distribution is an important aspect in Probabilistic Robotics. Since
the state of the robot is not directly measurable, the belief indicates the state of knowledge of the
robot about the real state. To better understand this concept it is important to distinguish the
environment interaction in two categories:
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1. sensor measurements. The robot obtains informations about the surrounding environ-
ment by using its sensors.

2. control actions. These interactions are necessary to modify the state of the world.

From these types of interaction the robot collects two types of data:

1. measurement data represented as zt. They are data about the state of the environment
in a certain time.

2. control data represented as ut1:t2 They are data about the change of the state in the
environment.

After this premise, it is possible to define the belief as:

bel(xt) = p(xt|z1:t, u1:t). (2.11)

this equation indicates the posterior obtained considering the state xt as a probability distribution,
conditioned by all the past data z1:t and u1:t. To be more precise, the belief can be evaluated
after incorporating the measurements data zt, obtaining as a consequence:

b̄el(xt) = p(xt|z1:t−1, u1:t). (2.12)

that indicates the prediction of the state xt, considering the previous state posterior.

Another important aspect for the working principle of filtering is the presence of noise in all
the measurements. In order to obtain an estimated output from a corrupted measured signal, it
is necessary to understand the characteristics of the noise and how it works, introducing its main
properties. The noise can be considered as a stochastic process, or random process, in which the
distribution, the density function, the mean and the covariance are functions of time.

µ(t) =
Ú +∞

−∞
xp(x, t)dx; (2.13)

Σ(t) = E[(x(t)− µ(t))(x(t)− µ(t))T

=
Ú +∞

−∞
[x− µ(t)][x− µ(t)]T p(x, t)dx;

(2.14)

A stochastic process x(t) can be one of the followings different types:
• continuous random process, in which both RV and time are continuous.
• discrete random process, where RV is discrete and time is continuous.
• continuous random sequence, RV is continuous while time is discrete.
• discrete random sequence,both RV and time are discrete.

In optimal filtering and state estimation, it is often used, for simulating the model, the
correlated white noise, in which a RV x(t1) is independent from a RV x(t2) for all time instant
t1 Ó= t2 [52]. In order to have a correlated white noise, it is necessary to create a random vector
in which the elements are correlated using defined covariance matrices. The idea is to generate a
random vector w with zero mean and covariance Q:

Q =

 σ2
1 . . . σ1n
...

...
...

σ1n . . . σ2
n

 (2.15)
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In which all of its eigenvalues are non-negative and real:

λ(Q) = µ2
k (k = 1, ..., n) (2.16)

In order to do this, 4 steps have to be followed:

1. Analyze Q, find its eigenvalues and write them as µ2
1, .., µ

2
n.

2. Evaluate the eigenvectors of Q and then write them as d1, ..., dn, to obtain the vector
D = [d1, ..., dn].

3. Compute the RV vi = µiri where ri is a random number with a unity variance.

4. Obtain in the end w = Dv.

This part related to probability, random variables and stochastic process is at the basis of the
working principle of filtering technique, introduced in the Chapter 2.2.

2.1.2 Modelling Theory
To perform State Estimation, it is important to evaluate and compute the so called state of

the robot, finding for example its position, orientation, velocity and acceleration, during time, in
a certain reference frame. The pose of a rigid robot is composed by its position and orientation
in the space respect to a reference frame.

Figure 2.3: Position and orientation of a rigid body in the space - The world frame is represented
by Oxyz, while the body frame of HyQ is OÍ

xÍyÍzÍ

Two important reference frames are considered for the computation of the pose:
• the inertial world coordinate system with origin xw.
• the body fixed coordinate system with origin xb.
To fully describe the pose of the robot, two elements are used: i) the translation in order to
express the position of the rigid body and ii) the rotation, to express its orientation. To describe
the orientation of the robot, in world frame or body frame, it is necessary to compute a 3x3
matrix called coordinate rotations matrix.
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R =
#
xÍ yÍ zÍ$ =


xÍ
x yÍ

x zÍ
x

xÍ
y yÍ

y zÍ
y

xÍ
z yÍ

z zÍ
z

 (2.17)

The representation of a point P in the space with respect to the frame O − xyz is:

p =

xy
z

 (2.18)

while respect to the frame OÍ − xÍyÍzÍ is:

pÍ =

xÍ

yÍ

zÍ

 (2.19)

so the vector p can be expressed as:
p = RpÍ (2.20)

where R is the transformation matrix of the vector pÍ in the coordinate frame OÍ − xÍyÍzÍ into the
vector p of coordinate frame O − xyz [51].

Figure 2.4: Representation of a point P in two differents coordinate frames

Considering a point P in the space, as shown in the figure 2.4, it is possible to express its
position using translation and rotation matrix in the following equation:

p0 = o0
1 +R0

1p
1 (2.21)

The combination of translation and rotation in a compact form gives rise to the homogeneous
transformations matrix:

Aji =

Rji t

0T 1

 (2.22)
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Figure 2.5: Prismatic and revolute joints [51].

where Rji is the rotation from reference frame i to reference frame j and t is the translation.
The relationship between joint variables and end-effector pose is called robot’s kinematics. Joints
are divided in two categories: prismatic and revolute, as shown in [Fig. 2.5]. The combination of
all the joints of a structure gives rise to a kinematics chain, that could be i)open when there is a
sequence of links until the end-effector, or ii) closed, when sequential links form a sort of loop. To
easily find the direct kinematics of a robot structure, it is often used the DH Convention,explained
in Appendix A.3.
An important aspect of kinematics, discussed also in motion trajectory, is the difference between
Operational space and Joint Space. The first one indicates the space in which the end-effector
task is specified, while the second one is the space related to joint variables. In relation to the
operational, it is important to define also the workspace, the region in which all the joints execute
all possible motions.

The relationship between joint velocities and end-effector is represented by the differential
kinematics:

ṗe = JP (q)q̇ (2.23)

ẇe = JO(q)q̇ (2.24)

where q̇ is the joint velocity. Considering the two types of joints, the angular and linear velocity
are calculated as:

1. prismatic joint
ωi = ωi−1 angular velocity (2.25)

ṗi = ṗi−1 + ḋizi−1 + ωixri−1,i linear velocity (2.26)

2. revolute joint
ωi = ωi− 1 + θ̇izi−1 angular velocity (2.27)

ṗi = ṗi−1 + ωixri−1,i linear velocity (2.28)

From the above equations it is possible to find linear velocity, linear acceleration, angular
velocity and angular acceleration expressed in the world frame. If the point is rigidly attached to
the body, the velocity and the acceleration in world frame are the following [23]:

ẋp = ẋb +RTS(wÍ)xÍ
p/b. (2.29)
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ẍp = ẍb +RT [S(ẇÍ) + S(w)2]xÍ
p/b. (2.30)

while if the particle is in a moving frame the equations are:

ẋp = ẋb +RT (ẋÍ
p/b + S(wÍ)xÍ

p/b). (2.31)

ẍp = ẍb +RT [[S(ẇÍ) + S(w)2]xÍ
p/b + ẍÍ

p/b + 2S(wÍ)ẋÍ
p/b]. (2.32)

where Body-fixed quantities are noted with a prime symbol, S is the skew-symmetric matrix and
xp/b, ẋp/b, ẍp/b are the position,velocity and acceleration of the particle p relative to the body b.
Once the model is built using kinematics and differential kinematics, it is possible to use it inside
the state estimation algorithms, filtering it and providing as a consequence results less corrupted
by noise and by uncertainties.

2.2 Filtering
Filtering is an operation performed to extract informations about quantities of interest,

generally corrupted by noise, using measurements coming from data sensors. The process of
filtering is characterized by two main steps: i) Prediction,that is an a priori form of estimation,
used to infer informations about the quantity of interest, starting from the measured data; ii)
Smoothing that is the a posteriori form of estimation in which data measured are used for
estimating the quantity on the basis of informations acquired before [18].

2.2.1 Linear Systems Theory
State-space systems provide mathematical descriptions of processes that happen in real world

and they can be of two types: i) linear models, ii) non-linear models. Real situations present
usually non-linearities in their behaviour, this is why a real environment can be described by non-
linear models and simplified by a linear-model representation. As a consequence a continuous-time,
deterministic linear system is described as:

ẋ = Ax+Bu

y = Cx
(2.33)

where x is the state vector,u is the control vector and y is the output vector. The matrices A,B
and C are important for describing the system: A is the system matrix, B is the input matrix
while C is the output matrix. A non-linear system is represented as follows:

ẋ = f(x, u, w)
y = h(x, v)

(2.34)

where w is the process noise, while v is the measurements noise. Moreover if f(.) and h(.) are
functions of time, the system is time-variant otherwise it is called as time-invariant system.

Another important "splitting" is between continuous-time systems and discrete-time systems.A
continuous time, linear, system is expressed as:

ẋ = Ax+Bu

y = Cx
(2.35)



CHAPTER 2. BACKGROUND THEORY 18

and a discrete time,linear system is defined as:

xk+1 = Fxk +Guk

yk = Hxk
(2.36)

In State Estimation and Control, most of the algorithms use systems in discrete-time, since the
models are implemented in digital electronic devices. The transformation from a continuous-time
system to a discrete-time system is called discretization. This process can be executed using three
different methods:

1. rectangular integration or Euler integration. This is an approximation of x(t) con-
sidered as a constant for the small time interval (tn+1 − tn).

x(tn) = x(0) +
nØ
k=0

f [x(tk), u(tk), tk]T (2.37)

2. Trapezoidal integration. Each area, obtained under the curve f(x) from time interval tn
to time interval tn+1 is considered as a trapezoid and not as a rectangular.

x(tn+1) = x(tn) + 1
2(Ñx1 +Ñx2) (2.38)

3. Runge-Katta integration. Using this approach, at each time step it is possible to
perform n functions calculations. The first order Runge-Katta integration is equivalent
to rectangular integration, the second order Runge-Katta integration is equivalent to
trapezoidal integration.

2.2.2 Bayes Filter
The simplest and most general algorithm, based on recursive estimation, for calculating the

belief is represented by the Bayes Filter. This type of filtering is used extensively in robotics
because it continuously updates the state of the robot from the recently acquired sensor data
that are normally noisy.
Bayesan Theory was first implemented in 1763 by the researcher Thomas Bayes in the publication
"Essay towards solving a problem in the doctrine of chances" [13]. Initially this approach was not
considered, until its rediscovery thanks to the contribution of Laplace, who published its theory in
"Théorie analytique des probailités". Bayesian Inference [15] [40] [43] got a lot of success and ap-
plications in several fields, such as statistics, estimation, machine learning and pattern recognition.

The working principle of the Bayes Filter can be described in two steps: i)the prediction
or control update and ii) the measurement update. The first one is based on the evaluation of
the control ut, starting from the calculation of the belief over the state xt on the basis of the
prior belief over the state xt−1 and the control ut. In the second step the belief of the state xt
is multiplied by the probability that the measurement zt can be observed before. The general
algorithm is shown as follows:

Bayes Filters were realized in order to estimate the bel(xt), where the state xt is a random
variable, using all the informations coming from sensors data. As a consequence the probability
distribution bel(xt) represents the uncertainty over xt and it is defined as a posterior density.
In general, computing such posterior density is really demanding and its complexity grows
exponentially over time in relation with the increasing number of sensor measurements data. To
make the system computationally solvable [28], it is assumed that the model is Markovian. Under
this assumption the state xt is a complete state:
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Table 2.1: Algorithm for Bayes Filter [53].

1: (bel(xt−1), ut, zt):
2: for all xt do
3: b̄el(xt) =

s
p(xt|ut, xt−1)bel(xt−1)dx

4: bel(xt) = ηp(zt|xt)b̄el(xt)
5: endfor
6: return bel(xt)

• Markov Property related to the states: xt depends only on the previous state xt−1 obtaining
the following equation

p(xt|xt−1, xt−2, ..., x0) = p(xt|xt−1). (2.39)

where the states xt : t = 0, 1, 2... are a Markovian sequence.

• Independence of measured data. This assumptions implies that the sensor measurements zt
depend only on the current state xt :

p(zt|x0:t, z1:t, u1:t) = p(zt|xt). (2.40)

Under Markov assumptions it is easier to compute the bel without losing informations. It
is possible now to analyze the mathematical derivation of the Bayes Filter and its recursive
estimation. The first step is to apply the Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) (2.41)

using the posterior distribution p(xt|z1:t, u1:t) it is obtained that:

p(xt|z1:t, u1:t) = p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)
p(zt|z1:t−1, u1:t)

= ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)
(2.42)

Using the information that xt is a complete state and applying the conditional independence of
Markov assumption, the equation (2.42) is simplified as:

p(xt|z1:t, u1:t) = ηp(zt|xt)p(xt|z1:t−1, u1:t) (2.43)

and hence
bel(xt) = ηp(zt|xt)b̄el(xt) (2.44)

Expanding the term b̄el(xt) and using the first Markov assumption (2.39), the recursive update
equation is:

b̄el(xt) =
Ú
p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1)dxt−1 (2.45)

In conclusion, Bayes Filter calculates the posterior distribution bel over the state xt, on the
basis of measured zt and control ut data up to time t,assuming that the world is Markovian and
the state is complete. Bayes Filter, in general, is an abstract algorithm that provides only a
probabilistic framework for recursive estimation. To implement it in practice, it is important to
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consider three elements: i)the initial belief p(x0), the perceptual model p(zt|xt) and the transition
probability p(xt|ut, xt−1). This type of estimation may have a variety of implementations that
can differ on the basis of different assumptions regarding the initial belief, the measurements and
the state transition probabilities. The challenging work is to find the suitable belief approximation
for the considered robotic problem, considering three important aspects:

1. Computational efficiency. Linear Gaussian Estimation: time polynomial for calculating
belief. Particle Filter: any-time characteristic for computing belief

2. Accuracy of the Approximation. Linear Gaussian: unimodal distributions for approxi-
mations. Particles Filter: can approximate wide array of distributions.

3. Ease of Implementation. The difficulty of algorithm implementation depends on two
main factors: i) form of the measurment probability p(zt|xt) and ii) the dynamic model
p(xt|ut, xt−1)

After explaining the main characteristics of the Bayes Filter and its recursive estimation, it is
possible now to introduce, in the following chapters, concrete algorithms based on its working
principle.

2.2.3 Gaussian Estimation
Gaussian Filters were the first implementation of Bayes filtering in the continuous space. The

main characteristic of Gaussian estimation is that the belief is represented as a multivariate
distribution, as expressed in (2.9). In this equation two parameters are foundamentals for the
Gaussian estimation: the mean µ and the covariance Σ, their dimensions depend on the states x.
Following the rules presented in the previous Chapter, about the Bayesian Inference, it is now
possible to build a Gaussian System.
The first step is to express the state probability as a linear function, including a Gaussian noise:

xt = Atxt−1 +Btut + Ôt. (2.46)

where, as explained before, xt and xt−1 are state vectors, while ut is the control vector at time t.
At and Bt are matrices related respectively to the state and to the control input. In particular
At is a square matrix n x n where n is the state’s dimension and Bt is a m x n matrix where m
is the dimension of ut. For what concern Ôt it is represented as a Gaussian random vector, its
dimension is related to the state’s dimension and its mean and covariance is expressed as Rt. It
is possible to express now the equation (2.9), using At, Bt and Rt:

p(xt|ut, xt−1) = det(2πRt)− 1
2 exp

è
− 1

2(xt −AtXt−1 −Btut)TR−1
t (xt −Atxt−1 −Btut)

é
(2.47)

The second step is to express the measurements probability p(zt|xt) adding a Gaussian noise:

zt = Ctxt + δt. (2.48)

where Ct is a matrix whose dimension k x n depends on the measurement vector zt. As Ôt also δt
is a Gaussian density vector with zero mean and covariance Qt. Respecting these conditions, the
following equation is obtained:

p(zt|xt) = det(2πQt)− 1
2 exp

è
− 1

2(zt − Ctxt)TQ−1
t (zt − Ctxt)

é
(2.49)
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The third step is to use the bel(x0) as a normal distribution, obtaining:

bel(x0) = p(x0) = det(2πΣ0)− 1
2 exp

è
− 1

2(x0 − µ0)TΣ−1
0 (x0 − µ0)

é
(2.50)

This three steps are sufficient to obtain that the posterior bel is always Gaussian over the time.
After this premise is now possible to build the Kalman Filter.

The Kalman Filter was implemented for the first time by Rudolph Emil Kalman in 1950.
Considering linear systems with Gaussian noise, the Kalman Filter is the BLUE filtering, best
linear unbiased estimate filtering. For its working principle it is necessary to define as initial state
x0 and P0 and to initialize them. Moreover the measurement datas zt are the actual reading
received by the sensors.In the following section, its algorithm is analyzed.

2.2.4 Discrete-Time Kalman Filter
This type of Filter wil be used in Chapter 4 for estimating the contact point of shin collision

during robot locomotion. The dynamics of the Kalman Filter and its working principle is presented
in the following lines. Considering a linear discrete-time system, the dynamic is, according to
(2.36):

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk
(2.51)

where wk and vk are represented by a Gaussian distribution, so they are white,uncorrelated,
zero-mean and they have covariance Qt and Rt respectively:

wk ∼ (0, Qk)
vk ∼ (0, Rk)

E[wkwTj ] = Qkδk−j

E[vkvTj ] = Rkδk−j

E[vkwTj ] = 0

(2.52)

As in Bayesian Inference the two main steps are:

1. the a posteriori estimate in which the expected state x̂+
k is computed on the basis of all

the measurements included at that time k:

x̂+
k = E[xk[y1, y2, ..., yk]] (2.53)

2. the a priori estimate in which the expected value is obtained on the basis of the previous
measurements not included at time k:

x̂−
k = E[xk[y1, y2..., yk−1]] (2.54)

and it is possible to summarise that:

• x̂−
k is the estimate of state xk before the measurement at time k is processed.

• x̂+
k is the estimate of state xk after the measurement at time k is processed.
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As said before, in order to have the Kalman Filter working , it is necessary to initialize x0 and
P0:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(2.55)

Then its algorithm is expressed as:

P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)−1

= P+
k H

T
k R

−1
k

x̂−
k = Fk−1x̂

+
k−1 +Gk−1uk−1 a priori estimate

x̂+
k = x̂−

k +Kk(yk −Hkx̂
−
k ) a posteriori estimate

P+
k = (I −KkHk)P−

k

(2.56)

An important role is performed by the Kalman gain K that weight the innovation’s contribution
yk − Hkx̂

−
k to the estimate; it indicates how the estimate is reliable compared to the actual

measurements. After developing the model of the Kalman Filter, it is performed a step called
tuning of the parameters. This phase is executed in practice to obtained a desired output with
certain performances. The main parameters for tuning are the covariance matrices Q and R. Q is
related to the model, if it is increased also the process noise increases, giving more importance
to the measurements. R is related to the measurements, if R is really small the measurements
are more reliable, if R is large the filter doesn’t trust on the measurements. P0 represents the
velocity of convergence, if this value is small, the model trust perfectly on the initial state and it
doesn’t diverge so much from this value during the computation, while if this value is large, the
initial condition is considered uncertain.

In conclusion the advantages of using the Kalman Filter are:

• this filter can be the solution if wk and vk are gaussian, zero-mean, uncorrelated and white
noise.

• this filter is the best linear solution if wk and vk are zero-mean, uncorrelated and white.

• this filter can also be implemented if wk and vk are colored or correlated.

• this filter can be used also for nonlinear systems,using appropriate equations.

2.2.5 Continuous-Time Kalman Filter
One of the application of the Continuous-time Kalman Filter is for analog circuits. Its

equations are obtained from the discrete-time filter equations expressed above, defining the
sample time T that decreases to zero.In order to build the system in continuous is also necessary
to define the process noise and measurement noise as continuous-time white noises. The covariance
of the process noise is expressed as:

E[w(t)wT (τ)] = Q

T
δ(t− τ) (2.57)

where T and Q are the same as in discrete-time model, while δ(t − τ) is the continuous-time
impulse response (called also Dirac δ).Considering the continuous-time system:

ẋ(t) = w(t) (2.58)
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and doing the integration,as explained in [33], it is obtained that:

E[x(t)xT (t)] = Qt

T
= kQ (2.59)

Comparing this result with the covariance of a discrete-time system, it can be noticed that
it increases with time as the same in discrete-system.As a consequence the covariance Q in
discrete-time is equivalent to the covariance Qcδ(t) in continuous-time system where Qc = Q/T :

w(t) ∼ (0, Qc) (2.60)

E[w(t)wT (τ)] = Qcδ(t− τ) (2.61)
For what concern the measurement noise it is defined,in discrete-time, as:

yk = xk + vk

vk ∼ (0, R)
(2.62)

considering the sample time T that tends to 0:

lim
T→0

R = Rcδ(t) (2.63)

The relationship between R in discrete-time and Rc in continuous-time is represented by:

E[v(t)v(τ)] = Rcδ(t− τ) (2.64)

After derving the process noise and measurement noise in continuous, it is now possible to derive
the whole system in continuous-time:

ẋ = Ax+Bu+ w

y = Cx+ v

w ∼ (0, Qc)
v ∼ (0, Rc)

(2.65)

Considering T → 0 the following equations are obtained:

x̂(0) = E[x(0)]
P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T ]
K = PCTR−1

c

˙̂x = Ax̂+Bu+K(y − Cx̂)
Ṗ = −PCTR−1

c CP +AP + PAT +Qc

(2.66)

2.2.6 Extendend Kalman Filter
In a real framework also the Kalman Filter has to be considered in a non-linear environment.

The most commonly used technique for non linear estimation is the extended Kalman Filter
(EKF).This type of filter is used in this thesis for estimating the contact point,as a consequence it
is necessary to understand the theory for its working principle. The idea is to linearize the system
around the estimation, and the estimation of the Filter is then based on the linearized system.
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In continuous-time it is expressed as:

ẋ = f(x, u, w, t)
y = h(x, v, t)
w ∼ (0, Q)
v ∼ (0, R)

(2.67)

Then in order to consider it in a linearized way, it is necessary to do the partial derivative around
the current state estimate:

A = ∂f

∂x

---
x̂

L = ∂f

∂w

---
x̂

C = ∂h

∂x

---
x̂

M = ∂h

∂v

---
x̂

(2.68)

After computing the matrices Q̄ = LQLT and R̄ = MRMT ,the filter equations can be evaluated:

x̂(0) = E[x(0)]
P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T ]

˙̂x = f(x̂, u, w0, t) +K[y − h(x̂, v0, t)]
K = PCT R̄−1

Ṗ = AP + PAT + Q̄− PCT R̄−1CP

(2.69)

The discrete-time EKF is expressed as follow:

xk = fk−1(xk−1, uk−1, wk−1)
yk = hk(xk, vk)
wk ∼ (0, Qk)
vk ∼ (0, Rk)

(2.70)

The initialization of x̂+
0 and P+

0 is:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )]
(2.71)

To write the dynamics of the Filter,it is necessary to compute the partial derivative as before:

Fk−1 = ∂fk−1

∂x

---
x̂+

k−1

Lk−1 = ∂fk−1

∂w

---
x̂+

k−1

Hk = ∂hk
∂x

---
x̂−

k

Mk = ∂hk
∂v

---
x̂−

k

(2.72)
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The predict equations for the estimation are the following:

P−
k = Fk−1P

+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1

x̂−
k = fk−1(x̂+

k−1, uk−1, 0)
(2.73)

while the update equations for the estimation are:

Kk = P−
k H

T
k (HkP

−
k H

T
k +MkRkM

T
k )−1

x̂+
k = x̂−

k +Kk[yk − hk(x̂−
k , 0)]

P+
k = (I −KkHk)P−

k

(2.74)

In this dissertation it is used the hybrid EKF, a combination of continuous-time and discrete-time
equations, for the estimation of the contact point. Its implementation is fully described in the
Chapter 4, in order to use the same equations needed for building the model of this thesis.



Chapter 3

Experimental Setup

The target platform used for evaluating the contact point during the locomotion is called
HyQ, Hydraulically actuated quadruped robot. This robot is the final result of a series of
implementations and studies, starting from the work of Dr. Claudio Semini in 2010 [46]. From
that moment Hyq became the centre of research of the Dynamic Legged System Laboratory
inside Istituto Italiano di Tecnologia. IIT is a national research Institute whose purpose is based
on technological development and scientific progress [1], competing with realities in all over the
world, as ETH or MIT. This is why inside this Institute,it is possible to enter in contact with
modern and innovative systems and projects. DLS is one of the laboratories that investigates
robotics, in particular legged robotics which aim is to realize a robust architecture able to walk
on rough terrains [2], despite also external disturbances [27] which can cause robot task’s failure.

3.1 System Overview
The starting point of HyQ robot realization was the first prototypes of the legs in 2008, built

to carry heavy loads and at the same time to guarantee elasticity of movements.
Since 2008 several versions of HyQ are realized to implement its structure and also its

performances:

1. HyQ Green (2010) [49] Fig.3.1a. It is the robot used for doing experiments in this thesis.
Usually this robot is considered as a "testing hardware", because before try new changes on
HyQ Real, they are performed on HyQ Green.

2. HyQ Centaur (2015) [55] Fig.3.1b. It has the same architecture as before, but in addition
it was mounted on it an hydraulic arm. This arm is compact (0.743m at its maximum
extension), light-weight (12.5 Kg), fast (maximum speed of 4 m/s with no loads at end-
effector) and it is characterized by six-degree of freedom.

3. HyQ2Max (2015) [48] Fig. 3.1d. The goal at the basis of its realization was to realize a
more robust and versatile robot, able to do the so called self-righting, laying on its back and
then turning back on its belly to stand-up again. Another difference is that all the cables
or sentitive hardware parts, as electronic devices, sensors and actuators, are covered with a
protection shield, in order to avoid their breaking during robot fall.

4. HyQMini (2015) [31] Fig.3.1c. It is the smallest version of HyQ robot, realized with small
hydraulic actuators and also with small link legs (15% less in flex configurations).

26
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: HyQGreen(a), HyQCentaur(b),HyQMini (c), HyQ2Max (d), HyQ Real (e), HyQ Real
+ TeleOp Arm (f).

5. HyQReal (2019) [45]Fig.3.1e. This is the newest version of HyQ, presented for the first
time at ICRA 2019. The new structure is composed by two HPUs (Front and Hind), a
battery of 48V and four computers mounted on it. It is a result of a collaboration with the
MOOG Inc. expecially for what concern the design of integrated smart actuators (ISA) and
smart manifolds [11], obtaining as a consequence a more compact structure. The weight is
approximately of 130 Kg and it is able to carry heavy weights as a small passenger airplane
(Piaggio P180 Avanti).

6. HyQ real and Teleoperation Arm mounted on its torso (2020) Fig.3.1f. This project was born
in collaboration with INAIL and its aim is to reduce the risk for workers safety and health in
particular scenarios such as nuclear, chemical, disaster response, construction/demolition. In
this type of environments hazards can be present in the form of radiation,toxicity,exposure
to chemicals. The teleoperation arm can be a solution to perform tasks guaranteeing the
well-being of workers or humans involved in the rescue operation [3] [44].

3.1.1 Mechanical Design
HyQ was designed to perform different types of motions, varying from agile and fast locomotion

to slow and careful motions on uneven terrains. Its weight is about 90 Kg and its dimensions
are 1.0m x 0.5 m x 0.98m (Length x Width x Height). The robot is composed by four legs: Left
Front (LF), Right Front (RF), Left Hind (LH) and Right Hind (RH). Each leg is characterized
by three DoFs, for an amount of twelve torque-controlled joints,hydraulically actuated:

• 4 Hip Abduction-Adduction (HAA)

• 4 Hip Flexion-Extension (HFE)

• 4 Knee Flexion-Extension (KFE)
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Figure 3.2: Representation of joints,legs and frame on Hyq(left) and HyQ Real(right). The legs
are left-front (LF), right-front(RF), left-hind(LH) and right-hind (RH). The joints are HAA,HFE
and KFE [56]

The pressure of about 16MPa allows the joints to reach torque from 120N for the HAA to 145N
for HFE and KFE. In the following table are resumed the main characteristics of HyQGreen and
HyQReal

Table 3.1: Table of HyqGreen and HyQReal Parameters

Green Real
Robot’s mass 90Kg 130Kg

Operating pressure 160bar 160bar
Dimension (fully extended leg) 1.0m x 0.5m x 0.98m 1.3m x 0.67m x 0.9m

Leg length/link length from 0.339m to 0.789m hip (HAA-HFE):0.017
upper leg (HFE-KFE):0.36m
upper leg (KFE-foot):0.38m

Foot radius 2cm 2cm
Number of joints 12 12
HAA range motion −90◦ +30◦ 60◦

HFE range motion −70◦ +50◦ 110◦

KFE range motion +20◦ +140◦ 130◦

Maximum torque HAA 120Nm 165Nm
Maximum torque HFE 150Nm 270Nm
Maximum torque KFE 150Nm 240Nm
onboard computer Intel core i7 with real-time Linux

3.1.2 Frames of Reference
In order to evaluate the contact point using direct kinematics an important aspect is the

definition of the References Frames adopted in the equations. As it can be seen in the Fig. 3.3 the
base frame is at the geometric centre of the torso and from it ,it is possible to obtain the HAA,
HFE, KFE reference frames following the DH Conventions. The world frame is an inertial frame
whose origin coincides with a fixed point on Earth. When the robot is in its starting position,
the base frame coincides with the world frame, considering an offset along z-axis of exactly the
height of the robot. The IMU frame is located at the origin of sensor IMU and its transformation
from the base frame is obtained using a CAD model of the robot and considering datasheet. The
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horizontal frame, with its origin aligned with the base frame and its z-axis aligned along the
gravity vector, is useful for trajectory planner applications.

(a) top view of HyQ. (b) Reference Frames of HyQ.

Figure 3.3: HyQ Design [47]

3.1.3 Sensors
The starting point of State Estimation is getting informations from data sensors, as explained

in the Chapter 2.1. HyQ is equipped with different types of sensors to obtain informations as
accurate as possible; this is why this section is dedicated to their description. The proprioceptive
senors mounted on HyQ are: Encoders, IMU and F/T sensors. In each joint of HyQ are
implemented two encoders: absolute (AMS model AS50445) and relative/optical (Avago model
AEDA3300 BE1 Fig.3.4a). They are useful to measure the joint position q and the joint velocity
q̇ obtained computing the derivative from the position. These sensor measurements data are
important to evaluate position, velocity and acceleration of the knee and of the foot.
Since HFE and KFE joints are moved by pistons, they are equipped with loadcells (Burster 8417
Fig. 3.4b) in order to measure forces. The joint HAA is equipped with a custom made torque
sensor. These sensors are important to detect the torque τ used for dynamic approaches.
The IMU is then used to measure the base angular velocity and the base acceleration, specifically
it measures the force g+ acc. The IMU mounted on HyQ is the KVH 1775 Fig. 3.4c,this is also a
device used by the quadruped legged robot Cheetah of MIT.

(a) Avago
AEDA3300
BE1.

(b) Burster 8417. (c) KVH1775.

Figure 3.4: Proprioceptive Sensors mounted on HyQ. 3.4a encoder, 3.4bloadcell, 3.4c IMU
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The exteroceptive sensors mounted on HyQ are depth sensors, stereo cameras and LIDARS.
It is important to underline that, for the experiments done in this thesis, the robot is completely
blind and the informations are obtained only from proprioceptive sensors data. However, in a real
scenario, both exteroceptive and proprioceptive sensors are used, in order to provide informations
regarding position, orientation and description of the environment, as accurate as possible.
The RGB-D sensors or depth sensor cameras mounted on HyQ are Realsense. The output obtained
by these sensors is a color point cloud.
For what concern the LIDARs, they are deeply used in robotics because they provide high
precision measurements despite not optimal weather conditions such as fog and dust. On HyQ
LIDARS are mainly used for SLAM purposes. The LIDAR mounted on HyQ robot is Velodyne
puck.

3.1.4 Software/Hardware Architecture
The robot is equipped with two on board PCs that are used to communicate with the frame-

work and allows the robot to perform all the required tasks. The Control PC runs the Supervisor,
a real-time Linux kernel,and its main function is to calculate the control in Real-Time. The Vision
PC runs a regular kernel and it is responsible for collecting the exteroceptive inputs, building a
map of the environment and sending it to the Control PC. In case of failure of the Vision PC,
the robot can move blindly, using only informations coming from the state-estimator. The user
commands are coming from the Operator PC through a Wi-Fi or Ethernet connection.

In HyQ the low-level control signals are computed inside the Control PC and they are sent to
the actuators. The first step is performed by the state-estimator that receives the signal coming
from the sensors and it sends it to the Control PC. At the same time the cameras create the map
of the environment to be sent to the Vision PC. In the second step, the obtained map and the
states informations are sent to the Supervisor controller which runs in a real-time and it sends
the desired torque to the low-level control module. The latter manages the actuators sending the
valve commands. The hardware/software architecture is shown in the figure Fig. 3.5.

Figure 3.5: Scheme block of the software/hardware architecture [56]
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3.2 HyQ Controller
The locomotion of HyQ robot can be of different type: crawl [27], bound [38] and trot. In this

thesis it is analyzed the trotting of the robot using a specific locomotion framework: the Reactive
Controller Framework (RCF).

3.2.1 Reactive Controller Framework
The RCF is mainly used for uneven and rough terrains thanks to its capability to perform

robust dynamic locomotion. This modular framework was first designed to receive informations
only provided by proprioceptive sensors, then its usage was extended cosnidering exteroceptive
sensors as well. It is characterized by two parts: i) a motion control block and ii) a motion
generation block Fig. 3.6. The latter is responsible for assigning the trajectories of the feet
with respect to the horizontal frame. The main characteristic of choosing this frame is that the
generation of feet trajectories is indipendent from the trunk attitude, in this way it is possible to
deal with non-flat terrain. The motion control block has the role to provide corrective actions in
order to obtain the desired trunk motion. These actions can be defined at the kinematic level
using the push recovery, or at torque level using the whole body control.
Moreover RCF contains a number of modules, used for increasing the realiability of robot locomo-
tion is difficult terrains. Examples of these modules are: push recovery, foot collision detection,
terrain adjustment and shin collision detection. Their contribution is to send reactive components
to the motion control block or to the motion generation block in order to adjust the trajectory.
The contribution of this thesis is to extend the part related to the shin collision detection, in
order to adjust the trajectory of the robot considering a 3D plane.

Figure 3.6: Scheme Block of the Reactive Controller Framework RCF [9]

3.3 Gazebo and Robot Operating Systems
The validation of the results in simulation is performed using ROS, Gazebo as a simulator

and RVIZ as a visualizer [42]. The communication between ROS and Gazebo is allowed thanks to
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a set of packages gazebo ros pkgs that are added to the framework. They used topics and services
to send the informations from ROS to Gazebo and vice-versa.

Figure 3.7: Scheme representing the communications between the simulation in Gazebo, the
controller in ROS and the real hardware [4]

3.3.1 ROS working principle
ROS,Robot Operating System, is a open source meta-operating system that is able to provide

a software platform to perform robotic applications [4]. The characteristic of ROS is that every
code can be implemented infinite times on different kind of applications and robots. Moreover, it
provides tools such as rqt and RVIZ, used for the phases of debugging and visualization. It is
organized in basics units known as packages, which contain nodes that are the smallest unit of ROS
environment, used for one single purpose. Every node is characterized by Name, message,type
and URI address. ROS is a communication based program that uses specific elements to send the
informations:

• Topic [5]: it represents the communication between a publisher node and a subscriber node
in an unidirectional way. The publisher has the role to write a message on a topic, while
the subscriber receives the information published in the connected topic. The action of
receiving a message performed by the subscriber is called Callback Function.

• Service [6]: it is a bidirectional communications used for exchanging response/request
informations between service client node and service server node. The latter provides a
service that can be called by the client node using a request message. When the service is
concluded,a response message is sent to the client.

• Action: it is a bidirectional communication between an action server node and an action
client node, used to send goal/result/feedback messages.

The working principle of the message communication is shown in Fig.3.8.
As said before, ROS provides an ever-growing quantity of packages used for programming robots.
One of the most important is the ros control [19], a set of packages related to the lower level
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Figure 3.8: Message communication scheme [41]

controllers. In this work the communication between the hardware and ROS, passes through the
Supervisor controller,which takes the informations from the sensors mounted on the robot and
it sends them directly to ROS. The Supervisor controller used for HyQ robot, manages several
type of different controllers with different perfomances and goals: i)Crawl Controller, ii)Leap
Controller, iii)Prep Controller, iv)RCF Controller and v)VM Force Optimization Controller. The
one used in this thesis is the RCF controller and the working principle of the communication is
described briefly as follows:

1. informations related to the position, velocity and angular velocity of the robot’s base are
subscribed from the Supervisor controller and sent to the RCF Controller.

2. the topic related to the contact point,evaluated through the state estimation, is published
in ROS for: i) saving the datas using ros bag and then post-processing the result in Matlab,
ii) stabilizing the controller using the obtained result as a feedback.

As it can be seen in the Fig.3.9 the RCF controller receives the informations from the State
Estimator, which computes the actual state pose and twist of the base at a frequency of 250 Hz.
The required inputs for evaluating the contact point are: q, q̇, pwbase, vwbase, ωwbase.
Inside the RCF controller the first step is to initialize it, in order to activate the trunk controller,
to get informations about the robot pose in the environment, to evaluate the ground reaction
forces and to stabilize the robot base. The second step is to decide which Trajectory Generator
Methods applied to the robot: i) TROT or ii) PushUp. The former allows the robot to perform
the trotting, a type of walking in which two opposite legs are in contact with the ground,while
the other two are in swing phase. The latter represents the PushUp motion, used mainly to verify
velocity or acceleration in each joint. The velocity of the robot or the legs motion are examples
of parameters that can be directly chosen by the user, allowing the robot to perform different
types of locomotion in different types of scenarios.
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Figure 3.9: Overview of the locomotion framework - in orange the target analyzed in this thesis

3.3.2 GAZEBO platform
Gazebo is an open source 3D dynamics simulator [32], that is able to provide tools, models

and worlds, for testing and simulating robots in a realistic way through the physics engine [7].
The physics engine availables is very wide, depending on the user requirements: ODE, DART,
Symbody and Bullet. Gazebo has its own format, the SDF - Simulation Description Format [8],
used for describing robot models or environments that can be freely available.
To perform a simulation in Gazebo using ROS control, it is necessary to add two interfaces:
i)an hardware interface used to represent a simulated or real robot, ii) a controller, that, as
explained before, is responsible of the communication with the hardware sending commands.
The connection between ROS and the real robot Fig. 3.7, is fulfilled through the usage of the
Hardware Abstraction Layer, represented by the RobotHW interface. The latter sends commands
to the real controller and at the same time, it reads the informations providing by encoders
mounted on the robot. The most known default hardware interfaces are:

• PositionJointInterface: used to command position-based joints.

• VelocityJointInterface: used to command velocity-based joints.

• EffortJointInterface: used to command effort-based joints.

In simulation, the RobotHW interface is substituted by the RobotHWSim. It has the same func-
tionalities and as a consequence it is able to read states and to command joints using Gazebo
simulator.



Chapter 4

Contact Detection and
Localization

4.1 Model Development
The equations for the system are found using only the kinematics. In both 2D and 3D

approach, are used only proprioceptive sensors providing informations on position,velocity and
acceleration of the robot’s base in the environment. This method can be considered as a sensor-less
approach because the localization of the collision is detected using only kinematic equations
starting from the trunk of the robot. In this way the presence of noise,provided by the usage of
sensors, is reduced. To deal with noisy data sensor measurements,a filtering stage is added in the
end to obtain a clear output and use it to stabilize the trunk of the robot.

4.1.1 Model in 2D
The starting point of this thesis is the model in 2D, performed to detect the collision point in

order to then allows the robot to overcome a step, avoiding the slippage, during blind locomotion.
Find correctly the contact point is useful to have a better locomotion of the robot, as proven in
[10]. In fact an high delay on the estimation of the contact point, gives rise to a shin slippage
of the robot, due to the presence of errors in the estimation. Another consideration is based on
the analysis of the velocity: the higher is the velocity, the less the collision is detrimental for
the motion. Morevover positive and negative errors on the estimation, have opposite effect on
the whole motion of the robot: i) positive errors can cause the stuck of the robot, due to the
slippage of the shin while ii) negative errors help the robot to overcome the step, this is why
the trunk controller provides lower joint torques and as a consequence lower ground reaction forces.

A solution to detect correctly the contact point is to build the 2D model, based only on the
evaluation of position and velocity of the contact point and of the knee. The model is simplified
in a 2D plane in order to reduce the complexity of the system.The shin contact point Cs and the
shin velocity Ċs are found using trigonometric equations:

Pkx
= rscos(π/2 + θs) + Cscos(θs)

Pkz
= rssin(π/2 + θs) + Cssin(θs)

(4.1)

where Pk = (Pkx , Pkz ) is the position in x and z axis of the knee. From the position is then
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Figure 4.1: Representation of the shin collision in a 2D plane [10]

necessary to find the velocity, simply doing the derivative by time, in order to evaluate Ċs.
Ṗkx

= −rscos(θs)θ̇s + Ċscos(θs)− Cssin(θs)θ̇s
Ṗkz = −rssin(θs)θ̇s + Ċssin(θs) + Cscos(θs)θ̇s

(4.2)

The goal is to find Cs and Ċs, so everything is then written in function of Cs and Ċs:5
Ṗ Í
kx

Ṗ Í
kz

6
=

5
cos(θs) −sin(θs)θ̇s
sin(θs) cos(θs)θ̇s

6 5
Ċs
Cs

6
(4.3)

and using the inverse of the Jacobian is obtained that:5
Ċs
Cs

6
=

5
cos(θs) sin(θs)

−sin(θs)θ̇−1
s cos(θs)θ̇−1

s

6 5
Ṗ Í
kx

Ṗ Í
kz

6
(4.4)

Doing experiments, the robot is able to overcome a step stopping the shin slippage during the
collisions and improving as a condequence the locomotion. However this 2D model has limitations,
this is why then the model is implemented in 3D:

• the 2D model doesn’t consider the velocity and also the movement along y axis. If the
robot has slippage along y axis, the controller doesn’t stabilize the robot.

• the 2D model is evaluated considering only position and velocity,so it doesn’t consider the
case in which the velocity is equal to zero. In this specific scenario there is a singularity
and a solution to deal with it, is to add in the model the acceleration equations.

4.1.2 Model in 3D
The model in 3D is built in order to provide a solution to the limitations described in the

2D system. To obtain the model, the starting point is to compute the position, velocity and
acceleration of the knee and of the foot using the kinematics. The first step is the evaluation
of the homogeneous transformation matrices, following the reference frames shown in Fig. 3.3b.
Considering LF and RH leg, the following homogeneous transformation matrices are obtained:

TLF =


R1,1 R1,2 R1,3 t1
R2,1 R2,2 R2,3 t2
R3,1 R3,2 R3,3 t3

0 0 0 1

 (4.5)
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where:
R1,1 = −sin(q2)cos(q3)− cos(q2)sin(q3)
R1,2 = sin(q2)sin(q3)− cos(q2)cos(q3)
R1,3 = 0
t1 = −a4cos(q3)sin(q2)− a4sin(q3)cos(q2) + d1 − a3sin(q2)
R2,1 = −sin(q1)cos(q2)cos(q3) + sin(q1)sin(q2)sin(q3)
R2,2 = sin(q1)cos(q2)sin(q3) + sin(q1)sin(q2)cos(q3)
R2,3 = cos(q1)
t2 = −sin(q1)cos(q2)a4cos(q3) + a4sin(q3)sin(q1)sin(q2)− a3cos(q2)sin(q1)− a2sin(q1) + d0
R3,1 = −cos(q1)cos(q2)cos(q3) + sin(q2)cos(q1)sin(q3)
R3,2 = cos(q1)cos(q2)sin(q3) + sin(q2)cos(q1)cos(q3)
R3,3 = −sin(q1)
t3 = −a4cos(q3)cos(q1)cos(q2) + a4sin(q3)sin(q2)cos(q1)− a3cos(q2)cos(q1)− a2cos(q1)

TRH =


RÍ

1,1 RÍ
1,2 RÍ

1,3 tÍ1
RÍ

2,1 RÍ
2,2 RÍ

2,3 tÍ2
RÍ

3,1 RÍ
3,2 RÍ

3,3 tÍ3
0 0 0 1

 (4.6)

where:
RÍ

1,1 = −sin(q2)cos(q3)− cos(q2)sin(q3)
RÍ

1,2 = −sin(q2)sin(q3) + cos(q2)cos(q3)
RÍ

1,3 = 0
tÍ1 = −a4cos(q3)sin(q2)− a4sin(q3)cos(q2)− d1 − a3sin(q2)
RÍ

2,1 = sin(q1)cos(q2)cos(q3)− sin(q1)sin(q2)sin(q3)
RÍ

2,2 = sin(q1)cos(q2)sin(q3) + sin(q1)sin(q2)cos(q3)
RÍ

2,3 = cos(q1)
t2 = sin(q1)cos(q2)a4cos(q3)− a4sin(q3)sin(q1)sin(q2) + a3cos(q2)sin(q1) + a2sin(q1)− d0
RÍ

3,1 = −cos(q1)cos(q2)cos(q3) + sin(q2)cos(q1)sin(q3)
RÍ

3,2 = cos(q1)cos(q2)sin(q3) + sin(q2)cos(q1)cos(q3)
RÍ

3,3 = sin(q1)
tÍ3 = −a4cos(q3)cos(q1)cos(q2) + a4sin(q3)sin(q2)cos(q1)− a3cos(q2)cos(q1)− a2cos(q1)

The characteristic of an homogeneous transformation matrix is that the submatrix R repre-
sents the rotation matrix from the base of the robot to the desired joint(knee/foot), while the
last column represents the translation t along the three axes x, y and z. The inputs q1, q2 and q3
are the joints angle taken directly from the sensors, in particular from the encoders mounted on
the robot, while the measurements d0, d1, a2, a3 and a4 are related to the stucture and geometry
of the robot as shown in the Fig. 4.2. From TLF and TRH is then easy to find the position of the
foot for LF leg and for RH leg, simply considering the last column of the matrices.

pfootLF
=

 −a3s(q2) + d1 − a4c(q2)s(q3)− a4s(q2)c(q3)
−a3s(q1)c(q2)− a2s(q1) + d0 − s(q1)c(q2)a4c(q3) + s(q1)s(q2)a4s(q3)
−c(q1)a3c(q2)− a2c(q1)− a4c(q3)c(q1)c(q2) + a4s(q3)c(q1)s(q2)

 (4.7)

pfootRH
=

 −a3s(q2)− d1 − a4c(q2)s(q3)− a4s(q2)c(q3)
+a3s(q1)c(q2) + a2s(q1)− d0 + s(q1)c(q2)a4c(q3)− s(q1)s(q2)a4s(q3)
−c(q1)a3c(q2)− a2c(q1)− a4c(q3)c(q1)c(q2) + a4s(q3)c(q1)s(q2)

 (4.8)
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(a) top view HyQ with dimension d0. (b) side view of HyQ with dimen-
sion d1.

(c) Leg of HyQ.

Figure 4.2: Structure of HyQ robot.

In order to find then the velocity and acceleration, it is necessary to evaluate also the Jacobian
for each leg.This particular matrix is obtained doing the partial derivative in δq1, δq2 and δq3 for
each element of the vector position:

JfootLF
=


∂pfLF

[1]
∂q1

∂pfLF
[1]

∂q2

∂pfLF
[1]

∂q3
∂pfLF

[2]
∂q1

∂pfLF
[2]

∂q2

∂pfLF
[2]

∂q13
∂pfLF

[3]
∂q1

∂pfLF
[3]

∂q2

∂pfLF
[3]

∂q3

 (4.9)

where the terms inside the Jacobian matrix are equal to:
J1,1 = 0
J1,2 = −a4cos(q3)cos(q2) + a4sin(q3)sin(q2)− a3cos(q2)
J1,3 = a4sin(q3)sin(q2)− a4cos(q3)cos(q2)
J2,1 = −cos(q1)cos(q2)a4cos(q3) + a4sin(q3)cos(q1)sin(q2)− a3cos(q1)cos(q2)− a2cos(q1)
J2,2 = sin(q1)sin(q2)a4cos(q3) + a4sin(q3)sin(q1)cos(q2) + a3sin(q1)sin(q2)
J2,3 = sin(q1)cos(q2)a4sin(q3) + a4cos(q3)sin(q1)sin(q2)
J3,1 = sin(q1)cos(q2)a4cos(q3)− sin(q1)sin(q2)a4sin(q3) + sin(q1)a3cos(q2) + a2sin(q1)
J3,2 = cos(q1)sin(q2)a4cos(q3) + cos(q1)cos(q2)a4sin(q3) + cos(q1)a3sin(q2)
J3,3 = cos(q1)cos(q2)a4sin(q3) + cos(q1)sin(q2)a4cos(q3)
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JfootRH
=


∂pfRH

[1]
∂q1

∂pfRH
[1]

∂q2

∂pfRH
[1]

∂q3
∂pfRH

[2]
∂q1

∂pfRH
[2]

∂q2

∂pfRH
[2]

∂q13
∂pfRH

[3]
∂q1

∂pfRH
[3]

∂q2

∂pfRH
[3]

∂q3

 (4.10)

where:
J1,1 = 0
J1,2 = −a4cos(q3)cos(q2) + a4sin(q3)sin(q2)− a3cos(q2)
J1,3 = a4sin(q3)sin(q2)− a4cos(q3)cos(q2)
J2,1 = cos(q1)cos(q2)a4cos(q3)− a4sin(q3)cos(q1)sin(q2) + a3cos(q1)cos(q2) + a2cos(q1)
J2,2 = −sin(q1)sin(q2)a4cos(q3)− a4sin(q3)sin(q1)cos(q2)− a3sin(q1)sin(q2)
J2,3 = −sin(q1)cos(q2)a4sin(q3)− a4cos(q3)sin(q1)sin(q2)
J3,1 = sin(q1)cos(q2)a4cos(q3)− sin(q1)sin(q2)a4sin(q3) + sin(q1)a3cos(q2) + a2sin(q1)
J3,2 = cos(q1)sin(q2)a4cos(q3) + cos(q1)cos(q2)a4sin(q3) + cos(q1)a3sin(q2)
J3,3 = cos(q1)cos(q2)a4sin(q3) + cos(q1)sin(q2)a4cos(q3)

For what concerns RH and LF knee,the matrices are simply found without considering the
last joint q3 and,as a consequence, computing the kinematics from the base to KFE:

pkneeLF
=

 −a3s(q2) + d1
−a3s(q1)c(q2)− a2s(q1) + d0
−c(q1)a3c(q2)− a2c(q1)

 (4.11)

pkneeRH
=

 −a3s(q2)− d1−
+a3s(q1)c(q2) + a2s(q1)− d0
−c(q1)a3c(q2)− a2c(q1)

 (4.12)

From the position vectors is then possible, as before, to obtain the Jacobian matrices:

JkneeLF
=


∂pkLF

[1]
∂q1

∂pkLF
[1]

∂q2

∂pkLF
[1]

∂q3
∂pkLF

[2]
∂q1

∂pkLF
[2]

∂q2

∂pkLF
[2]

∂q13
∂pkLF

[3]
∂q1

∂pkLF
[3]

∂q2

∂pkLF
[3]

∂q3

 (4.13)

JkneeRH
=


∂pkRH

[1]
∂q1

∂pkRH
[1]

∂q2

∂pkRH
[1]

∂q3
∂pkRH

[2]
∂q1

∂pkRH
[2]

∂q2

∂pkRH
[2]

∂q13
∂pkRH

[3]
∂q1

∂pkRH
[3]

∂q2

∂pkRH
[3]

∂q3

 (4.14)

As written before in the section 2.1.2,it is now possible to find the position in the world frame:

pwfRH
= Rwb · pbfRH

+ pwbase

pwfLF
= Rwb · pbfLF

+ pwbase

pwkRH
= Rwb · pbkRH

+ pwbase

pwkLF
= Rwb · pbkLF

+ pwbase

(4.15)
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where pwf is the position of the foot in the world frame, pwk is the position of the knee in the world
frame and pwbase is the position of the robot’s base in the world frame. After finding the position
the next step is to evaluate the velocity. The general formulas are expressed as:

vb = J · q̇ − ωbase × pb

vw = Rwb · vb + vwbase
(4.16)

where q̇ is the joint velocity and it is provided by the proprioceptive sensors mounted on the robot,
vwbase and ωbase are respectively the linear and angular velocity of the robot’s base computed by
the IMU (Chapter 3.1.3).From the equation 4.16,it is possible to evaluate the linear velocity of
the knee and of the foot for RH/LF legs:

vwfRH
= Rwb · (JfRH

· q̇ − ωbase × pbfRH
) + vwbase

vwfLF
= Rwb · (JfLF

· q̇ − ωbase × pbfLF
) + vwbase

vwkRH
= Rwb · (JkRH

· q̇ − ωbase × pbkRH
) + vwbase

vwkLF
= Rwb · (JkLF

· q̇ − ωbase × pbkLF
) + vwbase

(4.17)

To evaluate the angular velocity it is necessary to compute the angular Jacobian Jo. It is a 3xn
matrix, where n depends on the number of joints involved in the evaluation of the differential
kinematics,describing the relation between q̇ and the angular velocity ω. For RH/LF leg it is
computed as follows:

JofRH
=

1 0 0
0 cos(q1) cos(q1)
0 sin(q1) sin(q1)


JofLF

=

−1 0 0
0 cos(q1) cos(q1)
0 −sin(q1) −sin(q1)


JokRH

=

1 0
0 cos(q1)
0 sin(q1)


JokLF

=

−1 0
0 cos(q1)
0 −sin(q1)



(4.18)

and, as a consequence, the angular velocity in the world frame is:

ωwfRH
= Rwb · (JofRH

· q̇) + ωbase

ωwfLF
= Rwb · (JofLF

· q̇) + ωbase

ωwkRH
= Rwb · (JokRH

· q̇) + ωbase

ωwkLF
= Rwb · (JokLF

· q̇) + ωbase

(4.19)

The novel approach of this thesis is to consider the collision in a 3D plane. To do that it is
necessary to compute also the acceleration and having as a consequence a whole description of the
robot shin motion in the environment. The general formulas for acceleration are the following:

ab = (J̇ · q̇ + J · q̈)− S(ω̇) · pb − S(ω) · (J · q̇)
aw = awbase + S(ω) ·Rwb · vb +Rwb · ab

(4.20)
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where S(ω) and S(ω̇) are the skew-symmetric matrices evaluated as follows:

S(ω) =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

S(ω̇) =

 0 −ω̇3 ω̇2
ω̇3 0 −ω̇1
−ω̇2 ω̇1 0

 (4.21)

The derivative by time of the Jacobian, J̇ , for LF/RH knee/foot is the following matrix:

J̇ =


∂J1,1
∂t

∂J1,2
∂t

∂J1,3
∂t

∂J2,1
∂t

∂J2,2
∂t

∂J2,3
∂t

∂J3,1
∂t

∂J3,2
∂t

∂J3,3
∂t

 (4.22)

The last elements, needed for building the model to find the contact point, are the shin angle and
the shin angle rate. They are related to the shin orientation and as a consequence they can be
obtained directly from the rotation matrices (eq. 4.5 and 4.6), using the inverse formulas of the
Euler angles (eq. A.6).The first step is to find the Rotation matrices,from the robot base to the
foot, in the world frame

Re = Rwb ·R
RÍ
e = Rwb ·RÍ (4.23)

The second step is to evaluate the shin angle:

[φLF , θLF , ψLF ] =

φ(Re)
θ(Re)
ψ(Re)

 =

atan2(Re2,3, Re3,3)
−asin(Re1,3)

atan2(Re1,2 , Re1,1)


[φRH , θRH , ψRH ] =

φ(RÍ
e)

θ(RÍ
e)

ψ(RÍ
e)

 =

atan2(RÍ
e2,3, R

Í
e3,3

)
−asin(RÍ

e1,3
)

atan2(RÍ
e1,2

, RÍ
e1,1

)

 (4.24)

From these equations, the shin angle rate is computed as follows:

[φ̇, θ̇, ψ̇] = E−1 · ωwf (4.25)

where:

E−1 = 1
cos(θ)

 cos(ψ) sin(ψ) 0
−cos(θ)sin(ψ) cos(θ)cos(ψ) 0
cos(ψ)sin(θ) sin(ψ)sin(θ) cos(θ)

 (4.26)

Then substituting the equations (4.19, 4.24) in (4.25), it is obtained that:

[φ̇LF , θ̇LF , ψ̇LF ] = E−1 · ωwfLF

[φ̇RH , θ̇RH , ψ̇RH ] = E−1 · ωwfRH

(4.27)

The derivatives of 4.27 are the following equations:φ̈LFθ̈LF
ψ̈LF

 = Ė−1 · ωwfLF
+ E−1 · [S(ω) ·Rwb · ωfLF

+Rwb · (J̇o · q̇ + Jo · q̈) + ω̇wbase]

φ̈RHθ̈RH
ψ̈RH

 = Ė−1 · ωwfRH
+ E−1 · [S(ω) ·Rwb · ωfRH

+Rwb · (J̇o · q̇ + Jo · q̈) + ω̇wbase]

(4.28)
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where:

Ė−1 = sin(θ)
cos(θ)2E1 + 1

cos(θ)E2

E1 =

 cos(ψ) sin(ψ) 0
−cos(θ)sin(ψ) cos(θ)cos(ψ) 0
cos(ψ)sin(θ) sin(ψ)sin(θ) cos(θ)


E2 =

 −sin(ψ)ψ̇ cos(ψ)ψ̇ 0
sin(θ)θ̇sin(ψ)− cos(θ)cos(ψ)ψ̇ −sin(θ)θ̇cos(ψ)− cos(θ)sin(ψ)ψ̇ 0
−sin(ψ)ψ̇sin(θ) + cos(ψ)cos(θ)θ̇ cos(ψ)ψ̇sin(θ) + sin(ψ)cos(θ)θ̇ −sin(θ)θ̇


(4.29)

In order to verify if all the computations evaluated till now are consistent with the reality, the
robot is simulated in Real-Time on Gazebo. The outputs are analyzed in Real-Time using the
Scope tool and datas are then processed on Matlab to study in details the behaviour during the
time. Their shape is shown and described in the Appendix B.

After computing all the parameters needed for building the system, it is now possible to
evaluate the contact point in a 3D plane using Trigonometric Equations.

Figure 4.3: Representation of the shin collision in a 3D plane

Considering the collisions as a distance along the shin, from the knee joint, and taking into
account that θ is the pitch while φ is the yaw of the shin (Fig. 4.3 ), the following equations are
obtained for the position:

PkxLF
= −[Cscos(θLF )− rssin(θLF )]cos(φLF )

PkyLF
= −[Cscos(θLF )− rssin(θLF )]sin(φLF )

PkzLF
= Cssin(θLF ) + rscos(θLF )

(4.30)
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PkxRH
= [Cscos(θRH)− rssin(θRH)]cos(φRH)

PkyRH
= [Cscos(θRH)− rssin(θRH)]sin(φRH)

PkzRH
= −Cssin(θRH) + rscos(θRH)

(4.31)

In reference to the figure Fig. 4.3, the unknown parameter is Cs that is the distance between the
knee and the point in which the collision happens. Moreover, since it is a model in a 3D plane,
it is necessary to consider also the thickness of the leg rs = 0.02 [cm]. The idea at the basis of
contact detection, is that the collision happens when the velocity and acceleration are equal to
zero. This means that the movement of the robot leg is stuck due to the presence of an obstacle.
Therefore the evaluation of contact point velocity and acceleration is a fundamental step for the
analysis of the model in a 3D plane.
Doing the derivative by time of equations (4.30) and (4.31), the velocities are evaluated as follows:

Ṗ Í
kxLF

= −Ċs[cos(θLF )cos(φLF )] + Cs[sin(θLF )θ̇LF cos(φLF ) + cos(θLF )sin(φLF )φ̇LF ]
Ṗ Í
kyLF

= −Ċs[cos(θLF )sin(φLF )] + Cs[sin(θLF )θ̇LF sin(φLF )− cos(θLF )cos(φLF )φ̇LF ]
ṖkzLF

= Ċssin(θLF ) + Cscos(θLF )θ̇LF

(4.32)

P Í
kxRH

= Ċs[cos(θRH)cos(φRH)] + Cs[−sin(θRH)θ̇RHcos(φRH)− cos(θRH)sin(φRH)φ̇RH ]
Ṗ Í
kyRH

= Ċs[cos(θRH)sin(φRH)] + Cs[−sin(θRH)θ̇RHsin(φRH) + cos(θRH)cos(φRH)φ̇RH ]
Ṗ Í
kzRH

= Ċssin(θRH) + Cscos(θRH)θ̇RH
(4.33)

where for simplicity in calculations Ṗ Í
kxLF

,Ṗ Í
kyLF

,Ṗ Í
kzLF

,Ṗ Í
kxRH

,Ṗ Í
kyRH

,Ṗ Í
kzRH

are equal to:

Ṗ Í
kxLF

= ṖkxLF
− rscos(θLF )θ̇LF cos(φLF ) + rssin(θLF )sin(φLF )φ̇LF

Ṗ Í
kyLF

= ṖkyLF
− rscos(θLF )θ̇LF sin(φLF )− rssin(θLF )cos(φLF )φ̇LF

Ṗ Í
kzLF

= ṖkzLF
+ rssin(θLF )θ̇LF

(4.34)

Ṗ Í
kxRH

= ṖkxRH
+ rscos(θRH)θ̇RHcos(φRH)− rssin(θRH)sin(φRH)φ̇RH

Ṗ Í
kyRH

= ṖkyRH
+ rscos(θRH)θ̇RHsin(φRH) + rssin(θRH)cos(φRH)φ̇RH

Ṗ Í
kzRH

= ṖkzRH
+ rssin(θRH)θ̇RH

(4.35)

Deriving by time the equations (4.32) and (4.33),it is possible to compute also the accelerations:

P̈ Í
kxLF

= −aLF · C̈s + 2bLF · Ċs + ḃLF · Cs
P̈ Í
kyLF

= −cLF · C̈s + 2dLF · Ċs + ḋLF · Cs
P̈ Í
kzLF

= eLF · C̈s + 2fLF · Ċs + ḟLF · Cs

(4.36)

P̈ Í
kxRH

= aRH · C̈s − 2bRH · Ċs − ḃRH · Cs
P̈ Í
kyRH

= cRH · C̈s − 2dRH · Ċs − ḋRH · Cs
P̈ Í
kzRH

= eRH · C̈s + 2fRH · Ċs + ḟRH · Cs

(4.37)
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For the sake of readable, in the above formulas are used coefficients which are equal to:

a = cos(θ)cos(φ)
b = sin(θ)θ̇cos(φ) + cos(θ)sin(φ)φ̇
c = cos(θ)sin(φ)
d = sin(θ)θ̇sin(φ)− cos(θ)cos(φ)φ̇
e = sin(θ)
f = cos(θ)θ̇
ḃ = cos(θ)θ̇2cos(φ) + sin(θ)θ̈cos(φ)− sin(θ)θ̇sin(φ)φ̇− sin(θ)θ̇sin(φ)φ̇+

+ cos(θ)cos(φ)φ̇2 + cos(θ)sin(φ)φ̈
ḋ = cos(θ)θ̇2sin(φ) + sin(θ)θ̈sin(φ) + sin(θ)θ̇cos(φ)φ̇+ sin(θ)θ̇cos(φ)φ̇+

+ cos(θ)sin(φ)φ̇2 − cos(θ)cos(φ)φ̈

The parameters P̈ Í
kxLF

,P̈ Í
kyLF

,P̈ Í
kzLF

,P̈ Í
kxRH

,P̈ Í
kyRH

,P̈ Í
kzRH

are obtained just deriving by time the
equations (4.34 and 4.35).

The purpose of this thesis is to evaluate and estimate the contact point Cs and the contact
velocity Ċs. From the equations written above it is necessary to compute these two parameters,
in order to use them as measured inputs, C̃s and ˙̃Cs, and then estimate Ĉs and ˙̂

Cs during the
phase of filtering using the Kalman Filter method. The extension in a 3D model is useful to build
two models for the detection of the contact point:

• velocity model. It is more precise and accurate for the contact detection because it has a
lower complexity in the implementation. When the velocity is about zero the collision is
happening. As a consequence Cs is a constant value corresponding to the distance from the
knee.

• acceleration model.In practice, it is less accurate than the velocity model, due to its
complexity in the equations. Moreover for this model it is necessary to compute the discrete
derivative of the angular velocity, that is very noisy and more sensitive to phase shifts. As a
consequence this model is used to avoid singularities when in the velocity model, the velocity
is equal to zero. It is, in fact, guaranteed that when velocity model is in singularity, the
acceleration model provides a better output.

From the equations (4.32 and 4.33), the velocity model is obtained as follows for LF leg and
for RH leg respectively:

ṖLF =

ṖkxLF

ṖkyLF

ṖkzLF

 =

b −a
d −c
f e

 C
C̃s
˙̃Cs

D
inverting the formula it is obtained thatC

C̃s
˙̃Cs

D
= J+

LF · ṖLF

(4.38)
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ṖRH =

ṖkxRH

ṖkyRH

ṖkzRH

 =

−b a
−d c
f e

 C
C̃s
˙̃Cs

D
inverting the formula it is obtained thatC

C̃s
˙̃Cs

D
= J+

RH · ṖRH

(4.39)

where J+ is the Moore-Penrose inverse also known as pseudo-inverse matrix [14] [30]. For what
concerns the acceleration model it is computed as follows:

P̈LF =

P̈kxLF

P̈kyLF

P̈kzLF

 =

 ḃ 2b −a
ḋ 2d −c
ḟ 2f e


C̃s˙̃Cs

¨̃Cs


inverting the formula it is obtained thatC̃s˙̃Cs

¨̃Cs

 = J−1
LF · P̈LF

(4.40)

and for the RH leg:

P̈RH =

P̈kxRH

P̈kyRH

P̈kzRH

 =

−ḃ 2b a

−ḋ 2d c

ḟ 2f e


C̃s˙̃Cs

¨̃Cs


inverting the formula it is obtained thatC̃s˙̃Cs

¨̃Cs

 = J−1
RH · P̈RH

(4.41)

All the elements for building the dynamics of the Kalman Filter are now computed. Its
implementation is described properly in the following section.

4.2 Filtering
As explained in Chapter 2.1, State Estimation is characterized by two main steps: i) the

model development,analyzed in Chapter 4.1.2 and ii) the phase of filtering. The former is used to
describe a robot’s behaviour using mathematical equations, the latter has the role to improve
the results obtained analytically, providing an estimation of the desired variables with certain
features. In this thesis the technique adopted to filtered out the signal is the Kalman Filter,
widely described in Chapter 2.2.4. Since the model is non linear time-variant, the EKF framework
is adopted for the phase of Filtering. The main goal is to estimate the mean and the covariance
of the Gaussian distribution over the state xk = [Cs, Ċs]T at time k.
As it can be seen in Fig. 4.4, the signal is coming from sensors:

• the IMU is adopted to then estimate the signal related to the linear/angular veloc-
ity/acceleration of the robot’s base in the world frame: ωbase, ω̇base, vwbase and awbase.
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Figure 4.4: Scheme block of the shin collision state estimation model

• the encoders are used to acquire informations about the joints position and velocity: q, q̇
All these signals are corrupted by noise, this is way the usage of the Kalman Filter is fundamental
to obtain a good estimation of the state x. To build this filter the following elements are necessary:

• inputs: they correspond to knee velocity/acceleration Ṗk, P̈k and shin orientation θ, φ, θ̇,
φ̇, θ̈, φ̈.

• the measured state indicated as z: it corresponds to

x̃ =
5
x̃1
x̃2

6
=

C
C̃s
˙̃Cs

D
(4.42)

So it is equal to the measured state computed using the velocity model obtained in 4.39.

• the dynamics of the filter

˙̂x =
5 ˙̂x1

˙̂x2

6
=

5
0 1
0 0

6 5
x̃1
x̃2

6
+

5 0
¨̃Cs

6
(4.43)

In this formula the parameter ¨̃Cs is computed using the acceleration model. This is why the
EKF is a combined model in which both velocity and acceleration are involved to estimate
the contact point.

• the covariance matrices Q and R

• the equations of the hybrid model EKF
In the section 2.2.6, are explained the continuous-time EKF and the discrete-time EKF. Consid-
ering the two models, the hybrid version can be easily obtained. Its application is used when the
dynamics is in continuous-time, while the measurements are taken at discrete time instant from
the sensors. Considering this situation, that it’s very common in real application, the following
equations are obtained:

ẋ = f(x, u, w, t)
yk = hk(xk, vk)

w(t) ∼ (0, Q)
vk ∼ (0, Rk)

(4.44)
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The process noise w(t) has the covariance Q and it is in continuous-time, while the measurement
noise vk with covariance Rk is in discrete-time.
Then the filter is initialized as follows:

x̂+
0 = E[x0]

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(4.45)

The first step is to compute ˙̂x and Ṗ , using the equations in the continuous-time Kalman filter
(2.68) and (2.69):

˙̂x = f(x̂, u, w0, t)
Ṗ = AP + PAT + LQLT

(4.46)

at the end of the integration it is obtained that x̂ = x̂−
k and P = P−

k . The updating of the
state-estimate and the covariance, following the equations of the discrete-time Kalman Filter
(2.74),is computed as:

Kk = P−
k H

T
k (HkP

−
k H

T
k +MkRkM

T
k )−1

x̂+
k = x̂−

k +Kk[yk − hk(x̂−
k , v0, tk)]

P+
k = (I −KkHk)P−

k (I −KkHk)T +KkMkRkM
T
k K

T
k

(4.47)

The above equations can be now applied to the contact detection model,obtaining in the C++
code:

Table 4.1: Hybrid model EKF algorithm .

1: predict(t, u){
2: dt = (t− tprev)/0.004
3: xdot = calc_f(t, xhat, u)
4: F = calc_F (t, xhat, u)
5: Pdot = A · P + P ·AT + LQLT

6: xhat = xhat+ xdot · dt
7: P = P + Pdot · dt
8: tprev = t}
9: update(t, z){
10: H = calc_H(t, xhat)
11: h = calc_h(t, xhat)
12: Kk = P−

k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )−1

13: xhat = xhat+K · (z − h)
14: P = (I −K ·H) · P}

where calc_f is equal to the dynamics of the filter (4.43):

calc_f(t, x, u){
x1dot = x(2)
x2dot = C̈}

(4.48)

then calc_F is the partial derivative of the EKF around the state estimate x̂ :

calc_F(t, x, u){
F = [0, 1, 0, 0]}

(4.49)
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In the update function, calc_h is used to compute xhat tha correponds to the output yk (2.70),
while calc_H is the partial derivative of h around the state estimate x̂:

calc_H(t, x){
H = [1, 0, 0, 1]}

(4.50)

The idea of the Extended Kalman Filter is to remove the noise in the signal and obtain as a
consequence a flat output during the collision, corresponding to the distance between the knee
and the contact point. To avoid peaks and change also the shape of the estimation, the tuning
of the parameters Q and R is performed. This is an important step during the filtering phase,
because it allows to obtain the desired output with certain features.
The tuning of the parameters is explained as follows:

• Q is the covariance matrix of the process noise. It represents the reliability of the dynamics.
A small value of Q means that the dynamics is reliable, while increasing too much Q
means that the model are uncertain. This happens because K is a function of Q, so when
the process noise increases (i.e. Q increases), P− converges to a larger value and also K
converges to a larger steady-state value, making as a consequence the filter less confident
to the model.In summary, if Q is for assumption equal to zero, the measurements are
completely ignored and the system trusts in the model. In this thesis Q is as follows:

Q =
5
Q11 Q12
Q21 Q22

6
(4.51)

where Q11 is equal to a small costant value as 0.01 while Q22 is a function that depends
on the acceleration. This is because on a covariance matrix, the values along the diagonal
corresponds to the variance of each state, since w(a,b)∼ Q where a=0 is the mean and
b is the variance. In this case Q22 is the variance of Ċ,it is in fact referred to the state
ẋ2 = C̈, computed using the acceleration model 4.40.When the acceleration is closed to
zero, Q reaches its maximum value, while for large values of the acceleration, Q is equal to
its minimum value. This means that for acceleration closed to zero,the acceleration model
is zero, providing a singularity. This is the reason why Q is larger for acceleration closed to
zero, in this way the filter doesn’t trust in ˙̂2x = C̈. To obtain this shape, Q22 is equal to a
saturation function as described in the following formula:

fsat = − L

1 + exp(−k · (facc − x0)) + L+min

where:
L = max−min
facc is a function that depends on the acceleration
x0 is the inversion point of the saturation function
k is the slope of the saturation function

(4.52)

For this phase it is important to change the parameters min, max x0 and k according to
the desired performance and the presence of noise in the measured signal.

• R is the covariance matrix of the sensor noise and as a consequence it is related to the
measured signal. Decreasing the value of R means that the measurements are reliable, while
increasing R means that the measured signal is corrupted by noise. In summary a large
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measurements noise (i.e large R), implies that K decreases, so as a consequence the filter
has less confidence in the measurements. The covariance matrix is the following:

R =
5
R11 R12
R21 R22

6
(4.53)

where R11 is equal to the saturation function, while R22 = fsat10.For R matrix, the first
element along the diagonal (i.e. R11) is referred to the state ˙̂x1 = x̄2, where x̄2 is the
measured signal ˙̄C. The idea is to have a big covariance R for small values of the velocity.
It implies that for a velocity closed to zero, the system doesn’t trust in the measurements
because there is a singularity. In this case, the acceleration is different from zero and the
filter is more confident in the model. The equation of the saturation function is the following:

fsat = − L

1 + exp(−k · (fvel − x0)) + L+min

where:
L = max−min
fvel is a function that depends on the velocity of the knee
x0 is the inversion point of the saturation function
k is the slope of the saturation function

(4.54)

• P increases when Q and R increase. So a large noise in the system model (i.e. Q) or in the
measurements (i.e. R), implies that the system is less confident in the state estimate x̂.

The phase of tuning is performed in the best way building the model on Matlab and changing
the parameters directly on the model,avoiding to do tests on the hardware that could damage
the robot. As a consequence all the datas obtained during the simulation are then collected and
post-processed, analyzing the variation of the output at every change of the parameters.
After this step, in which the desired output is analyzed accurately, the new and correct parameters
for the Kalman Filter are ready to be uploaded directly on the robot.



Chapter 5

Simulation and Experimental
results

To analyze if the behaviour of the robot is consistent with the model built in the Chapter 2.1.2,
the simulation is a fundamental step for checking and testing the system and then implement it
on the hardware. The two phases of simulation and experimental validation are performed thanks
to the strict relation between the controller and the system built for contact point estimation.
The controller,in fact, has the role to compute the reference for the low-level variables of the
robot, as joint torques and joint positions, and track them.
The target platform for doing experiments is the HyQGreen Robot of Istituto Italiano di Tecnologia
in Genova, a 90 Kg quadruped legged robot, characterized by 12 joints (3 for each leg),powered
by hydraulic actuators (Fig.5.1). The controller implemented on HyQ and used for the purpose
of this thesis,is the RCF controller, which is fully described in [9]. This type of controller is
specifically designed for coping with uneven and irregular terrains, errors in trajectory tracking
and poor state estimation. The final goal of this thesis is to improve the robot locomotion, using
the estimation of the contact point for stabilizing the trunk controller.
The communication between the controller and the computed model is performed by the usage of
ROS environment. A brief introduction on its working principle and structure is described in the
following section. Then the last sections are devoted to the presentations and descriptions of the
obtained results in experiments.

5.1 HyQ locomotion
As said in the previous chapters, the capability of HyQ robot is to help human and perform

tasks in difficult scenarios, in which the terrain is non-flat and characterized by obstacles that
could destabilize the robot. The aim of the researchers at the DLS lab is to implement controllers,
based on trajectory planning or on state estimation, that can improve the stability and also the
motion of HyQ. In particular, the goal of this thesis, is to detect the contact point during collision
allowing the robot to overcome the obstacle,keeping its balance. The locomotion of HyQ can be
of two types: the trot and the crawl.The former is a particular motion, used in this thesis, in
which two opposite legs are in swing phase, while the others two are touching the ground. The
latter is a slower motion in which only one leg is in swing phase,while the remaining legs are
touching the ground. This technique provide more stability to the robot, this is why it is mainly
used to overcome stairs.

50
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Figure 5.1: HyQ Green robot - Target platform of experiments

The first step in order to analyze the correct locomotion of the robot is to study the contact
point between the foot of HyQ and the ground. In this way, the quadruped robot, is able to walk
in difficult terrains, checking if the collision happens properly and then use this information to
stabilize the trunk controller. Since the contact point is the distance from the knee,during the
walking this value corresponds to the length of the lower leg: 0.356 [m].

5.1.1 Simulation
1. PushUp motion The first scenario analyzed inside Gazebo is the PushUp motion performed

by the quadruped robot. This step is then fundamental for the experiment phase in order
to check if the filter is working properly on the robot, acquiring the correct informations
from the sensors mounted on it.
The idea of using the Kalman Filter is to have an output that follows the measured input
C, but when the measured signal goes to infinity, the estimated one is cutted in order to
obtain a convergence on the value 0.356. The pushUp motion shown in figure Fig. 5.2 is
performed with an Amplitude of 0.05 and a frequency of 0.5 Hz. As it can be possible to see
in the figure, velocity model depends on the variation of the velocity, while the yellow line
(acceleration model), follows the acceleration. To cut off the peaks to infinity, the covariance
matrix R is large when the velocity is closed to zero, so as a consequence, the estimated
output doesn’t trust in the measurements. The tuning of the parameters for the PushUp is
shown in the table 5.1.



CHAPTER 5. SIMULATION AND EXPERIMENTAL RESULTS 52

Figure 5.2: Estimation of C during the pushUp motion in Simulation with Amplitude of 0.05 and
frequency of 0.5 Hz

Table 5.1: Table of tuning Parameters for Kalman Filter during PushUp motion

parameters R Q
min 0.0002 m2 0.001 m2/s2

max 0.5 m2 0.5 m2/s2

k 100 100
x0 0.015 m2 0.1m2/s2

2. TROT motion To see better if the collision happens, the simulation are performed
considering the robot moving forward with a velocity of 0.3 m/s. In this case the estimation
is called foot collision detection.As it can be seen in the figure Fig. 5.3, the peaks generated
at the collision moment (see 5.00[s]), are completely removed, obtaining a flat output during
all the contact period. The velocity and the acceleration are closed to zero and their
variation during the time is necessary for the tuning of Q and R parameters. Their values
are shown in the table 5.2.
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Figure 5.3: Estimation of C during trotting with a velocity of 0.3 m/s

Table 5.2: Table of tuning Parameters for Kalman Filter during trot motion in Simulation

parameters R Q
min 0.0002m2 0.001 m2/s2

max 0.5m2 0.5m2/s2

k 100 100
x0 0.24m2 0.22m2/s2

5.1.2 Experiments
The experiments are performed after the sanity check, guaranteeing the safety to all the

operators.The crane is used to avoid that the robot drops down when it enters in contact with
obstacles. The first step during experiments is to turn on the hydraulic pump, in order to have
a pressure of 160 bar inside the valves of the robot. After the initialization phase in which all
the forces are compensated with the command goTau0,removing all the offsets, the robot is
moved down using the crane to have all the feet touching the ground. After activating the State
Estimator the robot is ready for going forward and backward. For the experiments, the joystick
is used to have more control on the robot motion.

The first experiment done is the PushUp motion, used to check the correct behaviour of
velocity, acceleration and the working principle of the Kalman Filter 5.4.



CHAPTER 5. SIMULATION AND EXPERIMENTAL RESULTS 54

Figure 5.4: PushUp motion to check mainly the shape of knee velocity and acceleration

For this experiment the tuning is the following:

Table 5.3: Table of tuning Parameters for Kalman Filter during PushUp motion in experiments

parameters R Q
min 0.0002m2 0.001m2/s2

max 0.5m2 0.5m2/s2

k 100 100
x0 0.05m2 0.5m2/s2

As it can be possible to see in the figure Fig. 5.4 the knee acceleration is a lot corrupted
by noise and as a consequence the acceleration model is noisy as well. The main contribution
is provided by the velocity model. During the PushUp motion, the values are around the foot
contact point of 0.356 cm.

Considering the trot motion, the results are shown in the figure. Fig. 5.5
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Figure 5.5: Trot motion during experiments - foot contact detection

The tuning parameters are set as follows:

Table 5.4: Table of tuning Parameters for Kalman Filter during trot motion in experiments

parameters R Q
min 0.0002m2 0.001 m2/s2

max 0.5m2 0.5m2/s2

k 100 100
x0 0.2m2 1.5m2/s2

5.2 HyQ locomotion with obstacle collisions
The main goal of this thesis is to detect the shin collisions due to the presence of obstacles

during the walking of the robot.To do this both in Simulation and in Experiment it is used a pallet
of dimension 300x1000x1600 cm, located under the trunk of the robot, between two opposite legs.
To represents the collision, the robot moves forward and backward, having a certain velocity and
acceleration that become zero at the touching moment.

5.2.1 Simulation
1. One collision point The implementation of the Kalman Filter is adopted to detect only

one collision point along the shin.In simulation it can happen that two simultaneous contact
points are detected and this particular situation is described in the following paragraph.
To obtain a proper estimation of the contact point during shin collisions, several attempts
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of tuning are performed using Matlab models and working directly on the shape of the
estimated contact point. The final result is shown in the figure Fig. 5.7

Figure 5.6: Contact collision on the shin during the Simulation on Gazebo

Figure 5.7: Analysis of shin contact points performed on Matlab. Collision at time 15.00 [s] in
which the distance from the knee is 0.2 [m].

The shin collision happens at point 15.00[s],in fact it is possible to see that the distance
from the knee is about 0.2[m] insted of 0.356 [m]. The procedure followed for having the
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desired output is the trial and error method and the final tuning of the two parameters is
set as follows:

Table 5.5: Table of tuning Parameters for Kalman Filter during collision

parameters R Q
min 0.0002m2 0.001m2/s2

max 0.5m2 0.5m2/s2

k 100 100
x0 0.05m2 0.2m2/s2

To explain better the phase of tuning it is possible to see in the figure Fig. 5.7 that the
covariance matrix Q is strictly related to the variation of the acceleration during time, while
the covariance matrix R depends on the velocity. In the top left picture it is possible to
compare the different outputs using the velocity model and the acceleration model.At point
15.2[s],thanks to the usage of Kalman Filter it is possible to "switch" from the velocity model
to the acceleration model obtaining a flat output.

2. Two collision points As it can be possible to see in the figure Fig. 5.8 from 11.8-to 12.2
[s],the green line and the blue line are different for few seconds. In that moment the collision
happens in two different points simultaneously: the foot and the shin. This is why the
ground truth (the green line) oscillates between the two values, while the blue line remains
to the costant value of 0.356 [m] because it is the first contact point detected.

Figure 5.8: Tuning of the parameters performed on Matlab - two simultaneous collision points
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5.2.2 Experiments
To analyze the contact point from experimental data, it is necessary to compare the obtained

results with videos recorded during the phase of experiment. In this way it is possible to find the
exact moment of collision between the shin and the pallet, since the ground truth is not provided.
To be more precise in the evaluation of the contact point,the legs are marked with lines, drawn at
a certain distance Fig. 5.9.

Figure 5.9: Shin collision moment during experiments

Performing trot of the robot and moving it against a pallet,the results are shown in the figure
Fig. 5.10. As it can be possible to see in the picture, the collision happens at point 59.2 [s],
providing for 1 sec the distance from the knee equal to 0.2 [cm]. In the same figure it is shown
the foot collision detection, from 58.4 [s] to 58.7 [s] since the value reaches 0.356 [cm].
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Figure 5.10: Kalman Filter for collision during experiment

The tuning parameters R and Q chosen for this experiments are shown in the table 5.6.

Table 5.6: Table of tuning Parameters for Kalman Filter during experiment collision with pallet

parameters R Q
min 0.002m2 0.001m2/s2

max 0.5m2 0.5m2/s2

k 100 100
x0 0.04m2 1.5m2/s2

5.3 Closed-Loop Controller
At the end of the work, the results obtained from the Kalman Filter estimation are used as a

feedback in order to stabilize the trunk controller. The idea is to update the current jacobians of
contact position, providing the information about the contact point along the shin estimated by
the EKF. In order to do this, a range of values are set for considering the presence of collisions
and for allowing the robot to overcome the step. In fact the legs rotate along the pivot position,
avoiding the slippage and letting the robot to go over the obstacle. The results achieved are
shown in the figure Fig. 5.11.
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Figure 5.11: Closed-loop controller in Simulation

In order to design the controller to allow the robot to overcome the step, it is important to
take into account the following considerations:

• the collision along the shin must happens on a certain range. As a consequence, the
estimated contact point C is considered only when it is detected in an area that has a
distance from the knee of about 0.1 [m] to 0.3 [m]. It implies that: Ĉ > parammin and
Ĉ < parammax.

• in the moment of the collision the leg has to be in stance status.

• the standard deviation of the covariance matrix P is smaller than a fixed value: σ <
paramstandard.

The logic is expressed as follows:

Table 5.7: Algorithm for feedback control

1: for(leg=LF;leg<=RH;leg++){

2: if shin_ekf[leg]>=parammin &&

3: shin_ekf[leg]<= parammax &&

4: stance[leg] &&

5: sqrt(P)<paramstandard {

6: contactEstimate[leg]=shin_ekf[leg]}

7: else {

8: if(!stance[leg])

9: contactEstimate[leg]=defaultShinLength

10: }

11: }
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Conclusion

In dynamic legged robots, used for help human in challenging scenarios, one of the main issues
is to always maintain stable the base of the robot and guarantee a robust motion in order to
accomplish the desired tasks. The aim of this dissertation is to provide a contribution in the
development of algorithms and techniques for stabilizing the trunk controller of HyQ robot when
it enters in contact with obstacles or undesired objects.
The design of a state estimator for foot collision and shin collision has been realized using
the knowledge of kinematics,for what concerns the model development, and of filtering for the
estimation phase. This work has been developed in a 3D plane, taking into account the velocity,
the acceleration and the orientation of the robot, providing as a consequence a wide analysis on
the shin state during collision moment. Since this approach is a kinematics-based model, it can be
easily implemented without the usage of extra sensors, detecting and localizing the contact points
during a blind locomotion. Moreover the velocity and acceleration fusion inside the EKF allows
to switch from one model to another, tuning properly the covariance matrices and increasing as a
consequence the estimation performances.
The obtained results demonstrate that it is possible to estimate in a very accurate way the contact
point along the shin, using then this information as a feedback to stabilize the trunk controller
and help the robot to overcome the step.

6.1 Future Works
This thesis can be the starting point for future researcher works, in order to improve its

algorithm for experiments and to extend its applications considering different scenarios. Some
suggestions for future works can be:

• analysis of this model during the slippage of the shin, entering in contact with an obstacle.
In fact it can happen that during collision, the leg of the robot slides along the surface
of the obstacle. This model, implemented in 3D, can be useful to analyze in details this
behaviour.

• implementation of the described model in different types of environments, considering for
example soft terrains. The foot collision can be studied considering the ground-touching
with different value of roughness. Tuning the values of the Kalman Filter it is possible to
adapt this model to various terrains.
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• improve the leg odometry of the robot using the knowledge of the collision. The leg odometry
estimates the motion of the robot base starting from the kinematics of the legs. As a
consequence the informations about the collision can be used to improve the whole motion
of the robot in a challenging scenario.



Appendix A

Attitude of the robot

A.1 Elementary Rotation

Figure A.1: Rotation of Frame Oxyz about z-axis by an angle α

The rotation around z-axis by an angle α is the following:

Rz(α) =

cosα −sinα 0
sinα cosα 0

0 0 1

 (A.1)

The rotation around x-axis by an angle γ is:

Rx(γ) =

1 0 0
0 cosγ −sinγ
0 sinγ cosγ

 (A.2)

while the rotation around y-axis by an agle β is:

Ry(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

 (A.3)
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Figure A.2: Rotation of Frame Oxyz about x-axis by an angle γ

Figure A.3: Rotation of Frame Oxyz about y-axis by an angle β

A.2 Euler Angles
Euler angles are the minimal representation of orientation using three independent parameters:

• ZXZ Angles
The euler angles are φ,θ and ψ also known as spin, nutation and precession.

R313(φ, θ, ψ) = R3(φ)R1(θ)R3(ψ) =

 cφcψ − sφcθsψ cφsψ + sφcθcψ sφsθ
−sφcψ − cφcθsψ −sφsψ + cφcθcψ cφsθ

sθsψ −sθcψ cθ

 (A.4)

• XYZ Angles
These angles are also known as RPY angles: roll,pitch,yaw.

R123(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
sθcψcφ + sφsψ sθsψcφ − sφcψ cθcφ

 (A.5)
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• Rotation Matrix ⇒ Euler Angles
Given a general Rotation matrix 3x3, it is possible to find the Euler Angles φ, θ and ψ as
follows,using the sequence X,Y,Z:

R =

R1,1 R1,2 R1,3
R2,1 R2,2 R2,3
R3,1 R3,2 R3,3


φ = atan2(R2,3, R3,3)
θ = −asin(R1,3)
ψ = atan2(R1,2, R1,1)

(A.6)

A.3 Denavit-Hartenberg Convention
The DH convention is used to find the direct kinematics in a simpler way than computing

homogeneous transformations matrices and multipling them. For any open chain the following
procedure can be applied:

1. Number in a crescent sequence the joint axes and name them from z0 to zn−1.

2. The frame 0 is the one with axis z0 - set x0 and y0 according to the right-handed rule.

3. The origin Oi corresponds to the intersection of zi with the common normal of zi−1 and zi.

4. Set axis xi in correspondance of the common normal between zi−1 and zi following the
direction from Joint i to i+ 1.

5. Draw axis yi according to right-handed rule.

After finding all the axis for all the joints, it is possible to build the table with the parameters ai
(distance between the origins Oi and OÍ

i),di (position of OÍ
i along zi−1), αi (angle between zi−1

and zi around xi ) and θi (angle between xi−1 and xi around zi−1).



Appendix B

Model and Code Verification

The phase of checking is important to understand and to verify if the measured inputs of
the Kalman filter are correct or they present errors related to several situations as bugs in their
implementations or wrong measurements coming from sensors. This is the first step necessary for
then performing the simulation in Real-Time of the whole model. As explained in the Chapter
4.1.2 the inputs needed for the working principle of the Kalman Filter are:

• knee velocity

• knee acceleration

• shin orientation: θ and φ

• the measured contact point Cs and the measured contact velocity Ċs

Starting from the knee velocity in the world frame, it is obtained using the following equations:

vwk = Rwb · (Jk · q̇ − ωbase × pbk) + vwbase for linear velocity
ωwk = Rwb · (Jok · q̇) + ωbase for angular velocity

(B.1)

The checking is performed in fast way using tools as the Scope or PlotJuggler in order to analyze
the shape during the time, then stop the simulation, zoom in along the x or y axes and verify if
there is a match between the obtained output and the situation shown in simulation using Gazebo.
Then all the datas are collected and post-processed on Matlab in order to see the behaviour in a
more detailed way.
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B.1 Linear and Angular Velocity

Figure B.1: Check knee linear velocity of RH/LH/LF/RF legs

In the Fig. B.1 are shown the knee linear velocities of the four legs. From the picture it is
possible to see the trot motion of the robot, in which two legs are in the swing phase while the
others two are touching the ground. Since the robot in this case is just trotting in the same place,
without going forward or backward, the velocity along the axes is around zero.
For what concern the angular velocity, it is necessary for then evaluating the shin orientation.
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Figure B.2: Check knee angular velocity of RH/LH/LF/RF legs

B.2 Acceleration
The next step is to compute and check the acceleration of the knee, that is foundamental for

then building the acceleration model used for the estimation of Cs and Ċs. The shape of the
acceleration is shown in the figure Fig. B.3. It is computed as:

ab = (J̇ · q̇ + J · q̈)− S(ω̇) · pb − S(ω) · (J · q̇)
aw = awbase + S(ω) ·Rwb · vb +Rwb · ab

(B.2)
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Figure B.3: Check knee acceleration of RH/LH/LF/RF legs

B.3 Shin Orientation
The shin orientation, represented by θ and φ, is computed directly from the rotation matrices

between the robot base and each knee. Their derivatives are obtained deriving by time the
following formulas,obtaining as a consequence the shin angle rate and the shin angle acceleration:

[φ, θ, ψ] =

φ(Re)
θ(Re)
ψ(Re)

 =

atan2(Re2,3, Re3,3)
−asin(Re1,3)

atan2(Re1,2 , Re1,1)

 (B.3)

[φ̇, θ̇, ψ̇] = E−1 · ωwf (B.4)

φ̈θ̈
ψ̈

 = Ė−1 · ωwf + E−1 · [S(ω) ·Rwb · ωf +Rwb · (J̇o · q̇ + Jo · q̈) + ω̇wbase] (B.5)

Their shape is described in the figure Fig. B.4 and B.5.
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Figure B.4: Check orientation θ of RH/LH/LF/RF legs

Figure B.5: Check orientation φ of RH/LH/LF/RF legs
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B.4 Measured Contact Point and Contact Velocity
The last elements needed for the working principle of the Kalman Filter are Cs and Ċs

measured using the velocity model. They are computed using measurements coming from data
sensors, this is the reason why they are corrupted by noise. The goal using the Filter is to estimate
Cs and Ċs, obtaining a clear output. To see properly the shape of the contact point Cs and the
contact velocity Ċs, the robot is moving forward with a certain velocity of 0.3m/s. The contacts
happen when the feet are touching the ground, as shown in figure Fig. B.6.

Figure B.6: Check contact point Cs of RH/LH/LF/RF legs

As it can be seen in the figure B.6, the foot collision with the ground happens in an alternate
way for the legs: LH and RF are touching the ground while LF and RH are in the swing phase
and vice-versa, guaranteeing always the stability to the robot. The contact velocity is then shown
in the figure Fig. B.7,it is obviously zero when the collision happens.
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Figure B.7: Check contact velocity Ċs of RH/LH/LF/RF legs
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