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Abstract

Legged robots have been widely investigated, in order to obtain outdoor motion,
in which they could collaborate with humans. In order to do that, they have
to adapt their movements to different environments in which they can work,
keeping always the capability to complete the required task. Researchers have,
therefore, dedicated big efforts in developing techniques which produce well suited
trajectories that can be followed by the robot.
Starting from a simplified model, we propose two feasibility constraints to be
included in a Single Rigid Body Dynamics-based trajectory optimizer in order to
obtain robust motions in challenging terrain. The former finds an approximate
relationship between joint torque limits and admissible contact forces without
requiring the joints’ configuration. The latter proposes a model of the leg to
guarantee the avoidance of the collision with the environment. Such constraints
have been included in a nonlinear non-convex optimization problem, implemented
in a library named TOWR. We validate the feasibility of the trajectories both
in simulation and on the Hydraulically actuated Quadruped robot, including
experiments with non flat terrain.
The contributions of this thesis are the result of a 6 months project that was
performed at the Dynamic Legged Systems (DLS) lab at IIT. A conference paper
reporting the three mentioned contributions has been submitted for evaluation to
the peer-reviewed International Conference on Robotics and Automation (ICRA),
2020. The conference paper is now under revision and the final outcome of this
review process will be communicated in February 2020
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Chapter 1

Introduction

Starting from the ’80s, legged robots became one of the most investigated fields
of robotics.
They can be considered as an evolution of the wheeled robots, since they present
higher mobility in case of irregular terrains. This characteristic can be exploited
to explore and work on difficult, hostile and dangerous environments, such as
nuclear power plants and disaster areas. Legged robot can, therefore, substitute
the humans in discovering the environment and gathering informations, thanks to
the use of sensors mounted onto the robot, like cameras and LIDAR. This aspect
guarantees more safety for the men involved in the rescue operations, since they
will be more conscious of the environment before going through it. Thanks to the
robots, rescue operations could become more efficient and safe.
The motion of the robot must be reliable, so a high level of robustness is required.
Due to the very different scenarios in which it can work, a legged robot has to
be able to adapt itself to different kinds of terrains, keeping always the stability
during the motion and the capability to complete the desired task. In addition,
it has to be provided with reactive features and recovery strategies, in order to
be able to reach the goal even if something is going different from what has been
planned.

1.1 Aim

The aim of this thesis is to present an improvement of the Single Rigid Body
Dynamics model for quadruped robot locomotion, in order to deal with non flat
terrains. It is the result of a work performed at the Dynamic Legged System
(DLS) at the Istituto Italiano di Tecnologia (IIT), in Genova.
This thesis deals with the two critical issues of such model and proposes:
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Introduction

• a novel approximate, robot-agnostic, projection of the joint torque limits
into the task space. In this way we can express the relationship between
the leg’s configuration and the corresponding maximal contact forces at the
end-effector. Keeping out the joints from the model, we are able to compute
the boundary values of the contact force in the actual configuration in which
the robot is. Imposing that contact forces are inside these limits assures
implicitly that the resulting joint torques are feasible.

• a novel model of the leg’s lower link to include into the trajectory optimization
formulation the geometry of the leg, such as finite non-zero size of the robot’s
feet and shin’s geometry.

Starting point of the work is the library TOWR, which is the implementation of a
non linear Single Rigid Body Dynamics based trajectory optimizer.
As an experimental contribution, we have included the above mentioned improve-
ment in TOWR library and then we have integrated it with the controller of
the Hydraulically-actuated Quadruped robot (HyQ) of the DLS lab. We have
successfully performed motion on a non-flat terrain (step of 10cm). To the best of
our knowledge this is the first time that a trajectory based on TOWR is deployed
on a real robot on a non-flat terrain.

1.2 Methodologies
In order to guarantee the safety of the operators (and of the robot) proper

simulations have been performed before doing experiments on the real hardware.
First step has been done using the 3D visualizer RVIZ. After that, we have used
an accurate software simulator like Gazebo, building the proper ROS structure
to integrate the work with all the other elements of the robot. At the end of the
simulation-based validation, we have worked with the robot, provided with sanity
checks (possibility for the operator to pause the motion, possibility to automatic
stop the motion when the robot has the four feet on the ground, etc...). At the
end of the work, the robot has been able to step up onto a 10cm high pallet.
Thanks to this methodical approach, we have faced and fixed issues of increasingly
complexity, working in the most efficient way and always in a safety environment

1.3 Outline
The thesis is organized in the following manner:

Chapter 2 introduces the block diagram of the motion structure of a robot, high-
lighting the trajectory planner (with its models and different approaches) and
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stability criteria.
Chapter 3 analyses the details of the library TOWR.
Chapter 4 we give an overview of the DLS lab and of the HyQ robot.
Chapter 5 presents the concepts Collision Avoidance Constraint and Force Poly-
topes Constraint.
Chapter 6 explains the interface we have developed to integrate the trajectory
planner and the controller of HyQ. In this chapter we present the obtained results
both in simulation and on the robot.
Chapter 7 is dedicated to review the concepts investigated in the previous chapters
and to discuss possible future works.

8



Chapter 2

State of the Art

Before going into the details of the contribution of this thesis, it is worth
dedicating a chapter to the introduction the concept of trajectory planning,
highlighting different approaches and giving a few examples. In addition, we
present a few stability criteria which are strongly related to the trajectory planners.

2.1 Trajectory planners
Motion of a robot is the result of the composition of three main elements:

• path generator : the path is the sequence of the desired states in which the
robot must go from the initial to the final position. Path generators, generally,
compute paths which refer to the end effector, i.e. the tool located at the end
of the limbs of the robot and which are usually assumed to be the only part
that can make or break contacts with the environment. In this case, there
are no informations about joint quantities and time (such as joint positions,
torques or phase durations).

• trajectory planner : the trajectory represents the time law of the path. The
trajectory planner considers also the kinematic and dynamic constraint of
the robot (e.g. maximum speed, acceleration, torques). The trajectory can
be expressed either in the task space, i.e. position and orientation of the
end effector, or in the joint space, i.e. the space defined by joint angles
displacements.

• controller : the controller is the element which guarantees that the robot
follows the specified trajectory. It receives as input the error between actual
and desired joint kinematic quantities (i.e. position and velocity) to compute
the force/torque variables for the joint actuator. Most commonly used archi-
tectures are Proportional-Derivative and Proportional-Integral-Derivative. In
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State of the Art

case of a trajectory in the task space, Inverse Kinematics is used to compute
joint position and velocities.

path generator controller robottrajectory planner

Figure 2.1 – Simplified block diagram corresponding to the motion scheme.

In this work we will focus on the trajectory planners.
The trajectory planning is a key element for the successful motion of the robot in
the environment, especially in case of unstructured environments and irregular
terrains. Because of the uncertainties and unmodeled dynamics which are present
in the system, it is required to have a precise and robust trajectory with reduced
computational time and effort to have frequent replanning. These two elements
can be considered as conflicting, since precision and robustness can be achieved
only if a complete, possibly nonlinear model, is used. On the contrary, the intrinsic
complexity of these kinds of models increases the time and the effort required to
obtain a solution. In addition, non linear models have local minima which can
be wrongly considered the global one. The choice of the model is, thus, a crucial
aspect in the design of trajectory planning algorithms, since it has to find the
compromise between precision and computational velocity which is suited for the
requirements. For this reason, the literature on this topic is typically split between
the usage of simplified dynamic models and the usage of whole body models.
Moreover, according to the time needed by the planner, it is possible to define the
frequency of computation a new trajectory. In case of fast planner, online ones
are used to start replanning while the robot is moving. This guarantees that the
trajectory is computed starting from a more updated position of the robot.

2.1.1 Dynamic Models
Before analysing different techniques for the trajectory planning, it is worth

introducing a brief but comprehensive explanation of different simplified dynamic
models that can be used.

Linear Inverted Pendulum Model

Linear Inverted Pendulum Model (LIP) [9] [10] is the simplest model. It consists
of a point mass, which corresponds to the Center of Mass (CoM) of the whole
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robot. It is connected to a telescopic massless leg, which is fixed to the ground.
Position of the foot depends on the angle of the leg with the vertical and the
length of the leg. Such model has been exploited in trajectory planning, e.g. in
[11]. Kajita et al. have used LIP to perform an outdoor walking with a bipedal
robot.

Figure 2.2 – Linear Inverted Pendulum

Spring Loaded Inverted Pendulum

Spring Loaded Inverted Pendulum (SLIP) [12], [13] considers a compliant
leg. The most widespread approach to model the leg is the use of a spring of
constant stiffness k. Due to presence of the spring and to the variable height
of the CoM, the motion is the result of the transformation of gravitational and
elastic potential energy into kinetic energy. From the point of view of energy
variation it is, thus, possible to differentiate the walk into stance (foot in contact
with the ground) and swing (foot in the air) phase. Stance phase is associated
to variation in elastic potential energy and it can be divided in a sub-phase in
which the variation is positive (leg is extended) and a sub-phase in which it is
negative (leg is extending). A specular division can be done during the swing
phase, exploiting the variation of gravitational energy. Assuming that there is no
slippage when the foot is in contact, the dynamics of the robot is the sequence of
the dynamics of the four sub-phases which have to be analysed independently. The
efficiency of this model has been proved by [14], in which the authors have built
a robot leg driven by the Series Elastic Actuator (SEA). This choice represents
a suitable actuator system for interacting with the ground. In addition, Oh et
al. [15] performed simulation with a SLIP based biarticular mechanism, embedded
with a disturbance-observer-controller to have robustness in the motion.

11
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Figure 2.3 – Spring Loaded Inverted Pendelum [1]

Centroidal Dynamics

A third option is represented by the Centroidal Dynamics (CD) [16], [17] which
exploits the full dynamics of a robot projected at its own CoM. The CD is a precise
description of robot’s dynamics in terms of its inputs (feet and CoM wrenches)
and outputs (feet and CoM trajectories); for this reason, it should therefore not be
considered as an approximate dynamic model. It is the first model in which joints
are present, even if only to compute the inertia matrix of the robot. The matrix
does not depend explicitly on the time, but it depends on the joints configuration
that changes during the motion and it is, therefore, a time-varying quantity.

Single Rigid Body Dynamics

A simplification of the CD is the Single Rigid Body Dynamics (SRBD), where
the robot is seen as a single rigid body with massless legs. In this case, robot’s
inertia is fixed and corresponds to its aggregate inertia in a predefined configuration.
This implies that, unlike the CD, the robot’s CoM matches the CoM of the base
and it therefore does not move with respect to the base frame (i.e. the reference
frame with the origin in the geometric center of the base of the robot and aligned
with the robot itself). Due to its simplicity, SRBD is well suited to problems
which require computational efficiency while dealing with complex terrains and
possible non-coplanar contacts. In addition, it is a suitable approximation for
robot with legs whose mass is negligible compared to the trunk’s weight.
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Whole Body Model

The Whole Body Model (WBM) is the more complex one, where also the joint
variables are considered. In every time instant we are interested in configuration
of the N joints (q), position (r) and orientation(θ) of the CoM. Without going too
much in depth, actuation torques depends on the inertia matrix, the Coriolis effect
induced on a generic joint by other two joints, gravity force and contact force
with the environment. All these quantities are affected by joint position, velocity
and acceleration and their relationship is strongly nonlinear. Due to high number
of variables involved in the model, WBM is used for trajectory optimization when
a very precise and offline algorithm is required.

2.1.2 Online/Offline Optimization
The first approach for trajectory planning consists of solving an optimization

problem, i.e. finding the optimal solution between all the feasible solutions of the
specified problem. In other words, it means finding the value of the variable of
interest such that the objective function (called also cost function) takes on the
smallest value which satisfies the constraints.

minx f(x)
s.t gi(x) ≤ 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., p
(2.1)

where f(x) is the objective function and gi(x) and hi(x) are respectively the
inequality and equality constraints.
Optimization problems can be differentiated according to the type of objective
function and constraints which are included in the formulation.
The first big differentiation which has to be done is betwen convex and non-convex
problems:

• convex: a problem is defined convex if both the objective function and the
constraints are convex i.e. if the segment which connects two points on the
graph of the function lies above or on the graph, for every couple of arbitrary
points). Immediate consequence of this is that the problem foresees either
no solutions or global optimal solutions.

• non-convex: a problem is defined non-convex if either the objective function
or at least one of the constraints are concave, i.e. they are not convex. The
result is that a minimum can be either a local or a global optimum. Moreover,
computation time increases with respect to convex problems and it is not
possible to assert whether the problem has a solution or not.
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According to the computation time and effort (which depend on elements such
that complexity of the model, characteristics of the environment, etc...) trajectory
planners can be considered as online or offline [18]. Online algorithms have a
low computation time and they are able to compute the new trajectory during
the motion of the robot. In this way the planner computes incrementally the
trajectory from the robot state to the goal. Such approach allows the robot to
react to changes in the environment or to tracking errors. Offline algorithms,
instead, computes the entire trajectory from initial to goal state before the robot
begins the motion.

Linear Problem

The easiest formulation for an optimization problem is represented by a Linear
Problem (LP), in which both objective function and constraints are linear in the
decision variable x. LPs are always convex and it is possible to find solutions also
in case of problems with big number of variables involved. In case of problems
in two variables, the solution can be found with the graphical method, which
consists in drawing all the constraints and the objective function (they will be
lines). Starting from these lines, it is possible to find the area of the valid solutions
- called Feasible Support Region - and then the minimal value of objective function
[19]. For an arbitrary number of variables, graphical method is not adequate, so
the Simplex method has been introduced by George Dantzig in 1947 [20]. The
method starts from the idea that the solution of a LP coincides with a corner of
the Feasible Support Region, although there may be multiple optimal solutions.
Simplex Method usually starts at a corner and then it moves to the neighboring
corner that best improves the solution. When no more improvements can be made
changing the corner, it means that the optimal solution has been found.

Quadratic Problem

A particular case of LP is the Quadratic Problem (QP), in which the objective
function is quadratic in the optimizing variables and the constraints are linear [21].
Simplex Method cannot be applied, since the minimum does not coincide with
a corner of the feasible region. QPs are generally solved either through gradient
methods, such that gradient-based descent/ascent, or through Active Set Method
[22] . In the former the next iteration step is proportional to the negative/positive
gradient of the function. The latter is composed by two phases: the phase in
which feasible points are computed, neglecting the objective function and the
phase in which is minimized keeping the feasibility.
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Nonlinear Problem

The most complex type of optimization problem is the Nonlinear Problem
(NLP), which includes all the situations in which either objective function or at
least one constraint are not linear. NLPs generally require high computational
effort, as they are non convex and so may own multiple local minima. On the other
end, they guarantee precision and reliability of the solution. Other drawback of
the NLP is that an initial solution, called also initial guess, has to be provided to
the solver. In general it can be stated that closer the initial guess is to the optimal
solution easier will be for a solver to find a solution. More precise guesses require,
instead, pre-processing work, like either solving a simplified similar problem [23]
or design a second algorithm [24]. The choice of the initial guess is, thus, a
compromise between these two elements.
Solver used to solve a NLP are generally based on gradient method and on Interior
Point Method [25].

2.1.3 Reactive Behaviors

Optimization planners guarantee very good performances when the trajectory
is perfectly followed, thanks to the action of the controller. On the contrary,
unexpected obstacles, tracking errors or irregular terrains can be considered as
events that cause changes in the trajectory. Starting from this idea Reactive
Behaviours planners have been developed. While optimization-based trajectory
planning requires good knowledge of the environment, reactive behaviours-based
one foresees techniques to manage the unexpected events already mentioned before.
Command input are computed based on values obtained by robot sensors.

2.1.4 Machine Learning

Widely used nowadays, the terms "Machine Learning" have been used for the
first time by Arthur Lee Samuel in 1959, while a first rigorous definition has been
provided only in 1997 by Tom Mitchell [26].
DEF1: A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.
As it can be understood by the definition, a Machine Learning Process is a process
which does not receive as input a mathematical model, but which computes the
output starting from a set of data. The higher the number of data (experience E in
the definition), the better are the performances. It is thus evident that the training
of a Machine Learning Algorithm, i.e. the design of the input data, is a very
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important element of the algorithm itself. Two main different implementations
are possible [27]:

• if couples of input-output data are provided, the algorithm is said Supervised.
Starting from them, the algorithm has to learn the mathematical model to
compute the output for the new data.

• if only a set of input data is provided, the algorithm is said Unsupervised.
Since no output data are available, unsupervised algorithms can be used in
completely unknown situations.

In the recent years, improvements on the Machine Learning Theory have made
it possible to achieve a widespread usage of the above mentioned algorithms in
many fields of the scientific research in robotics.
In the following, the two mostly used algorithms in trajectory planning for legged
robots are introduced.

Deep Learning

The development of Deep Learning (DL) is due to the need to use Machine
Learning into complex situations, in which more than one action is required. An
algorithm of DL is composed by a certain number of layers, integrating in the so
called Neural Network [28], see Fig.2.4. Layers are divided in three categories:

• first layer is called input.

• the intermediate layers are called hidden.

• last layer is called output.

Every hidden layer is responsible for a particular action. Lecun et al. [29] proposed
an example which well explains how an algorithm of DL works: an image is an
array of pixel values; the first layer recognizes the presence or absence of edges
in the image. The second layer typically detects motifs, while the third layer
assembles them into parts of familiar objects. The number of layers, i.e. the depth
of the network, is a choice of the designer, while the layers are trained with only
one general training algorithm.
For what concerns trajectory planning, some examples of DL-based trajectory
planning are proposed, in order to highlight the importance of this approach.
Wei et al. [30] propose a DL algorithm which computes a path from the robot’s
current location to the goal, starting from a 2D map of the environment. [31]
uses two DL algorithms: the former is an encoder network, i.e. a network which
translates the point cloud map of the environment into a feature space, the latter
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is a 9-layer DL which computes a collision-free trajectories into the feature space.
An interesting usage of DL algorithms is to integrate them with optimization-
based planners, in order to obtain more robust trajectories.
For example in [32], after the computation of the elevation map of the terrain,
certain points are discarded, such as foothold out of the workspace of the robot,
threshold on the terrain roughness, proximity to already discarded points, frontal
or leg collision. A set of feasible points is obtained in this way. A Neural Network
is used to adapt the landing position, which is the closest feasible point to the
footholds obtained by the trajectory planner.

Figure 2.4 – 5-layer DL Neural Network [2]

Reinforcement Learning

Reinforcement Learning (RL) includes all the algorithms in which an agent
takes decisions to maximize a cumulative reward and to improve the learning
efficiency. The main characteristic of a RL algorithm is that an agent has to apply
the best already tested actions (exploitation), but in order to do that, it has to
find new actions (exploration) [33]. The exploration can be dangerous, because
in the meanwhile the robot could takes catastrophic actions, e.g. it could fail.
Singh [34] et al. have proposed an algorithm in which the set of actions that the
RL agent can explore is restricted to the acceptable ones. Other examples of
RL-based trajectory planner can be found in [35],
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2.2 Stability Criteria
A Stability Criterion is the metric which is used to guarantee that the robot

will not fall down during the motion. According to the type of terrain, more
precise criteria have to be used.

2.2.1 Center of Pressure-Zero Moment Point

The easiest approach is to exploit the Center of Pressure (CoP), which is
defined as the point on the ground with respect to which the horizontal momenta
of the contact forces are null, [3]. It can be considered as the point of application
of the resultant ground reaction forces. Starting from its definition, it is easy to
understand that the CoP depends on the value of contact forces and foot position,
thus it varies during the motion.
From a mathematical point of view, it is stated that the CoP is the point such

Figure 2.5 – Graphical representation of the CoP stability criterion [3]. Red cross
corresponds to CoP. The dashed polygon is the convex hull of the four footholds pi

that:
[
Ø

i

(pi − z)× fi]x,y =
Ø

i

(px,y
i − zx,y)f z

i = 0 for = 1, . . . , ni (2.2)

where:

• z ∈ R3 = CoP
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• pi ∈ R3 = foot position (authors assume that pz
i=0 on flat ground)

• fi ∈ R3 = contact force

• ni= number of feet of the robot.

Eq. 2.2 is valid only in case of flat terrains, in which all the contact are on the
same plane. In presence of a non-flat terrain, it is possible to define only CoP
for every contact surface independently, but a unique CoP cannot be determined.
Similarly to the CoP, it is possible to define the Zero Moment Point (ZMP):
DEF2: " The ZMP is the point on the ground where the tipping moment, due to
gravity and inertia forces, equals zero. The tipping moment being defined as the
component of the moment that is tangential to the surface"[36].
Sardain et al. [36] have mathematically demonstrated the coincidence between
CoP and ZMP, so in the literature they are considered as the same thing.
Stability is guaranteed if the CoP/ZMP is inside the support polygon, i.e. the
convex hull of the contact points pi [3], [37], [38], [39].
DEF3: "The convex hull of a set P of points is the enclosing convex polygon that
contains P with smallest area" [40].
Due to this limitation, CoP has to be generalized for uneven terrains.

2.2.2 Contact Wrench Cone

Looking for a stability criterion with a general validity, it is stated that stability
can be assumed if the sum of gravity and inertial wrench (six-dimensional vector
composed of forces and torques [41], [42]) of the CoM is inside the polyhedral
convex cone of contact wrench robot-environment, called Contact Wrench Cone
(CWC) [43].
The components of the resulting wrench (gravity + inertia) are:

fg = M(g− p̈g) (2.3)

τg = pg ×M (g− p̈g)− L̇ (2.4)

L̇ = Iα (2.5)

with:

• M ∈ R= total mass of the robot

• g ∈ R3=[ 0 0 -g]T

• pg ∈ R3= position of the center of gravity of the robot
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• L ∈ R3 = angular momentum with respect to the center of gravity.

• I ∈ R3×3 = inertia matrix.

• α ∈ R3=angular acceleration.

CWC can be considered as the admissible set of the total contact wrench, which
is computed by summing up the individual contact wrench cone (ICWC) at each
contact location. The most precise formulation of CWC foresees the Minkowsky
sum of the ICWCs. Taking two cones A and B (identified by the set of their
vertices), Minkowsky sum consists in summing every vertex of A with every vertex
of B and then deleting the internal point of the resultant cone C (which are no
more vertices of the cone) [44], see Fig. 2.6.

C = A+B = {c ∈ Rn; ∃a ∈ A;∃b ∈ B| c = a+ b} (2.6)

In case of a gradient-based nonlinear solver which requires the Jacobian of the
constraints, Minkowsky sum cannot be used, since it is not differentiable due to
the algorithm which reduces the number of vertices.
An alternative to the Minkowsky sum is the computation of the convex combina-

Figure 2.6 – Graphical representation of a Minkowski sum applied to two polygon
A and B [4].Internal points of the resulting polygon C are not labelled, since they
are not vertices and so discarded by the algorithm.

tion (i.e. linear combination with positive or null coefficient) of all the edges of all
the ICWCs is considered, Eq. 2.7, 2.8.

fc =
KØ

k=1
(e0

knk +
4Ø

k=1
el

ktl
k). (2.7)
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τττ c =
KØ

k=1
pk × (e0

knk +
4Ø

k=1
el

ktl
k). (2.8)

with:

• pk = k-th vertex of the support polygon (foot position).

• K = total number of vertices.

• el
k = non negative scalars.

• tl
k ∈ R3 = unit vectors tangent to pk

• nl
k ∈ R3=unit normal vector at pk pointed to the robot.

The convex combination, however, is only suitable for the solution of feasibility
problems, as it does not allow to estimate the stability margin (i.e. the distance
between centroidal wrench and the CWC). Further details on the computation of
the CWC are beyond the aim of this thesis.
With this formulation, the criterion is valid also for irregular terrains.
CWC has been widely exploited. Barthelemy et al. [45] have proposed a metric

Figure 2.7 – Graphical representation of a Contact Wrench Cone, [4]. Fy, τx, τz

are assumed to be zero, such that the cone can be graphically represented.

to quantify the robustness of the state of the robot, i.e. the maximum external
force/torque (wrench) disturbance which the robot can resist without breaking
static contact. The so called Contact Wrench Cone Margin has been used by [46]
in a non convex formulation and by [47] in a convex one. CWC has been exploited
in [4] to find a more precise description of the robot capability. Introducing thw
Feasible Wrench Polytope (FWP), which is the intersection between the CWC
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and the set of all the wrenches that a robot can generate considering its actuation
limits (Actuation Wrench Polytope), Orsolino et al. stated that a robot is in a
stable configuration if its aggregated wrench, as given by Eq. 2.3 and Eq. 2.4 , is
inside the FWP.
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Chapter 3

Trajectory Optimization for
Walking Robots (TOWR)

This section is dedicated to introduce the library named TOWR (Trajectory
Optimization for Walking Robot), developed by Alexander Winkler. This library is
the result of the trajectory planner introduced in [48]. The formulated nonlinear
optimization problem is a trajectory planner, based on the Single Rigid Body
Dynamics (SRBD) , see section 2.1.2. Due to the non linearity of the problem, an
Interior Point method [25] solver is used, implemented in the IPOPT library [49].
Default implementation of TOWR does not foresees a cost function f(x) to
minimize, but only a set of constraints to satisfy.
All the implementation details presented in this Chapter are due to the choice of
the authors of the library and are not the only possibility.
The planner receives as input:

• initial position and orientation of the CoM;

• goal position and orientation of the CoM;

• total duration of the motion;

• gait, i.e. the duration of stance (foot in contact with the ground) and swing
(foot in air) phases for each foot;

and is involved in finding values for:

• CoM linear position and velocity, orientation and angular velocity ( Sec.3.1.1);

• feet linear position and velocity (Sec. 3.1.2);

• contact forces and first derivative (Sec. 3.1.3);
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which satisfy the following constraints:

• Dynamic Constraints (Sec. 3.2.1);

• Kinematic Constraints (Sec. 3.2.2);

• Terrain Constraints (Sec. 3.2.3);

• Spline Acceleration Constraints (Sec. 3.2.4);

• Force Constraint (Sec. 3.2.5);

• Swing Constraint (Sec. 3.2.6);

• Gait Optimization (Sec. 3.2.7).

In order to improve the computational speed of the planner, a solution is considered
feasible if the sum of the quantity of violation of each constraint is below a certain
threshold. The lower the threshold, the better is the solution and, however, the
higher is the computational effort.
Due to the nonlinearity of the problem, an Interior Point method [25] solver is
used, implemented in the IPOPT library [49]. For what concerns initial guess,
see Chapter 2, a linear interpolation between initial and the desired final state of
the robot is performed. This can be done analytically and it, therefore, does not
increase the computational load of the formulation.
From this moment on, all the quantities are expressed with respected to a fixed
inertial World frame. Another reference frame that will be used is the CoM frame,
which is located on the robot’s CoM and has the same orientation of the World
frame. The transformation between World frame and CoM frame is determined
by a translation, correspondent to the CoM position in the World frame and a
rotation due to the orientation of the trunk of the robot.

3.1 Minimal Parametrization of the Locomotion
Problem

In this section a thorough description of the variables and parameters used by
TOWR to describe a generic locomotion problem on rough terrain is provided.

3.1.1 CoM Parametrization
As already said, SRBD model considers the full motion projected in its CoM.

Another important point for a robot is its base, i.e. the geometric center of the
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trunk of the robot. Due to the presence of the legs and of some objects mounted
on the trunk, CoM and Base are not equal. SRBD model considers only the CoM,
assuming that the two points coincide. This assumption is well suited for robots
with legs whose mass is negligible compared to the trunk’s weight,. Instead, it
determines a big inaccuracy of the model in the other cases.
The most relevant physical quantities used to describe the spatial motion of the
CoM are the following:

• r ∈ R3: position of the CoM in the world frame.

• ṙ ∈ R3: derivative of the position of the CoM.

• θ ∈ R3: orientation of the CoM, using Euler Angles ZYX.

• θ̇ ∈ R3: derivative of the orientation of the CoM.

The optimizer discretizes these variables at constant time intervals dt. From this
moment on, the discrete values are called nodes. Every dimension (x,y,z) of two
consecutive nodes of r and θ are interpolated with a third order polynomial -
according to the Hermite Parametrization - in order to build a mathematical
function, which is called spline. The generic third order polynomial x(t) is equal
to:

x(t) = a0 + a1t+ a2t
2 + a3t

3, with 0 < t < ∆Ti (3.1)

where:
a0 = x0

a1 = ẋ0

a2 = −∆T−2
i [3(x0 − x1) + ∆Ti(2ẋ0 + ẋ1)]

a3 = ∆T−3
i [2(x0 − x1) + ∆Ti(ẋ0 + ẋ1)]

(3.2)

where:

• x0 is the initial value in the i-th interval.

• x1 is the final value in the i-th interval.

• ẋ0,1 is the value of the first derivative.

• ∆Ti is the duration of the interval between the two nodes that have to be
interpolated.

The Hermite Parametrization assures that the spline is continuous since, assuming
that xi(t) and xi+1(t) are two consecutive polynomials, it can be proven that:

xi(∆Ti) = x1,i
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and consequently:

xi+i(0) = a0,i+1 = x0,i+1 = x1,i = xi(∆Ti)

The choice of using a third order polynomial is motivated by the fact that a higher
order would require more boundary informations, e.g. the value of the acceleration
in case of fifth order polynomial. The formulation would become more complex
and, consequently, the computational time would increase. Accelerations have to
be properly managed into a constraint of the formulation. The value of r and θ
at the generic time T can be found from the spline, finding at which interval T
belongs and then using Eq. 3.1 at the correspondent polynomial. In the same
way first and second derivative can be found deriving Eq. 3.1:

ẋ(t) = a1 + 2a2t+ 3a3t
2, with 0 < t < ∆Ti (3.3)

ẍ(t) = 2a2t+ 6a3t, with 0 < t < ∆Ti (3.4)

It is worth highlighting that while Eq. 3.3 and Eq. 3.4 applied to r coincide with
linear velocity and acceleration, in case of θ they do not represent angular velocity
and acceleration.
Calling ω ∈ R3 the angular velocity it results [50]:

ω = M


γ̇

ψ̇

φ̇

 (3.5)

with:

M =


0 −sin(γ) cos(ψ)cos(γ)
0 cos(γ) cos(φ)sin(γ)
1 0 −sin(ψ)

 (3.6)

For what concerns angular acceleration α ∈ R3, it can be computed deriving
Eq.3.5:

α = M


γ̈

ψ̈

φ̈

 + Ṁ


γ̇

ψ̇

φ̇

 (3.7)

with:

Ṁ =


0 −cos(γ)γ̇ −sin(ψ)cos(γ)ψ̇ − cos(ψ)sin(γ)γ̇
0 −sin(γ)γ̇ −sin(ψ)sin(γ)ψ̇ + cos(ψ)cos(γ)γ̇
0 0 −cos(ψ)ψ̇

 (3.8)
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As initial guess for the optimizer, a straight line between starting and goal state
is chosen for r and θ. Initial guesses for ṙ and θ̇ are, instead, a constant value for
every node (ṙi) equal to the difference between the goal (rgoal)) and the initial
node(rin), divided by the total time (Ttotal), i.e. the slope of the lines of r and θ.

ṙi = (rgoal − rin)/Ttotal for i = 1, . . . , number of nodes (3.9)

3.1.2 End-Effector Parametrization
End Effector variables are composed by two 3D vectors for each foot:

• pi ∈ R3: position of the foot of the robot in the world frame;

• ṗi ∈ R3: velocity of the foot of the robot.

From now, unless specified, all the quantities refer to one single leg and we can
thus drop the pedex
Considering the gait, p and ṗ must have a different behaviour in the two phases.
Each phase is composed by an initial node, a final node and a certain number of
equidistant nodes in the middle. The default number of nodes between to the
initial and final nodes of each phase is one, however this number can be increased
to improve the reliability of the feet trajectories.

Stance phase

The Stance phase is the interval of time in which the foot is in contact with
the terrain; to avoid slippage, the velocity of the foot has to be always null. The
initial node of the phase corresponds to the moment of touch down of the foot
on the ground, while the final one corresponds to the moment of the lift off of
the foot from the ground. The nodes of stance phases are called also constant
nodes. In order to guarantee that the foothold does not change during the stance
phase, ṗi of a constant node is not optimized, but set to zero. In this way, the
point of touch down is optimized and it is kept constant during all the phase. For
example, in Fig. 3.1 stance phase happens in the interval 0− 0.2s and 0.42− 1s,
during which phase both px,pz are constant.

Swing Phase

Stance phase is the interval of time in which the foot is in air. Initial and final
values of swing phase are constant nodes, since they correspond respectively to a
final and an initial node of a stance phase. Only the middle nodes are not constant
nodes and they are therefore both optimized in position and velocity. In Fig. 3.1
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stance phase is in the time interval 0.2 − 0.42 s. While x coordinate increases
continuously, the z takes on the shape of a bell, with the apex corresponding to
the non constant node.
Both stance and swing nodes are joined to obtain a single spline, according to Eq.
3.1. The main difference between the spline for the CoM variables and the one
containing the end-effector variables is that, for the former, the discretization time
∆Ti is equal between all the couples of nodes while, for the latter, the discretization
time is different for all the nodes.
A goal for p is not provided as an input. Final position of the foot is only a
consequence of the required final base position and orientation. To compute the
final value, the robot is assumed to be in the nominal configuration while reached
the target and so:

pfin = rfin +R(θ)pB
nom (3.10)

where:

• R(θ) ∈ R3×3 = rotation matrix between CoM frame and World frame.

• pB
nom ∈ R3 = nominal coordinate of the foot, expressed in the CoM frame.

Once pfin has been computed, the initial guess for the optimized nodes can be
chosen as the linear interpolation between initial and final node Initial guess for
velocity is a constant trajectory equal to difference between the two values divided
by the total duration of the motion.

3.1.3 Parametrization of the contact forces
The force variables in TOWR represent the contact forces between ground and

foot and are composed by two 3D vectors for each foot:

• f : value of the contact force;

• ḟ : first derivative of the force;

The structure of the Force variables corresponds to the one of End-Effector
variables, presented in Sec. 3.1.2. In this case, the default value of the force nodes
between the initial and the final nodes of each phase has been chosen to be equal
to two. This number, however, can be changed in order to modify the amount of
feasibility of the trajectories of the contact forces.

Stance Phase

Since, during the stance phase, the foot is in contact with the terrain, a force
has to be applied in order to not break the contact. In this case, stance nodes
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Figure 3.1 – x and z coordinate of left front foot position. These trajectories
correspond to the first second of a 20cm walk in 2.4s with one cycle of crawl gait.
In the interval 1− 2.4s the values remain constant.

are the non constant nodes and, thus, the force and first derivative have to be
optimized. Also in this case touchdown and lift-off are considered constant node
and, therefore, they are swing ones.

Swing Phase

During the swing phase, the foot does not touch the ground, so it cannot apply
any force. For this reason the force nodes during the swing phase are set to be
constant nodes (i.e. they are not optimized) and the values of the force and its
first derivative are set to zero.
Also in this case, Eq. 3.1 is used to build a third-order spline between the
optimization nodes. Like for End-Effector variables, the discretization time is not
constant.
As initial guess x and y coordinates of fi and all the coordinates of ḟ are assumed
to be constant and equal to zero, while z coordinate of fi, called (fig(z) ) is
assumed to be constant and equal to the weight of the robot divided by the
number of legs nl:.

fig(z) = (mg)/nl

with g ∈ R = 9.80665 m/s2.

29



Trajectory Optimization for Walking Robots (TOWR)

0 0.5 1 1.5 2 2.5
-40

-20

0

20

0 0.5 1 1.5 2 2.5
0

200

400

Figure 3.2 – x and z coordinate of the force of the left front foot foot. It corresponds
to of a 20cm walk in 2.4s with one cycle of crawl gait

3.2 Constraints

As already said, the trajectory planner looks for a feasible solution for the
variables introduced in section 3.1, i.e. a solution that satisfies all the defined
constraints. In this section the default constraints introduced in TOWR are
described. The formulation can be easily modified, in order to either implement
and add new constraints or neglect some.
Every constraint can be written in the form:

bmin ≤ g(x) < bmax

where bmin and bmax are the bounds and g(x) is the constraint function, which
can be nonlinear. bmin, bmax and g(x) are expressed as column vector, whose rows
depends on the number of equation of the correspondent constraint. For every
equation, its Jacobian with respect to the optimal variables has to be expressed.
The presence of the Jacobian imposes that g(x) has to be differentiable.
All the constraints that involve f and p and their derivatives are evaluated for
every foot separately.
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3.2.1 Dynamic Constraint
As mentioned before, the trajectory planner is based on Single Rigid Body

Dynamics, which is governed by the following dynamic equation is:

mr̈ =
niØ

i=1
fi(t)−mg (3.11)

Iω̇(t) + ω(t)× Iω(t) =
4Ø

i=1
(fi(t)× (r(t)− pi(t))) (3.12)

where I ∈ R3×3 is the constant inertia matrix.
The Dynamic Constraint is composed of 6 equations and since it is an equality
constraint, bmin = bmax = 0.
This constraint is evaluated for every node of CoM nodes (i.e. at every fixed time
interval defined by the variable dt).

3.2.2 Kinematic Constraint
In SRBD formulation, CoM variables and End Effector variables are completely

decoupled, but in the real world the foot has to be inside the workspace of the
robot, i.e. it has to lie within a maximum distance from the CoM, in order to
have a feasible configuration for the robot. In other words, imposing that the foot
is inside a good approximation of the workspace guarantees that the kinematic
limits of the joints of the robot are not overcome. This constraint guarantees that
the distance between foot and CoM, lies in a box around the nominal position:

pB
nom − lmin < p

B < pB
nom + lmax (3.13)

where:
pB = R(θ)T (p− r) (3.14)

where l is the dimension of the cube and R(θ)T is the rotation matrix from World
frame to CoM frame. The Kinematic Constraint is composed by three equations
per foot and it is evaluated every dt. If an instant does not correspond to a node
in p and f , it is computed evaluating the spline at that instant.

3.2.3 Terrain Constraint
This constraint is used to guarantee that:

• if a node of p belongs to stance phase, its z coordinate coincides with the
height of the terrain;
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• if a node of p belongs to swing phase, its z coordinate has to be positive in
order to lift the foot;

It is evaluated for every node of p and is composed of one equation per node of
every foot.

3.2.4 Spline Acceleration Constraint

As already said r, ṙ,θ, θ̇ are optimized variables, while second derivatives
are computed using the finite differences method. Discontinuity in the second
derivative in presence of nodes can cause dangerous jumps and very fast movement
of the robot. This constraint guarantees that the final value of the second derivative
of a polynomial in the spline is equal to the first value of the following polynomial.
In this way the linear and angular accelerations.
For the generic variable x:

ẍi(∆Ti) = ¨xi+1(0) (3.15)

This constraint is evaluated at every interval dt for CoM variables and it is
composed of six equations equations (three for r̈ and three for θ̈).

3.2.5 Force Constraint

In order to model the contact between terrain and foot, Coulomb friction has
been used. Its equations depend on the friction coefficient µ and on the normal
and tangential components to the surface. SRBD does not foresee a true stability

Figure 3.3 – Contact Friction Cone and its linearized pyramid[5]

criterion, but we can state that, if the ground reaction force lies in the cone, the
contact between foot and ground is not broken and the robot will not fall during
the movement.
The accuracy of this approximation depends on the number of lateral faces of the
pyramid. In this case the contact friction cone is linearized by a pyramid. This
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allows to approximate the Coulomb friction model with a set of linear constraints
rather than a single quadratic constraint:

d < Cf < d̄ (3.16)

C =


(−µs+ t1)T

(−µs+ t2)T

(µs+ t2)T

(µs+ t1)T

 d =


−∞
−∞

0
0

 d̄ =


0
0
∞
∞

 (3.17)

where:

• s ∈ R3 is the normal direction to the terrain at the contact point.

• µ ∈ R is the friction coefficient.

• t1, t2 ∈ R3 are the two tangential directions to the terrain at the contact
point.

In addition, it must not happen that the ground pulls the feet of the robot,
therefore, fsT must be must be larger than zero. Besides that, fsT must also be
smaller than a predefined maximum value in order to avoid too large torques to
the robot’s actuators.
The constraint is evaluated in every node of f . As a consequence, the Force
Constraint, as defined in TOWR, does not prevent the force from either being
outside the friction cone or negative between two nodes.

3.2.6 Swing Constraint
The constraint guarantees that x and y coordinate of a node of p in swing is

the middle values between the previous and the following node. For ṗ, instead, x
and y coordinate are set equal to one third of the distance between the previous
and the following node. This constraint is evaluated for all the swing nodes of p
and it is, therefore, not active on the stance nodes.

3.2.7 Gait Optimization
In all the previous parts of this section we have considered the gait as fixed

and decided a-priori by the user. In some situations, it would be better to leave
to the solver the possibility to change the duration of the phases to obtain a
more suitable gait for the required task. For this reason, the extra variable Phase
Duration and the extra constraint Total Duration Constraint can be added.
Phase Duration contains the duration of each phase. A single Phase Duration
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variable is associated to every foot of the robot. Maximum and minimum phase
duration are provided. While finding the feasible values for Phase Duration
variables, the solver has to respect the Total Duration Constraint, i.e. the sum of
the duration of each phase has to be equal to the total duration of the motion.
This is necessary to make sure that the total duration of the phases of each feet is
the same and the motion ends in the same time instant for all the feet.

3.3 Results
The computational efficiency of the formulation and of the implementation

in the library TOWR has been demonstrated in [48]. The library has been
tested in simulation on various terrains, robots (monoped, biped, quadruped) and
gaits, showing good performances in computational time. In addition, hardware
experiments have been performed on flat terrains by Winker et al. [48] with the
quadruped robot ANYmal [51].
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Chapter 4

Experimental Setup

This thesis has been carried out at the Dynamic Legged Systems (DLS) at
the Istituto Italiano di Tecnologia (IIT). The aim of this thesis is to improve the
capability of motion of legged robots, through model-based optimization. The
target platform of this project is the Hydraulically actuated Quadruped robot
(HyQ).
In the first section of this Chapter we briefly describe the history of the DLS lab
and, in the second section, we give an overview of the HyQ robot.

4.1 The Dynamic Legged Systems (DLS) lab
IIT is a research institute funded in 2003. It is owned by the Ministero

dell’Economia e delle Finanze, but is administered by the Fondazione IIT, ac-
cording to the Private Law of Italian Civil Code. IIT’s total staff is comprised of
more than 1700 people from 60 countries. Its aim is to conduct scientific research
in the public interest, for the purpose of technological development [52]. It is
composed of a Central Research Laboratories (a network of four hubs) in Genova,
11 research centres in Italy and two outstations located abroad (at MIT and at
Harvard in the US). The headquarter in Genova includes four research domains:
Robotics, Nanomaterials, Lifetech and Computational Sciences.
One of the laboratories which deal with the robotics field is the Dynamic Legged
Systems (DLS) lab. This research group focuses on the design and control aspects
of agile legged robots [53]. Being always focused on the idea that legged robots
can be exploited to work in hostile environments, such as disaster areas, DLS’
members investigate the field of the control and motion planning to obtain robust
architectures against external disturbances. In addition, they are involved in
giving to the robot the capability of perceiving the outdoor environment to go
through it. Starting from the first prototypes of the legs (2008), DLS has presented
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(a) (b) (c)

(d) (e)

Figure 4.1 – HyQSilver (a), HyQCentaur (b), HyQ2Max (c), HyQMini (d),
HyQReal (e)

several robots:

• HyQ (2010) [54], Fig. 4.1a: it is the robot we have used for this thesis. We
will introduce it in the next section;

• HyQCentaur (2015) [55], Fig. 4.1b: HyQ has been provided with an arm in
order to enable manipulation and to improve body stabilization. The arm is
compact (0.743m fully extended), light-weight (12.5kg), and fast (maximum
4m/s no-load speed at end-effector). The arm has an hydraulic actuation
and six torque-controlled degrees of freedom;

• HyQ2Max (2015)[56], Fig. 4.1c: HyQ2Max has been developed with the
goal to build a stronger, more robust and versatile robot. With respect to
HyQ, HyQ2MAX has a far larger joint range and higher joint output torque,
without an increase in the weight of the robot. All the sensitive hardware
parts (i.e. electronics, sensors, valves and actuators) have been embedded
inside a protection shied, which makes the robot more robust to possible falls
and to the rain. This allows HyQ2Max to perform dexterous motions such
as self-righting (i.e. whenever the robot lies on its back consequently to a
fall, it is able to turn back on his belly and stand up again);
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• HyQMini (2015)[57], Fig. 4.1d: it is the smallest robot of the DLS lab.
HyQMini has the same leg length as HyQ, but the length of its links is
15% less in flex configuration. It weighs only 35 kg and it is provided with
miniature hydraulic actuators;

• HyQReal (2019), Fig. 4.1e: it is the newest robot of the DLS lab, presented
in the International Conference on Robotics and Automation (ICRA) in May
2019. The robot is endowed with a 48V battery, two hydraulic onboard
pumps, two computers and it is the result of a big mechanical redesigning of
HyQ. Autonomy and robustness of this robot has been demonstrated pulling
a small passenger airplane (Piaggio P180 Avanti) at the Genova Airport.

4.2 The Hydraulically actuated Quadruped (HyQ)
robot

In order to verify the validity of the theoretical contribution of this thesis, we
have performed experiments and simulations on Hydraulically actuated Quadruped
(HyQ) [54], see Fig. 4.2. HyQ has been developed in 2010 by Dr. Claudio Semini
and, from that moment on, has been widely exploited for research by his team.
Now, two identical versions of this robot exist: HyQGreen, which is the one we
have used for this thesis and HyQBlue, which is loaned to other universities or
research centers. HyQ is a 90kg-quadruped robots, whose maximum dimensions,
corresponding to the fully extended legs are: 1.0m x 0.5m x 0.98m (Length x
Width x Height). Legs weigh around 9kg and the feet are 2cm radius spheres.
The robot is provided with hydraulic actuation: the trunk is not actuated, while
there are 12 torque-controlled joints, three per leg:

• Hip Abduction-Adduction (HAA);

• Hip Flexion-Extension (HFE);

• Knee Flexion-Extension (KFE);

Every joint is equipped with three sensors: a magnetic absolute encoder for the
initialization of the joint positions, a relative optical encoder used for the joint’s
position control and a force/torque feedback sensor. In addition, an inertial
measurement unit (IMU) is mounted on the torso of the robot (3-axis acceleration,
3-axis gyro and compass sensor).
Table 1 resumes the main parameters of HyQ, taken from [58]:
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Figure 4.2 – Side view of HyQGreen [6]

Description Value
Robot’s mass 90kg
Leg’s mass 9kg
Operating pressure 160bar
Dimensions (fully
stretched legs)

1.0m× 0.5m× 0.98m

Leg length from 0.339m to 0.789m
Foot radius 2cm
Number of joints 12
HAA range of motion -90° +30°
HFE range of motion -70° +50°
KFE range of motion -20° +140°
Maximum torque HAA 120Nm
Maximum torque HFE 150Nm
Maximum torque KFE 150Nm

The HyQ robot has so far proven significant navigation capabilities through rough
terrains. The objective of this thesis is to endow the robot with improved motion
planning skills that will allow the robot to cope with even larger obstacles and
more complex terrains.
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Chapter 5

Geometry and Actuation
Consistency

Chapter 2 has been dedicated to the analysis of the state-of-the-art approach in
trajectory planning and stability criterion. In this chapter drawbacks of the SRBD,
specially applied to quadruped robots, will be highlighted, presenting possible
solutions to improve it. Two main novel approaches will be faced: joint-torques
limit and collision with the environment [59].

5.1 Joint-Torque Limits

SRBD only foresees the presence of the CoM and the robot’s feet, while joints
variables are not considered. It is possible, thus, that a motion planner based
on this model finds a trajectory which satisfies all the constraints of the SRBD,
but violates feasibility constraints of the actual robot. Such constraints include
the joint kinematic limits and the joint-torque limits. In addition, the model is
non-convex and these constraints are nonlinear. A solution that violates these
constraints has to be considered infeasible and can be dangerous for the robotic
hardware unless carefully managed.
The joint-torque limits constraint problem is usually only addressed at the con-
troller level [60, 8]. In order to explicitly consider this limit at the planning stage,
Ding et al. [61] convexify the nonlinear joint-torque constraint such that it can be
added to a Mixed Integer Quadratically Constrained Program (MIQCP). This for-
mulation is suitable for convex optimization and it is thus computationally efficient.
The decision to employ a unique outer bounding ellipsoid as an approximation of
the force ellipsoids, however, discards the important (configuration dependent)
information regarding the relationship between the leg’s configuration and shape
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of the force ellipsoids (i.e. the contact force is constant and it does not depend on
the foot position). Another approach consists, instead, in using the force polytopes
(see section 5.1.1) to map the joint torques limits into a set of admissible centroidal
wrenches [4] or CoM positions [62]. The former approach however, is not suitable
for online foothold optimization because of the computational effort related to
the Minkowsky sum, while the latter is only suitable for static gaits.

Contribution

In this section we present a novel approximate, robot-agnostic, projection of
the joint torque limits into task space. In other words, it represents a novel
approach to describe the existing relationship between the leg’s configuration and
the corresponding maximal contact forces at the end-effector. If the force respects
the maximum value of this constraint, we can state that also the joint-torques
are inside their limits. Since leg configuration depends on the joints, which are
not included in the model, footholds are exploited to express the leg geometry.
The result is that the trajectory planner automatically changes either the value
of the force to satisfy joint-torque constraint proposed in this thesis or the foot
position to find a foothold in which that force respects the constraint. This aspect
is usually not captured by standard simplified models, like SRBD and Centroidal
Dynamics.

5.1.1 Force Polytopes
A d-polytope is the convex hull of a finite number of points in Rd; the 2-polytope

is a polygon, the 3-polytope is a polyhedron. It has been stated that a polytope
can be expressed also as the intersection of half-planes (Double Description
[63]).Assuming that torques limits correspond to an hypercube (cube ∈ Rn), the
Force Polytopes A [64] represents the mapping of torque limits into the task space,
exploiting the Jacobian of the legs J((q)):

− τ lim ≤ τ ≤ τ lim (5.1)

τ = J(q)Tf (5.2)

where q ∈ Rn is the vector of joint displacements and τ ∈ Rn is the vector of the
joint-torques, with n equal to the number of joints of the leg of the robot.
Substituting Eq. 5.2 in Eq. 5.1, it results [65]:

A = {f ∈ R3 | − τ lim ≤ J(q)Tf ≤ τ lim} (5.3)
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If torque limits are considered as hypersphere ( ττ T < 1), a Force Ellipsoid E is
obtained

E = {f ∈ R3 | fTJ(q)J(q)Tf ≤ 1} (5.4)

The main difference between ellipsoid and force polytopes is that while the former
is an approximation, the latter computes a non constant polytopes that is affected
by actual configuration of the joints.

5.2 Polytopes Morphing
A trajectory planner that does not respect the torque limits can be dangerous,

especially if the robot needs to take on complex configurations in order to negotiate
rough terrains such as steps and non-coplanar contacts. Force polytopes can be
used to include joint-torque limits, but they require the knowledge of the joint-
positions to compute the bounds in which the force at the end effector has to lie.
The idea of the new approach that we proposed in [59] is to compute, offline, the
polytopes corresponding to a certain number of configuration of the leg, through
Eq. 5.3. Since the computation is not done in the formulation of the model,
joint displacements q can be used. Once the default configuration polytopes
are obtained, it is possible to compute the polytopes corresponding to every
configuration as a linear interpolation of the default ones. In this way, actual
value of q are not needed to be part of the model.

In Fig. 5.1 we can see a planar example where three force polytopes Ak (with
k = 1 . . . 3) are computed for the three different configurations of the same planar
leg. In this example, we decided to pick three polytopes, because it allows us
to sample the force polytopes at the configuration of maximum retraction, of
maximum extension and at the leg’s nominal configuration. In order to map foot
position into leg extension we introduce two parameters:

1. l represents the distance between the foot and the hip joint, see Eq. 5.5

2. α represents the angle between the vertical and the line that connects the
foot to the hip joint, see Eq. 5.8.

Looking at Fig. 5.1, we can notice that in all the three cases the end-effector
is located on the same line with respect to the hip joint. Only the distance lk
changes in the three configurations.

l =
ñ

(pb
x − hb

x)2 + (pb
z − hb

z)2 (5.5)

From this moment on, we will use the halfspace description for the polytopes.
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Figure 5.1 – Representation of a planar leg with 2 degree of freedom in three
different configurations. For each configuration the corresponding force polytope is
shown. The angle α represents the tilt angle of leg (i.e. angle between the vertical
and the line connecting the foot and hip joint). l is instead the distance between
foot and hip joint.

The considered leg has two degrees of freedom and, therefore, all the force/wrench
polytopes are made of 2n = 4 halfspaces. Each halfspace can be represented by its
normal unit vector nj

k ∈ Rm (with j = 1 . . . 2n), to which is associated an angle θ
and the known term dj

k ∈ R. For instance, the generic force polytope Ak can be
expressed as:

Ak =
;
f ∈ Rm | Ak(q)f ≤ dk(q)

<
(5.6)

where m is the dimension of the contact force (e.g m = 2 in the planar case of
Fig. 5.1 with a point foot) and:

Ak(q) =


n1

k
...
n2n

k

 (5.7)

Eq. 5.6 is another possible formulations of Eq. 5.3.
The rows of the Ak(q) matrix correspond to the normalized rows of the leg’s
Jacobian J(q). As we are interested in the way the matrix Ak(q) changes with
respect to a variation of the foot p in the cartesian space, we should then analyse
the quantity dJ(q)/dp. This is, however, robot-specific and goes against the
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assumption of SRBD. For this reason, we use the linear interpolation between
default pre-defined polytopes. Once the polytopes have been calculated, the
approach is robot-agnostic. Using polytopes interpolation, we keep the relationship
between foot position and maximal contact forces without the need of explicitly
knowing the morphology of the considered robot.

For that purpose, we assume that the transformation between the corresponding
halfplanes of two polytopes Aa and Ab consists of an homogeneous transformation
instead of considering the actual dependency from the robot’s configuration
manifold q. In particular, the homogeneous transformation is composed of a
rotation of the leg’s tilt angle α and a linear interpolation performed on the term
dj. More in depth, α corresponds to the angle between the vertical and the line
that connects the foot to the hip joint (see Fig. 5.1):

α = arctan
3
pb

x − hb
x

pb
z − hb

z

4
(5.8)

where (hb
x, h

b
z) is the fixed position of the hip joint and (pb

x, p
b
z) is the foot position

with respect to the base frame. R(α) ∈ R2×2 rotates the obtained force polytope
by the angle α in such a way to align it to the leg. We can therefore consider l
and α as the polar coordinates of the foot with respect to the hip joint.

The generic normal unit vector nj(l) is found as the geodesic average [66] of
the two neighboring values la and lb. Exploiting the well known formula of a line
passing between two points and considering l as the independent variable and θ
as the dependent variable we obtain:

θ = l − la
lb − la

(θb − θa) + θa (5.9)

and thus:

nj = R(α)
cos(θ)

sin(θ)

 (5.10)

θa and θb are the angles corresponding to the two predefined normal vectors
na = [cos(θa), sin(θa)]T and nb = [cos(θb), sin(θb)]T closest to the value of l (see
Fig. 5.2). The generic known term d can be found as a linear interpolation
between the values da and db:

d = l − la
lb − la

(db − da) + da (5.11)

Repeating this computation for all the halfplanes of the polytope, the Eq. 5.6
and Eq. 5.8 can be used to compute the polytopes corresponding to the foot
position p and the actual leg configuration. Due to the presence of three default
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Figure 5.2 – Geodesic average of the unit vectors na and nb normal to the
halfplanes of the force polytopes Aa and Ab. The generic normal vector nj is
obtained by linear interpolation of the angles θa and θb.

polytopes Ak, with k = 1, . . . , 3, the generic variables (·)a and (·)b take on the
values corresponding to the two neighboring force polytopes Aa and Ab:(·)a = (·)j

1, (·)b = (·)j
2 if l1 ≤ l ≤ l2

(·)a = (·)j
2, (·)b = (·)j

3 if l2 < l ≤ l3
(5.12)

Eq. 5.10, 5.9 and 5.11 represent a polytope morphing among the three reference
polytopes computed at the three predefined configurations.
Despite the nonlinearity given by the trigonometric terms in Eq. 5.10, this morph-
ing represents a significant simplification because it does not require the knowledge
of the leg’s Jacobian matrix at the considered leg configuration. In addition this
relationship is differentiable and it can, therefore, be used in optimization-based
motion planning.

5.3 Collision with the environment
As already said, the SRBD considers the full dynamics of a robot, as its

projection in the CoM. Feet are considered as points which interact with the
environment, see Eq. 3.11 and Eq. 3.12. Imposing that the z coordinate of the
foot in the World frame is always larger than the terrain height can guarantee can
guarantee that there is no penetration in the terrain. In case of uneven terrains,
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this constraint is often not enough to avoid collisions between the leg of the robot
(i.e. shin collision) and the environment and proper improvements have to be
adopted.

5.3.1 Foot radius

As introduced in Chapter 2, the SRBD considers point feet, while in the real
robots feet always have a non-negligible size. The assumption of point feet can be
unacceptable for humanoids robot, in which foot shape design is an important
part of the construction of the robot. Ouezdou et al. [67] compared the results
obtained using four different models for the feet: plate, flexible, active and hybrid
flexible active. Without going into too much details, they demonstrated that
foot shape affects the motion of a human robot. For what concerns quadruped
robots, instead, they generally present spherical feet. To solve this uncertainty in
the model, the radius of HyQ’s spherical feet has been added in the formulation
in such a way to discard solutions that may lead to undesired collisions during
swing phase. Unsafe footholds, for example, happen when the spherical foot does
not step entirely on the terrain (e.g. edge of a step). They could cause slippage
and thus tracking errors with respect to the reference base trajectory and thus
eventually the impossibility to complete the desired task. To overcome this, we
force the planner to find a foothold p in which the terrain height is constant at a
radius r before and behind the considered foothold along the robot’s direction of
motion, see Fig. 5.4). The value of r is 2cm in the case of the HyQ robot.

Figure 5.3 – Image on the left represents an unsafe foothold since the foot is very
close to the edge and the foot does not step entirely on the terrain. Below image
shows a safe foothold.
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5.3.2 Shin Collision

Shin Collision refers to the impact between the leg’s lower link and the terrain.
The leg’s volume plays an important role in the execution of successful motion
plans, as it may lead to self-collisions or to collisions with the environment if not
properly managed. Shin collisions, for example, may occur during a leg’s stance
phase as a consequence of a wrong choice of the foothold or it may occur during
the leg’s swing phase. Shin Collision cannot be avoided in SRBD, since the model
of the leg is not included in the formulation.
A solution could be the inclusion of the complete geometry of the robot into
the model, but this would require a complexity that goes against the aim of the
SRBD. A state-of-art approach to the problem of avoiding shin collision consists in
looking for a collision-free swing phase, considering the height map of the terrain
and the robot configuration [68]. This approach exploits a Machine Learning
algorithm, but it cannot be exploited in optimization-based trajectory planning.
An alternative is presented in [69], in which the controller is able to detect the
point of application of the ground reaction forces from the foot to the shin in case
of collision. This method can guarantee safe navigation on challenging terrains,
however, it is a pure reactive module which does not increase the robustness of
the planner.

Figure 5.4 – Representation of one single leg of the HyQ robot. h is the knee
height, s is the length of the lower link and β is the angle selected to keep the shin
from hitting possible obstacles. r is the radius of the foot used to avoid edges and
unsafe foothold.
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Contribution

In order to avoid such collisions, we provide a simplified kinematic model of
the leg to the motion planner [59]. We assume the lower link to be a straight line
of length s (distance between the foot’s contact point and the knee) with a fixed
angle β with respect to the ground. The knee’s projection on the ground is equal
to s cos(β) and the height of the knee corresponds to h = s sin(β) and it can then
be mapped along the direction of motion using the knowledge of the yaw angle
γ. Knee collision can thus be avoided if the height of the knee is higher than the
terrain on that point. Fig. 5.4 represents the model chosen for the i− th leg in
the x-z plane:

pz + s · sin(β) > hterrain(pknee) (5.13)

where:
pknee_x = px + s cos(β) cos(γ)
pknee_y = py + s cos(β) sin(γ)

(5.14)

where hterrain(pknee) ∈ R is the height of the terrain in the 2D projection of the
knee, computed through Eq. 5.14.

Besides checking for possible knee collisions, we also avoid shin collisions by
imposing the constraint on a number of points between the foot and the knee.
The lower limb length s is a constant robot parameter while a conservative value
of β angle should be selected by looking at the maximum inclination that the leg
can take on during a walk.
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Chapter 6

Simulation and Hardware
Results

In the previous Chapter we have presented a new formulation of SRBD model,
which guarantees a robust trajectory for an hardware robot. The new formulation
consists of adding two constraints named Collision Avoidance and Force Polytopes.
They are nonlinear constraints, due to the presence of trigonometric terms in Eq.
5.14 (for Collision Avoidance Constraint) and in Eq. 5.10 (for Force Polytopes
Constraints), but they are differentiable, so they can be integrated inside the
TOWR library.
In order to perform simulations and then experiments on the real robot with a
trajectory computed by TOWR, an interface between the trajectory planner and
the controller has to be developed. The controller is responsible for computing the
reference for the low-level variable (joint position and torques) of the robot and
for tracking them. For our experiments, we have used the Hydraulically actuated
Quadruped (HyQ) Robot [54] of the Istituto Italiano di Tecnologia of Genova,
a 90 kg quadruped robot equipped with 12 torque-controlled joints (3 per leg),
powered only by hydraulic actuators.
A thorough description of the controller implemented on HyQ [8] is beyond the
aim of this thesis, but some important details will be reported. It is worth noticing
that the robot is endowed with a series of sensors, such that all the main relevant
quantities for locomotion (such as base velocity or ground reaction forces) can be
can be directly or indirectly measured.
Since the communication between controller and trajectory planner is managed
by ROS environment, a brief introduction to its main elements is presented in
this Chapter. In the last section, we will present the obtained results, both in
simulation and on the real hardware robot, of the proposed SRBD-based trajectory
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planner.

6.1 Robot Operating System (ROS)
ROS, which stands for Robot Operating System, is defined as meta-operating

system and provides a software platform to develop robotic applications [7].
The advantage of using ROS is that every code is reusable on different kind of
applications and robots. In addition, it provides debugging and visualization tools,
like rqt, and RVIZ, which does not require robot-specific tools [70]. The smallest
unit of a ROS environment is called node. It can be assimilated to an executable
program, implemented for one single purpose. It guarantees the reusability of
ROS. Name, message type and URI addresses are associated to every node. Nodes
are joined together to form ROS packages.
As already described, ROS is a communication based program. The main elements
involved in the communication are [7]:

• messages: they are used by the nodes to exchange informations. A type is
associated to every message: primitive types (integer, float, boolean) or user
defined types.

• topics: they are defined as named buses over which nodes exchange messages
[71].

• publisher : is a ROS node that writes a particular type of message on a topic.

• subscriber : is a ROS node that listens to a topic and when it reads a message,
performs an action, generally called Callback.

• service: it is defined as a synchronous bidirectional communication between
the service client that requests a service and the service server that is
responsible for responding to requests [72].

6.2 Planner and Controller Integration
Due to its structure, ROS allows both the motion planner (TOWR) and the

controller to publish and receive informations. Two already existing topics have
been mainly exploited in the experiments that we carried out in this thesis:

1. the first topic is published by the controller and it is responsible of publishing
the actual states to the planner (TOWR).

2. the second topic is published by the motion planner (TOWR) as is responsible
of publishing the reference trajectory to the controller so that it can track it.
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Figure 6.1 – Scheme of the communication between two nodes [7]

6.2.1 Controller to Planner Communication

TOWR has its own default initial condition, but we are interested in computing
a trajectory starting from the actual configuration in which the robot is.
HyQ, through what is called StateEstimator, computes its actual state pose and
twist (linear and angular velocities) of the base and feet position with a frequency
of 250 Hz. In TOWR a subscriber to this topic is added. The callback of this sub-
scriber sets TOWR initial condition equal to the ones received from the message.
It makes sure that the trajectory optimization problem is always initialized with
the most recent state of the robot.

CoM Position

First of all, the controller publishes the position of the geometric center of the
trunk of the robot, which is different from the CoM of the robot, see Sec. 3.1.1.
Knowing the actual configuration of the joints, the vector of the offset between
CoM and base is computed by the controller. Since TOWR finds a trajectory for
the robot’s CoM, the base variable read from the message has to be corrected
including this offset to obtain the initial condition for the robot’s CoM of the
robot in the world frame.

rW
in = bW

c +R(θ)oB; (6.1)
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where:

• rW
in ∈ R3= initial position of the CoM, used by the trajectory planner,

expressed in the World frame.

• bW
c ∈ R3= actual base position of the robot expressed in the World frame

read from controller message.

• R(θ) ∈ R3×3 = rotation matrix between Base Frame (i.e. a reference frame
aligned with CoM whose origin is the geometrical center of the base link)
and World frame.

• oB ∈ R3 = vector which represents the offset between CoM and Base
expressed in the Base frame.

with:

θ =


φ

ψ

γ


being the orientation of the base link and:

R(θ) =


c(ψ)c(γ) c(γ)s(φ)s(ψ)− c(φ)s(γ) c(γ)s(ψ)c(φ) + s(φ)s(γ)
s(γ)c(ψ) s(γ)s(φ)s(y) + c(φ)c(γ) c(φ)s(ψ)s(γ)− s(φ)c(γ)
−s(ψ) c(ψ)s(φ) c(φ)c(ψ)

 (6.2)

For the sake of simplicity,the letter c is used to indicate the cos and letter s
replaces the word sin.

Foot Position

The controller publishes the feet position in the Base Frame, while TOWR
requires their position in the World frame:

pW
in = R(θ)pB

c + bW
c (6.3)

where:

• pW
in ∈ R3 = initial position of the i-th foot,used by the trajectory planner,

expressed in the World frame.

• pB
c ∈ R3 = actual position of the i-th foot, expressed in the Base Frame, read

from controller message
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The robot has spherical feet of 2cm radius, so the z coordinate of the foot position
in the World Frame is always2cm above the terrain height (during stance phases).
As already explained, TOWR, instead, has a model in which the feet are just
points and therefore that value could be interpreted as foot non in contact with
the terrain. To avoid this, and since the robot starts its movement with the four
feet on the terrain, the z coordinate of the feet is set to zero in the initialization
of the optimization problem. As a consequence, also the robot’s z coordinate in
the World frame has to be reduced by the foot radius in order to keep the same
relative distance between the base of the robot and its feet.

6.2.2 Planner to Controller Communication

TOWR is used to obtain the trajectory that the robot has to follow to complete
a certain task. Outputs of TOWR are splines for the following quantities:

• CoM position and orientation, with their derivative (r, ṙ,θ, θ̇);

• foot position and velocity p, ṗ for all the four feet;

• contact force and its derivative f , ḟ for all the four feet;

TOWR has been implemented to use XPP messages [73], in order to obtain a
graphical visualization on the software RVIZ. HyQ’s controller uses, instead, a type
of messages, which is called WholeBodyState. The controller runs at a frequency of
250 Hz, so a WholeBodyState has to be computed every 0.004 s. The conversion
between XPP and WholeBodyState is obtained, querying the splines of r,p,f
and their derivative, through Eq. 3.1, 3.3, 3.4.
In order to compute the commands required to track the desired trajectory, HyQ’s
controller has to be provided with (see Sec. 6.2.3):

1. linear position, linear velocity and linear acceleration of the base of the robot
in the World Frame;

2. angular position, velocity and acceleration of the base of the robot in the
World Frame;

3. position, velocity and acceleration of robot joints;

As already mentioned, joint positions are not provided by TOWR, so Inverse
Kinematics (IK) has to be used. The module which computes IK was already
available on the DLS software framework and it requires the position, velocity
and acceleration of the feet in the Base Frame.
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Base Linear Position

Base position can be computed using the inverse equation of Eq. 6.1:

bW
des = rW

des −R(θdes)oB (6.4)

where θdes and pW
des are received from the the message published by TOWR.

Base Linear Velocity

In order to compute Base Linear velocity ḃW
des, starting from ṙW

des provided by
TOWR, the equation of the kinematics of the rigid body can be exploited:

ḃW
des = ṙW

des + ωdes × ob (6.5)

with ωdes ∈ R3 which is the desired angular velocity, computed starting form the
derivative of Euler Angles received by TOWR and then applying Eq.3.5 and 3.6.

Base Linear Acceleration

As for the base linear velocity, the acceleration b̈W
des is computed through the

equations of the kinematics of the rigid body. Since the Coriolis terms 2ω × ṙW
des.

are small, we have decided to neglect this term:

b̈W
des = r̈W

des + ωdes × (ωdes × ob) (6.6)

Base Angular Quantities

Since CoM frame e Base frame are aligned, base orientation, velocity and
acceleration coincides with the CoM ones:

• base orientation θdes is obtained by TOWR message;

• angular velocity ωdes is computed through Eq. 3.5;

• angular acceleration αdes is computed through Eq. 3.7.

Foot Position in Base Frame

In order to compute foot position, the inverse equation of Eq. 6.3 is applied:

pB
des = R(θdes)T (pW

des − bW
des) (6.7)

where bW
des is computed through Eq. 6.4 and the other terms are received by

TOWR.
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Foot Velocity in Base Frame

TOWR provides velocity of the foot only in the world frame, so the following
equations has to be applied:

ṗB
des = R(θdes)T (ṗW

des − ḃW
des) (6.8)

where bW
des is computed through Eq. 6.5 and the other terms are received by

TOWR.

Foot Acceleration in Base Frame

As done for foot velocity, foot acceleration can be computed through the
equations of the kinematics of the rigid body:

p̈B
des = R(θdes)T (p̈W

des − b̈W
des) (6.9)

where b̈W
des is computed through Eq. 6.6 and the other terms are received by

TOWR.

6.2.3 Robot’s Controller

Robot’s controller is composed by two elements:

• a Proportional-Derivative controller for every joint.

• a Whole Body Controller which computes the required torque to balance the
Wrench required by the trajectory, see Fig. 6.2.

Joint Level Controller

A Joint Level Proportional-Derivative(PD) controller is used in all the 12 joints
of HyQ robot:

τ = Kp(q − qdes) +Kd(q̇ − q̇des) (6.10)

where:

• τ ∈ Rm = the torque command on the m joints (m = 12 for HyQ)

• Kp, Kd ∈ R = proportional and derivative coefficient of the PD controller.

• q ∈ Rm = actual value of the joint position.

• qdes ∈ Rm = desired value for the joint position.
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Kp and Kd of Eq. 6.10 have to be tuned in order to achieved required perfor-
mances.

Whole Body Controller

The Whole Body Controller (WBC) solves a QP to obtain the optimal gen-
eralized accelerations and contact forces and mapping them to the desired joint
torques. It is performed considering the full dynamics of the robot. More details
can be found in [8]. For what concerns the aim of this thesis, we have to highlight
that the required input for WBC are bW , ḃW

des, b̈
W
des,θ, θ̇des, θ̈des.

The orientation θ is obtained from TOWR, while the other quantities can be
computed respectively through Eq.6.4, 6.5, 6.6, 3.5 and 3.7.

Figure 6.2 – Scheme of the Whole Body Controller of HyQ [8]

6.2.4 Deployability of TOWR trajectory

As we have seen, TOWR finds an optimal solution for a trajectory of the robot,
starting from the actual state of the robot. This structure avoids discontinuities
between desired and actual state. However, every time the robot has to move,
a new trajectory has to be computed. Let’s assume that TOWR computes a
trajectory of 1m on a flat terrain. Once the robot has followed that the trajectory,
if we want to perform another meter, we can assume that the previous trajectory
can be reused for a new execution. This works well only provided that the final
configuration of the robot at the end of the first trajectory is not too different
from the initial configuration that was used to optimize the trajectory. Reusing
the already computed trajectory, we would avoid to take time on computation,
obtaining, therefore, a more efficient motion. In order to do this, two issues have to
be faced: how to save the trajectory from TOWR and how to make that trajectory
reusable. These two issues are better explained in the next two subsections.
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Saving the Trajectory

Until now we assumed that TOWR publishes on a topic and that the subscriber
subscribes to it. In addition HyQ framework foresees the possibility to use another
module which receives the entire trajectory, i.e. a vector of WholeBodyState, and
every 0.004s publishes the next state to the controller. Thanks to this module,
we can use ROS bag [74] files.
Bag files subscribe to a topic and save all the messages published on that topic.
Once the trajectory has been saved, the bag file can can be re-published at a
later stage. When re-published (or re-played), the trajectory will be read by the
controller which will then move the robot accordingly.

Reusability of the Optimal Trajectories

To make the trajectories obtained by TOWR resusable, we assign to let the
controller the role of translating the trajectory computed by TOWR with respect
to the actual state of the robot (i.e. we make sure that the optimal trajectory
starts from the actual state rather than the desired CoM position) in the actual
state of the robot TOWR with respect to the actual state of the robot (i.e. we
make sure that the optimal trajectory starts from the actual state rather than the
desired CoM position), without modifying the other properties of the trajectory
itself.
Since the first state of the trajectory coincides with the actual state of the robot,
see Sec. 6.2.1, subtracting it from all the states of the trajectory we obtain a
trajectory that starts from zero. All the elements can be considered as relative
displacement from the initial state.
From the controller side, Eq. 6.4 must be updated since the term rW

des is now
shifted of the initial state of the trajectory. Updated equation is:

bW
des = rW

des + rW
act −R(θdes)ob (6.11)

where rW
act is the actual CoM position at the moment when the trajectory has to

be performed and it is,therefore, a constant for the entire trajectory.
We have used similar approach also for position of the feet. Starting from Eq.
6.12:

pB
des = R(θdes)T (pW

des + pW
act − bW

des) (6.12)

where pW
act is the actual CoM position at the moment the trajectory has to be

performed. bW
des is computed with Eq.6.12 and it is, therefore, a constant for the

entire trajectory.
The trajectory of velocity and acceleration does not require any manipulation,
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since they already start from zero.

6.3 Experimental Results
In this Section we present the validation results that have lead to the successful

execution of the optimal trajectories generated by our motion planner on the HyQ
robot both in simulation and on the real hardware [59]. For all the simulations
and experiments we used an Intel® Core™ i5-4460 CPU @ 3.20GHz × 4 and all
the nonlinear optimization problems were solved using an Interior Point method
[25] solver, implemented in the IPOPT library [49].

6.3.1 Joint Torque Limits Approximation
The efficiency of the joint-torque limits approximation is demonstrated during

a 1m walk on a flat terrain for 2.4s (three crawl gait cycles). Fig. 6.4 shows
the Hip Abduction-Adduction (HAA), Hip Flexion-Extension (HFE) and Knee
Flexion-Extension (KFE) joint-torques and the corresponding saturation limits of
the HyQ robot.
The plots show the optimal trajectory obtained using the motion planner with
(right) and without (left) the force polytope constraints. Our motion planner does
not explicitly optimize over joint-torques τ , however it is possible to compute the
τ exploiting the dynamic equation of motion of each single leg:

τ = Mq̈ + c(q, q̇) + g(q)− J(q)Tf (6.13)

where:

• M = leg’s inertial matrix.

• c = Coriolis term.

• g = gravity term.

f is the contact force as optimized by the motion planner and q, q̇, q̈ can be ob-
tained by inverse kinematics of the foot trajectory in the base frame pB (assuming
a fixed offset between base and robot’s CoM).
We can see in the left plots that the desired torques violate the saturation limits
of the actuators of the HyQ robot. This is justifiable considering that the baseline
motion planner has no information about such saturation values and the only
constraints acting on the contact forces are the linearized friction cones. The
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Figure 6.3 – HyQ robot stepping up a pallet of 10cm in both simulation (Gazebo)
and hardware experiment.
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Figure 6.4 – This plot shows the joint torques of the HyQ robot over a 2.4m walk
on a flat terrain. We can see, in the case where no force polytopes are considered
(left plots), that the torques τHAA, τHF E and τKF E violate their limits multiple times
during the walk. On the right plots, instead, we can see that the force polytope
constraint is able to bias the planner towards a solution that respects all the limits.

plots on the right, instead, do not violate the torque limits of the robot thanks to
the force polytope constraint included in the motion planner formulation. This is
possible thanks to more extended configuration that the HyQ takes on during the
walk and the standing phases. As a matter of fact, a force polytope with a larger
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Figure 6.5 – This plot shows the joint torques of the monoped robot over a 2.4s
motion on a flat terrain. We can see, in the case where no force polytopes are
considered (left plots), that the HFE torque τHF E limit is violated twice during
the hop (at t = 0.9s and at t = 1.3s). On the right plots, instead, we can see that
the force polytope constraint is able to bias the planner towards a solution that
respects all the limits.

maximum normal force corresponds to this robot configuration (see Fig. 5.1) [62].
Fig. 6.5 shows similar results for the monoped robot (corresponding to a single

leg of HyQ, see Fig. 5.4).

6.3.2 Collision with the Environment Avoidance

Shin collision avoidance and correct choice of the foothold become of paramount
importance whenever a robot needs to negotiate rough terrains.
Exploiting the constraint that we described in Chapter 5, HyQ was able to walk
for 1m, performing three cycles of crawl in 11s to step onto 15cm high pallet in
simulation and onto 10cm high pallet on the hardware robot. Fig. 6.6 shows the
base position x (continuous line) and tracking error (dashed line) with respect
to the desired trajectory computed by the planner in three following different
versions:
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Figure 6.6 – Shin collision planning: tracking performances of simulations with
three different terrain constraints for a walk of 1m with three crawl cycles. The
thick lines represent the base position x while the dashed lines represent the tracking
error with respect to the desired trajectory along the same x coordinate.

1) Zero Size Point Foot and No Shin Collision Avoidance (red lines)

This corresponds to the formulation given in [48] and implemented in TOWR.
Both shin collision and the foot size are neglected. The algorithm took ∼ 50s
to find an optimal solution. In the upper plot of Fig. 6.6 we can see that, in
this case, the tracking error (dashed line) grows until the experiment is stopped
because the robot falls down. In this case, the robot collides with the corner of
the edge, due to a non-robust choice of the foothold. We have demonstrated that
even a terrain with a relatively low obstacle (10cm) cannot be overcome without
explicitly considering the feet and leg geometry.

2) Non-Zero Size Point Foot and No Shin Collision Avoidance (green
lines)

In this case we enforce in the planner a foot radius r of 2cm, while we do not
include any shin collision avoidance constraint. The computation time increased by
30 % compared to the first scenario (∼ 70s) in the case of 10cm high pallet. For the
15cm high pallet the solver took 105s to find an optimal solution. This constraint
guarantees the successful navigation in the non flat terrain, but comparing the
upper and the middle plot of Fig. 6.6 it can be seen that increasing of the height
of the step will also increase the tracking error.
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3) Non-Zero Size Point Foot and Shin Collision Avoidance (blue lines)

This version corresponds to the constraint described in Chapter 5. In case
of a 10cm high pallet, the algorithm took twice as long as the first simulation
(∼ 100s), while 130s were required in case of a 15cm high pallet. This increase in
computational time is motivated by the increase in the complexity of the model.
As robot paramete of Eq. 5.14, the lower link length of HyQ s is 0.3m. Due to
the symmetric design of HyQ we have selected inclination angle β=37° for the
hind legs and β=127° for the front legs. The shin collision is thus possible on
HyQ only with hind legs when walking up a step and front legs when walking
down a step. This aspect is automatically captured by the sign of sin(β) and
cos(β) in the definition of the constraint of Eq. 5.14. For this experiment we
selected two points, besides the knee, to be checked against possible collisions.
Unlike the previous version of the planner, in this case the tracking error did not
increase in the case of higher step thanks to the larger robustness given by he
shin collision avoidance constraint. To the best of author’s knowledge, the 10cm
pallet experiment represents the first time that a hardware implementation of a
trajectory planner based on TOWR on a non-flat terrain has been performed.
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Chapter 7

Conclusion

In this thesis we have presented two theoretical contributions consisting of
two feasibility constraints aimed at increasing the robustness of trajectories that
are optimized using the Single Rigid Body Dynamics model. The first constraint
focuses on including the joint torque limits constraint and approximates the way
these limits are mapped into admissible contact forces depending on the leg’s
configuration. We have developed the approach of interpolation of default robot’s
configuration force polytopes. The proposed approximation is robot-independent
and is thus suitable for motion planning applications based on simplified robot-
agnostic models, such as SRBD or Centroidal Dynamics.
The second constraint, instead, is able to describe and approximate the volume
of the robot’s legs in such a way to avoid undesired collisions between the lower
limbs and the environment.
The experimental contribution of this thesis consists of the integration of TOWR
with the controller of the HyQ robot. The obtained results demonstrate that
SRBD, alone, is not sufficient for non flat terrains. The consideration of the foot
shape is needed to complete the desired locomotion task on an uneven terrain
and, additionally, the modelling of the lower link resolves the problem of shin
collision and improves the tracking.

7.1 Future works
This thesis could be considered as the starting point for future works. In

particular, new possible research scenarios are:

• development of strategies for online replanning (the solver optimizes while
the robot walks). In this way the robot could perform a long time horizon
walking without stopping to compute the next steps;
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• usage of pre-computed feasible solutions for the warm start of every new
nonlinear trajectory optimization. The computation time will be drastically
reduced, since the initial guess is closer to the optimal solution and a small
number of iterations is required;

• inclusion of an explicit stability criterion, such as CWC, in a SRBD-based
trajectory planner;

• precise identification of the robot’s inertial parameters (robot’s Center of
Mass and inertia tensors) to improve tracking capability;

• introduction of a numerical metric to understand whether a trajectory is
reusable or not.
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Appendix A

Computation of Jacobian

A.1 Force polytope’s Jacobian

One vertex f lim of the force polytope Ai the constraint’s Jacobian would
require the knowledge of the following quantity:

df lim(IK(p))
dp

= df lim(q)
dp

= d(J−T (q)τ lim)
dp

= dJ−T (q)
dp

τ lim + dτ lim

dp
J−T (q)

(A.1)

The above relationship is highly nonlinear because of the trigonometric terms in
the leg’s Jacobian matrix and it requires the knowledge of the robot’s kinematics
which is against the SRBD assumption.

A.2 Force polytope’s Simplified Jacobian

The simplified force polytope constraint’s Jacobian dg/dx with respect to the
optimization variables x, required by nonlinear optimization solvers based on the
interior point method, can be deducted as follows:

dg

dx
= dA(p)

dx
f + df

dx
A(p)− dd(p)

dx
(A.2)

where:
dA(p)
dx

=
− sin(θx)

cos(θx)

 · θ2 − θ1

p2,x − p1,x

· dp
dx

(A.3)

and:
dd(p)
dx

= d2 − d1

p2,x − p1,x

(A.4)
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We can see that the above relationship does not depend on the robot’s kinematics
and it can be therefore applied to arbitrary robots. The three polytopes employed
for the morphing are, instead, robot specific and they can be computed offline.
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