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Nomenclature

Symbols

� Joint torques

_� Angular velocity of the robot

_�lo Lift-o� angular velocity of the robot

_c Linear velocity of the Center of Mass (COM)

_clob
B�ezier lift-o� linear velocity of the robot’s Center of Mass

_cloe Explosive lift-o� linear velocity of the robot’s Center of Mass (UARM phase)

_q Joint velocities

� Orientation of the robot, represented by Euler angles

�lo Lift-o� orientation of the robot

c Position of the Center of Mass (COM) of the robot

clob
B�ezier lift-o� position of the robot’s Center of Mass

cloe Explosive lift-o� position of the robot’s Center of Mass (UARM phase)

F Contact forces at the feet

J Jacobian matrix relating joint velocities to end-e�ector velocities

Kd Derivative gain in the control law

Kp Proportional gain in the control law

P Control points for the B�ezier position trajectory

Q Control points for the B�ezier orientation trajectory

q Joint con�guration (position of all joints)

a Action taken by the agent, corresponding to a control input

B Base frame

d Displacement in the UARM trajectory phase

k Velocity multiplier in the UARM trajectory parametrization

m Mass of the robot

r Reward signal, quantifying how well the agent’s action aligns with the task’s objectives
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s State of the system, representing the environment at a speci�c point in time

Tthb
Thrust time for the B�ezier curve trajectory

Tthe Thrust time for the UARM trajectory phase

Tth Total thrust time during the jump

W World frame

Acronyms

CoM Center of Mass.

Deep-RL Deep Reinforcement Learning.

DoFs Degrees of Freedom.

E2E End-to-end Reinforcement Learning.

FK Forward Kinematic.

GRFs Ground Reaction Forces.

GRL Guided Reinforcement Learning.

IK Inverse Kinematic.

IMU Inertial Measurement Unit.

LC Landing Controller.

MPC Model Predictive Control.

NLP Nonlinear Programming.

NN Neural Network.

PD Proportional-Derivative.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

RT Real Time.

SP Support Polygon.

TD3 Twin Delayed DDPG.

TO Trajectory Optimization.

UARM Uniformly Accelerated Rectilinear Motion.

WBC Whole Body Control.
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Abstract

In this thesis, we present a novel approach for enabling real-time omnidirectional jumping in quadruped
robots using guided reinforcement learning (GRL). Our work focuses on developing an e�cient, safety-
oriented control policy capable of handling a wide variety of jump con�gurations, including at jumps,
jumps with vertical displacement, and rotational jumps. The main objective is to create a control
policy that maximizes jump accuracy while ensuring the robot adheres to critical system constraints,
such as joint position and velocity limits, torque limits, and physical feasibility throughout the entire
jump process.

A key contribution of this thesis is the introduction of a two-stage thrust trajectory parametrization in
task-space, combining the exibility of B�ezier curves for the initial jump phase with a Uniformly Ac-
celerated Rectilinear Motion (UARM) model for the �nal more explosive phase. This hybrid approach
enables precise and dynamic control of both linear and angular components of the jump, allowing for
complex aerial maneuvers such as mid-air orientation adjustment and twist jumps, while maintaining
low action space complexity.
To ensure e�cient and scalable training, we leveraged state-of-the-art parallelization techniques through
the Isaac Sim and Orbit frameworks, simulating thousands of robots in parallel.

We evaluated the proposed framework through extensive simulation tests, demonstrating that the
policy can perform highly accurate jumps up to 0.6 meters in distance, with vertical displacements
reaching 0.26 meters upward and 0.4 meters downward. The policy also successfully handled jumps
requiring orientation adjustments, maintaining low angular error and demonstrating e�ective control
during dynamic movements. The learned policy proved to be highly sample-e�cient, achieving com-
parable or superior performance to state-of-the-art end-to-end (E2E) approaches with signi�cantly
fewer training samples.
When compared with the multi-stage E2E method by Atanassov et al., our approach demonstrated a
key advantage: while their method enables longer jumps, it often compromises system constraints. In
contrast, our approach prioritizes safety and physical feasibility, ensuring that all jumps respect the
robot’s physical limits.

Additionally, we validated the generalization capability of the policy by performing a zero-shot trans-
fer to a di�erent quadruped platform, from the Unitree Go1 to the Unitree AlienGo. With minimal
adjustments, the policy successfully executed jumps on the AlienGo platform, showcasing the adapt-
ability of the proposed approach across platforms with similar characteristics.

This work establishes a robust foundation for advancing quadruped locomotion in challenging en-
vironments, with promising applications in exploration, search-and-rescue, and industrial inspection
automation.
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1 Introduction

From science �ction narratives to contemporary technological advancements, robots represent a fasci-
nating concept and a challenging engineering problem. Although a precise de�nition is lacking, robots
are most accurately described as systems capable of perceiving their environment and autonomously
interacting with it accordingly. Recent advancements in arti�cial intelligence have made the applica-
tions of robotics increasingly intriguing and closer to the visions depicted in science �ction.

Robots can be categorized into two classes: �xed-based and mobile robots. While �xed-based robots
are constrained to a stationary base, mobile robots are free to move, o�ering a broader range of
applications. Mobile robots can be deployed to assist or substitute humans in environments where
movement is required, when there are payloads to transport, and especially in situations where human
presence might be at risk. Tasks for mobile robots include exploration, search and rescue opera-
tions, and autonomous inspection. In exploration missions, they can navigate and map unknown or
hazardous environments, gathering valuable data for scienti�c research or resource management. In
search and rescue operations, mobile robots can access disaster areas that are unsafe for human res-
cuers, locating survivors and providing critical assistance. Autonomous inspection involves monitoring
infrastructure such as bridges, pipelines, and industrial facilities, where robots can detect anomalies
or defects, thereby preventing accidents and enhancing safety protocols.

Mobile robots can be categorized furthermore into two types: wheeled robots and legged robots.
While wheeled robots may o�er higher speeds due to their wheel-based locomotion, they are generally
unsuitable for operating in unstructured terrains that present various impediments, such as stairs or
rubble. Legged robots, on the other hand, are capable of stepping over obstacles, climbing, and even
performing aerial maneuvers (e.g. jumping).
Although bipedal robots (humanoids) provide platforms that can easily interact with environments
designed for humans, they are extremely di�cult to balance and, consequently, to control. Quadruped
robots, designed to mimic quadrupedal animals, o�er greater stability due to a larger Support Poly-
gon (SP) (the convex hull formed by the robot’s contact points with the ground). This increased
stability makes quadrupeds particularly well-suited for dynamic environments where conditions can
change rapidly and unpredictably. They can adapt to uneven terrains, maintain balance during sud-
den movements, and recover from disturbances more e�ectively than bipeds. The distributed support
of four legs allows for more complex gait patterns, enabling them to navigate challenging terrains and
respond quickly to environmental changes.

Reinforcement Learning (RL) policies are being trained to extend the locomotion and manipulation
capabilities of legged robots[1]. For years, quadruped platforms have been the subject of extensive
research [2], and recently, an increasing number of such robots have been introduced to the market
for both research institutions and private industry (see Fig. 1.1)1. This trend demonstrates a growing
demand for solutions capable of operating e�ectively in dynamic and unstructured environments.

1Images sources: ANYbotics ANYmal https://www.anybotics.com/robotics/anymal/, Boston Dynamics Spot
https://bostondynamics.com/solutions/inspection/
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