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Summary

Dynamic locomotion on rough terrain is still a challenge for legged robots. To
traverse complex scenarios reliably, information from proprioceptive and
exteroceptive sensors may be required. Legged robots can be considered systems with
both continuous and discrete dynamics, namely, a hybrid system. Their dynamics
can be modelled continuously between two consecutive steps, but when a leg leaves
or touches the ground, the dynamic description changes almost instantly, making
them difficult to control. Moreover, the choice of the of foot locations has a high
influence on the dynamic stability.

When dealing with rough terrain and complex scenarios, the problem of choosing
the right foot location becomes even more difficult. Although there exist already
legged robots capable of performing locomotion on rough terrains, most of them
rely on reactive control or heuristic strategies. In some complex situations a high
precision is required to choose the correct foot location and avoid falling. The
absence of such vision-based strategies may be addressed to the heavy computational
effort required to process visual data.

There exist actual strategies that rely on visual data to select foothold locations,
but most of them consider only geometric aspects such as the robot kinematics
(work space) and the terrain morphology. Dynamics is usually not considered in
the evaluations due to the high-dimensionality of the problem caused by the large
number of bodies and degree of freedom of legged robots. The absence of dynamics
in such evaluations can lead to failures, for example choosing a foothold in which
the robot cannot generate enough ground reaction forces to move as expected.

We propose a foothold adaptation criterion that evaluates the transition feasibility
between contact switches. It includes dynamics to keep into account the future
dynamical behaviour of the robot. We integrate this criterion with a vision-based
foothold adaptation (VFA) strategy that considers the robot kinematics and the
terrain morphology. The devised criterion is able to evaluate the terrain using
information coming from the robot vision sensors, as well as its states (position,
velocity and acceleration) to determine the existence of a dynamic trajectory that
connects the current states of the robot with a set of desired states. Furthermore,
the method generates a dynamically feasible trajectory for the robot to follow
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as a natural outcome of the evaluation. We show that the criterion is suitable
for both static and dynamic gaits, even when the dynamic equations of motion
describe an underactuated system, such as trot, which implies that orientation
and position cannot be fully controlled at the same time. We perform simulation
studies on the quadruped robot HyQ to evaluate the dynamic transition feasibility
between consecutive footholds while performing locomotion and we use the computed
trajectory on a motion planner to demonstrate the consistency of the motion.
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Chapter 1

Introduction

To build moving machines is something that humans have desired for a long time.
The idea of creating something that can be resemble to be alive, something that can
decide for itself has always fascinated human kind. As the years go by we advance
towards that goal, building more and more refined machines that are able to perform
increasingly complex tasks.

One of the requirements to have a machine that mimics life is motion, as life
cannot exists without it. Motion intended as moving through space is something with
what we are used to as we constantly perform locomotion tasks moving from one
place to another. Then the desire to build moving machines is a direct consequence
of our concept of life. Nowadays there is a large variety of autonomous moving
machines, spanning from flying drones to crawling snake-like robots. All categories
of robots have different purposes, each of those with their pros and cons. We focus
on the category of legged robots.

In this thesis we try to enhance the locomotion capabilities of robots over rough
terrain using visual feedback. In this chapter we describe how this work contributes
to solve this challenge and we provide a general outline of the thesis.
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Introduction

1.1 Motivation

Legged robots have proven to be a reliable choice when dealing with uneven terrain.
Compared to their wheeled counterparts, they are able to deal with different
environments with less effort and more effectively, although their complexity [1] is
higher than wheeled systems. A legged robot can be considered holonomic in a
two-dimensional space while a classic wheeled robot cannot, making them more
suitable to traverse highly uneven terrain. The major difference between wheeled
and legged robots is how they interact with the environment, i.e., how they exert
forces to move through space. While wheeled robots push themselves forward by
applying a torque on the wheels, legged robots can use their legs to exert forces in
a desired location within their workspace. This makes legged robots more suitable
to interact with environments where the terrain present some extreme features
such as holes or small sharp obstacles.

The ability of choosing the right way of interacting with the environment is
important for every system, but it is crucial for legged robots. Choosing where to
place the feet is one of the main problems in legged locomotion, as the success of the
task (e.g. walking) depends on the ability of exerting forces on the terrain. When
the task is executed in a known environment, all the variables, such as obstacles
or terrain features, can be accounted for in advance. This allows to compute a
trajectory that the robot will follow during the execution of the task [2, 3, 4].
However, this approach may be reduced to previously known environments. Using
vision systems [5] might impact positively the motion success rate, expanding the
capabilities of the robots.

The inclusion of exteroceptive sensors (such as LIDAR or ultrasonic sensors)
gives robots the ability to "read" the environment, capturing useful information
to increase the reliability of locomotion. The terrain is analysed continuously to
evaluate its morphology, i.e., if there are any holes, or if there are obstacles that
might interfere with the locomotion. The detected terrain features can be processed
to evaluate where to place the robot’s feet [6].

An evaluation process able to discard footholds according to geometric-related
aspect helps to reduce the chance of failure when executing a motion. However,
considering only geometrical aspects could not be enough to avoid falling in complex
scenarios. As an example, we can think about a foothold that is reachable from
the robot but does not allow to exert the desired ground reaction force. It can

2



1.2 – Contributions

happen when the required force to achieve a motion exceeds the maximum force
that the robot can generate. This limit could be reached at any moment during the
motion, even when the leg is already on the ground. This highlight how evaluating
dynamics considering the future behaviour of the robot can impact positively the
success rate of the motion.

In this thesis we address the problem of foot placement with the aid of vision
systems to detect terrain features. The potential foot locations are evaluated with
a dynamic model to check if they can yield a consistent trajectory. This evaluation
can lead to a better foot location in terms of dynamical stability.

1.2 Contributions

The main contribution of this thesis can be stated as follows:

1. A foothold selection criterion that considers the dynamic transition feasibility
of a motion when taking a step which extends the method presented in [6] to
be able to deal with dynamic gaits such as trot.

Additionally, a secondary contribution of this work is:

1. A generalized way to compute a Bézier sub-curve of a generic n order in a
generic Rm space

1.3 Outline

The rest of the thesis is organized as follows: in Chapter 2 an overview of
fundamental concepts and related work is provided; in Chapter 3 a background of
the laboratory where this research was carried it, namely the Dynamic Legged
Systems (DLS), is given with a brief description of the platform used for
simulation studies, the quadruped robot HyQ; in Chapter 4 the dynamic feasibility
problem is formulated and we detail the challenges that it entails; in Chapters 5
and 6 we present our method for tackling the problem addressed in Chapter 4; in
Chapter 7 we present the results that we have obtained testing our algorithm both
in simulation and in foothold selection; Chapter 8 marks the end of this thesis
with some final considerations and future work possibilities.

3
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Chapter 2

Related work

Legged robots is a concept that is nowadays widely spread in robotics. However
it is a relatively old branch of robotics, placing itself in history around the 1960’s
[7]. The advantage that these machines could have in complex scenarios compared
to their wheeled counterparts, made them really appetible in applications such as
space exploration or rescue tasks. Since the 60’s, these machines have traversed a
period of fast evolution to become the agile machines that we know today, dancing
to the notes of Do you love me (The Contours) [8].

The first step taken was to make them walking without falling. In [9] the
pioneering work presented by McGhee and Frank on creeping gaits defined the
fundamentals to create a stability criterion for legged robots, known as the support
polygon. It states that, to achieve statical stability, the projection of the Center
of mass (CoM) of a walking robot must lie within the convex hull of its contact
points. This concept was extended by Vukobratović and Juricic in [10] where new
concepts as the Zero-Moment Point (ZMP) and the Center of Pressure (CoP) were
introduced. The ZMP is the point on the ground where the moment produced by
the inertial and gravitational forces is equal to zero, while the CoP is defined as
the equivalent application point of all the ground reaction forces. The usefulness of
these tools is incontrovertible, being still used to control legged robots nowadays.
They are simple and powerful tools to determine balance conditions on the ground.
The ZMP has even been extended to non-flat terrains [11] by considering friction
constraints.

However, if these tools are able to provide static equilibrium to a walking robot,
they do not allow to have flight phases during the locomotion because of the

5
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Figure 2.1: General logic scheme of a vision-aided legged robot control.

impossibility to apply forces without a proper contact with the ground. This limits
the performances of the robot when a more dynamical motion is required. A wide
variety of locomotion strategies have been developed to allows legged robots to
be reliable independently of the static balance criteria. These strategies are the
core for those robots capable of performing dynamic locomotion tasks. We refer to
dynamic locomotion as those type of locomotions strategies where the body is not
in static equilibrium while it is moving, but where the robot takes continuous steps
to avoid falling. In the next section we provide an overview about the evolution of
the dynamic locomotion in legged robots.

2.1 The legged locomotion problem

In this section we provide a summary of locomotion strategies used to achieve
dynamic locomotion with legged robots. Achieving such type of locomotion is a
very complex task because it involves several variables to take into account, such as
balancing, attitude control, leg synchronization, generation of a contact sequence,
foot trajectory generation and disturbance rejection. All of these components have
to be computed within a short time [12]. To lighten the heavy computation burden,
each component is dealt with separately using combination of approaches that
consider different aspects of the process. The innovation brought by Raibert [13]
in the 80’s used a combination of classic control theory and heuristic approaches.
The heuristic approach is a methodology that relies mostly on observation and
experience rather than theory or mathematical derivations. Although they provide
good solutions to complex problems, they are difficult to generalize due to their
low affinity with theory.

Researchers have also developed their works drawing inspiration from nature.
An example of nature-inspired result is the Central Pattern Generator (CPG).

6



2.2 – Foothold selection in legged robots

CPGs are those neural circuits in animals capable of producing rhythmic output
signals while receiving only simple input signals [14]. These neural structures have
been replaced by artificial neural networks or system of coupled nonlinear oscillators
to generate trajectories for legs in a synchronized fashion. this approach has been
successfully used to control legged robots such as hexapods [15, 16], quadrupeds
[17, 18] and bipeds [19, 20]. The evolution of legged robots led to having a more
and more robust control strategy, heading toward locomotion in complex scenarios
such as rough terrain or soft terrain [21]. Such control strategy can be roughly
described as shown in figure 2.1. In this thesis we focus on the Foothold selection
part, which is related to adjusting the landing position of a foot in swing according
to some criteria.

2.2 Foothold selection in legged robots

Although there are many works about contact or foothold planning [22, 23, 24, 25],
there are few examples of legged robots performing dynamic locomotion exploiting
the knowledge about terrain morphology for contact selection, and even less that
considers also dynamics. To actually move and achieve any motion, a system
needs to exchange forces with the external world. The contact points are the
locations in which the system can exchange forces with the environment through
its limbs, resulting in an acceleration and, consequently, motion. Considering that
the limbs have a finite length, the contact points have to change during the motion
to continuously support the system.

Choosing correctly a sequence of contact point means searching for the sequence
of foot locations that let the robot to exert forces to achieve the desired motion.
Each type of mobile robot has its own different way to exchange forces with the
environment. Comparing two main categories of ground mobile robots, i.e., wheeled
and legged, we can explain how different the contact points sequence can be and
why it is so important. In the case of wheeled robots, the contact points are
the points in which the wheels are in contact with the ground. Wheels exert
a force on the contact point opposite to friction in order to move in a certain
direction and motion of the robot’s base can be achieved without the need of a
wheel losing contact from the ground. In the case of legged robots, the robot exerts
a force against the contact points located at its feet, however, there is a limited
amount of force that the robot can exert on the ground that depends on the robot’s

7
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configuration, friction and on the dynamics of the motion. To move, the robot
needs to constantly make and break new contacts with the ground to overcome
these limitations on the ground reaction forces. The set of contact points changes
in number, having to lift a leg in order to move it to the next location and make a
new contact with the ground, generating a discontinuous sequence of contact points
in time. In both cases, the choice of contact points (planning) is fundamental to
successfully complete the task.

Tonneau et al. [26] tackle the problem of contact positioning. The algorithm
presented is mainly focused on generating a feasible reference trajectory and then
finding the contacts to achieve a desired motion. They find equilibrium feasible
robot configurations by generating and analysing the intersection of a reachable
space with the environment. The two problems (trajectory and contact planning)
are addressed in a decoupled fashion, computing the trajectory and then the contact
positions. The main drawback, also mentioned in [26], is that the motion needs to
evolve through equilibrium phases, then motions that require statically unstable
phases, such as trotting, are excluded and cannot be generated.

There are algorithms that focus on selecting contacts on line to react to the
environment properly. In [27, 28, 6, 29], the problem of foothold selection is
addressed in different ways. Villarreal et al. [6] evaluate potential footholds for
dynamic gaits by means of different criteria. A heuristic algorithm is used to
evaluate the terrain morphology combined with robot’s kinematics. The terrain
is acquired using vision systems, allowing the algorithm to sense a previously
unknown terrain. To speed up the evaluation process and make the algorithm
suitable to run on line, a Convolutional Neural Network (CNN) is trained. To
further improve such algorithm, Villarreal et al. [30] add an MPC controller to the
previous foothold adaptation strategy. Other approaches [27, 28, 31] consider a
similar methodology. They use an algorithm to evaluate terrain and kinematics
to select footholds that can yield a feasible trajectory. More recently, the heavy
computational load required by algorithms has been tackled with the adoption
of GPU (Graphical processing Unit) computation [29]. They still consider the
problem of foothold selection, but instead of using a neural network to reduce the
computation times and make it suitable for on line execution, the computational
complexity of the problem is addressed by performing the evaluation on a GPU.
These works tackle foothold selection problem using multiple criteria that take into
account kinematics, geometry and terrain morphology, but a dynamical criterion
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2.2 – Foothold selection in legged robots

applied to foothold selection is still missing.
To describe robot dynamics, different formulations have been proposed,

resourcing to a simplified model [32]. Most of the proposed solutions to control the
robot dynamics do not consider the possibility of changing your landing location
to improve the reliability of the motion [33, 34]. Instead the rely on fast reactions
to unexpected behaviours when stepping on undesired locations such as edges,
obstacles or holes [35, 36, 30]. The main difference between foothold adaptation
and foothold planning is that the former is able to change the landing position
selected by the latter. The major drawback is that the computation times required
are in the order of tens of seconds to generate a series of footholds over a specified
time horizon for a desired trajectory. This makes the algorithm not suitable for
online applications.

A remarkable approach which implements a dynamic model combined with an
MPC is the one formulated by Grandia et al. [37]. They apply the concept of
Control Barrier Functions (CBFs) to constrain the MPC, implementing this control
strategy to ANYmal [38]. They achieve very good results in a stepping-stone
environment, composed by several stones scattered on which the robot has to step
without falling. The experiment is performed on a pre-mapped terrain, meaning
that they lack a visual feedback to detect any environmental change that could
happen during the execution of the task.

Lin et al. [25] apply a dynamic approach to the contact planning problem. This
work addresses the formulation of a dynamical contact planner that is able to
generate a contact sequence to achieve the desired motion. A centroidal dynamics
model is used to describe the robot’s dynamics, which comprises trajectory, linear
and angular momentum. The algorithm is then used to train a neural network to
reduce the computation times. In a more recent work, Lin et al. [39] improves the
contact planner by adding increasing its robustness toward disturbance rejection.
They employ neural networks to learn system capturability given initial CoM
conditions. They also consider hands as a way to exert forces on the environment
and recover. The method proposed is able to plan in advance a sequence of robust
footholds which allow the robot to walk toward a predefined objective. However,
the environments in which they perform simulations are pre-computed and static,
which may cause problems when dealing with previously unknown environments.

An interesting approach about dynamics is proposed by Orin et al. [32]. It
considers joint torque transformations using Jacobian matrices, relating joint space
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with dynamics. This is useful to impose physical limits on joints torques, making
the connection with the physical problem more realistic. A different technique more
focused on decoupling the problem from the joint space, exploits the equations
in Cartesian space [40] to directly relate Ground Reaction Forces (GRF) to the
dynamics of the robot. We adopt this description of GRFs to relate them to the
robot motion, finding a suitable set of forces that yield a feasible trajectory subject
to physical constraints. The limitations related to the assumptions made in [40]
are that they are considering this method for static locomotion (crawling) as the
assumption of L̇ = 0 is not compatible with more dynamical gaits. The major
drawback is the computation time required for the algorithm, which negates the
availability for on line applications.

A similar approach to the one proposed in this thesis is presented by Tsounis et
al. [41]. Herein, they use a Dynamical Transition Feasibility measure to learn if a
planned foothold yields a dynamically feasible trajectory basing on [40], as we do.
They tackle the problem by modifying gaits to adapt the steps to the environment,
training a Neural Network to perform the adaptation during locomotion. Our work
differs from it by considering a time horizon composed by an arbitrary number
of subsequent phases, while they consider only one phase ahead. Furthermore,
we extend [40] and drop the assumption of imposing an angular momentum rate
equal to 0. The condition L̇ = 0 holds when slow and quasi-static motions are
considered. When dealing with faster, dynamic motions this assumption might be
too restrictive to reflect the real robot behaviour.

2.3 Discussion

In the previous sections we have seen how the problem of legged locomotion has
been widely addressed by developing different control strategies. When introducing
exteroceptive sensors, the robot is able to react to environmental changes by means
of visual feedbacks (Fig. 2.1). With the inclusion of visual feedbacks, the robots are
a step closer toward becoming eclectic machines, able to act properly in different
situations. The ability of legged robots to overcome rough terrain is mainly due
to their discontinuous contacts sequence, which makes them able to carefully pick
the legs landing positions and avoid unsafe terrain areas. Although there are many
works that address the problem of foothold selection, not all of them adopt visual
feedbacks to correct the planned trajectories to adapt to a changing or previous
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unknown environment. Whereas those employing visual feedbacks are able to
detect terrain features (such as terrain height, edges, or holes) few of them perform
foothold selection considering dynamics and contact transitions.

We propose a foothold evaluation criteria able to select the footholds that yield
a dynamic feasible transition over a specified time horizon. This method makes
use of visual feedback, being able to evaluate previously unseen terrain according
to robot’s dynamics. It considers also cases in which L̇ /= 0, making it suitable
to perform foothold selection for more dynamical gaits. Moreover, it is able to
generate a dynamically feasible trajectory and a set of forces considering the angular
momentum rate L̇ along the evaluated time horizon. In the following chapter, we
will describe briefly the platform on which we perform simulations, reporting its
physical characteristics.
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Chapter 3

System Overview

This thesis has been written as part of a collaboration with the Dynamic Legged
Systems (DLS) lab at the Istituto Italiano di Tecnologia (IIT). This thesis focuses
on improving dynamic locomotion of legged robots by including dynamic evaluations
in the selection of contact locations. The method proposed in this thesis makes use
of the Hydraulically actuated Quadruped robot (HyQ) to be tested and evaluated.

In this Chapter we describe briefly the history of the DLS lab and the platforms
that have been developed until now, dedicating a section to the platform that will be
used (HyQ).
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System Overview

3.1 Dynamic Legged Systems lab

(a) (b) (c)
(d)

Figure 3.1: a) HyQ, b) HyQ2Max, c) MiniHyQ, d) HyQReal.

Istituto Italiano di Tecnologia1 (IIT) is a Foundation financed by the State to
conduct scientific research in the public interest, for the purpose of technological
development. IIT’s total staff comprises 1890 people from more than 60 countries,
making IIT an international center of research that connects the world. The
Headquarters located in Genova (GE) are the core of a scientific institute that
focuses primarily on four fields: Technologies for Life Science (LifeTech),
Computational Science, Nanomaterials and Robotics.

The Dynamic Legged Systems2 (DLS) lab focuses its efforts in researching and
developing high-performance, versatile legged robots. With the idea of being able
to deal with scenarios dangerous for the human life, the DLS aims to develop
quadrupeds that can help in those situations where it is needed to explore a
hazardous environment, such as exploring a field after a natural disaster.

To perform such tasks, the DLS lab aims at including vision systems [42],
external disturbance rejection [43] and reactive controllers [35] to deal with unknown
scenarios.

The DLS lab has developed several robots since the first leg design [44]:

• HYQ [45] (Fig. 3.1a) - It is a hydraulic quadruped robot and it is the first
legged robot developed in the DLS lab. We will use this platform to perform
simulations and evaluations.

• HyQCentaur [46] - A hydraulic robotic arm has been added to the HyQ

1https://www.iit.it/about-us
2https://dls.iit.it
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3.2 – The Hydraulically Actuated Quadruped Robot HyQ

platform to extend its capabilities. The arm has six torque-controlled degrees
of freedom.

• HyQ2Max [47] (Fig. 3.1b) - This platform was born as an evolution of HyQ,
with the idea to build a stronger, more robust and versatile robot than HyQ.
HyQ2Max has a larger joint maximum torque and higher joint limits, without
a significant weight increase with respect to HyQ. This allows HyQ2Max to
perform more dexterous motions, such as self-righting.

• HyQReal [48] (Fig. 3.1d) - It is the flagship platform of the DLS. It is a
torque-controlled hydraulic quadruped, designed thanks to the experience
gained with all its predecessors. It has proven its strength by pulling a small
passenger air plane3 (Piaggio P180 Avanti) at the Genova Airport.

3.2 The Hydraulically Actuated Quadruped
Robot HyQ

In this dissertation, we perform simulations on the platform HyQ. The HyQ platform
has been developed by Dr. Claudio Semini [45] in 2010, and it is still widely used
in the DLS lab for research purposes. HyQ is a hydraulically actuated quadruped
of about 100kg whose dimensions with fully-stretched legs are (1.0m × 0.5m ×
0.98m)(Length × Width × Height). The legs weigh about 9kg and it is powered by
three torque-control hydraulic joints, three per each leg: Hip Abduction-Adduction
(HAA), Hip Flexion-Extension (HFE), Knee Flexion-Extension (KFE). Each joint
is equipped with three sensors: a magnetic absolute encoder, a relative optical
encoder and a force/torque feedback sensor. Moreover, an Inertial Measurement
Unit (IMU) is present in the body. In Table 3.1 the main characteristics have been
reported [45].

3.2.1 Exteroceptive sensors

Throughout the years of research, vision systems and exteroceptive sensors have
been used on the HyQ [49] and HyQReal platforms. There are two main types of
sensors:

3https://youtu.be/pLsNs1ZS_TI
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System Overview

Robot’s mass 90kg
Leg’s mass 9kg
Leg’s length 0.339m to 0.789m
Foot radius 2cm
N° of joints 12

HAA range of motion -90 ÷ +30 deg
HFE range of motion -70 ÷ +50 deg
KFE range of motion +20 ÷ +140 deg
Operating pressure 160 bar

Maximum torque HAA 120Nm
Maximum torque HFE 150Nm
Maximum torque KFE 150Nm

Table 3.1: HyQ platform characteristics

• RGB-D sensor (intel RealSense) - it is a depth sensor and it is used for visual
odometry and mapping;

• LiDAR sensor (Velodyne) - it is mainly used to correct the pose using a scan
matching based on the iterative closest point (ICP) algorithm [50].

We will employ the exteroceptive sensors to build a discrete heightmap which
contains information about terrain height. The heightmaps acquired are of 30 ×
30 and 66 × 66 cm. The resolution of the measurements is of 2cm, which yields
grids of 15 × 15 and 33 × 33 points respectively.
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Chapter 4

Problem Formulation

Legged robot locomotion on rough terrain can become a hard task if not aided
with environmental information. The knowledge of the environment as a mobile
robot moves helps to evaluate how to act at any moment. To move over terrain,
legged robots need to place correctly their feet. Aided with vision, a sequence of feet
positions can be estimated such that the robot can avoid failures, such as falling.
These sequence of positions in time are called a contact sequence. It needs kinematic
and dynamic considerations to be correctly computed. It is needed to know where
to exert forces and to adjust the robot’s pose in space. The process of contact
selection has to be constantly addressed during locomotion to adapt to a changing
environment.

This chapter states the problem for the evaluation of potential contact locations.
Our goal is to include dynamical stability when choosing a contact position during
locomotion. We want to evaluate the potential landing locations of a leg in swing
and discard those that do not yield a dynamically feasible motion in a given time
horizon. Once all the unstable footholds have been discarded, an optimal foothold
should be selected according to a criterion that captures the dynamic implications
of the selection.
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4.1 Vision-based Foothold Selection

(a) (b)

Figure 4.1: Example that shows the importance of vision during locomotion.

Consider a generic locomotion task (Fig. 4.1a), where a cat1 has to walk across
a pathway. The cat has to traverse on rough terrain to reach the end of the road.
To successfully walk across the entire path, the cat has to choose where to place its
feet to move forward. Based on its experience, it chooses the best place to locate
its feet while walking to avoid falling and to reach its objectives such as spending
less effort to move forward or avoid obstacles. The cat cannot plan in advance all
the steps that it will take because if something changes in the environment it may
fall or hit an obstacle. Then it has to choose where to place its feet while walking.
After some time, the cat manages to reach the end of the path successfully reaching
its objective. If the cat was blindfolded (Fig. 4.1b), reaching its destination would
have been harder if not impossible because of all the obstacles in its path. Without
visual feedback, the cat cannot choose where to place its feet according to the
environment. It can only make decisions through proprioception and memory,
leading to inaccurate walking and to an impossibility of reacting to environmental
changes.

Having a vision-aided locomotion is useful to detect changes in the surroundings
and to adapt continuously the locomotion to the terrain. Vision-based Foothold
selection aims to embed vision systems in locomotion to select foot contact locations.
With vision it is possible to acquire continuously terrain maps around the estimated
foot landing positions. These maps are used to evaluate if there is the need of
changing the foot landing positions (Fig. 4.2). Choosing among different contact

1Source: http://www.onlinewebfonts.com/icon, License: CC BY 3.0
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4.1 – Vision-based Foothold Selection

Figure 4.2: Example of heightmap where the estimated landing position (red circle) has to be
discarded because near an edge.

points on rough terrain is a complex and computationally expensive process. The
selection should consider both geometric [6] and dynamic aspects in order to discard
unsafe foot locations. Geometry includes aspects such as the robot’s kinematics,
terrain morphology or leg collisions. While all of these aspects are fundamental to
achieve a successful motion in space, they are not the only involved in locomotion.
Other quantities such as the dynamic feasibility of the overall motion of the body
or joint torque limits should also be considered when choosing where and how to
take a step. Animals become aware of their limits through experiences during their
life, allowing them to learn and act accordingly in different situations. Robots are
built knowing what components they are made of, so their limits are known in
advance. This makes us able to model their dynamics taking into account such
limits.

With the consideration of a dynamic model during locomotion, the motion itself
could benefit from it thanks to different aspects. A dynamic model takes into
account forces and accelerations that play an important role. Having a model that
can describe the relationship that exists between forces and motion lead to a better
control of the robot’s movement in space. Moreover, it can be used to describe and
predict the evolution in time of a given system, knowing at least a set of initial
conditions. In this case we want to use dynamics to foresee the future behaviour of
the robot given the initial set of states in order to drive it to a final set of states.
To achieve this, due to the hybrid (i.e., discrete and continuous time dynamics)
nature of legged locomotion, a sequence of contact points has to be defined, i.e.,
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Figure 4.3: Phases of the VFA. From left (first) to right (last). (Source: [52]).

where it has to place its feet. Since contact points are the only way to exchange
forces with the environment, the robot’s behaviour depends on them.

Consider an example where a robot is moving forward. Let the foothold selection
be performed only on kinematic quantities. Let’s say that we want to have the
robot come to a full stop after a certain number of steps, i.e., we want our system
to be capturable [51]. Once the feet are on the ground, they cannot be moved
assuming no slips. A bad choice of any landing position may lead to failures, such
as falling. Geometrical aspects can be accounted to select footholds that are within
the kinematic limits of the robot or to avoid undesired landing locations such as
holes or sharp edges. However, it might be possible that the robot might not be
able to generate the necessary ground reaction forces to achieve a certain motion
for a specific foothold. This is information that the geometry of the locomotion
phenomenon cannot provide. It would be useful to know the footholds that lead to
undesired behaviors due to leg collisions or non-reachable foothold locations and
discard them (see Fig. 4.2). Then considering an amount of possible contact points,
it might happen that not all of them are compatible with the motion. Among the
non-discarded feet locations, assuming that there are multiple compatible locations,
only one has to be chosen to actually place the foot. This means choosing an
optimal foothold, as the cat does while choosing where to place its paws. In [6]
the optimal foothold is selected using a heuristic criterion that aims at disturbing
the least the locomotion. Although this choice is reasonable and works well also
with dynamic gaits, it does not embed any knowledge about the feasibility of the
motion.

The evaluation described in [6] is divided in four main phases (see Fig. 4.3):

1. A nominal foothold is predicted based on the predefined trajectory of the leg
and since the body moves as the legs are in swing, also the velocity of the
trunk is used to compute the nominal foothold.

2. A heightmap is acquired in the vicinity of the nominal foothold. A heightmap is
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(a) (b)

Figure 4.4: a) Acquired heightmap. b) VFA evaluation output.

a discrete representation of the terrain, where each pixel contains information
on the height of that specific area.

3. The map is evaluated in search of feasible footholds (safe foot landing positions).
Among the feasible footholds, an optimal foothold is chosen as the closest to
the nominal feasible foothold.

4. Once the optimal foothold has been selected, the trajectory of the leg is
continuously adjusted to adapt to the chosen location.

The foot trajectory is described by a half ellipse, where the major axis correspond
to the step length. The nominal foothold is then computed using the following
approximation:

p̂i = pi + 1
2 ls + ∆tiċi (4.1)

Where p̂i ∈ R3 is the nominal foothold position for leg i, pi ∈ R3 is the center of
the ellipse of leg i, ∆ti is the remaining swing time of leg i, ls ∈ R3 is the step
length vector, and ċ ∈ R3 is the velocity of the base.

The evaluation process is a heuristic algorithm (VFA) that embeds evaluation
criteria. These criteria check all the potential footholds in a given heightmap to
test their feasibility according to geometrical aspects. The considered criteria are:

• Kinematics - evaluates if the foothold is outside the workspace of the leg

• Terrain Roughness - it accounts for the slope of the terrain, compute a
threshold that if violated, marks the foothold as not feasible
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• Frontal Collision - it checks for foot collisions. If a foot intersects the terrain
at any point along its trajectory, the foothold is discarded

• Leg Collision - as the frontal collision criterion, it accounts for collisions but
for both leg limbs for the whole leg cycle

The VFA algorithm processes a heightmap to evaluate it according to its criteria.
Each foothold (map pixels) (Fig. 4.4a) is tested with all criteria to state if it is
feasible or not. The evaluation produces a new map that contains the feasibility
information about the heightmap, marking every feasible foothold (Fig. 4.4b).
The criteria used to perform an evaluation consider only geometric aspects and an
optimal foothold is selected among the ones that belong to the feasible set. The
optimal one is selected as the feasible foothold closer to the nominal one. In this
example, the nominal and optimal foothold are the exact same foothold, as the
nominal foothold is also feasible.

This evaluation process allows to discard those footholds that are outside the
workspace of the robot, that lead to collisions or are located on undesired locations
such as holes or edges. All the footholds that are VFA-feasible (using VFA-feasible
to describe a foothold that fulfil all VFA criteria) do not take into account any
dynamic criterion. It may happen that a foothold is within the workspace but the
forces required to achieve a motion using that foot position cannot be generated
by the robot. Footholds with such conditions are not dynamically feasible.

In this chapter we explore an evaluation criterion that embeds dynamics in
foothold selection to improve the geometric-related criteria presented in [6]. We
consider a time horizon for which the footholds must yield a feasible motion,
including also the various steps and discontinuities (contact switches) that arise.
The footholds are discarded if they don’t yield a dynamically feasible transition
along the entire horizon considered.

4.2 Dynamic Transition Feasibility

The main problem addressed is to evaluate the terrain in search for dynamically
feasible footholds and then to select the optimal foothold according to a quantitative
measure of dynamic feasibility. This means that, after the analysis of the terrain
and robot morphology, a set of dynamically "feasible" foot locations are selected.
These contact points are chosen considering the robot’s future behavior during a
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specified time horizon. The feasibility of a foothold is asserted by checking if it
can yield a dynamic transition for the considered time horizon. To move between
two points in space, the robot goes through a sequence of phases. Each phase
consists in a combination of swinging and standing legs. These phases can be also
considered from each leg’s point of view. Considering a single leg, it will go through
a defined number of phases during a given time interval (Fig. 4.5).

c(t0) c(tf )

(1)
(2)

(3)

Figure 4.5: Considering one single leg, we can divide its movement in three different phases:
(1) the leg is in swing and the foot is moving along its trajectory (lower dashed); (2) leg makes
contact with the ground; (3) leg stays in contact with the ground and the hip moves forward as
other legs are lifted and moved. The CoM trajectory (red) and the hip trajectory (upper dashed)
are considered in the world reference frame.

The connecting point between subsequent phases is called contact switch, which
is also the instant in which a leg touches (touchdown) or leaves (lift-off) the ground.
Including all the contact switches that happen in the given time horizon is useful
to evaluate the feasibility of the analyzed foothold ensuring the dynamic stability
of the future robot’s behavior. The idea is then to analyze the vicinity of the
nominal foothold to create a set of feasible footholds that ensure dynamic stability
throughout the entire predicted motion.

From now on, the analysis is focused on the nominal foothold (i.e., the predicted
foothold based on the default trajectory of the leg and the velocity of the robot’s
body), unless differently stated. This approach takes inspiration from [40] and
relies on the Rigid Body Dynamic Model RBDM2, which is a simplified dynamic
model that considers the robot as a single rigid body that has the mass in its CoM.
But, in contrast with [40] the main purpose of the developed algorithm is not to

2The reason behind this choice is explained in 5.1
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generate a reference trajectory (although it is possible), but to find if a trajectory
exists given the initial and final sets of states. The time horizon considered for the
evaluation covers an entire leg cycle. During this time interval, multiple contact
switches occur, leading to an increase of the problem complexity and to higher
computation times. The complexity is a direct consequence of the fact that the
contact switches are discontinuities in motion since they change the way in which
the robot exerts forces on the ground.

A generic CoM state x(t) is defined as an array of values associated to the CoM’s
configuration. This array comprises all the quantities involved in the RBDM and
it can be written as:

x(t) = [c(t) ċ(t) c̈(t) Θ(t) Θ̇(t) Θ̈(t)]Û (4.2)
c(t) = [cx cy cz]Û (4.3)
Θ(t) = [φ γ ψ]Û (4.4)

Where c is the CoM trajectory, Θ is the CoM orientation trajectory and the
other quantities are defined as derivatives. The main objective is to find a feasible
transition between two sets of states, namely, the trajectory that connects the two
states as a function of time f(t) such that:

f(t) : x(t0) → x(tf ) t ∈ [t0, tf ] tf > t0

Five out of the seven states components can be derived through differentiation
of the other two states. Velocity (ċ) and acceleration (c̈) are derivatives of the
CoM’s trajectory (c). The angular rate of change with respect to time (Θ̇) and the
angular acceleration (Θ̈) are derivatives of orientation (Θ). These relationships
must be considered when choosing a function f(t). To account also for the derivative
relationships, it is sufficient to choose f(t) only for the two primitive states (c, Θ)
and then obtain the other states by analytical differentiation.

Along with the two states x(t0) and x(tf), also the footholds are required to
fully define the motion. They are essential to describe the type of locomotion that
the robot has to perform because the gait parameters (such as step frequency,
duty factor, CoM forward speed) change the dynamical behavior of the robot itself.
Since the robot needs to walk to move its CoM in space, all the contact switches
happening in the time horizon between these two states have to be considered as
well. To account for these contact switches and to quantify them, a contact switch
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(a) CoM’s trajectory.
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(b) CoM orientation.

Figure 4.6: Examples of trajectories in space. Only position and orientation trajectories are
represented to avoid overlapping lines.

horizon can be defined.
Analogously to a time horizon, a contact switch horizon defines a time interval.

A contact switch horizon defines the period of time that spans from t0 to tf ,
expressing it as the number of contact switches happening in that period of time.
The usefulness of this new definition becomes clear when considering that the time
needed to complete a gait cycle (Fig. 4.5) is not always constant because it depends
on the initial conditions. The quantity that is constant during a gait cycle is the
number of contact switches happening during the cycle itself. The contact switches
horizon concept is then a time transformation that converts a not constant quantity
to a constant quantity. The period of time considered in the evaluation can be
computed as follows:

T = tf − t0 = 1
fs

− te (4.5)

Where fs is the step frequency and te is the phase elapsed time. The latter refers to
the time elapsed since the phase (swing or stance) that the robot is executing has
started. From this equation we can see that the period of time T is not constant
as the walking motion is performed. Even considering fs as a constant, which is
not exactly true, T depends on the elapsed time and then it changes at every time
instant according to te. If we use instead a contact switches horizon, the considered
horizon does not change at every instant but it remain constant along the whole
phase considered. The considered contact switch horizon is the number of contact
switches that the robot has to perform to complete the cycle of the leg considered
(Fig. 4.5).

To drive the robot from the initial state (x(t0)) to the desired final state (x(tf )),
we can define a trajectory for the CoM. This trajectory represents the evolution of
the CoM’s motion in space, so it is a spatial trajectory defined by its components
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(x, y, z) in a Cartesian space (Fig. 4.6a), with respect to the world reference frame
(W).

In the RBDM not only linear quantities are considered. Angular quantities play
a fundamental role in the description of the body’s motion. They describe the rigid
body’s orientation, angular rate, and angular acceleration with respect to a fixed
RF. As done for the CoM’s trajectory, we would like to describe the evolution of
the orientation as a trajectory along the contact switch horizon. This would allows
to express the angular rate and acceleration through differentiation, although the
obtained trajectory would not have a representation in Cartesian space but rather
in an angles space (4.6b).

4.2.1 Robot Dynamics

Figure 4.7: Fictitious 6 - DoF that connects fixed frame with the floating base.

We need to describe the evolution in time of our system’s dynamics. To do
that, we need to model the system using a mathematical description that takes
into account the evolution in time of the system components. That description
is referred as dynamic model. A generic model of a robot mechanism can be
represented using a connectivity graph, which is a collection of nodes where each
node represents a joint. The graph must always be connected to a fixed base or
reference frame. If we want to represent a mobile robot (such as a legged robot) it
is necessary to add a fictitious 6-DoF joint between a fixed base and a link in the
robot [53]. The chosen link is called floating base. Then if the system considered
has ns degrees of freedom (DoFs), adding the extra joint we have a nÍ

s = 6 + ns
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DoF system. Note that a 6-DoF joint imposes no constraints and then it does not
alter the physical properties of the system. It allows any translation (3 DoF) and
any rotation (3 DoF).

The dynamic model for a generic n-DoF mobile system (floating base) can be
described by a joint-space formulation [53]:

H(q)ν̇+ C(q, q̇)ν+ τg(q) = τ+ JÛfe (4.6)

Where H(q) ∈ RnÍ
s×nÍ

s is the so called the joint space inertia matrix,
ν = [vÛ q̇Û]Û ∈ RnÍ

s is the vector of the generalized velocities where
v = [ċÛ ωÛ]Û ∈ R6 is the floating base velocity and q̇ ∈ Rns represents the vector
of joint velocities. C(q, q̇) ∈ RnÍ

s×nÍ
s is a matrix such that Cν is the vector of

Coriolis and centrifugal terms, τg(q) ∈ RnÍ
s is the vector of gravity terms, τ ∈ RnÍ

s

is the vector of joint torques and JÛfe ∈ RnÍ
s is the term that accounts for external

forces, where J ∈ RnÍ
s×nÍ

s is the contact points Jacobian.

We can split equation (4.6) in two parts associated to the unactuated and the
actuated parts of the system:

Hu Hua

Hau Ha

v̇
q̈

+
Cuv
Caq̇

+
τug
τag

 =
0
τ

+
JÛ

u (p)
JÛ
a (p)

 fe (4.7)

Where p = [pÛ
1 . . . pÛ

nc] ∈ R3 × nc is the stacked vector of contact
positions and nc is the number of contacts. The superscripts u, a, and ua stand
for unactuated, actuated and the cross terms between unactuated and actuated
parts, respectively.

To find how to employ this dynamics model, we can rewrite the model in such
a way that the body states, the forces, and the foothold locations are explicitly
stated. From (4.2) we can associate linear and angular quantities to the model:
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v̇ = [c̈Û ω̇Û] (4.8)
v = [ċÛ ωÛ] (4.9)

ω =


cos γ cosψ − sinψ 0
cos γ sinψ cosψ 0

− sin γ 0 1


ü ûú ý

T (γ,ψ)

Θ̇ (4.10)

Where the relationship between ω and Θ̇ is given by the matrix T (γ, ψ) ∈ R3×3.
Note that the body states depend on the joint variables because the motion itself
is a direct consequence of the motion of the joints. Making the dependence explicit,
we can say that c(t,q(t)) for the CoM’s trajectory. It is worth noticing that the
CoM’s velocity and acceleration are dependent on q̇(t) and q̈(t).

Moreover, the contact Jacobians are computed using the feet positions. We can
highlight this dependency by stating it explicitly. Consider the rightmost term of
equation (4.7), we can write the unactuated part as:

JÛ
u (p)fe = S(p1) . . . S(pnc)


f1
...

fnc

 (4.11)

Where S(·) stands for the skew-symmetric operator used to represent a cross
product:

a × b = S(a) × b (4.12)

Each contact point pi ∈ R3 is a three-dimensional vector defined in a Cartesian
space. From this relationship, we can see how the correct foothold placement is
really important to correctly drive the system, as it has a direct influence on the
inputs of the system.

Since we are interested in controlling the base, we focus on solving the top part
of (4.7). It is related with the unactuated part of the system:

Huv̇ + Huaq̈ + Cuv + τug = JÛ
u fe (4.13)
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Equation (4.13) can be decomposed into the linear and rotational dynamics of
the system:

m · (c̈ − g) =
ncØ
i

fe, i (4.14)

I(q)ω̇+ω× I(q)ω+ Huaq̈ =
ncØ
i

pi × fe, i (4.15)

A stable locomotion requires not only great knowledge about the operational
space of the robot (kinematics). The knowledge of the actual workspace of the
system could not be sufficient in some situations where highly dynamical motions
are involved. Then to achieve dynamically feasible locomotion also dynamics must
be considered. A way to consider dynamics is to evaluate the robot’s behaviour
when selecting footholds.

Foothold selection is a complex process where the terrain is analysed to choose
where to place the legs in order to take a step. The choice must be carefully
weighted in order to grant stability in the future and avoid unwanted behaviours,
e.g., falling. The most intuitive way of conceiving a robot falling is trying to reach
configurations outside the kinematic workspace of the robot. However, a robot
may also fall due to the dynamic infeasibility of a required motion, which is a more
abstract concept. Herein, we refer to dynamic feasibility as the ability to maintain
forces and accelerations compatible with a trajectory for a given period of time.
We would like to evaluate this dynamic feasibility when selecting footholds.

A foothold is feasible if it is able to yield a trajectory that fulfils the dynamic
equation (4.6). We need to find the functions c(t),Θ(t) that are able to describe
accurately the robot’s trajectory and its dynamics for every potential foothold in
a heightmap. If such function exists, then the foothold examined is deemed as
feasible.

Solution of the transition feasibility problem

The objective is to find an evolution in time of the robot’s linear trajectory and its
orientation, given by the functions c(t) and Θ(t). We know the initial state and we
choose a final desired state where to drive the robot. Given those sets of two states,
we can then formulate a way to embed the dynamic model considering as unknowns
the quantities required for the motion, i.e., c(t), Θ(t), τ(t) and fe(t), namely, CoM
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linear trajectory, robot’s orientation, joint torques and external forces. With the
states relationships in mind (4.8), (4.9) and (4.10), a way to find all the required
quantities is to set up a feasibility problem of the form:

find c(t),Θ(t),τ(t), fe (4.16a)
such that Huv̇ + Huaq̈ + Cuv + τug = JÛ

u (p)fe (4.16b)
q, q̇, q̈ ≤ qmax, q̇max, q̈max (4.16c)
τ ≤ τmax (4.16d)

Where there are constraints on the joint kinematic (4.16c) and torque (4.16d)
limits.

4.3 Discussion

In this chapter we have modelled the dynamics of a floating base robot, describing
it using a joint-space formulation (4.6). It is composed by two part, namely, the
unactuated and the actuated part, but we focus only on the unactuated part (4.13)
since we are interested in controlling the base. We can further divide the unactuated
part, separating the linear and rotational dynamics of the system (4.14) and (4.15).

To find all the quantities that are needed to completely describe the motion of
the base, we set up an optimization problem (4.16a) that considers the unactuated
dynamics to find the evolution in time of the robot’s linear trajectory and its
orientation.

Including dynamic feasibility as a foothold evaluation criterion presents itself as
a highly complex problem. Both the nonlinear and hybrid dynamics, as well as
the large dimensionality of the problem can lead to intractability of the problem.
The feasibility problem should be solved for each potential foothold location in a
heightmap, as the VFA algorithm does with geometric-related criteria (Fig. 4.4).
Furthermore, in (4.13) the complexity of the unactuated part is highlighted. Such
complexity is given by the nonlinearities introduced by the rotational component
(4.15).

Our approach aims at building a simplification of this feasibility problem,
expressing the quantities in a Cartesian space and not in a joint space and trying
to reformulate the problem as convex optimization. Convexity is a useful property
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4.3 – Discussion

because it guarantees to have a solution space with a unique minimum. In the
next chapter, we try to avoid the nonlinearities using a different and simplified
formulation of the problem. By exploiting the Neuton-Euler formulation for the
Rigid Body Dynamic Model (RBDM) and describing the trajectory of the CoM as
a polynomial curve, we avoid the nonlinearity of the problem
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Chapter 5

Dynamically Feasible
Vision-Based Foothold
Adaptations for Legged
Locomotion

Solving the problem with a full dynamics model is a complex task. We choose
to tackle the problem considering a simplified dynamics model, namely the Rigid
Body Dynamic Model (RBDM). With this model we neglect the leg inertia and
we consider that the total mass of the robot is concentrated at the Center of Mass
(CoM). This assumption allows us to consider the robot as a single rigid body that
moves in space. Although this criterion does not consider kinematic limits of the
robot, they are included using as input the feasible map obtained with [6].

To formulate the convex optimization problem, we extend the method proposed
in [40], namely Convex Continuous Continuous and Convex Resolution of
Centroidal dynamic trajectories for legged robots in multi-contact scenarios
(C-CROC) to evaluate multiple foothold locations along a given contact switch
horizon. Furthermore, we extend the method to be able to find feasible trajectories
with underactuated dynamics such as trot. This allows us to use our evaluation
also for dynamic gaits, without compromising the convexity of the problem.
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5.1 Rigid Body Dynamics Model (RBDM)

Figure 5.1: Schematic of the HyQ robot. The reference frame used to express all the quantities
is W (world).

To tackle the complexity of the dynamic model described in (4.16a) there are
different approaches. The approach that we consider is to use a simplified model
representation of (4.6) that considers the unactuated dynamics of the robot (4.13),
namely, the RBDM. It considers the robot as a rigid body moving through space
subject to contact forces applied at each foot contact. The unactuated part can be
decomposed in its linear and rotational part (4.14, 4.15). These two parts can be
described with a Newton-Euler formulation [40], expressed in a fixed frame (world
frame (W) - Fig. 5.1):

m(c̈(t) − g) =
nØ
i=1

fe, i(t) (5.1)

mc(t) × (c̈(t) − g) + L̇(Θ, Θ̇, Θ̈) =
ncØ
i=1

pi × fe, i(t) (5.2)

Where:

• m ∈ R1 is the robot’s mass

• c(t) ∈ R3 is the CoM trajectory

• c̈(t) ∈ R3 is the second derivative of c(t), i.e., the CoM’s acceleration

• g ∈ R3 is the gravity acceleration
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5.1 – Rigid Body Dynamics Model (RBDM)

• fe ∈ R12×1 is the stacked vector of ground reaction forces [fe, i, . . . , fe, nc]Û,
fe, i ∈ R3×1

• L̇ ∈ R3 is the base angular momentum rate expressed in the world frame

• ρi ∈ R3 is the ith contact point coordinate vector

• nc ∈ R1 is the total number of contact points

The reason behind the choice of this formulation is not only due to the complexity
of the full dynamics model, but also to keep the feasibility problem convex. In
[40], a different formulation of this model is presented. It is formulated using the
Double Description method [54], which allows a non-trivial inequality formulation
of the same problem:

H

 m(c̈ − g)
mc × (c̈ − g + L̇)

 ≤ h (5.3)

Where H and h are a matrix and a vector, respectively, that depend on the contact
locations, their normal and on the friction coefficients. Although it reduces the
number of variables in the system since the forces are not included any more in
the evaluation, computing H and h is a non-trivial operation and it is subject to
occasional failures. In contrast to [40], we opt for an equality formulation:

 m(c̈ − g)
mc × (c̈ − g + L̇)

 =
 I3 . . . I3

S(p1) . . . S(pnc)

 fe (5.4)

We can then state a new feasibility problem that includes the simplified dynamic
model as constraints. Assuming an ideal foot with infinite stiffness (no deformation
hypothesis) and an infinitely hard terrain (no penetration hypothesis), the force
exchanged by a single foot with the ground is composed by tangential components
([x y] plane) and a normal component (along z direction). The robot can exert
forces at the contact points by actuating the hip and knee joints to generate a
torque at its joints and then a force at the end points of its limbs. To include the
friction constraints, a linearized Coulomb friction cone model is considered (Fig.
5.2a). In this approximated model, the friction is assumed to be equal on both x
and y directions.
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µ µ

x y

z

(a) (b)

Figure 5.2: a)Friction cone approximation. Coulomb friction cone (blue) and its pyramidal
approximation (black). b) Visualization of the unilaterality constraint. The forces depicted are
GRFs, which means that are the forces that the ground exert on the robot.

find c(t), fe(t) (5.5a)

such that m(c̈(t) − g) =
nØ
i=1

fe, i(t) (5.5b)

mc(t) × (c̈(t) − g) + L̇(Θ, Θ̇, Θ̈) =
ncØ
i=1

pi × fe, i(t) (5.5c)

fe ≤ fe, max (5.5d)
ë fx ë≤ µfz (5.5e)
ë fy ë≤ µfz (5.5f)
fz ≥ 0 (5.5g)

Where (5.5e, 5.5f) are the friction constraints, which are modelled as an
approximation of the friction cone. The maximum force constraint (5.5d) limits
the force according to the capabilities of the robot. The unilaterality constraint
(5.5g) is a constraint that define the impossibility of "pulling" the ground, i.e., the
force can only be exerted in one direction (towards the ground, "pushing") (Fig.
5.2b). To achieve a desired motion of the trunk, the robot can use its legs to push
against the ground and generate ground reaction forces GRFs for each foot in
contact.

Let’s examine a bit further the components of the new feasibility problem,
keeping in mind that we want to keep our problem convex. In our feasibility
problem there are two nonlinearity sources, making the problem non-convex. One
is caused by the term L̇, which has a nonlinear dependence on angular quantities
and we will describe it in Section 5.5. The other non convexity is caused by the
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5.2 – Convex formulation

cross product c × c̈. It is a non convex term because it is a multiplication between
two variables. Since they are not constrained in any way on their values, their
product is not defined and then convexity cannot be ensured. To make up for this
problem, the trajectory function c(t) must be carefully chosen. In the following,
we formulate the convex optimization problem by constraining the trajectory of
the CoM to belong to a space of Bézier curves similarly as how was it done in [40].

5.2 Convex formulation

Here we will analyse how the problem can be formulated in a convex form by
choosing carefully the function to describe the trajectory of the CoM, c. In order
to choose a suitable function, we need to analyse the required characteristics that
the function should address.

5.2.1 Trajectory properties analysis

The function c(t) must be chosen carefully because the physical consistency of
the trajectory depends on it. The function c(t) has to connect two states in time,
namely the initial state (x(t0) or x0) and the final state (x(tf) or xf). Then, the
function has to fulfill some requirements in order to be considered suitable for the
description of the problem. The requirements can be summarized as follows:

• Continuity - it is required to correctly address the physical behavior of the
robot motion.

• Derivability - this requirement grants that the state’s components that depend
on the derivative relationship (ċ, c̈ and Θ̇, Θ̈) can be computed considering
c and Θ respectively as primitives. This requirement is an extension of the
previous one.

• Imposition of initial and final conditions - this requirement is fundamental
to relate the function to the physical quantities of the problem. It is related
to how we are posing the problem, as we will see more in depth in the next
section. The function must include the quantities defined at the initial and
final instants to connect them in space.
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x[m]

t[s]
(a)

x[m]

t[s]
(b)

x[m]

t[s]
(c)

Figure 5.3: Examples of possible functions. The function depicted in (a) is not suitable because
a rigid body can’t move in space instantaneously. In (b) the function represented is still physically
unfeasible because there are no jumps in space, a discontinuity would be present in its derivatives
(velocity, acceleration, jerk), which is not physically possible. An example of physically meaningful
function is shown in (c).

Fig. 5.3 shows an example that explain why the requirements can be reasonably
assumed.

Linear
Initial Final

Position
Velocity

Acceleration
3 3

6

Angular
Initial Final

Orientation
Orientation rate

Angular acceleration
3 3

6

Table 5.1: In this tables the number of conditions to impose is resumed and reported at the
bottom.

Trajectory free control point

A generic curve can describe a trajectory in space. It is considered fully defined
when all of its coefficients are defined. The problem with having a fully defined
curve is that it corresponds only to one specific trajectory in space. Considering
that we want to describe the CoM’s trajectory with a curve, a single solution
constitutes a highly reduced solution space to find a trajectory to connect the set
of initial and final states. There could be multiple trajectories that can connect
two given states in space and time (Fig. 5.4a). In order to give the optimization
a larger solution space to look for possible trajectories, we need to give to the
function c(t) the ability to describe a set of trajectories instead of just one.

Having a free parameter yields a set of functions and then multiple solutions
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x

y

z

(a)

y = mx+ c
c = 0

(b)

Figure 5.4: a) Example of 3D set of curves with the same initial and final conditions. b)
Analogy with a set of straight lines with a free parameter.

consistent with physical parameters. This is analogue to the case of a straight line
where only one of the two parameters is defined(5.4b).

In synthesis, we need a parametric curve that:

1. Can satisfy the physically meaningful requirements described by (5.2.1)

2. Can easily include a free parameter to generate a set of trajectories instead of
just one

3. Can be included in the dynamics described by Equation (4.6)

As seen in 5.2.1, a possible choice is a polynomial function that depend on
a parameter t, i.e., we need a parametric curve. This curve should have all the
characteristics needed to bring physical consistency to the problem. A possible
choice is to describe the trajectory using a Bézier curve. In the following we will
describe how to formulate the dynamic feasibility problem in a convex fashion
describing the trajectory of the CoM c using such curves and how we impose
physical constraints on it. For an analytical description on Bézier curves, we refer
the reader to Appendix A.

Bézier matrices representation

One can represent a Bézier curve using binomial coefficients as seen in Appendix A.
However, this representation is equivalent to a description using matrices. We opt
for the latter since it is easier to manipulate and it will become useful further on,
when a decomposition of a Bézier curve into Bézier sub-curves is needed. A generic
Bézier curve expression can be expressed in term of matrices. This notation is a
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matrix notation that helps to compute a Bézier curve in a more systematic way. It
will also be used when dealing with contact switches in the next chapters.

The expression of a generic Bézier curve (A.5) can be arranged in such a way
that the matrix form becomes more evident. Considering a 5-th order Bézier curve
to preserve readability, the starting expression is:

B(u) =
A

5
0

B
(1 − u)5ρ0 +

A
5
1

B
u(1 − u)4ρ1 +

A
5
2

B
u2(1 − u)3ρ2 +

+
A

5
3

B
u3(1 − u)2ρ3 +

A
5
1

B
u4(1 − u)ρ4 +

A
5
5

B
u5ρ5 (5.6)

The equation can be expanded by computing the binomial coefficients and
rearranging it in the following way:

B(u) =(−u5 + 5u4 − 10u3 + 10u2 − 5u+ 1)ρ0 +
+(5u5 − 20u4 + 30u3 − 20u2 + u+ 0)ρ1 +
+(−10u5 + 30u4 − 30u3 + 10u2 + 0 + 0)ρ2 +
+(10u5 − 20u4 + 10u3 + 0 + 0 + 0)ρ3 +
+(−5u5 + 5u4 + 0 + 0 + 0 + 0)ρ4 +
+(u5 + 0 + 0 + 0 + 0 + 0)ρ5 (5.7)

Ignoring temporarily the control points ρi, the expression can be written as the
matrix multiplication:

B(u) = [u5 u4 u3 u2 u 1]



−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0


(5.8)

Which can be rewritten as:
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B(u) = [1 u u2 u3 u4 u5]



1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0

−10 30 −30 10 0 0
5 −20 30 −20 5 0

−1 5 −10 10 −5 1


(5.9)

Adding back the control points we obtain the full form:

B(u) = [1 u u2 u3 u4 u5]ü ûú ý
T ∈R1×6



1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0

−10 30 −30 10 0 0
5 −20 30 −20 5 0

−1 5 −10 10 −5 1


ü ûú ý

M∈R6×6



ρ0

ρ1

ρ2

ρ3

ρ4

ρ5


ü ûú ý

P∈R6×3

(5.10)

Then a general Bézier curve of nth order in the mth dimensional space have the
following form:

B(u) = T MP (5.11)

Where T ∈ R1×(n+1), M ∈ R(n+1)×(n+1), and P ∈ R(n+1)×m.
The computation of the control points (ρi) can be reduced to a Cauchy problem.

If we consider the curve B(u) as the CoM position (c(t)) we can obtain the velocity
and the acceleration curves (ċ(t) and c̈(t)) by analytical differentiation ((A.11) and
(A.13)). To compute the control points, we have to impose the initial and the final
CoM states to the three curves (position, velocity and acceleration). The initial
states are defined by the current robot states, while the final states are the desired
states. Here we consider the binomial form, but the derivation using the matrix
form is equivalent.
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Initial Final
ρ0 = xp,0 ρ5 = xp,f
ρ1 = xv,0 · T

n
+ ρ0 ρ4 = ρ7 − xv,f · T

n

ρ2 = xa,0 · T 2

n(n− 1) + 2ρ1 − ρ0 ρ3 = xa,f · T 2

n(n− 1) + 2ρ6 − ρ7

Table 5.2: Computation of the curve’s control points.

Considering a 5th order curve for the CoM position:

c
3
t

T

4
=
A

5
0

B3
1 − t

T

45
ρ0 +

A
5
1

B
t

T

3
1 − t

T

44
ρ1 + . . .+

A
5
5

B3
t

T

45
ρ5 (5.12)

ċ
3
t

T

4
=
A

4
0

B3
1 − t

T

44
ρ̂0 +

A
4
1

B
t

T

3
1 − t

T

43
ρ̂1 + . . .+

A
4
4

B3
t

T

44
ρ̂4 (5.13)

c̈
3
t

T

4
=
A

3
0

B3
1 − t

T

43
ρ̃0 +

A
3
1

B
t

T

3
1 − t

T

42
ρ̃1 + . . .+

A
3
3

B3
t

T

43
ρ̃3 (5.14)

Where the variable
3
t

T

4
is considered to stress the importance of having a

normalized time. T is the duration of the time horizon considered. The control
points of the kth order derivative of a Bézier curve depend on the control points of
the kth − 1 order derivative through the relationship:

ρki = (n− k) · (ρk−1
i+1 − ρk−1

i ) (5.15)

Where n is the order of the kth − 1 order derivative curve. By evaluating the curves
in the points t = 0 and t = T and exploiting the control points relationship (5.15)
we can impose the initial and the final values to the control points of the original
curve (Table 5.2).

Free parameter of a Bézier curve as a control point

A Bézier curve is fully defined when all its control points have been computed. Once
that we have fully defined the curve along the contact switch horizon1, we have a
complete description of the trajectory. However, this means that the solution of the

1See Section 4.2
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feasibility problem described in (5.5) can only be solved if this exact trajectory can
be achieved by the robot for each specific foothold. In other words, the problem
would over constrained and the solution space for the problem would be heavily
reduced. To increase the solution space, we can add a degree of freedom to the
curve, a free parameter. In the case of a Bézier curve, an extra control point can be
used as a free parameter. We understand that this trajectory does not include the
totality of the solution space, however we deem this to be sufficiently big to avoid
infeasibility in the problem, while still keeping the problem formulation convex.

To include the new control point in the curve, we need a higher order curve.
Adding only one control point, the needed curve is a Bézier curve of the 8th order.
Changing order of the curve means that a new curve should be used, including
the need of computing again all the control points. But since the computation of
the control point is performed in the same way for any Bézier curve of any order,
we can just "insert" the new control point in the middle of the curve, keeping the
control points computed for our previously fully defined curve. We can insert the
new control point in the following way:è

ρ0 ρ1 ρ2 ρ3 ρÔ ρ5 ρ6 ρ7

é
ρ̃ ρi → ρi+1

The new set of control points is:

è
ρ0 ρ1 ρ2 ρ3 ρÔ ρ5 ρ6 ρ7 ρ8

é
(5.16)

Where the unknown control point is ρÔ. Being its coordinates unknown it can be
considered as a Degree of Freedom (DoF) of the curve.

5.2.2 Convex problem formulation

The problem formulated might seem not convex at first glance because of (5.2).
In fact, the cross product between two decision variables (5.2) is in general a sign
of non-convexity. But exploiting the Bézier curve expressions, we can prove that
the cross product expressed as a Bézier curve with one free control point, yields a
linear relation with respect to said control point.

For the sake of clarity, we report here the cross product that we are going to
analyse:
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mc × (c̈ − g) = mc × c̈ −mc × g (5.17)

To check for convexity, we have to verify that the product c× c̈ is a convex quantity,
as it is a cross product between a decision variable and its second derivative.

Consider an 8th order Bézier curve with a free control point (unknown variable).
Here we use the binomial representation of a Bézier curve, since it is equivalent
with the matrix notation. As shown in equation (A.6) from Appendix A, we can
write the full equation describing the trajectory of the CoM as:

c(u) =
A

8
0

B
(1 − u)8ρ0 + . . .+

A
8
8

B
(u)8ρ8 (5.18)

We know that all the control points ρi are known terms with the exception of ρÔ.
Then we rearrange the equation in such a way to have all the known terms grouped
together:

c(u) =
A

8
0

B
(1 − u)8ρ0 + . . .+

A
8
8

B
(u)8ρ8ü ûú ý

Λ∈R3

+
A

8
4

B
u4(1 − u)4

ü ûú ý
ζ∈R

ρÔ (5.19)

Where Λ(ρ, u) is the known term and depends only on the known control points,
while ζ(u) is the term that multiplies the unknown variable ρÔ. The Bézier
expression can now be written as:

c(u) = Λ(ρ, u) + ζ(u)ρÔ (5.20)

To prove that the cross product analysed is a convex quantity, we need to express
the second derivative c̈ in terms of the control points of the non differentiated
curve.

A generic kth order derivative of a Bézier curve can be obtained as:

Bk(u) =
n−kØ
i=0

bn−k,i(u)ρki (5.21)

ρki = (n− k) · (ρk−1
i+1 − ρk−1

i ) (5.22)
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Since the kth derivative of a bezier curve is a Bézier curve of the (n−k)th order2,
where n is the order of the non differentiated curve, we have a 8 − 2 = 6th order
curve for the second derivative (k = 2). Then we can expand the expression of
the second derivative control points (A.15) to relate them to the non differentiated
curve’s control points:

ρ̃i = (n− 1)(ρ̂i+1 − ρ̂i) = n(n− 1)(ρi+2 − 2ρi+1 + ρi)) (5.23)

We rearrange the equation such that the known and unknown terms are clearly
separated, similar to (5.19):

c̈(u) = Λ̃(ρ, u) + ζ̃(u)ρÔ (5.24)

Λ̃ ∈ R3 and ζ̃ ∈ R have the same meaning as in (5.20) but for the second derivative.
Using the compact forms, the cross product between c(t) and c̈(t) can be written

as:

c × c̈ = (Λ + ζρÔ) × (Λ̃ + ζ̃ρÔ) (5.25)
c × c̈ = Λ × Λ̃ + Λ × ζ̃ρÔ + ζρÔ × Λ̃ + ζρÔ × ζ̃ρÔü ûú ý

0

(5.26)

ρÔ is an unknown vector and the source of non convexity can be cancelled thanks
to the property of the cross product, where the cross product between two parallel
vectors is always 0. Since the cross product is performed on the very same vector,
they are parallel and it can be cancelled making the problem convex.

5.3 Problem feasibility

5.3.1 Constraint polytopes

A Bézier curve can be seen as the analytical representation of a physical quantity
in 3D space. To preserve physical consistency of the analytical curve, it is subject
to constraints that represent the dynamic model of the floating-base system. The
constraints can be related to different physical elements, such as dynamical
behaviour, or friction limits. To verify if a trajectory is physically consistent, it has

2See Equation (A.15)
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to satisfy the constraints that describe the dynamics of the system (5.1) and (5.2).
The visualization of such constraints applied to the curve is not an easy task

since they are mostly related to physical concepts rather than spatial quantities.
The constraints considered can be represented by half-spaces half-spaces (closed
regions of space). A half-space is defined as one of the two parts into which a
hyperplane (a plane in a generic m-space) divides and affine space (m-space). By
intersecting multiple half-spaces we can obtain a closed portion of space. This
portion of space is referred as a polytope. The inside of the polytope is where all
the constraints are valid at the same time, therefore it represents the feasible space.

Definition. A polytope is a geometric object with flat sides. An n-polytope is
associated to an n dimension. As examples, in 2-dimensional space they are called
2-polytopes and in 3-dimensional space 3-polytopes.

Figure 5.5: Example of constraints polytope applied to a curve.

Considering the n-dimensional generic space where the Bézier curve is defined,
the constraints can be represented as an n-polytope.

The polytope can be considered as a way of visualizing constraints (Fig. 5.5),
since the trajectory is bounded by the constraints to lie within an n-dimensional
polytope. They make a distinction between the physical possible solutions (inside
the polytope) and the physically not consistent solutions (outside the polytope).

5.3.2 Discrete and continuous time domain evaluations

All the considerations reported so far are formulated in the continuous time
domain. But to actually solve the problem, we need to discretize the problem.
The discretization can be achieved through time sampling, i.e., dividing a time
interval in a finite amount of smaller intervals. The time between two subsequent
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5.3 – Problem feasibility

Figure 5.6: Example of continuous time (black) and interpolated discrete time (red) Bézier
curve.

time intervals is called sampling time (∆t). The use of this description does not
accurately describe the real world because the information between two subsequent
discrete time instants is not defined. They can be obtained through interpolation,
but in general they differ from the real behaviour (Fig. 5.6). With a smaller ∆t
better results can be achieved, but it still differs from the real case. It is important
to remember that an optimization problem is built using variables, which can be
either a value or an array of values. This means that a variable can represent only a
single time instant. To consider multiple time time instants, we need to associate a
variable to each instant in our time horizon. Increasing the amount of time instants
considered means having an increasing number of variables to consider, leading to
longer computation times.

In Fig. 5.7 a constraints polytope is applied to a curve computed in discrete
and in continuous time. By computing the curve in discrete time, its feasibility
is verified as it lies completely inside the 2-polytope. But when checking the
feasibility of the real curve, i.e., the one computed in continuous time, it becomes
clear that there is the chance of having an unfeasible solution (it lies also outside
the boundaries). This means that we may find a non dynamically feasible solution
when computing the curve in discrete time, leading to undesired behaviours in the
real case as it is described by the continuous curve.

Figure 5.7: Example of constraint polytope (blue) applied to a continuous (black) and a discrete
(red) description of the same curve. The feasibility check is performed at equally spaced points
on the curve.
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ρ0

ρ1

ρ2

ρ3

ρ0

ρ1

ρ2 ρ3

Figure 5.8: 2D examples of Bézier curve’s convex hull property

To formulate the problem in such a way that it is also valid in continuous time,
we can exploit a property of the Bézier curves to make sure that the whole curve is
inside the polytope even with a discrete time formulation.

Property. A generic Bézier curve of any order is contained entirely in the convex
hull of its control points.

B(t) ⊂ conv(ρ) (5.27)

This property can be exploited to validate the formulation also for continuous
time. The validation for continuous time is important since it allows to achieve
physical consistency. Validating the results for the continuous time is not always
possible given the discrete nature of the majority of the computational methods
used. The method here described is taken from [40], where it is actually used to
solve the discretization problem.

In Section 5.2.1 the need for a free control point (ρÔ) has been described.
Considering the CoM trajectory (Fig. 5.4a), leaving the free control point undefined
leads to have an infinite amount of suitable curves that can connect two points in
space. While all of these curves can analytically establish a connection in space,
most of them are not physically achievable. The objective is then to place correctly
ρÔ such that the Bézier curve that it describes remains physically consistent with
respect to the model described by (5.1) and (5.2).

A way to guarantee that the feasibility evaluated in discrete time match an
actual feasibility in continuous time is by exploiting the convex hull property (5.9).
We can enforce the control points that describe the Bézier curve to lie inside the
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Figure 5.9: Example of constraint polytope (blue) applied to a continuous (black) and a discrete
(red) description of the same curve. The check is performed on the control points. The convex
hull of the control points (cyan) contains entirely the curve itself.

constraint polytope.

5.4 Trajectory discontinuities

Legged locomotion can be described as a hybrid system. A hybrid system is a
system that exhibits both continuous and discrete dynamics. Locomotion can
be decomposed in a sequence of alternating swing and stance phases (Fig. 4.5).
The phases are divided by discrete events in time, i.e., when a leg makes or break
contact with the ground (contact switch). Each phase’s dynamics can be described
using (5.1) and (5.2) considering the contact points relative to that specific phase
(Fig. 5.10). At each contact switch the contact points change, increasing (swing →
stance) or decreasing (stance → swing) and creating discontinuities.

In Figure 5.10 we can see how the contact points are not continuous in time,

Figure 5.10: Future step positions that the robot will take. Here it is taking a step forward
with its left-front leg (LH).
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since they are defined only when the feet are in contact with the ground and not in
swing. The sequence of contact points will be a collection of points on the ground
defined only for specific time intervals.

Since the equations of motion include ground reaction forces, i.e., the forces at
the contact points, we need to take into account the discontinuities. The constraints
themselves, i.e., the equations of motion (5.1, 5.2), do not embed discontinuities
since they define a continuous dynamics system. They can model only a single
phase. To include discrete events in the description of the system, we need to
formulate the constraints according to the phase considered, according to the
phase’s characteristics, namely the contact locations. As in (5.3.1), the constraints
can be imagined as n-polytopes in the space of the trajectory. Being the trajectory
in 3-D, we can visualize a 3-polytope for each of the phases that occur during the
time span considered (Fig. 5.11).

In Fig. 5.11 the polytopes describe a visualization example of the constraints
that we can apply to a curve to verify its feasibility. The fact that two polytopes
overlap means that both sets of constraints are valid at the same time. This means
that for all the possible conditions included in the two overlapping polytopes, there
exists at least a solution that satisfies both set of constraints.

Considering Fig. 5.11, we can associate the overlapping regions to the contact
switches because to break or make contacts with the ground correctly the CoM
trajectory should be always feasible (inside a constraints polytope). When a
contact switch occurs, the set of constraints changes making the polytope to
change accordingly. To make sure that the trajectory yields a dynamically feasible
motion, the contact switch must occur inside the overlapping area, such that at the
beginning of the next phase the trajectory is already inside the relative polytope.

Figure 5.11: Example of constraints relative to three subsequent phases. Each 3-polytope
represents a different set of constraints.
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5.4 – Trajectory discontinuities

Considering a 2-dimensional case for the sake of clarity in notation and
visualization, the overlapping polytopes can be applied to a Bézier curve to
visualize the role of the constraints.

ρ0

ρ3

s1 s2

ρ1 ρ2

Figure 5.12: Example of overlapping constraint polytopes applied to a Bézier curve. s1 and s2
are the points in which contact switches occur. Inspired from Fig. 4 in [40]

In Figure 5.12, three overlapping polytopes are applied to a 3rd order Bézier
curve. Observing the curve itself, we can state that the curve is feasible because it
is always inside of at least one polytope. Although the feasibility of the curve is
certain, applying the method used in Figure 5.7 the curve is marked as "infeasible"
because the convex hull of its control points is not fully contained in the polytopes.
This leads to a reduction of the solution space, forcing to discard solutions that
are feasible.

To increase the solution space, we can consider three equivalent curves instead
of considering the curve as a whole. The main curve can be cut at s1 and s2

resulting in three sub-curves, each representing a single phase. Each curve has
its own new control points that can then be used to check if they belong to their
relative constraint polytope.

The analytical derivation relies on the fact that the Bézier curves (B(u)) are
parametric curves (u ∈ [0, 1]), where u is the parameter of the curve, usually
associated to time t. In general though, the time interval considered is defined
between two generic time instants t ∈ [ti, ti+1], ti+1 > ti which can be different
from the required parametric interval [0, 1]. This means that in general u /= t.
In order to correctly associate time t with the parameter of the curve u, time is
normalized. The time normalization process is used to rescale the time interval to
[0, 1].

Defining as total duration the time interval considered Td = ti+1 − ti, the

51



Dynamically Feasible Vision-Based Foothold Adaptations for Legged Locomotion
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Figure 5.13: Decomposition of the Bézier curve into three equivalent sub-curves.

parameter of the curve can be associated to time as:

u = t− ti
Td

∈ [0, 1] (5.28)

To reduce the notation complexity, here time is considered as already normalized,
unless indicated otherwise.

Consider an arbitrary Bézier curve in a generic normalized time interval t ∈ [0, 1]
(Fig. 5.14). Consider two generic time instants z, z1 ∈ [0, 1], where z1 > z:

t = {t ∈ [z, z1]| z1 > z, z1, z ∈ [0, 1]} (5.29)

We would like to decompose this curve into multiple sub-curves defined by the
segments from t = 0 to t = z, from t = z to t = z1 and from t = z1 to t = 1.
Considering T from (5.11) for a 3rd order curve for the sake of readability, we
can substitute the new time interval defined as z + (z1 − z)t to the parameter u,
obtaining a generic Ti:

t = 0

t = 1

z z1

Figure 5.14: Generic 3rd order Bézier curve where a generic normalized time interval (z → z1)
has been defined
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Ti = [1 (z + (z1 − z)t) (z + (z1 − z)t)2 (z + (z1 − z)t)3] (5.30)

(5.30) can be written as the product between two matrices:

Ti = T


1 z z2 z3

0 z1 − z z(z1 − z) 3z2(z1 − z)
0 0 (z1 − z)2 3z(z1 − z)2

0 0 0 (z1 − z)3


ü ûú ý

Z∈R4×4

(5.31)

Recalling (5.11), we can write the expression for a generic equivalent sub-curve
(piece of curve defined by z and z1) as:

Bi(t) = TiMP = T ZMP (5.32)

The sub-curve generated depends on the control points of the original curve
P . This sub-curve is still a Bézier curve and can be described with its own set of
control points. To find the set of control points that describe this piece of curve,
we can rearrange the equation as:

Bi(t) = T M M−1ZMü ûú ý
Q∈R4×4

P = T M QPüûúý
Pi∈R4×3

= T MPi (5.33)

Since M is a square matrix, we can always multiply by MM−1 = I.

t = 0

t = 1

z z1

ρÍ
1

ρÍ
2

[b]

Figure 5.15: Generic equivalent sub-curve’s convex hull of its control points (red).

The resulting expression for the generic equivalent sub-curve (5.33) allows to
compute the control points of the sub-curve itself. This new set of control points
can be used to compute the convex hull to test the feasibility of the curve (5.13).
Note that this is an alternative way of decomposing curves with respect to the one
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used in [40], namely the De Casteljau algorithm.
This method can be easily generalized for a generic n− th order curve. Consider

a generic matrix {Z∞|Z∞ ∈ Rn×n, n → ∞} built as shown in (5.31). A generic
Bézier curve Bk(u) of order k can be divided into multiple sub-curves using a
matrix Zk ∈ R(k+1)×(k+1) which is a sub-matrix of Z∞, obtained as:

Z∞ =

1 z z2 z3 · · ·
0 z1 − z 2z(z1 − z) 3z2(z1 − z) · · ·
0 0 (z1 − z)2 3z(z1 − z)2 · · ·
0 0 0 (z1 − z)3 · · ·
... ... ... ... . . .





Z3 · · ·Z2

(5.34)

5.5 Angular momentum rate

Now we will focus on the third nonlinearity term in the feasibility problem (5.5a),
which is due to the L̇ term, related to the angular behaviour of the robot (orientation,
angular velocity and angular acceleration). We would like to express it in terms
of angular quantities because they bear a more intuitive meaning in terms of
locomotion. To show that the L̇ is a nonlinear function of angular quantities,
we can derive it analytically. It can be obtained by differentiating the angular
momentum expression L = Iω:

L̇ = İω+ Iω̇ (5.35)
IW = WRB I WRÛ

B (5.36)

Where WRÛ
B (Θ) ∈ R3×3 is the rotation matrix between base B and world W

reference frame, IW(Θ) is the moment of inertia of the robot expressed in the world
frame. Since the derivative of a generic rotating vector A is:

dA
dt

= drA
dt

+ω× A (5.37)

Where drA
dt

is the apparent time derivative of A in the rotating frame, while ω is
the angular speed of vector A with respect to fixed reference frame.
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In this case, I is assumed fixed with respect to base frame B, then drI
dt

= 0 and
then:

İ = ω× I (5.38)

ω̇ expression can be obtained by differentiation of (4.10):

ω̇ = Ṫ(γ, ψ, γ̇, ψ̇)Θ̇ + T(γ, ψ)Θ̈ (5.39)

Then, combining (5.35) with (5.38), (5.36) and (5.39):

L̇ = T(γ, ψ)Θ̇ × IW(Θ)T(γ, ψ)Θ̇ + IW(Θ) · (Ṫ(γ, ψ, γ̇, ψ̇)Θ̇ + T(γ, ψ)Θ̈) (5.40)

Which is a highly nonlinear term. Although this terms could also be included
in the formulation using a nonlinear solver, in this thesis we decide to avoid any
nonlinear term as solving a nonlinear problem takes more time and may lead to
getting stuck in local minima. We then decided to keep the formulation convex by
avoiding any nonlinear term.

In the next chapter, we will deal with this nonlinearity, initially following the
approach of [40], where the derivative of the angular momentum is set to zero
(i.e., L̇ = 0). However, as it will be shown later, this condition does not hold for
highly dynamic motions such as trot, due to the underactuated condition of the
system when less than three legs are in contact with the ground. Keeping this
condition leads to infeasiblity when solving the problem described in this chapter
(5.5a). We will remove this condition and examine cases where L̇ /= 0, showing a
way to constrain and bound the angular momentum rate considering the actual
limits of the robot.

55



56



Chapter 6

Convex Formulation of the
Transition Feasibility
Problem for Non-zero
Angular Momentum Rate

In the previous chapter we have seen how describing the system with a RBDM and
choosing the function to describe the CoM trajectory as a Bézier curve, we can
eliminate most of the nonlinearities that make the problem not convex. However, if
we also try to specify a trajectory for the angular quantities through the derivative
of the angular momentum rate, the constraint related to L̇ becomes nonlinear. To
avoid having such nonlinear term, a possible solution is to consider L̇ = 0, as done
in [40]. This choice has two potential drawbacks:

1. It might result in infeasible solutions when the initial conditions are not
suitable to reach 0;

2. It is a very hard-to-fulfil constraint for more dynamic motions.

In the next sections we will show two different approaches that tackle the
nonlinearity introduced by the angular momentum rate. We will see how assuming
L̇ = 0 is a reasonable choice when dealing with quasi-static motions (such as crawl)
but it becomes a source of infeasibility when more dynamic motions are considered
(such as trot). During a crawl the robot has the ability to track both linear and
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angular quantity, in trot it is not possible due to the lower number of legs in contact
in stance during a swing phase (underactuated system).

6.1 Angular momentum rate error minimization

We now consider the condition L̇ = 0 along the entire time horizon computed.
Instead of imposing it by not considering it in the optimization problem, we show
how it is possible to include it keeping the problem convex, trying to reduce the
error with respect to a desired behaviour using a tracking term in the cost function.

The analytical expression of L̇ (5.40) is nonlinear since it contains cross products
between optimization variables and trigonometric functions of optimization variables
(in matrix T (θ)). To ensure convexity while including L̇ in the optimization,
we define a reference value for the angular momentum rate L̇ref which can be
computed using (5.40). Along with the definition of the reference, we include in
the optimization problem L̇ as an optimization variable. Then the assumption
L̇ = 0 is replaced by the tracking term ë L̇ − L̇ref ë2

2 and L̇ref = 0 which penalizes
the deviation from the reference angular momentum rate.

According to (5.40), to have L̇ = 0 the angular velocities and accelerations should
be constantly 0 along the entire trajectory, which might not be always possible.
Tracking L̇ref built considering initial and desired conditions, we can consider all
those cases with non-zero initial or desired angular velocity and acceleration.

The optimization problem that we want to solve has now a cost function to
consider the deviation from the requested L̇ref :

min
ρ4, fe(t), L̇

ë L̇ − L̇ref ë2
2 (6.1a)

such that m(c̈(t) − g) =
nØ
i=1

fe, i(t) (6.1b)

mc(t) × (c̈(t) − g) + L̇ =
ncØ
i=1

pi × fe, i(t) (6.1c)

fe ≤ fe, max (6.1d)
ë fx ë≤ µfz (6.1e)
ë fy ë≤ µfz (6.1f)
fz ≥ 0 (6.1g)
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6.1 – Angular momentum rate error minimization

Figure 6.1: Example of ideal angular quantities computed as a Bézier curve.

It is worth noticing that L̇ does not depend any more on angular quantities as it
is now defined as an optimization variable. The reference angular momentum rate
reference L̇ref is computed using equation (5.40). But it requires the evolution in
time of the angular quantities, namely Θ, Θ̇ and Θ̈.

We design a desired orientation by solving a small optimization problem. We
define the orientation curve as a Bézier curve of the 6th order with a free control
point. Then we impose as constraints a boundary on the roll, pitch, and yaw angles
that the robot can safely reach:

min
ρ4,Θ

1
R

(6.2a)

s.t. ë Θ ë≤ Θmax (6.2b)

The result of this optimization problem is the free control point ρ4,Θ which
is then used to build a Bézier curve for the orientation (5.11). Although we are
solving the problem minimizing the curvature, the orientation curve has to account
for initial angular velocity and acceleration. A Bézier curve can be differentiated
as described in Appendix A. We can then compute also the angular velocities (roll,
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Figure 6.2: Example of support polygon during a swing phase.

pitch, yaw rates) and accelerations (Fig. 6.1) curves to have a complete angular
reference with which compute L̇ref .

The procedure described so far to minimize the error on L̇ imposing the reference
L̇ref = 0 holds for quasi-static gait types such as crawl. The crawl is a quadrupedal
gait where only one leg is moved at a time, guaranteeing that at least three legs
are in contact with the ground.

The ability to track a 0 angular momentum rate with this kind of motion can be
explained by analysing the characteristics of crawl. The reason behind its stability
resides in the concept called support polygon. The support polygon (SP) is the
polygon that can be drawn considering the contact points (feet) as vertices (6.2).
To consider the motion statically stable, the projection of the CoM on the SP’s
plane must always be contained inside the SP itself. If we consider the sequence
of phases during crawl in terms of sequence of support polygons (Fig. 6.4), the

t

stance

swing
LF

t

stance

swing
RF

t

stance

swing
LH

t

stance

swing
RH

1st l.o. 1st t.d. 2nd l.o. 2nd t.d.

Figure 6.3: Plot that shows the time spent in air (swing) or on ground (stance) for each leg
during crawl. Gray lines mark contact switches between phases. The sequence of legs moved
is [RH - RF - LH - LF]. Here only half of the cycle is shown. Note that lift-offs (l.o.) and
touchdowns (t.d.) happen at each start/end of each phase. The duration of the swing phase
depends on the step frequency and duty factor (how much time the leg does spend in the air). It
can be computed as tswing = (1 − duty factor)/step frequency.
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Figure 6.4: Example of a sequence of support polygons in a top-view during crawl. The arrow
points toward the heading direction. The leg sequence is [RH - RF - LH - LF].

system can generate forces in any direction (unilaterality constraint still apply),
provided that the CoM projection on the SP’s plane is contained in the support
polygon. In Fig. 6.3 we report the sequence of phases considering their time span.

6.1.1 Angular momentum rate boundaries

While the assumption of imposing L̇ = 0 is fair for slow and quasi-static motions,
like crawl, it does not hold any more when dealing with more dynamic motions,
such as trot (Fig. 6.5). The trot is a type of gait where two legs (coupled in
diagonal) are in air at the same time during the swing phase (Fig. 6.6 and 6.7),
making the support polygon to collapse to a single line.

Having a support line instead of a support polygon during trot, the system is
underactuated. The underactuated condition is a direct result of the fact that we
can exert forces only along the support line, limiting the directions in which we
can generate a moment. To execute a trajectory with an underactuated system,
we have to sacrifice the tracking of L̇. We cannot guarantee the accurate tracking
of the angular momentum rate during highly dynamic motion such as trot. But
considering L̇ as an optimization variable, as we did previously, we can compute
the required value to make the trajectory feasible. The problem with the current
formulation is that L̇ is an unbounded quantity, being only related by the tracking
term ë L̇ − L̇ref ë2

2. The unconstrained variable could also assume values that
verify the model equations (5.4) but that are not physically achievable by the robot.
To avoid the divergence of L̇ and keep the angular momentum rate within the
capabilities of the robot, we define an upper and a lower boundary on L̇.

Figure 6.5: Example of support line during a swing phase in trot.
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Figure 6.6: Example of a sequence of support line in a top-view during trot. The arrow points
toward the heading direction. The leg sequence is [LF/RH - RF/LH].

The angular momentum rate is strictly related to the external moments acting on
the system (5.2), so we compute the Maximum Moment (MM) that the robot can
generate to limit the maximum achievable angular momentum rate. The maximum
moment that the robot can potentially generate is heavily dependent on the foothold
considered. To compute the MM boundaries, we set a new optimization problem
that is able to find the best configuration of forces such that we can generate the
maximum angular momentum, namely the upper boundary:

max
fe

ë M ë2
2 (6.3a)

such that M =
ncØ
i=1

pi × fe, i(t) (6.3b)

JÛ
c fe ≤ τmax1 (6.3c)

fe ≤ fe, max (6.3d)
ë fx ë≤ µfz (6.3e)
ë fy ë≤ µfz (6.3f)
fz ≥ 0 (6.3g)

Where Jc is the contact Jacobian which depend on robot configuration and τmax
is the maximum torque available for each joint. To find the lower boundary on the
angular momentum we solve the same problem but minimizing ë M ë2

2. These two
boundaries are then used in the main optimization problem as constraints to limit

1Here we do not consider the term related to the Coriolis forces to keep the problem convex.
This has been shown to be a fair assumption [55, 36]
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Figure 6.7: Plot that shows the time spent in air (swing) or on ground (stance) for each leg
during trot. Here we are assuming that the lift-offs and the touchdowns are happening at the
same time. The leg sequence is [LF/RH - RF/LH]. Note that lift-offs (l.o.) and touchdowns (t.d.)
happen at each start/end of each phase. The duration of the swing phase depend on the step
frequency and duty factor (how much time the leg does spend in the air). It can be computed as
tswing = (1 − duty factor)/step frequency.

the maximum value of L̇. We build it as:

min
ρ4, fe(t), L̇

ë L̇ − L̇ref ë2
2 (6.4a)

such that m(c̈(t) − g) =
nØ
i=1

fe, i(t) (6.4b)

mc(t) × (c̈(t) − g) + L̇ =
ncØ
i=1

pi × fe, i(t) (6.4c)

MMlow ≤ L̇ ≤ MMup (6.4d)
fe ≤ fe, max (6.4e)
ë fx ë≤ µfz (6.4f)
ë fy ë≤ µfz (6.4g)
fz ≥ 0 (6.4h)

Although this formulation allows to include L̇ in the optimization process keeping
it convex, the MM boundaries are an approximation of the real value achievable by
the robot. We need to compute Jc, which requires to know the joint configuration
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Figure 6.8: Qualitative representation of the MM boundaries associated to each phase.

and then to know the exact location of the CoM along the entire motion. Since the
position is unknown, we compute the MM boundaries only at key points during the
motion considered, which are at the beginning and at the end of the entire motion
and right before and after a contact switch (Fig. 6.8). To know the position of
the CoM at those evaluated points, we consider that the CoM follows a straight
trajectory with constant velocity and 0 acceleration. This method for computing the
MM boundaries makes the result subject to errors as the real trajectory is modelled
as a Bézier curve. To take into account this error, we scale the maximum torque
available at each joint by a confidence factor α. A confidence is a scaling factor
that is based on how much confident we are about the CoM position prediction:

τmax = ατmax (6.5)

6.2 Evaluation over an extended time horizon

If we consider a time horizon that extends indefinitely in time, problems may arise
when searching for a feasible solution. As the number of phases considered in the
time horizon increases, the chance of not finding a feasible solution increases as
well. This happens because we are describing the trajectory as a curve with a single
degree of freedom, which means having limited control over the curve’s shape. A
visualization of how extending the evaluation over a large time horizon can lead to
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6.2 – Evaluation over an extended time horizon

Figure 6.9: Different curves attempt to find a trajectory that is feasible, i.e., contained in all
the polytopes at the same time.

infeasible solutions is depicted in Fig. 5.11. If we try to draw a Bézier curve with a
single control point, we could manage to guarantee that the curve is inside part of
the polytopes, but not all of them simultaneously (Fig. 6.9) as requested from the
feasibility criterion defined in Section 5.4.

To generate a trajectory that is able to overcome the problem of having only
one free control point including an indefinitely long time horizon, we define the
optimization problem between two states (initial and final) as a sequence of multiple
optimization sub-problems between a reduced number of phases, generally 2 or 3
phases. In this way it is possible to generate a trajectory composed by multiple
Bézier curves such that we have only one free control point for each curve. A
representation of the constraints when multiple optimizations are considered is
shown in (Fig. 6.10).

Figure 6.10: Now the curve is composed by multiple sub-curves and the time horizon can be
extended indefinitely.
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Chapter 7

Evaluations and Results

The main objective behind this thesis is to create an evaluation method that
considers dynamics when dealing with foothold selection. This evaluation method
consists in finding all those footholds that yield feasible transitions during dynamic
locomotion. Among all these footholds, the evaluation has to select the optimal one
according to a cost function, which will be described in the following sections. To
reach the intended objective, in the last chapter we have described an evaluation
method that has the purpose of finding a dynamically feasible trajectory over a
finite time horizon, including transitions between phases (contact switches). This
method can be implemented in foothold selection by considering each foothold as a
different optimization problem with same initial and final states, but with different
foothold positions.

In the following sections we will show the results obtained in simulations adopting
the method proposed as a trajectory generator, to prove that the trajectories
generated are physically consistent. We then show evaluations of heightmaps
performed offline to prove that it can be used as a foothold selection criterion, being
able to discard footholds not dynamically feasible. Moreover, we will present a
simple cost function to evaluate the cost of each foothold based on the optimization
problem described in Equation (6.1a).

7.1 Implementation details

In Figure 7.1 we show the pipeline that defines the control strategy used in
simulation. The Dynamic Foothold Evaluation Planner (DFEP) is the algorithm
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Command

Low level 
controlDFEP
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Figure 7.1: Diagram of the pipeline used to control the HyQ robot. Note that v ∈ R3 is the
commanded velocity and p = [p1 . . . p4]Û is the foothold position. The The Dynamic Foothold
Evaluation Planner (DFEP) generate reference trajectories, required GRFs and L̇ acquiring the
actual states from the robot and the desired motion command (v ∈ R3 is the desired velocity and
p ∈ R4×3×nh are the predicted footholds, where nc is the prediction horizon). Only the references
(CoM position and velocity and angular position and velocity) are then passed to a Whole Body
Controller (WBC) which computes a set of GRFs to achieve the reference trajectory. The forces
are then transformed in joint torques using the contact Jacobians (Jc) and then commanded to
the robot using a low-level controller.

presented in the previous chapters used as a motion planner. The The Dynamic
Foothold Evaluation Planner (DFEP) generate reference trajectories, required GRFs
and L̇ acquiring the actual states from the robot and the desired motion command
(v ∈ R3 is the desired velocity and p ∈ R4×3×nh are the predicted footholds, where
nc is the prediction horizon). Only the references (CoM position and velocity and
angular position and velocity) are then passed to a Whole Body Controller (WBC)
[55] which computes a set of GRFs to achieve the reference trajectory. The forces
are then transformed in joint torques using the contact Jacobians (Jc) and then
commanded to the robot using a low-level controller. Using a state estimator
that gives CoM position, velocity, orientation and angular velocity, we provide the
feedback to both DFEP and control logic such that we run a closed loop control
architecture.

We run simulations using Gazebo [56] simulator to reproduce dynamics and
sensors. The DFEP communicates with the WBC using ROS [57] topics. We run
the DFEP in a ROS node, publishing the references in a topic. The references are
resampled to match the update frequency of the WBC (25Hz - every 40ms). The
WBC runs in another ROS node at a higher frequency (250Hz - 4ms) to ensure
the correct error tracking thanks to the feedback loops. It receives the references
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7.1 – Implementation details

in samples by subscribing to the DFEP topic. To synchronize the two processes
(reference update and control loop) the WBC resamples two subsequent references
samples to match its update frequency.

7.1.1 Whole Body Controller (WBC)

One the WCB receives the reference trajectories (desired), it computes the desired
linear and angular acceleration using a PD control law:

c̈d = Kpcom(c − ca) +Kdcom(ċ − ċa) (7.1)
ω̇d = Kpbasee(Rd

b −RÛ
b ) +Kdbase(ω−ωa) (7.2)

Where c̈d ∈ R3 is the desired linear acceleration, all the K∗ ∈ R3×3 are the PD
gains, e(·) : R3×3 → R3 is a mapping from a rotation matrix to the associated
orientation vector. Rb ∈ R3×3 and Rd

b ∈ R3×3 are rotation matrices representing
the actual and desired orientation of the base with respect to the world reference
frame and ω ∈ R3 is the desired angular velocity of the base, related to the euler
angles rate Θ̇ through a transformation matrix (4.10).

The Ground Reaction Forces (GRFs, fe) are computed using a Centroidal
Dynamics model:

 I . . . I
S(p1) . . . S(pnc)


ü ûú ý

A


fe, 1
...

fe, nc


ü ûú ý

fe

=
m(c̈d + g)

Igω̇d


ü ûú ý

b

(7.3)

At every control loop, the following quadratic program is solved to compute the
desired GRFs:

fde = argmin(Afe − b)ÛS(Afe − b) + αfÛ
e W fe (7.4)

s.t. d < Cfe < d

where S ∈ R6×6 and W ∈ R3nc×3nc are positive-definite weight matrices, α ∈ R
weighs the secondary objective, C ∈ Rp×3nc is the inequality constraint matrix
that defines friction constraints and upper and lower bounds in the z direction,
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d, d ∈ Rp the lower/upper bound respectively, with p being the number of inequality
constraints and nc the number of contact points.

Once the GRFs have been computed, they are converted to joint torques further
composed by two elements. The first element, called feed forward torques, is
obtained by mapping the forces in the joint space τff :

τff = −SJÛ
c fe (7.5)

Where Jc ∈ Rnc×(n+6) is the stacked jacobian of the contact points, S = [In×n 0n×6]
is a selection matrix that selects the actuated joints and n is the number of joints.

The second element is a PD joint-position controller with low gains, introduced
for safety reasons and to move the swinging leg. During the swing motion, the
gains of the leg in swing are increased to improve tracking capabilities. The desired
joint torques τ are then computed as:

τ = τff + PD(q, q̇, cst) (7.6)

Where cst is a boolean vector that represent the stance condition of the legs. The
computed joint torques are then sent to a low-level controller that tracks the desired
joint torques. To close the control loop, from the robot the actual quantities (a) are
measured and used as feedback. The computation times required from the DFEP
are not suitable to be used in a high frequency control loop (it requires about 0.25s
to perform an evaluation), so the frequency at which we update the references is
limited. We update the reference quantities at each lift-off, providing a reference
up to the next lift-off event. In this way we have a reference for the current step at
each step.

Adopting this configuration, we have two different ways of computing forces.
The DFEP itself computes forces by solving the optimization problem, but they are
not used to control the robot. We use them as a comparison between our method
and the simulation. In the next sections, we show the output of the WBC and the
DFEP show a sufficient degree of similarity.
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7.2 – Simulations

7.2 Simulations

Imposing a final zero orientation

Here we show a simulation performed by imposing a final orientation Θ = [0, 0,0]Û.
As already explained, we limit this evaluation to a single step evaluating the
trajectory at lift-off. With an evaluation performed only at every lift-off, we can
evaluate the trajectory only when the robot is moving, excluding all those cases
when the robot starts from zero velocity. To account for these situations, we add
the initial stance phase to the evaluation, computing always until the next lift-off.
The simulation is performed assuming a flat ground environment.

In Fig. 7.2 we can see the trajectory, velocity and acceleration computed with
the DFEP. We can see how the x and y components (cx, cy) are shaped to keep the
CoM as much as possible inside the support polygon during swing. Considering
that the leg to move is the RH, we can see how the CoM moves to provide a stable
motion while reaching a safe position to grant stability for the next swing phase.
On z axis (cz) we can see a flat trajectory.

The velocity plots show that starting from a zero velocity condition, at the end
of the prediction horizon, we reach the desired velocity on all three axes, which

Figure 7.2: Plots of CoM position, velocity and acceleration with respect to time. These
plots are divided in components (x, y, z - columns) and plotted quantity (position, velocity and
acceleration - rows). The gray areas represent the swing phase of the robot. The initial stance
phase is smaller than the final because we consider half of the stance time when starting from 0
velocity before the first leg lift.
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has been commanded as v = [0.05, 0, 0]Ûm/s. Note that no condition has been
specified for the intermediate states.

The acceleration is related to the shape of velocity plot, being its derivative.
We can see how the accelerations required to achieve such motion are pretty low,
which reflects in low GRFs required to achieve such motion.

In the forces plot (Fig. 7.3) the GRFs required to achieve the motion are
computed. They are not used as a reference for the WBC, but instead they
are used to compare the quality of DFEP, as we will show later. The x and y

components are the forces that drives the robot on the x and y axes, causing
the acceleration behaviour (Fig. 7.2). The z component shows how during the
swing phase (grey area) the swinging leg (RH) does not exert any force. From this
plots we can see more clearly the hybrid nature of a legged robot. The forces are
continuous in each phase but present a discontinuity when the contacts change,
i.e., at each contact switch.

The legs support the weight of the robot. While in stance the forces are evenly
distributed among all the legs, during swing, the robot is supported mainly by two
out of the three legs in contact with the ground. This behaviour is caused by the
position of the projection of the CoM with respect to the four contact points. The
furthest the projection from a foot, the lower the force applied on it. In this case
we can see how the lowest force is applied on the LF leg, which is the diagonally

Figure 7.3: Plots of computed GRFs. The rows are the components of the forces (x, y, z),
where each color indicates a different leg (LF, RF, LH, RH). The grey areas represent the swing
phase of the robot.
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opposite of the swinging leg (RH). The lowest force yields information about the
CoM actual behaviour from another perspective. Since the force is low but not
zero, we can assert that the the CoMs projection is relatively far from the LF leg
but still inside the support polygon. As the time passes we can see that the force
decreases, which means that the CoM is moving away from the LF leg, but still
inside the support polygon as it doesn’t reach zero until the end of the support
phase. The same considerations can be made observing the highest forces. Since
the RF and the LH legs are diagonally opposite, the z components of the forces
that those leg exert follow a proportionally inverse relationship. We can see from
their behaviour that the CoM moves toward the LH leg. The same considerations
applies to all the ground reaction forces plots that we will see. The last stance
phase shows a different distribution of forces with respect to the first stance phase,
indicating that the CoM is not located at the center of the support polygon.

As we can see in Fig. 7.4, the angular momentum rate designed using (5.40)
and the angular momentum computed as an optimization variable assume the
same values along the entire horizon. An important observation about the angular
momentum rate as an optimization variable is that it is considered a secondary
objective. This is the consequence of having defined hard constraints for the
trajectory ((6.1b) and (6.1c)) and only a tracking term on L̇. Although no hard
constraints have been defined on L̇, we are able to track it completely.

Figure 7.4: Plots of reference and actual L̇. The last plot shows the tracking error between the
desired and the computed one. Each color indicates a different component (x, y, z). The grey
areas represent the swing phase of the robot.
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Figure 7.5: From left to right, sequence of pictures taken during simulation, where the swinging
leg is the Right Hind (RH).

The optimization problem results are then sent to the Whole Body Controller
(WBC) to drive the robot according to the references. In figure 7.5 we can see the
robot taking a step during simulation.

In Fig. 7.6 we can see the references and the actual quantities compared. The
CoM trajectory achieved using the control structure presented in Fig. 7.1, recorded
in simulation, track with a good precision the trajectory provided to the WBC.
The successful tracking of such trajectory is an indirect first proof of the actual
feasibility of the computed trajectory. This behaviour can be further confirmed by
examining the forces plots (Fig. 7.7).

The forces plot (Fig. 7.7) represent a more direct proof of the validity of DFEP.
If we consider only the x and y components of the DFEP (Optimizer) and WBC
(Simulation) forces, we see that they have different behaviours. The difference is
caused by the different approach considered when computing the forces. The WBC
uses a different optimization and cost function with respect to the DFEP, causing
a similar order of magnitude in the values but a different behaviour. The principal
and most interesting aspect of this plot can be observed analysing the z component

Figure 7.6: Plots of references (Optimizer) and actual (Simulation) tracked quantities (CoM
position and orientation). The references are resampled to match the update frequency of the
WBC (40ms), while the simulation quantities are smoother due to their lower sampling time
(4ms). We can see how the DFEP quantities are accurately tracked.
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Figure 7.7: Plots of DFEP (Optimizer) and actual (Simulation) forces. On the rows we find
the components (x, y, z) and on the columns the different legs (LF, RF, LH, RH). The forces
obtained with two different methods (DFEP and simulation) are compared to show the similar
behaviour that prove the correctness of the method proposed.

of the forces. The strong similarities between the DFEP and the WBC forces is a
sufficient proof of the correctness of the method proposed in this thesis. The main
reason is that the DFEP computes the forces required to achieve the trajectory
generated. Since both forces and trajectory are optimization variable, they store

Figure 7.8: Plots of DFEP (Optimizer) and actual (Simulation) L̇. In each row a component
(x, y, z) is shown. It is not used as a reference neither controlled by the WBC. The tracking of L̇
is a consequence of the trajectory and orientation provided as a reference.
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no information about the actual forces applied on the system at the initial time
instant. On top of that, the DFEP computes forces for the entire time horizon
without any feedback to correct the behaviour or provide information along the
motion. The prediction of forces behaviour reveals to be very accurate on the
z axis, showing that the DFEP constitutes a valid method to generate feasible
dynamics trajectories.

One of the most promising results can be seen in 7.8, where we compare the
angular momentum rate computed with DFEP (L̇) and the actual one measured
in simulation. We can see how even without providing any information about L̇
as reference (e.g., forces), or without having any feedback term able to reduce
the error, the actual L̇ behaviour is very close to the one predicted by the DFEP.
This tracking is a natural consequence of the trajectory and orientation used as
reference. Although small bumps still occur in the measured data, mainly caused
by noisy measurements or impacts with the ground, the general behaviour of the
angular momentum rate is tracked.

Imposing a final orientation different than zero

In this trial, we impose a desired final orientation Θ =
5
π

24 ,
1.5π
24 , 0

6
. The simulation

is set-up exactly as the previous case. In figure 7.9 we present some frames of the
successful crawl.

In Fig. 7.10 the trajectory generated by the DFEP is shown. We can see that it
is very similar to the previous case, in which the desired orientation was imposed to
Θ = [0, 0, 0] rad. This is an expected result as the different orientation should have
a minor impact on the linear quantities. Also here we can see that the trajectory
is shaped in such a way to keep the CoM as much as possible inside the support
polygon during each phase, while accelerating from a zero velocity to a desired
velocity. The main difference between this and the previous case is highlighted by

Figure 7.9: From left to right, sequence of pictures taken during simulation, where the swinging
leg is the Right Hind (RH). Here a final orientation different than 0 is imposed.
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Figure 7.10: Plots of CoM position, velocity and acceleration with respect to time. These
plots are divided in components (x, y, z - columns) and plotted quantity (position, velocity and
acceleration - rows). The gray areas represent the swing phase of the robot. The initial stance
phase is smaller than the final because we consider half of the stance time when starting from 0
velocity before the first leg lift.

the next plots.
In the forces plots (Fig. 7.11) we can see the first major difference with respect

to the previous case and one of the most important aspects about the DFEP.
Comparing the x and y components of this and the previous case forces, we can

Figure 7.11: Plots of computed GRFs. The rows are the components of the forces (x, y, z),
where each color indicates a different leg (LF, RF, LH, RH). The grey areas represent the swing
phase of the robot.
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Figure 7.12: Plots of reference and actual L̇. The last plot shows the tracking error between
the desired and the computed one. Each color indicates a different component (x, y, z). The
grey areas represent the swing phase of the robot.

see how although the trajectory computed is the same, the forces component
present some differences. If the trajectory is not the cause of the different forces
behaviours,they can only be explained by the variation of the L̇ variable. Although
angular quantities are not directly involved in the optimization problem that we
are solving (6.1a), the angular momentum rate variable L̇ is tracking a term which
depend on angular quantities L̇ref . The higher and different forces computed in
this case are then used to generate the moments needed to cause the variation
on the angular momentum, i.e., to track the angular momentum rate and then,
implicitly, angular quantities.

The other major difference with respect to the previous case is shown in the
angular momentum rate plot (Fig. 7.12). This time the desired angular momentum
is higher than the previous case by three orders of magnitude. In this test, we are
imposing a final desired orientation different than Θ = [0, 0, 0]. To reach such final
orientation, the robot needs to achieve a certain angular velocity and acceleration,
i.e., it needs to change its angular momentum to change orientation. If the angular
momentum changes in time, also the angular momentum rate will be different than
0. We compute this variation using (5.40), shown in the plot as L̇des. By tracking
its behaviour with the optimization variable L̇, we are able to completely reproduce
its variation in time, compensating for the lack of angular quantities (orientation,
angular velocity and acceleration) in the optimization problem.
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We can see from Fig. 7.13 how the WBC is able to track the quantities provided
as a reference. By comparing the trajectory and orientation computed by the
DFEP and the ones measured in simulation, we can assert that the two are close
enough to prove the feasibility of the generated trajectory. As described in the
previous case, by comparing the forces recorded in simulation and generated by
the DFEP, we can further confirm this assertion.

In Fig. 7.14 we can again compare the forces obtained with the two different
method (DFEP and simulation). As in the previous case, the components on the
x and y components are not very similar despite having values of the same order
of magnitude. This is caused by the different approach used to compute them
and also because of noise when dealing with such low forces. By comparing z
component of the forces, we find again a similarity between the compared data
that proves the validity of our model. A further confirm of the correctness of the
method presented in this thesis, can be found comparing the optimization variable
L̇ and the values measured in simulation.

In Fig. 7.15 we can compare the angular momentum rate computed with DFEP
with the one measured from simulation. In the previous case we have seen that
completely tracking a zero angular momentum rate is possible while crawling. In
this case we set a final desired orientation different than Θ = [0, 0, 0], to smoothly
change the final pose of the robot. The angular momentum rate measured in
simulation during the execution of the mixed motion (moving CoM while changing

Figure 7.13: Plots of references (Optimizer) and actual (Simulation) tracked quantities (CoM
position and orientation). Be aware that π

24 rad = 7.5 deg and 1.5π
24 rad = 11.25 deg. The

references are resampled to match the update frequency of the WBC (40ms), while the simulation
quantities are smoother due to their lower sampling time (4ms). We can see how the DFEP
quantities are tracked reasonably well.
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Figure 7.14: Plots of DFEP (Optimizer) and actual (Simulation) forces. On the rows we find
the components (x, y, z) and on the columns the different legs (LF, RF, LH, RH). The forces
obtained with two different methods (DFEP and simulation) are compared to show the similar
behaviour that prove the correctness of the method proposed.

orientation) and the L̇ variable computed with DFEP have a very similar behaviour.
All these factors, such as force and L̇ similarities, contribute to prove the validity
of the proposed method, able to cope with the nonlinearities present in a RBDM
dynamic model (5.4).

Figure 7.15: Plots of DFEP (Optimizer) and actual (Simulation) L̇. In each row a component
(x, y, z) is shown. It is not used as a reference neither controlled by the WBC. The tracking of L̇
is a consequence of the trajectory and orientation provided as a reference.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.16: Snapshots of various phases achieved during the execution of the motion.

Long time horizon with zero orientation as target

In this test we chose to set as target an orientation of Θ = [0, 0, 0]Û, and to keep
the same configuration as the previous cases (flat ground). In this test we let
the simulation run for multiple consecutive steps, to show that the trajectories
computed step after step by the DFEP are physically achievable also for longer
time horizons with respect to the previous cases shown. In figure 7.16 we show
some frames acquired during the execution of the motion.

As done in the previous tests, in Fig. 7.17 we show the comparison between
the DFEP and the actual simulation data. From these plots we can prove the
stability over a long time horizon and multiple subsequent runs of the DFEP. Both
linear and angular trajectories are tracked with a good precision over the entire
simulation duration. By examining closely the x and y components of the linear
trajectory we can see how the trajectory computed by the DFEP behaviour is not
exactly the same at each phase. This asymmetric behaviour gives the evaluation
an increased robustness with respect to generating periodic motions with no regard
for initial conditions. The trajectory generated by the DFEP is adapted to the
initial and final states each time that the evaluation is performed.

The comparison between computed and simulated forces (Fig. 7.18) shows
once again the similarity between the two sets of forces, which are independent of
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Figure 7.17: Plots of references (Optimizer) and actual (Simulation) tracked quantities (CoM
position and orientation). The references are resampled to match the update frequency of the
WBC (40ms), while the simulation quantities are smoother due to their lower sampling time
(4ms). We can see how the DFEP quantities are tracked reasonably well. black dashed lines are
delimiters to highlight different phases of the robot.

each other. The fact that they are independent but very similar also over a long
time horizon, proves once again the validity of the quantities computed with the
DFEP. We have run tests for longer time horizons with the same result as the one
reported here. A shorter time horizon has been chosen to preserve plots readability.
Although in this test we consider a constant orientation Θ = [0, 0, 0] along the

Figure 7.18: Plots of DFEP (Optimizer) and actual (Simulation) forces. On the rows we find
the components (x, y, z). Here we show the force relative to only one leg (LF) for the sake of plot
readability. The forces obtained with two different methods (DFEP and simulation) are compared
to show the similar behaviour that prove the correctness of the method proposed. Black dashed
lines are delimiters to highlight different phases of the robot.
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Figure 7.19: Plots of DFEP (Optimizer) and actual (Simulation) L̇. In each row a component
(x, y, z) is shown. It is not used as a reference neither controlled by the WBC. The tracking of L̇
is a consequence of the trajectory and orientation provided as a reference. Black dashed lines are
delimiters to highlight different phases of the robot.

entire time horizon, we have already proven that imposing a different desired final
orientation yield the same results in terms of tracking. This is a sufficient proof to
assert that the DFEP is stable over a long time horizon.

As shown previously for forces, also the angular momentum rate appears to be
very similar to the one predicted by the DFEP (7.19). Here we see how even without
a direct angular momentum rate feedback, L̇ is forced to 0. The angular momentum
rate measured in simulation still presents some bumps due to unmodelled dynamics
such as impacts, but the overall behaviour correspond very closely to the one
computed by the DFEP.
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WBCMotion 
Command

Low level 
control rosbag

VFA

Figure 7.20: Diagram of the pipeline used to control the HyQ robot. Note that v ∈ R3 is the
commanded velocity and p = [p1 . . . p4]Û is the foothold position. The motion command is
passed to a Whole Body Controller (WBC) which computes a set of GRFs to achieve desired
motion. The forces are then transformed in joint torques using the contact Jacobians (Jc) and
then commanded to the robot using a low-level controller.

7.3 Dynamic Foothold Evaluator (DFE)

In this section we implement our method to evaluate dynamic transition feasibility
as an evaluation to select a foothold from a heightmap acquired using visual-
feedback. In figure 7.20 we show the pipeline that defines the control strategy used.
Unlike the previous case (DFEP) where the evaluator is used directly to control the
robot as a motion planner, here we instead use it off-line to evaluate data recorded
in simulation. In this step we added visual feedback V that acquires the terrain in
a discrete fashion, generating grids of points that store the height of the terrain.
The VFA evaluation [6] uses this feedback to provide a correction on the WBC
output, adjusting the landing locations of the robot’s feet.

sa
m

ple
s

ROSBAG

- 4 Heightmaps [LF, RF, LH, RH]

- CoM actual states (position, velocity and 

acceleration)

- Nominal foothold positions [LF, RF, LH, RH]

- Information about gait: swing time, stance time for 

each leg

Figure 7.21: Rosbag file schematics. Each sample contains information on the heightmaps for
each leg (LF, RF, LH, RH), on the actual CoM states, on angular quantities, on the nominal
foothold positions and information about swing characteristics. The nominal foothold for a leg in
swing is the predicted landing position of that leg. Swing and stance time are percentage values
(0 → 1) that store informations on the time elapsed in swing or in stance of each leg.
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Figure 7.22: Complex scenario environment (top) and what the robot captures, used for visual
feedback (bottom). The acquired heightmap is updated as the robot moves in the environment.
The scenario used to perform the test is composed by a part of flat ground followed by a series of
8cm high steps.

We run simulations using Gazebo [56] simulator to reproduce dynamics and
sensors. We recorded a set of data from simulation, stored in a log file (rosbag).
Here we save the information about the robot states and the heightmaps at each
time instant, organizing its structure as shown in Fig. 7.21.

To show the effectiveness of the evaluator, we consider a complex scenario where
the robot has to climb stairs (Fig. 7.22).

We evaluate samples picked from the recorded rosbag file with the DFE, showing
that it can be used as a foothold evaluator on a discrete heightmap. The DFE’s
core is the optimization problem described in the previous chapter, to which we
added new cost terms to select an optimal foothold, which is the one with the
lowest cost. The new cost terms introduced are:

1. ë c − c ë2 - which is a term that bias the evaluation toward more straight
trajectories. This term allows us to have smoother trajectories and to reduce
the oscillating motion of the trunk unless strictly needed for stability reasons;

2. ë fe ë2 - used to minimize the ground reaction forces to achieve the motion.
This term is useful to increase the efficiency of the motion, by exerting forces
only when strictly needed;
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3. w ë hi − hn ë - where w is a weighting term and hi is the foothold evaluated.
It is a term used to discourage the footholds that are too far with respect to
the nominal. This term is added to disturb the least possible the robot. The
optimal foothold is "pulled" toward the nominal. This helps also to choose
an optimal foothold when multiple footholds with similar costs are found, by
preferring the nearest to nominal foothold.

The new cost terms defined are included in the optimization problem formulation,
resulting in:

min
ρ4, fe(t), L̇

Q0 ë L̇ − L̇ref ë2 +Q1 ë c − c ë2 +Q2 ë fe ë2 +w ë hi − hn ë

(7.7a)

such that m(c̈(t) − g) =
nØ
i=1

fe, i(t) (7.7b)

mc(t) × (c̈(t) − g) + L̇ =
ncØ
i=1

pi × fe, i(t) (7.7c)

fe ≤ fe, max (7.7d)
ë fx ë≤ µfz (7.7e)
ë fy ë≤ µfz (7.7f)
fz ≥ 0 (7.7g)

Where Q0, Q1, Q2 ∈ R+ are weighting coefficients, chosen to even out the different
orders of magnitude in the cost function (fe is in the order of thousands, while
c − c is in the order of fractions of unit). This optimization problem will evaluate,
for each sample, all the footholds that belong to the heightmap acquired.

7.3.1 Evaluations for Stair Climbing While Crawling

To acquire heightmaps in the case of a crawling motion, we acquired the surrounding
area of the nominal foothold in form of heightmaps of 30cm × 30cm with a resolution
of 2cm during the climbing of stairs. We evaluate 20 samples equally spaced in
time (Fig. 7.23). In all samples evaluated, the evaluator was able to find feasible
solutions to the optimization problem (7.7a). Each heightmap was preprocessed
with the VFA algorithm to discard footholds (Fig. 7.24) to reduce the evaluation
set for the DFE and to consider also geometric-related aspects. The DFE found
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Figure 7.23: The samples evaluated are those associated with the nominal footholds marked in
the picture. Two different colors have been used for the front (green) and rear (blue) legs.

that all the VFA-feasible footholds were dynamically feasible as well, which is a
reasonable result given the size of the heightmap evaluated and the type of gait
considered (slow and quasi-static). Here we report the result of only one sample
to fully describe it. The sample shown in figure 7.24 is sample 9, where the Right
Front (RF) leg has to land on a step.

The DFE generates a cost map according to the optimization function defined
in (7.7a), storing the value of the cost function for each DFE-feasible foothold (Fig.
7.25). The foothold with the lower cost is selected as the optimal foothold. Each
foothold evaluated can be further expanded to show the evaluated quantities for that
specific foothold, namely, the CoM trajectory, velocity and acceleration, the ground
reaction forces and both angular momentum rates (reference and optimization

Figure 7.24: Heightmap acquired for the Right Front (RF) leg (on the left) is processed with
the VFA algorithm (right) to discard footholds according to geometric-related aspects. Green
squares mark the VFA-feasible footholds. The VFA discarded most of the footholds because they
were close to both edges of the steps.
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variable). Since we are evaluating the footholds with a cost function that bias the
problem towards the minimization of forces (along with other terms), the cost map
presents some differences in the cost of each foothold. This cost map is relative to
the Right Front (RF) leg of the robot. Keeping this in mind, we can observe that
the footholds on the right side have higher costs than footholds on the left side.
This happens mainly for two reasons. The first reason is that the trajectory needed
to achieve a stable motion has a higher curvature with respect to the one required
by choosing footholds on the left side. The other reason is that the further from
the body is the foothold considered, the harder it becomes to accurately track the
L̇.

Here we show the plots relative to the foothold with the lowest cost. As already
explained in 7.2, we perform the evaluation at each lift-off.

In Fig. 7.26 the trajectory computed with the DFE are reported. We can see
how the trajectory changes to bring the CoM in stable positions along the motion.
The trajectory shown here is relative to the foothold with the lowest cost, i.e., the
optimal foothold. This means that the trajectory shown here is the one that let
all terms considered in the cost function to assume the lowest value, and making
this foothold the best choice for achieving the desired motion. Now the trajectory
on the z axis is not any more flat like the previous case (DFEP), but it changes

Figure 7.25: Output cost map. The white squares mark the discarded footholds. In this
heightmap we can see that all the footholds VFA-feasible are also DFE-feasible since they have
been found to have a cost. A cost value is associated to a foothold only if the foothold is
DFE-feasible.
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Figure 7.26: CoM position, velocity and acceleration generated by the the DFE during a
crawling motion on stairs. Each column contain a different component (x, y, z), while each row a
different linear quantity (position, velocity and acceleration).

according to the motion that we are planning to achieve on stairs.
The forces shown here (Fig. 7.27) are quite similar to the one computed while

using the DFE as a planner (DFEP). The differences that we can see here are
mainly due to the fact that now we are climbing stairs and we need extra force to
move our CoM also along the z axis. It is the cause of having less evenly spread
forces, specially on the moved leg (RF).

In the angular momentum rate plot (Fig. 7.28) we can see how the angular
momentum can still be tracked completely. This means that during a crawling

Figure 7.27: Forces needed to achieve the trajectory for a crawling motion. On each row we
have different components (x, y, z) and each color represent a different leg (LF, RF, LH, RH).
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Figure 7.28: Angular momentum rate needed to achieve the motion. Here we compare the
desired motion with the actual one, showing that the desired value could be tracked entirely.
Each color represent a different component (x, y, z).

motion we have the ability to track both linear and angular quantities even when
climbing stairs.

7.3.2 Evaluations for Stair Climbing While Trotting

We now proceed to evaluate the same scenario but changing the gait type to a
more dynamical one, namely, the trot. While trotting, the system can be addressed
as an underactuated system which means not being able to track both angular and
linear quantities. In a first attempt we try to impose the condition L̇ = 0, which
results in finding only infeasible solutions. This means that executing a trotting
motion imposing L̇ = 0 is not physically possible.

By relaxing this constraint, we run the evaluation as in the previous case, i.e.,
creating an angular momentum rate reference and defining L̇ as an optimization
variable.

Once again we acquire data from simulation evaluating 20 samples equally
spaced in time, as did while crawling. The main difference with respect to crawl is
that with two legs in air at the same time, we would need to evaluate combinations
of footholds between two heightmaps (one for the rear leg and one for the front leg
in swing), which would increase exponentially the computation time needed for
each sample. To reduce it, we fix the rear foothold to be the nominal one (center of
the heightmap). This time we increased the dimension of the acquired heightmap
to a 33 × 33 discrete map with a resolution of 2cm to better highlight the results.
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Figure 7.29: Heightmap acquired (left) is processed with the VFA algorithm (right) to discard
footholds according to geometric-related aspects. Green squares mark the VFA-feasible footholds.

Without MM boundaries

In this first test we evaluate a heightmap without applying the boundaries described
in Section 6.1.1. The evaluated heightmap is shown in figure 7.29, it is preprocessed
with the VFA algorithm to discard all those footholds that are infeasible according
to geometrical-related aspects. The sample evaluated in this test is the sample 3,
related to the Left Front (LF) leg. We decided to change sample to emphasize
the differences between the evaluation with and without moments boundaries. An
important difference with respect to the previous case (crawl) is when we start the
evaluation. Since trot is more dynamic, it is very difficult to track a trajectory for

Figure 7.30: Output cost map. The white squares mark the footholds not evaluated or discarded.
In this cost map the VFA and the DFE optimal footholds are different.
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the short time that the rest of the swing represents. Instead, we take the current
linear and angular velocities of the robot and assume that they will be the same
for the rest of the swing to obtain the next landing location of the swinging feet.
We then start the evaluation from the touchdown. This choice helps increasing
the robustness of the evaluation since it evaluates the system when it is fully
controllable, i.e., when we have all four legs on the ground.

The DFE outputs a cost map (Fig. 7.30) of the same dimension of the one
that we provided. As we can see, the DFE has not discarded any foothold since
the optimization term L̇ is not bounded and can take any value such that the
constraints are verified. We will now plot the foothold with the highest cost to

(a) (b)

(c)

Figure 7.31: Plotting quantities relative to the highest cost foothold. In a) we can see the
trajectory generated by the DFE, which is still biased toward having a straight trajectory. In b)
the L̇ desired and optimized are shown. The difference between the two is not neglectable as it
is an order of magnitude higher than the value of the desired one. In c) the forces required to
achieve the motion are shown.
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show the values assumed by the L̇ optimization variable. As we can see from 7.31b,
L̇ assumes really high (Ä 400 Nm) values which might be physically infeasible.
We will see that the foothold shown here is not feasible when applying the MM
boundaries, as it exceeds the physical limits of the robot.

In the foothold plots (Fig. 7.31) the main characteristic that shows the
importance of having physical boundaries on L̇, can be seen in the angular
momentum rate plot, where the L̇ optimized variable reach values of an order of
magnitude higher than the desired quantity. Although this makes the problem
feasible, it might be not physically achievable by the robot if not properly
bounded.

With MM boundaries

This test is carried out on the very same heightmap used in the previous test, but
now introducing the MM boundaries. The cost map that the evaluator gives as
output is depicted in figure 7.32. Here we can see how the set of feasible footholds
is smaller than the previous case, having discarded those that are not able to yield
an L̇ within the computed boundaries.

To show the effectiveness of the MM boundaries, we proceed to show the plots
relative to the nearest feasible foothold with respect to the previous (now infeasible)
shown. In figure 7.33b we can see how the angular momentum rate (here only L̇ is
shown for the sake of clarity) is being limited by the MM boundaries. This is a
limit case that shows the importance of having a physical limit on the optimization
variable L̇ to have physically consistent results.

Figure 7.32: Output cost map. The white squares mark the footholds not evaluated or discarded.
In this cost map the VFA and the DFE optimal footholds are the same.
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(a) (b)

(c)

Figure 7.33: Plotting quantities relative to the highest cost foothold. In a) we can see the
trajectory generated by the DFE, which is still biased toward having a straight trajectory. In
b) only the L̇ optimization variable is shown, to better highlight how the boundaries are acting.
The angular momentum rate is saturated by the boundaries, if still compatible with the motion.
In c) the forces required to achieve the motion are shown..

The MM boundaries are physical limits that embed the real physical capabilities
of the robot. Since they represent the maximum achievable moment by the robot,
they are able to limit the angular momentum rate that the robot can achieve. If
we consider the two output cost maps, we can see that the size of the feasible area
in the vicinity of the nominal foothold is reduced. The further the foothold, the
higher the joint torque required to apply a requested force in that specific point.
This limit helps us in finding all those footholds that require a joint torque that
exceed the maximum joint torque that the robot could achieve.

The cost maps shown so far, present a common characteristic on the distribution
of the cost values. We can see how the area with footholds with lower costs can be
found along a diagonal line that spans the entire map. Our hypothesis is that the
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low cost area might be related to the support line, i.e., the line that connects the
legs supporting the robot during swing. This might be related to the fact that as
while crawling we have full control over both linear and angular quantities when the
projection of the CoM lies within the support polygon, while trotting the tracking
of both linear and angular quantities improves by exploiting the support line. As
a future work we will investigate this relationship, to learn how to improve the
tracking of a legged robot during high dynamic motions.

7.4 Discussions

In this last chapter we have seen how we were able to create a method to generate
dynamically feasible CoM trajectories in a convex fashion. We have run tests in a
Gazebo [56] simulation by employing the evaluator as a planner (DFEP, Section
7.1), showing that the trajectories are not only dynamically feasible, but also that
the forces and L̇ computed with the DFEP predict with good accuracy the forces
measured in simulation. In the three scenarios proposed, the DFEP has proven
to be a reliable trajectory planner which relies on the actual states to compute a
suitable trajectory to achieve the motion. It has proven to be also stable during
long time horizons, leading to a stable crawl adapting the trajectory generated to
the situation.

The optimization problem that the DFEP has to solve presents a high number
of optimization variables, mainly due to the presence of fe and L̇. The number of
variables depend mainly on the number of discretization points considered. An
approximation of the amount of optimization variables for a single optimization
problem can be computed as:

nvar = ncsw ∗ nsamples((3 ∗ nc)ü ûú ý
fe,i

+ 3üûúý
L̇i

) (7.8)

Where ncsw is the number of contact switches happening in the horizon considered,
nsamples is the number of discretization points used and nc is the number of limbs
(in our case nc = 4 as HyQ is a quadruped).

Solving such optimization problem is time consuming (it takes about 0.35s) and
computationally expensive, so it is still not suitable for real time applications. If we
apply the DFEP to the problem of foothold selection (DFE, Section 7.3), we need
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to solve the problem once per every foothold in the heightmap considered. This
means that we need an amount of time that depend on the size of the heightmap
and which takes too much time to be employed in real time as a foothold selection
algorithm as it is.

Despite the slowness of the evaluation, the proposed method is able to generate
a trajectory for more dynamic gaits (such as trot), where the condition L̇ = 0 does
not hold any more. By considering cases where L̇ /= 0 we can perform foothold
selection for dynamic gaits.

It cannot be tested in simulation because of the long time required to compute
a single heightmap. In the case of trot, where two legs move at the same time,
we would have to consider two heightmaps at the same time, further increasing
the evaluation times. To overcome the problem of real time, we intend to use the
output of the DFE to train a Neural Network to perform foothold selection in
shorter times, suitable for real time.
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Chapter 8

Conclusions and future work

In this thesis we presented a method for foothold adaptation that considers the
evolution of the robot dynamics to choose a suitable landing location for the feet.
We formulated an evaluation method for potential footholds based on the concept
of transition feasibility, which determines the existence of a dynamically feasible
trajectory between a set of initial and final conditions. We used this concept to
formulate an optimization problem. Said problem is highly nonlinear and can
be highly computationally expensive to solve and prone to getting stuck in local
minima. To cope with this, we reformulated the optimization as a convex problem,
based on [40]. The method relies on two main tools: the use of a simplified model
to describe the robot dynamics, namely, the Single Rigid Body Dynamics Model,
and the description of the trajectory of the CoM as a Bézier curve. Since the
method presented in [40] assumes zero rate of change of the angular momentum
rate (L̇ = 0), the method is not able to find solutions for highly dynamic motions,
mainly due to the underactuation condition of the system. We extended this
method to consider time varying angular momentum rates based on a desired
trajectory for the angular quantities that describe the motion of the base (base
orientation, angular rate and angular acceleration) and included a tracking cost in
the optimization problem to minimize the deviations from this desire trajectory.
This resulted in the possibility to track values of L̇ without compromising the
feasibility of the problem during dynamic motions with underactuated dynamics
such as trot. Furthermore, to prevent the optimization to provide solutions with
non physically consistent values of the angular momentum rate L̇, we introduced
the concept of Maximum Moments (MM), defined as the maximum moment that
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the robot can counteract in a given configuration. We used the MM boundaries to
limit the value of the angular momentum rate L̇ coming out of the optimization.
Although we present this method applied to a quadruped, it is valid for any type
of legged robot. We validated our proposed methods in two scenarios: using our
evaluation as a motion planner (DFEP, Section 7.1) and to evaluate heightmap
data collected from simulation (DFE, Section 7.3).

In the case of using it as planner we used the DFEP to generate reference
trajectories for a Whole Body Controller [55] (WBC) which used such references
to drive the robot in simulation. The references passed to the WBC are only the
desired trajectory, velocity, orientation, and angular velocity. We compared the
forces and L̇ computed using the DFEP and the forces and the L̇ acquired from
simulation, seeing that the DFEP predicted with good accuracy the behaviour
measured in simulation. This similarity and the fact that the robot was actually
able to follow the desired trajectory, are proofs of the correctness of the DFEP.

In the case of the heightmap evaluator we showed how by solving multiple
optimization problems it is possible to evaluate if there exist a dynamic transition
between the initial and final state considered with a given foothold. It is possible
to fully track the angular momentum rate L̇ in the case of slow and quasi-static
motions, such as crawl. We built a cost function that was able to quantify the
quality of the generated trajectory in terms of L̇ tracking, minimization of forces,
distance of the foothold considered with respect to the nominal and deviation from
a straight trajectory. We are able to choose an optimal foothold by the selecting
the foothold with the lowest cost.

To include also more dynamic motions in the heightmap evaluation, i.e., motion
that do not allow the complete tracking of both linear and angular quantities, such
as trot, we designed boundaries to constrain L̇. Such boundaries are intended to
define a physical limit on the maximum moment that the robot can counteract,
basing them on the maximum joint torques available.

In this thesis we tried to address this problem finding a convex formulation that
allowed to include different aspects of the locomotion. Although it has already
yielded some promising results, it is far from its completeness, as we describe in
the next section.
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8.1 Future work

As stated so far this method takes into account dynamics to evaluate the
transition feasibility for each foothold in a heightmap. Each foothold is evaluated
by solving a convex optimization problem that embeds the equations of motion in
form of constraints. Solving a convex problem requires time, more are the
variables considered in the problem, more is the time required to solve the
problem. At the moment of writing, solving each problem takes about 0.35s, which
is a relatively small amount of time but it is not suitable for fast real-time
applications. Considering that in a heightmap there are (worst case scenario,
considering a 33 × 33 heightmap) an average of 980 footholds, to evaluate a full
heightmap it would require around 5.7 minutes, which is definitely not suitable for
high dynamical motions. If we consider also that when trotting there are two legs
in the air at the same time, the time required for the evaluation increases as we
need to evaluate both heightmaps at the same time, performing combinations
between footholds (rear and front) to find the best configuration. As future work
we want to compensate for the long computation time by using a Convolutional
Neural Network (CNN) as it was done in [6]. However, training a NN while
accounting for the robot dynamics requires a more sophisticated architecture with
respect to the one shown in [6]. For example, the CNN shown in [6] only considers
as input a heightmap, since it only deals with geometrical properties (kinematics
and terrain morphology), however our inputs to the NN should also include the
robot states and very likely not a single heightmap, as it has been shown in
previous examples of NN [41]. Acquiring data from simulation, we can generate a
data set that will be used to train the neural network drastically reducing the
computation times and making it suitable for real time.

Once the algorithm is suitable for real time, we plan to test it in experiments
using the HyQ platform [48] for both versions, i.e., as a planner (DFEP) and as a
foothold adaptation criterion (DFE). The step right after making it suitable for
real time is to increase the evaluation frequency, making it to evaluate continuously
at each control loop.

Another future implementation planned is to use the algorithm in a hybrid way,
using it for both selecting footholds and as a motion planner. Once the foothold has
been selected using this method, the corresponding computed trajectories will be
used as a reference, to better track the predicted dynamical behaviour. In this way
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we can achieve more efficient trajectories, according to the cost function considered.
Finally, a probable direction in which to orient the future work is toward a

nonlinear problem formulation. Solving directly a nonlinear problem might improve
the computation of L̇ by including directly the nonlinear formulation (5.40) in
function of angular quantities. This would allow us to compute directly the angular
quantities required to achieve the angular momentum rate needed for the motion
considered. Although solving a nonlinear problem is a more complex task and
might take more time to solve, implementing it using a NN will reduce drastically
the time required to find a solution.
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Appendix A

Bézier curve
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Figure A.1: 2D example of a generic Bézier curve with normalized time as parametric variable.

A Bézier curve is a parametric curve composed by a Bernstein polynomial
(Figure A.1). A generic Bézier curve in a generic Rm space is a curve defined by
a certain number of control points (ρ ∈ Rm), that can be seen as the analogue of
coefficients for simple polynomial functions. A generic curve in a generic parametric
variable u is defined as:

B(u) =
nØ
i=0

bn,i(u) · ρi (A.1)

Where ρi is the ith control point, n is the order of the curve which is the analogue
of the degree of a polynomial, and bn,i(u) is the Bernstein basis polynomial. It is
defined as:

bn,i(u) =
A
n

i

B
ui(1 − u)n−i (A.2)

The relation between number of control points (ncs) and order of the curve is
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the same that connects the number of coefficients and the degree of a polynomial
function:

ncs = n+ 1 (A.3)

We can write a generic Bézier equation by expanding (A.1):

B(u) = bn,0ρ0 + bn,1ρ1 + . . .+ bn,nρn (A.4)

Combining (A.2) with (A.4) we can write a full expression for a generic Bézier
curve of order n with n+ 1 control points:

B(u) =
A
n

0

B
(1 − u)nρ0 +

A
n

1

B
u(1 − u)n−1ρ1 . . .

A
n

n

B
unρn (A.5)

Analogously to the coefficients of a polynomial function, we can associate a condition
to each control point of the curve. In order to correctly use a Bézier function with
real quantities, the parametric variable (u ∈ [0, 1]) has to be connected to real time.
To do this, we can apply the substitution u = t/T , where t ∈ [t0, tf ] is a generic
time instant and T = tf − t0 is the total period of time considered. The ratio t/T is
a time normalization transformation. The Bézier curve expressed is now expressed
in a normalized time domain (Figure A.1).

The same procedure described for the polynomial function can be applied to the
Bézier curves as well to obtain the control points coordinates. Considering the initial
time instant t0 = 0, u(t = t0) = 0 and the final time instant tf = T, u(t = tf ) = 1
without loss of generality, we can compute the control points as follows:

B(u) =
A

7
0

B
(1 − u)7ρ0 +

A
7
1

B
u(1 − u)6ρ1 + . . .+

A
7
7

B
(u)7ρ7 (A.6)

B(0) =
A

7
0

B
ü ûú ý

1

ρ0 = x0 −→ ρ0 = x0 (A.7)

B(1) =
A

7
7

B
ü ûú ý

1

ρ7 = xf −→ ρ7 = xf (A.8)

Where x0 and xf are two generic set of states (initial and final). Here we consider
them as position and their derivatives are considered velocity and acceleration
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respectively.

Derivatives

To compute the 6 control points left, we need to derive (A.6) to obtain the
expressions for the velocity, acceleration and jerk. A Bézier curve’s derivative is
still a Bézier curve of a lower order. All the Bézier curve’s derivatives depend on
the control points of the original curve. The following analytical procedure can be
exploited to compute the derivative of a Bézier curve.

The generic expressions for a kth Bézier curve derivative and its control points
are:

Bk(u) =
n−kØ
i=0

bn−k,i(u)ρki (A.9)

ρki = (n− k) · (ρk−1
i+1 − ρk−1

i ) (A.10)

Consider B(u) as a Bézier curve of a generic order n. The derivative of B(u)
with respect to u is defined as Ḃ(u) and can then be computed as:

Ḃ(u) =
n−1Ø
i=0

bn−1,i(u)ρ̂i (A.11)

Where the (∧) symbol has been used to represent the control points relative to the
first-order derivative of the Bézier curve, expressed as:

ρ̂i = n · (ρi+1 − ρi) (A.12)

The same process can be applied to any kth order derivative. For the 2nd and
the 3rd derivative we have:

B̈(u) =
n−2Ø
i=0

bn−2,i(u)ρ̃i (A.13)

...
B(u) =

n−3Ø
i=0

bn−3,i(u)ˆ̃ρi (A.14)

Where the ∼ symbol represents the control points for the second derivative. The
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Bézier curve

Initial Final
ρ0 = xp,0 ρ7 = xp,f
ρ1 = xv,0 · T

n
+ ρ0 ρ6 = ρ7 − xv,f · T

n

ρ2 = xa,0 · T 2

n(n− 1) + 2ρ1 − ρ0 ρ5 = xa,f · T 2

n(n− 1) + 2ρ6 − ρ7

ρ3 = xj,0 · T 3

n(n− 1)(n− 2) + 3ρ2 − 3ρ2 + ρ0 ρ4 = ρ7 − 3ρ6 + 3ρ5 − xj,f · T 3

n(n− 1)(n− 2)

Table A.1: Computation example of the curve’s control points.

control points can be computed as:

ρ̃i = (n− 1) · (ρ̂i+1 − ρ̂i) (A.15)
ˆ̃ρi = (n− 2) · (ρ̃i+1 − ρ̃i) (A.16)

Now that all the required derivatives expressions have been obtained, we can
compute the control points by imposing initial and final conditions as done in (A.7)
and (A.8). The control points obtained are reported in Table A.1.
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