
Università di Pisa

Corso di Laurea magistrale

in Ingegneria Robotica e dell’Automazione

On Slip Detection for Quadruped Robots

Supervisors:
Dr. Geoff Fink
Dr. Claudio Semini

University Advisor:
Prof. Lucia Pallottino

Author:
Ylenia Nisticò

Anno Accademico 2020/2021

1

This work is the result of an internship for Master’s Thesis conducted at the Dynamic
Legged Systems (DLS) at Istituto Italiano di Tecnologia (IIT), Genoa.

Tutors:
Dr. Geoff Fink
Dynamic Legged Systems (DLS) lab, Istituto Italiano di Tecnologia (IIT), Italy
Dr. Claudio Semini
Dynamic Legged Systems (DLS) lab, Istituto Italiano di Tecnologia (IIT), Italy

University Advisor:
Prof.ssa Lucia Pallottino
Research Center ”E. Piaggio”, Dipartimento di Ingegneria dell’Informazione, Università
di Pisa, Italy

“Nell’anno ’99 di nostra vita
io, Francesco Guccini, eterno studente

perché la materia di studio sarebbe infinita
e soprattutto perché so di non sapere niente”

- Francesco Guccini
da Addio, Stagioni

Contents

List of Figures ii

List of Tables iv

Abstract vi

List of Acronyms vii

1 Introduction 1
1.1 State of the art . 2

1.1.1 Proprioceptive Terrain-Aware Locomotion 3
1.1.2 Contact detection and localization 5
1.1.3 Slip detection and recovery . 6

1.2 Aim of this thesis . 8
1.3 Methodologies . 9
1.4 Outline . 9

2 Background theory 10
2.1 State Estimation . 10

2.1.1 Linear systems theory . 10
2.1.2 Probability theory . 13
2.1.3 Propagation of the states and covariances 16

2.2 The Kalman filter . 17
2.2.1 The Discrete-time Kalman Filter 18
2.2.2 The Continuous-time Kalman filter 20

2.3 The Extended Kalman Filter . 21
2.3.1 The continuous-time extended Kalman filter 21
2.3.2 The discrete-time extended Kalman filter 22
2.3.3 The hybrid extended Kalman filter 22

3 Modelling and Sensing 24
3.1 Quadruped Robot HyQ . 24
3.2 Robot Modelling . 25

3.2.1 Onboard Sensors . 27
3.3 Controller . 28

3.3.1 Reactive Controller Framework . 28

i

CONTENTS ii

4 Methods 30
4.1 Baseline Approach . 30

4.1.1 One leg slip detection . 30
4.1.2 Multiple leg slip detection . 31

4.2 A novel approach for slip detection . 33

5 Simulations Results 38
5.1 Crawl . 38

5.1.1 One Leg on an ice-patch . 38
5.1.2 Comparison with the baseline approach 41
5.1.3 Multiple Legs on ice-patches . 43
5.1.4 Comparison with the baseline approach 46

5.2 Trot . 49
5.2.1 One Leg on ice-patch . 49
5.2.2 Multiple Legs on ice-patches . 53

6 Experimental Results 57
6.1 Crawl . 57

6.1.1 Walking on non-slippery ground . 57
6.1.2 Walking on slippery ground . 59

7 Conclusion 65
7.1 Future Works . 65

Appendices 66

A Technical specifications of the robot 67

B Forward Kinematics 68

List of Figures

1.1 Popular legged robots . 2
1.2 HyQ on several terrains with different compliances 5
1.3 An anti-skid foot prototype . 8

2.1 Probability Density Function . 14

3.1 HyQ robot . 24
3.2 Location on Torso and Robot Base Coordinate Frame. 25
3.3 Slip dynamics . 27
3.4 Overview of the locomotion framework. 29

4.1 Trends of ∆V and ∆V with and without scaling in a simple trotting task
with variable feed rate . 34

4.2 Desired and actual foot velocity in a simulation task of crawling. 35

5.1 HyQ walking to an ice slab. 39
5.2 Shapes of ∆V and ∆P : one leg on ice slab 40
5.3 Slip detection: one leg on ice slab . 40
5.4 LF foot position along x-axis and y-axis 41
5.5 Shape of ∆V : baseline approach . 42
5.6 Slip detection: baseline approach . 42
5.7 LF leg position along x-axis and y-axis . 43
5.8 Multiple legs on ice slabs . 43
5.9 Shapes of ∆V and ∆P : multiple legs on ice slabs 44
5.10 Slip detection: multiple legs on ice slabs 44
5.11 LF leg position along x-axis and y-axis . 45
5.12 RF leg position along x-axis and y-axis . 45
5.13 LH leg position along x-axis and y-axis . 45
5.14 RH leg position along x-axis and y-axis . 46
5.15 Shapes of ∆V : baseline approach . 46
5.16 Slip detection: baseline approach . 47
5.17 LF leg position along x-axis and y-axis. 47
5.18 RF leg position along x-axis and y-axis. 48
5.19 LH leg position along x-axis and y-axis. 48
5.20 RH leg position along x-axis and y-axis. 48
5.21 One leg on ice slabs . 49
5.22 Shapes of ∆V V and ∆P : one leg on ice slab 50

iii

LIST OF FIGURES iv

5.23 Slip detection: one leg on ice slab . 50
5.24 LF leg position along x-axis and y-axis . 51
5.25 Shapes of ∆V : baseline approach. 51
5.26 Slip detection: baseline approach . 52
5.27 LF leg position along x-axis and y-axis. 52
5.28 Multiple legs on ice slabs . 53
5.29 Slip detection: multiple legs on ice slabs 53
5.30 Shapes of ∆V and ∆P : multiple legs on ice slabs 54
5.31 LF leg position along x-axis and y-axis. 54
5.32 RF leg position along x-axis and y-axis. 54
5.33 Shapes of ∆V : baseline approach . 55
5.34 Slip detection: baseline approach . 55
5.35 LF leg position along x-axis and y-axis . 56
5.36 RF leg position along x-axis and y-axis . 56

6.1 . 57
6.2 Slip detection: HyQ moving to a non slippery ground 58
6.3 Shapes of ∆V and ∆P : HyQ moving to a non slippery ground 58
6.4 HyQ walking on a slippery pallet . 59
6.5 Slip detection: multiple legs on slippery ground 59
6.6 Shapes of ∆V and ∆P : multiple legs on slippery ground 60
6.7 LF leg position along x-axis and y-axis . 60
6.8 RF leg position along x-axis and y-axis . 60
6.9 LH leg position along x-axis and y-axis . 61
6.10 RH leg position along x-axis and y-axis . 61
6.11 Slip detection: baseline approach . 62
6.12 Shapes of ∆V : baseline approach . 62
6.13 LF leg position along x-axis and y-axis . 62
6.14 RF leg position along x-axis and y-axis . 63
6.15 LH leg position along x-axis and y-axis . 63
6.16 RH leg position along x-axis and y-axis . 63

B.1 Base frame and joint frames used to compute the forward kinematics . . . 68

List of Tables

5.1 Parameters of the simulation test: one leg on ice patch 39
5.2 Parameters of the simulation test: multiple legs on ice patch 43
5.3 Parameters of the simulation test: one leg on ice patch 49
5.4 Parameters of the simulation test: multiple legs on ice patch 53

6.1 Parameters of the experimental test: one leg on slippery patch 58

A.1 Technical specifications of the HyQ robot 67

v

Abstract

Legged robots are a class of robotic systems constructed to operate in dangerous and un-
structured environments. They will outperform wheeled and tracked systems on uneven,
rough and soft terrain. To perform dynamic whole-body locomotion and to traverse diffi-
cult terrain, legged robots require sophisticated control strategies to generate appropriate
trajectories, and navigate without falling or getting stuck. Autonomous legged navigation
is based on the close relationship between locomotion and perception, crucial to operate
outside the laboratory. The robot has to perceive the environment and detect any change,
in order to autonomously take decisions based on what it perceived. For instance, when
the ground is slippery, common control techniques and state estimation algorithms may
not be effective because the ground is commonly assumed to be non-slippery. This thesis
addresses the problem of slip detection, a first fundamental step to implement a robust
controller that allows the robot to traverse on slippery ground. We propose an approach
independent of the gait type and independent of estimations of position and velocity of
the robot in an inertial frame, that is usually prone to drift problems. We validated the
approach on the hydraulically actuated quadruped robot HyQ , from the Istituto Italiano
di Tecnologia (IIT), and we compare it against a state-of-art slip detection algorithm. We
demonstrate the effectiveness of our approach and we show that the proposed method
results in a better slip detection, which avoids drift-related problems, is not influenced by
usual state estimation errors that can generate false positives, can be applied to detect the
slippage of one or multiple legs indiscriminately and can adapted to different gait type.

vi

List of Acronyms

DLS Dynamic Legged Systems

IIT Istituto Italiano di Tecnologia

MIT Massachusetts Institute of Technology

ROS Robot Operating System

HyQ Hydraulically actuated Quadruped

TAL Terrain-Aware Locomotion

PTAL Proprioceptive Terrain-Aware Locomotion

ETAL Exteroceptive Terrain-Aware Locomotion

WBC Whole-Body Control

pWBC Passive Whole-Body Control

STANCE Soft Terrain Adaptation aNd Compliance Estimation

F/T Force/Torque Sensors

GM Generalized Momenta

GRF Ground Reaction Force

IMU Inertial Measurement Unit

UKF Unscented Kalman Filter

HMM Hidden Markov Model

RV Random Variable

PDF Probability Distribution Function

pdf Probability density function

EKF Extended Kalman Filter

DoF Degree of Freedom

vii

LIST OF ACRONYMS viii

HAA Hip Adduction-Abduction

HFE Hip Flexion-Extension

KFE Knee Flexion-Extension

LIDAR LIght Detection And Ranging

SLAM Self Localization And Mapping

RCF Reactive Controller Framework

LF Left-Front

RF Rigth-Front

LH Left-Hind

RH Right-Hind

Chapter 1

Introduction

We live in an era of rovers on Mars [1], drones surveying Earth (and Mars [2]), and
self-driving cars. Similarly, legged robots have gained an increasing popularity over the
past few decades. This is because they have the potential to operate in unstructured and
dangerous environments, and to traverse difficult terrain where existing vehicles cannot
go. For example, wheeled platforms perform poorly over soft or un-even terrain versus
legged robots. As a result, half the Earth’s landmass remained inaccessible to existing
wheeled and tracked vehicles, whereas a much greater area can be reached by animals on
foot [3]. In the near future, we will be able to build legged robots that can go to the places
that animals can now reach. The reason why legs provide better mobility in rough terrain
is that they can use isolated footholds that optimize support and traction. This means
that a legged system can choose among the best footholds in the reachable terrain. On
the other hand, wheeled platforms require a continuous path of support. A legged system
also has greater agility in overcoming obstacles, and its performance can be independent
of the roughness of the ground. This means that a legged robot is able to smoothly carry
a load, even in case of pronounced variations in the terrain.

There is a further reason for exploring legged machines: to gain a better understanding
of human and animal locomotion. Animals demonstrate great mobility and agility. Forms
of locomotion on land include walking, running, hopping or jumping, dragging and crawl-
ing or slithering. Each step also requires energy to overcome inertia, balance is required
for movements on land. We are still at a primitive stage in understanding the control
principles that underlie walking and running. One way to learn more about plausible
mechanisms for animal locomotion is to build legged machines, performing similar loco-
motion tasks. Then, studying their control systems and mechanical structures designed
to solve similar problems, we can gain new insights into these problems and learn about
possible solutions.

1

CHAPTER 1. INTRODUCTION 2

(a) Atlas [4] (b) HyQ [5] (c) HyQReal [6] (d) ANYmal [7]

(e) BigDog [8] (f) MIT Cheetah [9]

Figure 1.1: Some popular legged robots: they range from bipeds (a) to fully-hydraulically
actuated quadrupeds (b),(c),(e), to fully electrically actuated quadruped robots (d),(f)

1.1 State of the art

The field of legged robotics has seen significant progress in recent years. The robots have
acquired amazing capabilities and some of them have reached a point where they can
actually leave lab environments and carry out tasks in real-world scenarios. For example,
the performance of Atlas [4] (Fig. 1.1a), a bipedal robot of Boston Dynamics, continues to
surprise us. In the most recent video, the robot demonstrated incredible athletic abilities
by doing parkour [10]. On the other hand, among quadruped robots, the Hydraulically
actuated Quadruped robots HyQ and HyQReal [5,6] were designed at the Istituto Italiano
di Tecnologia (IIT) (Genoa) [11] to study highly dynamic motions (e.g. running, hopping,
jumping), and to navigate over rough terrain (Fig. 1.1b,1.1c). HyQReal demonstrated
a strong athletic ability, by pulling an aircraft in an experiment. The research group of
Swiss Federal Institute of Technology (Zurich) developed the quadruped robot ANYmal
[7], for autonomous operation in challenge environments [12]. Massachusetts Institute of
Technology (MIT) introduced the electric actuated quadruped robot MIT Cheetah (Fig.
1.1f) [13] in 2013 and then MIT Cheetah 1,2,3 [14,15] to study the high speed quadrupedal
locomotion. One of the most popular quadruped robot is Spot [16], constructed by Boston
Dynamics Corporation. Spot is a versatile quadruped robot, suitable for many applica-
tions. It demonstrated great ability in navigating several kinds of terrain while sensing
its environment. In 2019, Unitree Robotics released Aliengo [17], an electric quadruped
robot which demonstrated excellent athletic performance, such as fast running, jumping,
climbing in place after falling to the ground.

It is important that the improvements achieved on a hardware and control level go
hand in hand with the perceptive capabilities of the robotic platforms. As part of this,

CHAPTER 1. INTRODUCTION 3

state estimation adopts a central role since estimated quantities are often prerequisites
for other tasks such as balance control, trajectory planning, target tracking, or terrain
mapping [18]. The strong dependency of other tasks on the estimated outputs imposes
high reliability requirements from the state estimation. Missing, delayed, or bad estimates
can quickly lead to failures of the robotic platform causing potential damage to the robot
or its surroundings. This is the first reason that drives us to the use of simple sensor
modalities: by employing sensors with low data processing complexity the framework
is less prone to possible failures. For instance, inertial measurements require much less
processing than image streams and are less affected by bad environmental conditions such
as poor illumination or missing texture. Inertial sensors are nowadays often available
on robotic platforms and, arguably, provide a very reliable source of information. While
attitude estimates can be generated from inertial measurements only, position or velocity
estimates are very inaccurate due to the underlying numerical integration of acceleration
measurements. On the other hand, legged robots are often also equipped with kinematic
sensors such as joint encoders.

This thesis focuses on state estimation using proprioceptive sensors, which only measure
information internal to the robot (e.g. acceleration, motor speed, joint angles).

1.1.1 Proprioceptive Terrain-Aware Locomotion

Legged robots are moving out of research labs into the real-world with the promise of
aiding humans in various applications. For this reasons, legged robots are expected to
traverse terrains that are usually dynamic, unexplored, and uncertain. The core problem
is that the terrain that the robot traverse introduces a large amount of uncertainty. The
robots have to be able to perform several tasks: to sense the world around them and
the terrain they are traversing, to understand the geometrical and physical properties of
the terrain, to plan their motion based on the understanding of the terrain and its own
limitations, and to quickly adapt this planned motion in case of unforeseen situations (e.g.
falling, slipping, external pushes, etc.). This means that the robots have to be terrain
aware. That is to say, the robot is able to perceive and understand the surrounding terrain,
and is able to take decisions based on that. The robot has to have a good knowledge of
its surroundings and use whatever sensors it has to perceive these surroundings and act
upon them.

Terrain-Aware Locomotion (TAL) can be categorize into Proprioceptive Terrain-Aware
Locomotion (PTAL) and Exteroceptive Terrain-Aware Locomotion (ETAL) [19]. ETAL
relies on terrain information acquired using the robot’s visual sensing. PTAL relies on
the internal robot measurements, using information acquired by proprioceptive sensors.
ETAL strategies have the advantage of being able to “look ”at the environment in front of
the robot. This allows both to select the best footholds based on the terrain information
the capabilities of the legs (foothold selection [20, 21]), and to deduce some properties of
the ground from images using deep learning [22,23].

There are many scenarios where it is difficult to obtain visual feedback, for example,
foggy areas or with dense vegetation. In these casses, PTAL strategies are more effective
than ETAL ones. One common PTAL strategy is to localize and detect constacts. The
robot interacts with the environment mainly through feet-ground contacts. Detecting

CHAPTER 1. INTRODUCTION 4

and localizing contacts is possibile because proprioceptive sensors measure the internal
robot states. Some PTAL strategies rely on the joint position, velocity and/or torque
measurements to detect and localize contacts [24–26]. Furthermore, PTAL strategies
are used to deduce the physical and geometrical properties of the terrain and adapt
accordingly. For instance, in [27] PTAL strategies have been adopted in locomotion
planning and control over terrain with different impedance parameters. The robot was
able to detect changes in the terrain impedance, and act upon it online. However, since
PTAL uses only proprioceptive sensors, the action from these strategies are limited to
corrective operations. The robot’s internal states is not sufficient to predict future robot-
terrain interactions: an action has to happen first before starting a reactive strategy. For
example, the foot has to collide before triggering a step reflex, the shin has to collide to
detect an obstacle [25], or the foot has to touch the terrain to infer its physical properties.

This thesis focuses on Proprioceptive Terrain-Aware Locomotion, applied at the level
of state estimation. In particular, the thesis investigates locomotion on slippery terrain.
The final goal is to develop a new algorithm for the leg-slip detection during the motion.
In the following sections some of the most relevant work related to aforementioned topics
are presented.

Locomotion over Soft Terrain

Walking on soft terrain is difficult because there are unmodeled contact dynamics that
standard Whole Body Controllers (WBCs) are not accounting for. These uncertainties
affect the locomotion, stability and performance of the system. Most of the work done on
state estimation for legged robots is designed for rigid contacts, and does not take into
account the physical parameters of the terrain. To be terrain aware, the robot should
be able to adapt to terrains with different impedances. In [27, 28], the authors presented
a Passive Whole-Body Control (pWBC) framework for quadruped robots, aware of the
terrain geometry and friction properties and then they extended the PTAL capabilities of
the previously presented pWBC, to adapt it to multiple terrains with different impedances
(such as soft terrain, Fig. 1.2).

In [27], a soft terrain adaptation algorithm called Soft Terrain Adaptation aNd Compli-
ance Estimation (STANCE) is proposed. It consists of a Compliant Contact Consistent
Whole-Body Control that is aware of the terrain impedance, and an online Terrain Com-
pliance Estimator that senses and estimates the terrain impedance. They showed that
STANCE can adapt online to any type of terrain compliance (still or soft), with aggres-
sive maneuvers, different forward velocities and external disturbances. They validated
the algorithm in simulations and experiments, allowing the HyQ robot to adapt online to
terrains with different compliances without pre-tuning. The robot successfully dealt with
the transition between different terrains and showed the ability to differentiate between
compliances under each foot.

In [29], to understand “how and why the soft terrain affect state estimation for legged
robots”, the authors utilized a state estimator that fuses IMU measurements with leg
odometry designed with rigid contact assumptions. They experimentally validated this
state estimator on HyQ trotting over both soft and rigid terrain, and demonstrated that
soft terrain negatively affects state estimation, and that the state estimates have a no-
ticeable drift over soft terrain compared to rigid terrain.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: HyQ on several terrains with different compliances [29].

1.1.2 Contact detection and localization

Since legged robots operate in challenging and unstructured environments, unexpected
collisions with obstacles (and self collisions) are lickely to occur. Many research works
assume perfect knowledge of the environment and focus on generating motions at locations
to avoid collisions. However, information about the topology of the environment might
not be available in real-life applications. In these cases, the robot-environment interaction
is not guaranteed to happen only at the end-effector (i.e. the foot). This situation is
challenging because most advanced control strategies used to stabilize the trunk require
the exact location of the contact points [28, 30, 31]. Consequently, to achieve robust
locomotion, it is important to detect unexpected collisions and use them as feedback for
stabilizing trunk controller. Relevant research effort has been devoted to finding methods
that detect and estimate the location of arbitrary contacts occuring anywhere along the
robot structure, not only at feet and hands. Some approaches use force/torque (F/T)
sensors combined with a distributed skin to capture external forces that are applied to
arbitrary locations [32–35]. However, most robots do not have this type of sensors as
they significantly increase the complexity of the platform. Furthermore, most of these
sensors are not capable nor designed to handle strong interaction forces; they are typically
designed for tasks involving human-robot interaction.

Other methods for detecting and estimating external forces are based on model-based
observers of generalized momenta (GM) [36]. The basic idea of these approaches is to
compare computed torque with real torque to infer the action of external forces. Their
advantage is that they require only proprioceptive measurements (torque and encoder
measurements) without the need of additional force sensors. In [37] the first approach
able to simultaneously detect collisions, find the contact link (not the contact location)
and estimate the external forces is presented. Contact isolation in most GM approaches
rely on thresholding the estimation coming from an observer (termed residual) that is a
filtered version of the external wrench. However, most GM approaches are applied only
to fixed-base robots. In [38] the authors developed an approach for floating-base robots
(humanoids) in which they combined and compared the GM approaches with a F/T-
sensor-based approach. In addition to contact isolation, some approaches try to estimate

CHAPTER 1. INTRODUCTION 6

the contact location at the price of increased complexity, e.g. in [24] researchers developed
an optimization-based approach based on particle filters to detect and localize multiple
contacts on a humanoid using only proprioceptive sensors.

In general, the majority of approaches based on proprioceptive measurements fail to
determine the exact contact location on the most distal link. Also both in [38] and [24] rely
on a very accurate model of the robot. Moreover, they are demonstrated only in simulation
with a robot that is stationary when an external force is applied. They do not consider
the implications of what happens when the robot contact is made during motion. When
it comes to real applications, all the approaches based on filters or observers are strongly
affected by modelling errors, sensor noise, offsets, friction and structural compliance.
Moreover, due to the fact that they are filter-based, these approaches present an inherent
delay (e.g. due to filter dynamics or the time it takes to reach the threshold to trigger
detection) that often poses a limit on the gains of the observers.

In the context of quadruped robots, shin collisions are typically undesired events. De-
pending on the configurations of the robot [39], shin collisions can cause the robot to
get stuck when moving forward or backward. During blind locomotions this situation
becomes even more critical since the robot cannot acquire detailed information about the
surface below it. In [25] the authors investigated the effect that systematic errors and
delays in contact estimation have on quadruped locomotion performance. Initially, they
described a study of the impact of shin collisions on dynamic locomotion, then they pro-
posed a kinematic strategy to localize collisions on the most distal joint (i.e., the shin).
They demonstrated with real experiments the increase in locomotion performance given by
exploiting the knowledge of the online estimated shin contact in the stabilizing controller.

Another approach to localize contacts and collisions is proposed in a recent work [26].
Their method, implemented in 2D, is based on two assumptions: (i) the contact velocity
that is in direction normal to the surface of the link must be zero, (ii) the contact velocity,
just before the collision, must be positive. Their approach is simple because with only
the usage of proprioceptive sensors, it is possible to detect the collision, providing a set of
contact points, not only just one point, along the robot link. It can also be implemented
easily, in order to obtain a single contact point, adding filtering or additional dynamic
constraints such as acceleration.

1.1.3 Slip detection and recovery

One of the most open and challenging research problem in dynamic locomotion is slip
detection and recovery. Most of the common methods perform trajectory planning and
state estimation assuming no-slip conditions. This thesis mainly aims to investigate the
slip detection making use of proprioceptive sensors.

The motion of a legged robot is based on two main phases: the stance phase in which
the foot is in contact with the terrain, the swing phase in which the foot does not touch
the ground and as a consequence no force is applied. Actually, most state-estimation algo-
rithms rely on the assumption that the stance feet constraints are not violated (e.g. they
are not moving or are supposed to move very little). Kinematic-based state estimation or
odometry techniques [40, 41], which rely on the assumption that none of the stance feet
is slipping, are prone to drift if the amount of slip is relevant (or if there is a compliance

CHAPTER 1. INTRODUCTION 7

between the base and the ground which is not modelled).
One of the earlier work on slip detection and recovery is from Takemura et al. [42], who

presented both a long term and short term strategy for slip recovery. The former aims
to change gait frequency and stride length when approaching slippery surfaces. However,
changing locomotion parameters to address slippage can be successful only on terrain with
limited roughness and moderate slipperiness. Conversely, if very challenging environment
is considered, the occurrence of slippage might result in unrecoverable loss of stability
because any other foot-step can be infeasible. At this extent, Takemura proposed to
instantaneously add a force to have the ground reaction forces back in the friction cone.
This approach has several shortcomings: (i) it is based on the idea that the normal is
properly estimates; (ii) the required force is the result of the robot motion in interaction
with the environment. More precisely, the GRFs can only be controlled to a limited extent
in the null-space of the contact constraints. In addition to this the maximum applicable
total normal force is constrained by the robot weight.

More recently, in one of the online videos, the BigDog robot (Fig. 1.1e) demonstrated
to successfully recover from slipping on ice [8]. However, to date, no experimental results
have been published and no details have been reported on the repeatability of the used
approach.

In [18] a state estimation approach for legged robots based on kinematic velocity mea-
surements at the ground contacts is introduced. The obtained information is fused with
measurements from an on-board IMU by means of an unscented Kalman filter (UKF).
The provided nonlinear observability analysis showed that, for general robot motions, all
states were observable except for the global position and the yaw angle. This resulted in
a filter which accurately estimates the inclination angles (roll and pitch) as well as the
velocities of the robot. It also avoided unnecessary assumptions on the shape of the floor
or on the employed gait pattern and was robust to a certain amount of foot slippage.
This filter was implemented on the legged robot StarlETH [9] (Fig. ??) and it enabled
dynamic locomotion over uneven and labile terrain.

In [43] the authors presented a methodology for slip detection and estimation of the
friction parameters, plus a recovery strategy which exploits the capabilities of a whole
body controller, implemented for locomotion, which optimizes for the ground reaction
forces (GRFs). The estimation makes use only of proprioceptive sensors. This method
is fully described in chapter 4, since this approach is used as a baseline for the novel
algorithm presented in this thesis project.

More recently, in [44] a probabilistic approach for contact and slip estimation, based on
a Hidden Markov Model (HMM) is developed. A slip recovery approach relied on invasive
impedance control and friction modulation. They performed field tests on a frozen ground,
verifying that the presented pipeline could successfully stabilize ANYmal [7] (Fig. 1.1d),
while losing traction.

However, the aforementioned works have attempted to improve kinematical-inertial esti-
mation accuracy by detecting unstable contacts and reducing their influence on the overall
estimation. Some approaches model the contact location as being fixed and affected only
by Gaussian noise. This modeling is incorrect in several conditions, such as non-rigid
terrain.

Alternatively, some works have focused on the design of the foot. For example, in

CHAPTER 1. INTRODUCTION 8

[45] an anti-skid foot which conditionally utilizes two types of foot pads is introduced:
the primary foot pad with rubber and the complementary foot pad with the linearly-
constrained spine mechanism and anchoring spines (Fig. 1.3). The foot switches the foot
pad from the first to the second only when the primary foot pad slips. To detect the
slippage on the primary foot pad, a passive slip detection mechanism is developed. In
addition, to utilize the complementary foot pad only when the primary foot pad slips, a
lock & release mechanism was designed.

Figure 1.3: The anti-skid foot prototype presented in [45]

These approaches are of limited applicability to legged robots, because they need a high
cost force/torque sensor to be attached to the foot tip. However, due to the repetitive
impacts with the ground, in the long run, this can result in a damage of the sensor.
Furthermore, during locomotion, the touchdown event can create discontinuities in the
force signal and jeopardize the detection. As a matter of facts, it is not easy to measure
the instant when the force oscillation, due to the touch-down, has setted down, in order
to have a detection without false positives. Conversely, a detection strategy based on
kinematics is preferable in the context of legged robots where ground impacts are the
order of the day.

Overall, conventional systems for legged locomotion over rough terrain enhance in com-
plexity as more scenarios are considered, are extremely labor-intensive to develop and
maintain, and remain vulnerable to situations beyond their controller design implemen-
tation.

1.2 Aim of this thesis

Perception and state estimation play an important role to achieve breakthroughs in dy-
namic whole-body locomotion for quadruped robots. This means that legged robots should
be able to perceive their surrounding environment, detect any sudden change, and take
decisions based on that. The detection aspect in quadruped robots includes (but is not
limited to): detecting and localizing contact points between the robot and an obstacle,
detecting the terrain’s impedance properties, and detecting slippage. Based on that, this
thesis focuses on developing a new approach for slip detection, the first fundamental step
to then implement a robust controller that allows the robot the locomotion on slippery
ground. Once the robot detect slippage, it can trigger a reflex action and adapt it’s motion

CHAPTER 1. INTRODUCTION 9

trajectories to not slip. We validated the proposed approach on the 90 Kg Hydraulically
actuated Quadruped (HyQ) robot (Istituto Italiano di Tecnologia IIT), and we compared
it against a state-of-art slip detection algorithm. We showed that our approach can result
in a better slip detection, which is independent of the gait type and of the robot position
and velocity estimation in an inertial frame, that is related to drift-problems.

1.3 Methodologies

To validate the objective of this thesis it was necessary, first of all, to provide a C++
implementation of the robot kinematics and dynamics. The next step was the C++
implementation of the proposed algorithm and its verification in a simulation environment.
In this context, we took advantage of the 3D visualizer RVIZ [46] , to then switch to a
more accurate software simulator such as Gazebo [47]. To integrate the work with the
other elements of the robot it was essential to build the proper ROS [48] structure.

To check if the results were consistent with the reality, PlotJuggler [49] was used to study
the real-time behaviour of the robot. Then all the datas collected from the simulations
were developed in Matlab [50] in order to improve the phase of filtering, providing, as a
consequence, a desired output thanks to a manually tuned procedure.
Finally, once the simulation part was completed, it was possible to proceed with the
hardware experiments on the robot HyQ.

1.4 Outline

This thesis is structured as follows: Chapter 1.1 presents a part of the state of the art
related to the problem of state estimation and proprioceptive locomotion for legged robots;
chapter 2 introduces the theory on state estimation and filtering; chapter 3 describes the
target platform HyQ; chapter 4 describes a novel algorithm of slip detection; chapter 5
shows the results obtained in simulations and the comparison with those obtained using
a previous existing algorithm of slip detection; chapter 6 shows the experimental results
and finally chapter 7 is dedicated to conclusions and future works.

Chapter 2

Background theory

2.1 State Estimation

There are some common issues we must face in robotic applications, particularly state
estimation and control. The state of a robot is a set of quantities, such as position,
orientation, and velocity, that, if known, fully describe the robot’s motion over time.
Here we focus entirely on the problem of estimating the state of a robot, putting aside
the notion of control.

In this chapter, we introduce the classic estimation results for linear systems corrupted
by Gaussian measurement noise. We then examine some of the extensions to nonlinear
systems with non-Gaussian noise. After all, we derive the state estimation algorithm (the
Extended Kalman Filter EKF)

2.1.1 Linear systems theory

Many processes in our world can be described by state-space systems. If we derive a
mathematical model for a process, then we can use the tools of mathematics to control the
process and obtain information about it. Linear systems theory is based on the fact that
if we know the state of a system at the present time, and we can know all of the present
and future inputs, then we can deduce the values of all future outputs of the system.
State-space models can be generally divided into linear models and nonlinear models. A
continuous-time, deterministic linear system can be described by the equations:{

ẋ = Ax+Bu

y = Cx
(2.1.1)

where x is the state vector, u is the control vector and y is the output vector. Matrices
A, B, C are appropriately dimensioned matrices. The A matrix is the system matrix, B
is the input matrix and C is the output matrix.

Although most real processes are nonlinear. Nonlinear systems are often approximated
as linear systems, because the mathematical tools available for estimation and control are
much more accessible and understood for linear systems. That way we can use the tools
that have been developed for linear systems to derive estimation or control algorithms.

10

CHAPTER 2. BACKGROUND THEORY 11

Real systems always have some nonlinearities. The general form of a continuous-time
nonlinear system can be written as{

ẋ = f(x, u, w)

y = h(x, v)
(2.1.2)

where f() and h() are arbitrary vector-valued functions. w indicates process noise and v
indicates measurement noise. If f() and h() are explicit functions of the time t then the
system is time-varying. Otherwise the system is time-invariant. In order to apply tools
from linear systems theory to nonlinear systems, we need to linearize the nonlinear system.
To see how this is done, we can expand the nonlinear system equation f(x, u, v) around
the nominal operating point (x̄, ū, w̄). We then obtain a linear system approximation as
follows:

ẋ = f(x, u, w) ' f(x̄, ū, w̄)+
∂f

∂x

∣∣∣
0
(x−x̄)+

∂f

∂u

∣∣∣
0
(u−ū)+

∂f

∂w

∣∣∣
0
(w−w̄) = ˙̄x+Ax̃+Bũ+Lw̃

(2.1.3)
where the 0 subscript means that the function is evaluated at the nominal point (x̄, ū, w̄)
and A,B and L are defined by the above equations. The tilde quantities in 2.1.3 are
defined as

x̃ = x− x̄
ũ = u− ū (2.1.4)

Subtracting ˙̃x from both side of equation 2.1.3 gives

˙̃x = Aw̃ +Bũ+ Lw̃ (2.1.5)

Since w is noise, we will set w̄ = 0 so that w̃ = w and we obtain

˙̃x = Aw̃ +Bũ+ Lw (2.1.6)

We see that we have a linear equation for ˙̃x in terms of x̃,ũ and w. As long as the
deviations from the nominal values remain small, the linearization will be accurate.
In a similar manner we can expand the nonlinear measurement equation given by 2.1.2
around a nominal operating point x = x̄ and v̄ = 0. This results in the linearized
measurement equation:

ỹ =
∂h

∂x

∣∣∣
0
x̃+

∂h

∂v

∣∣∣
0
ṽ = Cx̃+Dv (2.1.7)

where C and D are defined by the above equation and ỹ = y− ȳ. 2.1.3 and 2.1.7 comprise
a linear system that describes the deviations of the state and output from their nominal
values.

Most systems in the real world are described with continuous-time dynamics . How-
ever, state estimation and control algorithms are almost always implemented in digital
electronics. This often requires a transformation of continuous-time dynamics to discrete-
time dynamics.
The solution of a continuous-time linear system 2.1.1 is given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2.1.8)

CHAPTER 2. BACKGROUND THEORY 12

Let t = tk (some discrete time point) and let the initial time t0 = tk−1 (the previous
discrete time point). Assume that A(τ), B(τ) and u(τ) are approximately constant in the
interval of integration. We then obtain

x(tk) = eA(tk−tk−1)x(tk−1) +

∫ tk

tk−1

eA(tk−τ)dτBu(τk−1) (2.1.9)

Now define ∆t = tk − tk−1, and substitute for τ in the above equation to obtain

x(tk) = eA∆tx(tk−1)+

∫ ∆t

0

eA(∆t−α)dαBu(τk−1) = eA∆tx(tk−1)+eA∆t

∫ ∆t

0

e−AαdαBu(tk−1)

(2.1.10)

xk = Fk−1xk−1 +Gk−1uk−1 (2.1.11)

where xk, Fk, Gk and uk are defined by the above equation. This is a linear dicrete-time
approximation to the continuous-time dynamics given in 2.1.1. The transformation from
a continuous-time system to a discrete-time system is called discretization. At the end of
the discretization we obtain a linear system defined as{

xk+1 = Fxk +Guk

yk = Hxk
(2.1.12)

To compute the G matrix we approximate the integral of 2.1.10. The most accurate
approximations, in order of increasing computational effort, are rectangular integration,
trapezoidal integration and fourth-order Runge-Kutta integration:

• Rectangular integration (also called Euler integration). It uses rectangles to approx-
imate the area under the curve. The interval of integration could be sub-divided into
n smaller intervals of equal lengths and, assuming the single time interval (tn+1− tn)
small, n rectangles can be used to approximate the integral:

x(tn) ' x(0) +
n∑
k=0

∫ tk+1

tk

f [x(tk), u(tk), tk]dt = x(0) +
n∑
k=0

f [x(tk), u(tk), tk]T

(2.1.13)

• Trapezoidal integration. This method is based on the same idea of the previous one
but instead of approximating each area as a rectangle, it approximates each area as
a trapezoid.

• Range-Kutta integration. In order to further improve the integral approximation,
this approach performs additional function calculations at each time step. nth−order
Runge-Kutta integration is the approximation of an integral by performing n func-
tion calculations at each time step. This kind of integration is more computation-
ally demanding than rectangular or trapezoidal integration, but it also provides for
greater accuracy.

CHAPTER 2. BACKGROUND THEORY 13

2.1.2 Probability theory

In an idealized world, the robot might incorporate sensors that can measure, without
error, the state x. Real sensors are characterized by noise and, more important, by range
limitations. In our attempt to filter a signal, we will be trying to extract meaningful infor-
mation from a noisy signal. In order to accomplish this, we need to know something about
what noise is, some of its characteristics and how it works. The probabilistic approach
generalizes this idealized view by modeling robot sensors by conditional probability dis-
tributions. Firs of all it is necessary to introduce some definitions. We define a random
variable (RV) as a functional mapping from a set of experimental outcomes (the domain)
to a set of real numbers (the range). The outcome of a particular experiment is not an
RV, it becomes certain. This distinction between an RV and its realization is important
for understanding the concept of probability. An RV can be either continuous or discrete.
The most fundamental property of an RV X is its probability distribution function (PDF)
FX(x) defined as

FX(x) = P (X ≤ x) (2.1.14)

In the above equation, FX(x) is the PDF of the RV X, and x is a nonrandom independent
variable or constant. Some properties of the RV are

FX(x) ∈ [0, 1]
FX(−∞) = 0
FX(∞) = 1
FX(a) ≤ FX(b) if a ≤ b

P (a < X ≤ b) = FX(b)− FX(a)

(2.1.15)

Th probability density function pdf fX(x) is defined as the derivative of the PDF.

fX(x) =
dFX(x)

dx
(2.1.16)

Some properties of the pdf that can be obtained from this definition are

FX(x) =
∫ x
−∞ fX(z)dz

ffX(x) ≥ 0∫ infty
−∞ fX(x)dx = 1

P (a < x ≤ b) =
∫ b
a
fX(x)dx

(2.1.17)

PDF and pdf can be conditional. The conditional distribution and density of the RV X
given the fact that event A occurred are defined as

FX(x|A) = P (X ≤ x|A) =
P (X ≤ x,A)

P (A)
(2.1.18)

fX(x|A) =
dFX(x|A)

dx
(2.1.19)

The average value of an RV X over a large number of experiments is the exptected value,
also be called the expectation, the mean or the average of the RV. Suppose that we run

CHAPTER 2. BACKGROUND THEORY 14

the experiment N times and observe a total of m different outcomes. We observe the
outcome A1 occurs n1 times, A2 occurs n2 times, ... , and Am occurs nm times. Then the
expected value of X is computed as

E(X) =
1

N

m∑
i=1

Aini (2.1.20)

We can compute the expected value of X also as

E(X) =

∫ ∞
−∞

xfX(x)dx (2.1.21)

A measure of how much variability there is in an RV is given by the variance. It is a
measure of how much we expect the RV to vary from its mean. The formal definition is

σ2
x = E[(X − x̄)2] =

∫ infty

−infty
(x− x̄)2fX(x)dx (2.1.22)

We use the notation X̃(x̄, σ2) to indicate that X is an RV with a mean of x̄ and a variance
of σ2.

An RV is called Gaussian or normal if its pdf is given by

fX(x) =
1

σ
√

2π
e[

−(x−x̄)2

2σ2] (2.1.23)

0
x

y

Figure 2.1: pdf of a Gaussian RV with mean 0 and variance 1

Figure 2.1 shows the pdf of a Gaussian RV with mean of zero and variance of one. If
the mean changes, the pdf will shift to the left or right. If the variance increases, the
pdf will spread out. If the variance decreases, the pdf will be squeezed in. The PDF of a
Gaussian RV is given by

FX(X) =
1

σ
√

2π

∫ x

−∞
e[

−(z−x̄)2

2σ2]dz (2.1.24)

Two different events are independent if the occurrence of one event has no effect on the
probability of the occurrence of the other event. This concept can be extended to say
that random variables X and Y are independent if they satisfy the following relation:

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) ∀x, y (2.1.25)

CHAPTER 2. BACKGROUND THEORY 15

This implies
FXY (x, y) = FX(x)FY (y)
fXY (x, y) = fX(x)fY (y)

(2.1.26)

We define the covariance of two scalar RVs X and Y as

CXY = E[(X − X̄)(Y − Ȳ)] = E(XY)− X̄Ȳ (2.1.27)

The correlation coefficient of two scalar RVs X and Y is

ρ =
CXY
σxσy

(2.1.28)

The correlation coefficient is a normalized measurement of the independence between two
RVs X and Y . If X and Y are independent, then ρ = 0 (although the converse is not
necessarily true). The correlation of two scalar RVs X and Y is

RXY = E(XY) (2.1.29)

Two RVs are said to be uncorrelated if RXY = E(X)E(Y). From the definition of
independence, we see that if two RVs are independent then they are also uncorrelated.
Independence implies uncorrelatedness, but uncorrelatedness does not necessarily imply
independence. However, in the special case in which two RVs are both Gaussian and
uncorrelated, then it follows that they are also independent.

A random variable can change with time. In this case we are talking about a stochastic
process X(t). Since a stochastic process is an RV that changes with time, it has a dis-
tribution and density function that are function of time. If X(t) is a random vector of n
elements the PDF and pdf of X(t) are

FX(x, t) = P [X1(t) ≤ x1and · · ·Xn(t) ≤ xn(t)] (2.1.30)

fX(x, t) =
dnFX(x, t)

dx1 · · · dxn
(2.1.31)

The mean and the covariance of X(t) are also functions of time:

x̄ =

∫ infty

−infty
xf(x, t)dx (2.1.32)

CX(t) = E[X(t)− x̄(t)][X(t)− x̄(t)] =

∫ infty

−infty
[x− x̄(t)][x− x̄(t)]Tf(x, t)dx (2.1.33)

The correlation between two RVs X(t1) and X(t2) is called the autocorrelation of the
stochastic process X(t):

RX(t1, t2) = E[X(t1)XT (t2)] (2.1.34)

The autocovariance of a stochastic process is defined as

CX(t1, t2) = E[X(t1)− X̄(t1)][X(t2)− X̄(t2)]T (2.1.35)

CHAPTER 2. BACKGROUND THEORY 16

If the RV X(t1) is independent from the RV X(t2) for all t1 6= t2 then X(t) is called white
noise. Otherwise X(t) is called colored noise.

In optimal filtering research and experiments, we often have to simulate correlated white
noise. That is, we need to create random vectors whose elements are correlated with each
other according to some predefined covariance matrix. Suppose we want to generate an
n-element random vector w that has zero mean and covariance Q:

Q =

 σ
2
1 . . . σ1n
...

...
σ1n . . . σ2

n

 (2.1.36)

Since Q is a covariance matrix, we know that all of its eigenvalues are real and nonnegative.
We can therefore denote its eigenvalues as µ2

k.

λ(Q) = µ2
k (k = 1, ..., n) (2.1.37)

We can generate an n-element random vector w with a covariance matrix of Q following
this steps:

• Find the eigenvalues of Q, and denote them as µ2
1, ..., µ

2
n

• Find the eigenvectors of Q, and denote them as d1, ..., dn such that

D = [d1 · · · dn]
D−1 = DT (2.1.38)

• For i = 1, ..., n compute the random variable vi = µiri, where each ri is an indepen-
dent random number with a variance of 1 (unity variance).

• Set w = Dv

2.1.3 Propagation of the states and covariances

Suppose we have the following linear discrete-time system:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1 (2.1.39)

where uk is a known input and wk is a Gaussian zero-mean white noise with covariance
Qk. The mean of the state xk and the covariance of xk change with time. We can use
2.1.39 and 2.1.40 to obtain their expressions:

x̄k = E(xk) = Fk−1x̄k−1 +Gk−1uk−1 (2.1.40)

(xk − x̄k)(· · ·)T = (Fk−1xk−1 +Gk−1uk−1 + wk−1 − x̄k)(· · ·)T
= [Fk−1(xk−1 − x̄k−1) + wk−1][· · ·]T
= Fk−1(xk−1 − x̄k−1)(xk−1 − x̄k−1)TF T

k−1 + wk−1w
T
k−1+

Fk−1(xk−1 − x̄k−1)wTk−1 + wk−1(xk−1 − x̄k−1)TF T
K−1

(2.1.41)

CHAPTER 2. BACKGROUND THEORY 17

We therefore obtain the covariance ok xk as the expected value of the above expression.
Since (xk−1 − x̄k−1) is uncorrelated with wk−1, we obtain

Pk = E[(xk − x̄k)(· · ·)T] = Fk−1Pk−1F
T
k−1 +Qk−1 (2.1.42)

It is interesting to consider the conditions under which 2.1.42 has a steady-state solution.
That is, suppose that Fk = F is a constant and Qk = Q is a constant.
Now let us look at the solution of the linear system of equation 2.1.39:

xk = Fx,0x0 +
k−1∑
i=0

(Fk,i+1wi + Fk,i+1Giui) (2.1.43)

The matrix Fk is the state transition matrix of the system and is defined as

Fk,i =

Fk−1Fk−2 . . . Fi k > i

I k = i

0 k < i

, (2.1.44)

Notice from equation 2.1.43 that xk is a linear combination of x0, wi and ui. If the
input sequence ui is known, then it is a constant and can be considered to be a sequence
of Gaussian random variables with zero covariance. If x0 and wi are unknown but are
Gaussian random variables, then xk in Equation 2.1.43 is a linear combination of Gaussian
random variables. Therefore xk is itself a Gaussian random variable. But we computed
the mean and covariance of xk in Equations 2.1.40 and 2.1.42. Therefore

xk ∼ N(x̄k, Pk) (2.1.45)

This completely characterizes xk in a statistical sense since a Gaussian random variable
is completely characterized by its mean and covariance.

The reviewed basic concepts of probability, random variables and stochastic processes.
are fundamental to the Kalman filter that is derived in the Chapter 2.2

2.2 The Kalman filter

The Kalman filter operates by propagating the mean and the covariance of the state
through time. The approach to deriving the Kalman filter will involve the following steps:

• We start with a mathematical description of a dynamic system whose states we want
to estimate.

• We implement equations that describe how the mean of the state and the covariance
of the state propagate with time.

• We take the dynamic system that describes the propagation of the state mean and
covariance, and implement the equations.

– The mean of the state is the Kalman filter estimate of the state

CHAPTER 2. BACKGROUND THEORY 18

– The covariance of the state is the covariance of the Kalman filter state estimate

• Every time that we get a measurement, we update the mean and covariance of the
state.

2.2.1 The Discrete-time Kalman Filter

Suppose we have a linear dicrete-time system given as follow:{
xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk
(2.2.1)

The noise processes wk and vk are white, zero-mean, uncorrelated, and have known co-
variance matrices Qk and Rk, respectively:

wk ∼ (0, Qk)
vk ∼ (0, Rk)

E[wkw
T
j] = Qkδk−j

E[vkv
T
j] = Rkδk−j

E[vkw
T
k] = 0

(2.2.2)

where δk−j is the Kronecker delta function; that is δk−j = 1 if k = j, and δk−j = 0 if k 6= j.
The goal is to estimate the state xk based on the knowledge of the system dynamics

and the availability of the noisy measurements yk. The amount of information that is
available for our state estimation varies depending on the particular problem. If we have
all of the measurements up to and including time k available for use in our estimate of
xk, then we can form an a posteriori estimate, which we denote as x̂+

k . One way to form
the a posteriori state estimate is to compute the expected value of xk conditioned on all
of the measurements up to and including time k:

x̂+
k = E[xk|y1, y2, · · · , yk] = a posteriori− estimate (2.2.3)

If we have all of the measurements before (but not including) time k available for use in
our estimate of xk, then we can form an a priori estimate, which we denote as x̂−k . To
form the a priori state estimate we compute the expected value of xk conditioned on all
of the measurements before (but not including) time k:

x̂−k = E[xk|y1, y2, · · · , yk−1] = a priori− estimate (2.2.4)

It is important to note that x̂+
k and x̂−k are both estimate of the same quantity; they are

both estimate of xk. However, x̂−k is the estimate of xk before the measurement yk is taken
into account, and x̂+

k is the estimate of xk after the measurement yk is taken into account.
In the notation that follows, x̂+

0 denotes the initial estimate of x0 before any measure-
ments are available. The first measurement is taken at time k = 1. Since we do not have
any measurements available to estimate x0, it is reasonable to form x̂+

0 as the expected
value of the initial state x0:

x̂+
0 = E(x0) (2.2.5)

CHAPTER 2. BACKGROUND THEORY 19

The term Pk denotes the covariance of the estimation error. P−k denotes the covariance of
the estimation error of x̂−k , and P+

k denotes the covariance of the estimation error of x̂+
k :

P−k = E[(xk − x̂−k)(xk − x̂−k)T]
P+
k = E[(xk − x̂+

k)(xk − x̂+
k)T]

(2.2.6)

x̂−k−1|x̂
+
k−1 −→ x̂−k |x̂

+
k

P−k−1|P
+
k−1 −→ P−k |P

+
k

(2.2.7)

After we process the measurement at time (k−1), we have an estimate of xk−1 (denoted
x̂+
k−1) and the covariance of that estimate (denoted P+

k−1). When time k arrives, before we
process the measurement at time k we compute an estimate of xk (denoted x̂−k) and the
covariance of that estimate (denote P−k). Then we process the measurement at time k to
refine our estimate of xk. The resulting estimate of xk is denoted x̂+

k and its covariance is
denoted P+

k

We begin the estimation process with x̂+
0 . Given x̂+

0 , we want to set x̂−1 = E(x1). We
know that x̂+

0 = E(x0) and we know from eq. 2.1.40 how the mean ok x propagates with
time: x̄−1 = Fk−1x̄

+
k−1 +Gk−1uk−1. We therefore obtain:

x̂−1 = F0x̂
+
0 +G0u0 (2.2.8)

The reasoning can be extended to obtain the following more general equation:

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1 (2.2.9)

This is called the time update equation for x̂. From time (k − 1)+ to time k− we do not
have any additional measurement available to help us update our state estimate between
time, so we should just update the state estimate based on our knowledge of the system
dynamics.

Next we need to compute the time update equation for P , the covariance of the state
estimation error. We begin with P+

0 , which is the covariance of our initial estimate of x0.
In general, P+

0 represents the uncertainty in our initial estimate of x0. If we know the
initial state perfectly, then P+

0 = 0. If we have absolutely no idea the value of x0, then
P+

0 = I.
P+

0 = E[(x0 − x̄0)(x0 − x̄0)T]
= E[(x0 − x̂+

0)(x0 − x̂+
0)T]

(2.2.10)

Given P+
0 we can compute P−1 recalling from Equation 2.1.42. We therefore obtain

P−1 = F0P
+
0 F

T
0 +Q0 (2.2.11)

The reasoning can be extended to obtain the following more general equation:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 (2.2.12)

This is called the time-update equation for P .
We have derived the time-update equations for x̂ and P . Now we need to derive the

measurement-update equations for x̂ and P .

CHAPTER 2. BACKGROUND THEORY 20

The only difference between x̂−k and x̂+
k is that x̂+

k takes the measurement yk into account:

Kk = Pk−1H
T
k (HkPk−1H

T
k +Rk)

−1

= PkH
T
k R
−1
k

x̂k = x̂k−1 +Kk(yk −Hkx̂k−1)
Pk = (I −KkHk)Pk−1(I −KkHk)

T +KkRkK
T
k

= (P−1
k−1 +HT

k R
−1
k Hk)

−1

= (I −KkHk)Pk−1

(2.2.13)

where x̂k−1 and Pk−1 are the estimate and its covariance before the measurement yk is
processed, and x̂k and Pk are the estimate and its covariance after the measurement yk is
processed.
In Equation 2.2.13 we can replace x̂k−1 with x̂−k , Pk−1 with P−k , x̂k with x̂+

k and Pk with
P+
k . This results in

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1

= P+
k H

T
k R
−1
k

x̂k = x̂−k +Kk(yk −Hkx̂
−
k)

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k

= [(P−k)−1 +HT
k R
−1
k Hk]

−1

= (I −KkHk)P
−
k

(2.2.14)

These are measurement-update equations for x̂k and Pk. The matrix Kk in the above
equations is called the Kalman filter gain and the quantity (yk−Hkx̂

−
k) is the innovation.

2.2.2 The Continuous-time Kalman filter

The majority of Kalman Filter applications are implemented in digital computers. How-
ever there are still opportunities to implement Kalman filters in continuous time (i.e. in
analog circuits). For completeness the derivation of the continuous-time filter is reported
in the following:

• The continuous-time system dynamics and measurement equations are given as:

ẋ = Ax+Bu+ w
y = Cx+ v
w ∼ (0, Qc)
v ∼ (0, Rc)

(2.2.15)

Note that w(t) and v(t) are continuous-time white noise processes.

• The continuous-time Kalman filter equations are given as

x̂ = E[x(0)]
P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T]
K = PCTR−1

c
˙̂x = Ax̂+Bu+K(y − Cx̂)

Ṗ = −PCTR−1
c CP + AP + PAT +Qc

(2.2.16)

CHAPTER 2. BACKGROUND THEORY 21

2.3 The Extended Kalman Filter

All of the discussion to this point has considered linear filters for linear systems. Unfor-
tunately, linear systems do not exist. All systems are ultimately nonlinear. In this case,
we need to explore nonlinear estimator.

In this chapter we focuse on the Extended Kalman Filter (EKF). It is based on the idea
of linearizing the nonlinear system around the Kalman filter estimate, and the Kalman
filter estimate is based on the linearized system.

In the following sections we present the EKF for continuous-time systems with continuous-
time measurements, then the EKF for discrete-time systems with discrete-time measure-
ments, and finally the hybrid EKF, which is the EKF for continuous-time systems with
discrete-time measurements. The hybrid EKF is the state-estimator used in this thesis.

2.3.1 The continuous-time extended Kalman filter

The system equations are given as

ẋ = f(x, u, w, t)
y = h(x, v, t)
w ∼ (0, Q)
v ∼ (0, R)

(2.3.1)

Compute the following partial derivative matrices evaluated at the current state estimate

A = ∂f
∂x

∣∣∣
x̂

L = ∂f
∂w

∣∣∣
x̂

C = ∂h
∂x

∣∣∣
x̂

M = ∂h
∂v

∣∣∣
x̂

(2.3.2)

Compute the following matrices

Q̃ = LQLT

R̃ = MRMT (2.3.3)

Execute the following Kalman filter equations:

x̂0 = E[x(0)]
P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T]

˙̂x = f(x̂, u, w0, t) +K[y − h(x̂, v0, t)]

K = PCT R̃−1

Ṗ = AP + PAT + Q̃− PCT R̃−1CP

(2.3.4)

CHAPTER 2. BACKGROUND THEORY 22

2.3.2 The discrete-time extended Kalman filter

The system and measurement equations are given as follows:

xk = fk−1(xk−1, uk−1, wk−1)
yk = hk(xk, wk)
wk ∼ (0, Qk)
vk ∼ (0, Rk)

(2.3.5)

Initialize the filter as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0)(x0 − x̂+
0)T]

(2.3.6)

For k = 1, ., · · · , performs the following:

• Compute the following partial derivative matrices:

Fk−1 = ∂fk−1

∂x

∣∣∣x̂+
k−1

Lk−1 = ∂fk−1

∂w

∣∣∣x̂+
k−1

(2.3.7)

• Perform the time update of the state estimate and estimation-error covariance as
follows:

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1

x̂−k = fk−1(x̂+
k−1, uk−1, 0)

(2.3.8)

• Compute the following partial derivative matrices:

Hk = ∂hk
∂x

∣∣∣x̂−k
Mk = ∂hk

∂v

∣∣∣x̂−k (2.3.9)

• perform the measurement update of the state estimate and estimation-error covari-
ance as follows:

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k)−1

x̂+
k = x̂−k +Kk[yk − hk(x̂−k , 0)]

P+
k = (I −KkHk)P

−
k

(2.3.10)

2.3.3 The hybrid extended Kalman filter

The system equations with continuous-time dynamics and discrete-time measurements
are given as follows:

ẋ = f(x, u, w, t)
yk = hk(xk, vk)
w(t) ∼ (0, Q)
vk ∼ (0, Rk)

(2.3.11)

Initialize the filter as follows:

x̂+
0 = E[x0]

P+
0 = E[(x0 − x̂+

0)(x0 − x̂+
0)T]

(2.3.12)

For k = 1, 2, · · · , perform the following:

CHAPTER 2. BACKGROUND THEORY 23

• Integrate the state estimate and its covariance from time (k − 1)+ to time k− as
follows:

˙̂x = f(x̂, u, 0, t)

Ṗ = AP + PAT + LQLT
(2.3.13)

We begin this integration process with x̂ = x̂+
k−1 and P = P+

k−1. At the end of this
integration we have x̂ = x̂−k and P = P−k .

• At time k, incorporate the measurement yk into the state estimante and estimation
covariance as follows:

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k)−1

x̂+
k = x̂−k +Kk(yk − hk(x̂k, 0, tk))

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkMkRkM
T
k K

T
k

(2.3.14)

Hk and Mk are the partial derivatives of hk(xk, vk) with respect to xk and vk, and
are both evaluated at x̂−k .

Chapter 3

Modelling and Sensing

This section first describes the legged robot HyQ, that was used in this work, as well
as its reference frames, dynamic model and its sensors. The second part of this section
describes the locomotion control software, used for the thesis.

Figure 3.1: HyQ robot ([5])

3.1 Quadruped Robot HyQ

HyQ (Fig. 3.1) is a fully torque-controlled Hydraulically actuated Quadruped robot devel-
oped in the Department of Advanced Robotics at the Istituto Italiano di Tecnologia. HyQ
stands 1 meter tall and weighs approximately 90 kg. It has 12 torque-controlled joints
powered hydraulic actuators. This combination allows to perform powerful motions, hard
to achieve with the traditional electrically actuated robots. HyQ is designed to navigate
over rough terrain and perform highly dynamic tasks such as jumping and running with
different gaits. For more information about the robot the reader can refer to [5]. HyQ
consists of a torso and four identical legs, arranged in the forward/backward configuration,
with the front and hind knees point to each other. The four legs are defined as follows:
(i) LF is the left front leg (ii) RF is the right front leg (iii) LH is the left hind leg (iv) RH
is the right hind leg.

24

CHAPTER 3. MODELLING AND SENSING 25

There are three actuated joints for a total of 12 active DoF, and 4 passive DoF. The
actuated joint are:

• HAA: Hip Abduction/Adduction, between the torso and hip assembly. This joint
is responsible for lateral leg motion.

• HFE: Hip Flexion/Extension, between hip assembly and upper leg. It allows the
motion that brings the knee closer/further from the HAA.

• KFE: Knee Flexion/Extension, between upper and lower leg. It allows motion in
the same plane of HFE.

Curious reader can find a summary of technical specification of the robot in Appendix A.

3.2 Robot Modelling

This section describes first the reference frames of HyQ, followed by the dynamic model
of the robot.

Reference Frames

We define the following reference frame: the body frame B located at the geometric center
of the trunk (robot torso) and the world frameW , an inertial frame whose origin coincides
with a fixed point on Earth. As shown in the Fig. 3.2, the basis of the body frame are
orientated forward, left and up. When the robot is in its starting position, the base frame
coincides with the world frame, considering an offset along z-axis of exactly the height of
the robot.

X

y

LFLH

RH RF

X

Z

y

z

Figure 3.2: Location on Torso and Robot Base Coordinate Frame. From left to right: top
view, side view, back view

Dynamic Model

The dynamics of the robot is obtained starting from the assumption that all of the external
forces are exerted on the feet and the joint accelerations are zero [29]. When a foot is not
in contact with the terrain it is in the swing phase and it is assumed that no external
forces are exerted on it. When the contact occurs, the foot is in stance phase, and the
ground exerts forces on it (Ground Reaction Forces GRFs). The equation is:

M(x̄)¨̄x+ h(x̄, ˙̄x) = τ̄ + JTFgrf (3.2.1)

CHAPTER 3. MODELLING AND SENSING 26

where x̄ = [xTηT qT]T ∈ R18 is the generalized robot states, ˙̄x ∈ R18 is the corresponding
generalized velocities, ¨̄x ∈ R18 is the corresponding generalized accelerations, x ∈ R3 is
the position of the base, η ∈ R3 is the attitude of the base, q ∈ R12 is the vector of
joint angles of the robot, M ∈ R18×18 is the joint-space inertia matrix, h is the vector
of Coriolis, centrifugal and gravity forces, τ̄ = ([0 τT]T) ∈ R18, τ ∈ R12 is the vector of
actuated joint torques. Fgrf ∈ R12 is the vector of GRFs, the forces exerted by the terrain
when there is the contact foot-ground. J ∈ R18×12 is the floating base Jacobian.
For the purposes of this thesis, it is fundamental to know the contact state of the robot.
The contact states for each foot are given by the contact status α and the GRF Fgrf .
The contact states are estimated by the state estimator: the GRFs from the torques and
the joint states [29]. The contact status α is boolean variable, defined for each leg, whose
value is 1 when the foot is in contact, 0 otherwise. The contact (α = 1) is detected when
the GRFs Fgrf exceed a threshold Fmin:

Fgrf = αJ−Tst (M(x̄)¨̄x+ h(x̄, ˙̄x)− τ̄) (3.2.2)

Then

α =

{
1 J−Tst (M(x̄)¨̄x+ h(x̄, ˙̄x)− τ̄) > Fmin

0 otherwise
(3.2.3)

The translational and rotational kinematics, and the translational dynamics of the robot
as a single rigid body in W are

ẋw = vw v̇w = aw + gw Ṙw
b = Rw

b S(ωb) (3.2.4)

where xw ∈ R3, vw ∈ R3, aw ∈ R3 are the position, velocity and acceleration of the base
inW , respectively, Rw

b ∈ SO(3) is the rotation matrix from B toW , and ωb is the angular
velocity of the base in B. The skew symmetric matrix function is S().

Friction Cone

The purpose of this thesis is to investigate the problem of slip detection, proposing an
effective and easily applicable solution to quadruped robots. To better understand what
happens to the leg when it slips it is useful to understand the dynamics of the slippage.

We can consider a point foot on a frictional plane (3.3). In 3.3a the GRF F is able to
balance the external force Fext and the foot velocity in the world frame is v = 0. The
terrain can balance only with a GRF F constrained to lie on the boundary of the cone
satisfying ||F̃t|| = µ‖F‖. When an external load, which requires a force out of the friction
cone to be balanced, is applied the foot starts moving because there is a force accelerating
it (v 6= 0). In this situation (fig. 3.3b) the foot is slipping.

Simplifying the problem we could say that, when the foot is in contact with the ground,
during the contact its velocity expressed in an inertial frame (W) should be zero. If this
does not happen, then a slip is in progress. More details are described in Chap. 4

CHAPTER 3. MODELLING AND SENSING 27

nFext

F

(a)

nFext

F

(b)

Figure 3.3: Slip dynamics: the friction cone

3.2.1 Onboard Sensors

The quadruped robot is equipped with a six-axis IMU on the trunk (3 DoFs gyroscope
and 3 DoFs accelerometer), and every joint contains an encoder and torque sensor. The
accelerometer measures specific force f bs ∈ R3.

f bs = ab + gb (3.2.5)

where ab ∈ R3 is the acceleration of the body in B and gb ∈ R3 is the acceleration due
to gravity in B. The gyroscope directly measures angular velocity ωb ∈ R3 in B. The
encoders are used to measure the joint position qi ∈ R and joint speed q̇Ri . The pose
of each joint is assumed to be exactly known. The torque sensors in the joints directly
measure torque τi ∈ R. The measured values af all the sensors contain a bias and noise:
x̃ = x+bx+nx where x̃, bx, and nx are the measured value, bias and noise of x, respectively.
For the model we assume that all of the biases are constant or slowly time-varying, and
all of the noise variables have zero mean and a Gaussian distribution.

HyQ is equipped with proprioeptive and exteroceptive sensors. For the experiments
done during this project of thesis, the robot is completely blind and the informations are
obtained exclusively from proprioceptive sensors data.

In the following a brief description of the sensors the robot is equipped with [52].
The proprioceptive sensors mounted on HyQ are:

• Encoders measuring the joints positions q and velocity q̇, used to evaluate position,
velocity and acceleration of the knee and of the foot. In each joint there are two
encoders:

– Absolute encoders (AMS Programmable Magnetic Rotary Encoder - AS5045)
used to measure the joint position when the robot is first turned on.

– Relative/optical (Avago Ultra Miniature, High Resolution Incremental Encoder
- AED-3300-TE1) used to measure how far the joint has moved at each step.

• In the trunk of the robot there are two IMUs: a military grade fibre optic KVH-1775
and a MEMS-based high-end consumer grade Lord MicroStrain 3DM-GX5-15

CHAPTER 3. MODELLING AND SENSING 28

• Every joint contains a F/T sensor:

– HFE and KFE joints are moved by pistons, so they are equipped with loadcells
(Burster Subminiature Load Cell - 8417-6005) measuring forces.

– HAA joint is equipped with a custom made torque sensor based on strain-
gauges, detecting the torque τ .

The exteroceptive sensors mounted on HyQ are:

• RGB-D cameras (Realsense)

• LIDARs mainly used for SLAM purposes (Velodyne puck)

3.3 Controller

HyQ can perform different kind of locomotion. The locomotion framework used in this
work is based on the Reactive Controller Framework RCF described in [53]. In the fol-
lowing a brief description of the RCF is presented.

3.3.1 Reactive Controller Framework

The RCF is mainly used for uneven and rough terrain thanks to its capability of per-
forming robust dynamic locomotion. RCF is a modular framework that was first designed
to receive informations only provided by the proprioceptive sensors, then its usage was
extended considering exteroceptive sensors as well.

The framework comprises two main modules: a motion control block and a motion
generation block. The motion generation block assigns the trajectories of the feet with
respect to the horizontal frame H, a frame whose xy-plane is always horizontal (this frame
has the same yaw angle as the robot with respect to the world frame W). Choosing this
frame, the generation of the trajectories is independent from the trunk attitude, so it is
possible to deal with non-flat terrain.

The motion control module provides corrective actions in order to obtain the desired
trunk motion. RCF contains some other modules used for increasing the reliability of
robot locomotion in difficult terrains (i.e. push recovery, foot collision detection, terrain
adjustment etc.). The contribution of this thesis is to improve the performance of the
state estimation paying attention to the problem of the slip detection. An overview of the
RCF framework is presented in Fig. 3.4.

Trot and Crawl

HyQ can perform two locomotion behaviours [54]: a dynamically stable trot and a crawl-
gaited style. The first allows fast locomotion over regular terrain varying inclination. The
other one is more suitable for irregular and non-continuous terrains.

During the trotting the robot moves its legs in pairs: when LF and RH are in stance
phase, the other two are in swing, and vice-versa. The trotting controller is able to trot

CHAPTER 3. MODELLING AND SENSING 29

Locomotion Framework

State Estimation

RCF (Reactive Controller Framework)

Motion Generatation trunk
references

leg
references

Motion Control
(whole-body control

 +
low-level control)

Leg Trajectory Generator

Trunk Trajectory Generator

Selected
footholds

Optimal
pose

Figure 3.4: Overview of the locomotion framework.

with a speed up to 0.5 m/s. It allows the robot to overcome obstacles up to 5 cm without
difficulty.

The crawl-gait is a slow locomotion. The velocity of the trunk never exceeds 0.05
m/s. In this case the gait is cyclic and utilizes a static stability criterion to produce the
quadruped’s walking pattern. The pattern is: LH to LF to RH to RF.

For the simulation and experimental tests (Chap. 5 and 6) we used both these methods
of locomotion.

Chapter 4

Methods

The method of slip detection proposed in this thesis uses as baseline approach in Focchi
et al. [43]. The authors introduce a methodology for the slip detection of quadruped
robots and a recovery strategy from slippage during locomotion. In this chapter we briefly
introduce this approach and then we move on the explaination of a novel method of slip
detection. In Chapter 5 and 6 we compare the results obtained from baseline approach
and the novel algorithm.

4.1 Baseline Approach

The proposed strategy to address the problem of slip detection in [43] is based on kine-
matics. They implemented two different strategies at the velocity level: (i) an approach
to distinguish the slippage of only one leg based on ẋbf , the stance feet velocities in the
body frame (B) ; (ii) a further approach for the case of two or more slipping legs, using
ẋwf , the stance feet velocities in the world frame (W). The procedure for obtaining the
robot legs kinematics is described in the appendix B.

4.1.1 One leg slip detection

The strategy proposed in [43] planned to compare the values of stance feet velocities in
the body frame ẋbf and discriminate the outlier with appropriate statistical tools. At each
control loop the median of the norms of the stance feet velocities is computed. A slipping
leg should be the one whose velocity deviates the most from the median, beyond a certain
threshold ε, tuned experimentally. During the locomotion the detection algorithm is con-
tinuously checking, within the set of active stance legs, if there is any slippage. Each leg
has a flag β associated with it. Whenever a slip is detected, the value of β instantaneously
switches from 0 to 1.

30

CHAPTER 4. METHODS 31

Pseudo-code implementation of the slip detection for one leg of a legged robot:

Algorithm 1 detectSlippageOneLeg(α,
∥∥ẋbfi∥∥) [43]

1: for each stance leg i do
2: ‖v‖i ←

∥∥ẋbfi∥∥;

3: end
4: M ← median([‖v‖]);
5: for each stance leg i do
6: βi ← |‖v‖i −M | > ε;

7: end

where α ∈ R is the contact status (Eq. 3.2.3), ‖v‖i ∈ R is the norm of the i -th stance foot
velocity, ẋbfi ∈ R3 is the velocity of foot i expressed in the base frame B and []‖v‖] ∈ R4

is the vector of the stance feet velocities norms.

4.1.2 Multiple leg slip detection

A more complicated situation is when two or more legs are slipping at the same time.
In this case, it is hard to detect with the median approach which legs are slipping or in
stance. In [43] they propose of checking which of the feet velocities ẋf are kinematically
consistent with the base velocity ẋbb. This can help to discriminate the slipping legs. In
this case the most intuitive way is to verify that the Cartesian velocities of the stance feet
ẋwf are all zero in an inertial frame W . ẋwf can be written as follows:

0 ' ẋwf = ẋwb +Rw
b (ẋbf + ωbb × xbf) (4.1.1)

where Rw
b ∈ R3×3 is the rotation matrix representing the orientation of the robot base,

xbf ∈ R3, ẋbf ∈ R3 are, respectively, the position and velocity of the foot expressed in the

base frame B, ωbb is the angular velocity, measured by an on-board IMU sensor, while
ẋwb ∈ R3 is the base linear velocity. Accordingly to (4.1.1), computing ẋwf requires an
estimation of the base linear velocity ẋwb . For this purpose, a short-time integration of
the base linear acceleration, measured by the IMU accelerometers, is executed. Afterward
in [43] the authors proposed a strategy for the slip recovery after the detection phase.
This strategy is based on the idea of correct the surface normal toward the estimated one
resulting in GRFs which were back inside the real friction cone [55].

The slip detection method previously described has some down sides. It was tested
using only crawl (chap. 3.3.1) as gait type. The One leg slip detection method, clearly
cannot be applied to different locomotion, e.g. trotting, because in this case the legs have
pairwise different velocities (two legs are in stance phase, the other two are in swing phase)
and the accuracy might deteriorate. On the other hand, the Multiple leg slip detection
method relies on velocities expressed in the world frame. The base velocity in the world
frame is influenced by errors in the state estimation, which can result into false positives
in the slip detection. Moreover, this approach relies on IMU and on the integration of
the acceleration measured by it. It is known that integrating accelerometers is prone to

CHAPTER 4. METHODS 32

drift and, furthermore, it is fundamental to perform a short-time integration to avoid
divergence issues.

This method was tested only in simulation. The authors did not perform experiments
on a real robot, therefore it cannot be said with certainty that it is actually robust.

The abovementioned are the main problems we set out to solve by proposing a new slip
detection algorithm. The main reason that led us to choose the algorithm just described
as a baseline is that also the new slip detection method exploits the kinematics of the
robot. We think that a kinematics approach is more suitable to address the problem of
slip detection for legged robots than a force based approach. The force based approaches
require the availability of force sensors located at the contact point (e.g. foot-tip). Repet-
itive impacts with the ground can cause the damage of the sensor. Furthermore, during
locomotion, the touchdown event can create discontinuities in the force signals and gen-
erate false positives in the detection.

A detailed description of the novel slip detection algorithm is proposed in the next
section.

CHAPTER 4. METHODS 33

4.2 A novel approach for slip detection

The idea behind the proposed method is to overcome the aforementioned problems, using
the robot state x̄ = [xTηT qT]T ∈ R18 to perform a reliable slip detection; x ∈ R3 is the
position of the base, η ∈ R3 is the attitude of the base, q ∈ R12 is the vector of joint
angles of the robot. As already mentioned, the most intuitive way to detect slippage is
to check if the stance foot velocity is not zero. But computing the velocity in the world
frame requires the estimation of the base linear velocity (4.1.1). To estimated ẋwb we need
to integrate the base linear acceleration ẍwb , measured by the IMU, running into drift
problems. For this reason we move to the idea of detect the slippage using feet velocities
expressed in the base frame B. In fact, a leg subject to slippage would be the one whose
velocity at the foot-level would deviate more from the desired one. An approach based on
the feet velocities in the base frame is more robust because they directly depend on direct
sensor measurements (e.g. encoders). A measure of the deviation from desired velocity
can be given by:

∆V =
∥∥
dẋ

b
f − ẋbf

∥∥ =

√√√√ ∑
i=x,y,z

(
dẋbfi − ẋ

b
fi

)2

(4.2.1)

where n = 3 are the components of the velocity vector ẋbf = [ẋbfxẋ
b
fy
ẋbfz]

T ∈ R3. ∆V is the
norm of the difference between the desired and actual feet velocities in the base frame B.
We could think of detecting a slip, during the stance phase, when the ∆V value exceeds
a certain limit (e.g. a threshold ε). Actually, just calculating the norm is not a reliable
tool for detecting slippage. We are not considering that the difference between the desired
and actual velocity increases along the prevalent direction of motion because of a greater
tracking error. Furthermore, if in general we want to change the velocity of the robot
during its motion, we would need to adjust the threshold value ε accordingly (Fig. 4.1a).
So to ensure that the direction and velocity of motion do not affect the calculation of ∆V
we introduce a “weight”to scale each component of the vector dẋ

b
f − ẋbf :

∆V =

√√√√ n∑
i=1

(
dẋbfi − ẋ

b
fi

dẋbfi

)2

(4.2.2)

Through the division by each component of dẋ
b
f , we minimize the impact of a possible

greater tracking error in one of the three directions and, above all, we ensure to have a ∆V
that remains more or less similar for the duration of the motion, even if we increase the
desired body velocity (Fig. 4.1b). For a purely mathematical question, that is to avoid
divisions by quantities close to 0, a margin m is added to the denominator. Its value can
be experimentally tuned. For the same reason, we calculate |dẋbfi | in order to ensure that
the denominator is always 6= 0. In the end we have:

∆V =

√√√√ n∑
i=1

(
dẋbfi − ẋ

b
fi

|dẋbfi | +m

)2

(4.2.3)

CHAPTER 4. METHODS 34

(a) ∆V during a simulation task of trotting (no slippage)

(b) ∆V after the scaling during the same task of trotting (no slippage)

Figure 4.1: Trends of ∆V and ∆V with and without scaling in a simple trotting task with
variable feed rate

When a slippage occurs, the value of ∆V increases. For this reason we can impose a
limit to ∆V , beyond which the further increase is considered a slip:

∆V =

√√√√ n∑
i=1

(
dẋbfi − ẋ

b
fi

|dẋbfi | +m

)2

> εv (4.2.4)

εv is a threshold that we can call “conditioned”. Its value, in fact, is set taking into
account the phase of the foot motion for each leg i: a leg cannot slip during the swing
phase, so εv can be set to ∞. During the stance phase, on the other hand, it is assumed
that the value of ∆V increases more whereas a slip occurs. So, in this case, εv is chosen as
the level below which about a certain percentage p of the ∆V value falls. P is manually
tuned.

εv =

{
∞ swing phase

percentile(∆V , p) stance phase
(4.2.5)

In case of slippage, another important question is: How far we slip? To answer, once
again we can use robot kinematics. A quantitative measure of the slipping length can
be derived from the measurement of the foot position. Indeed, during slippage the foot
position changes by deviating from the desired one. This deviation can be quantified by
calculating:

∆P =
∣∣∥∥
dx

b
fi

∥∥− ∥∥xbfi∥∥∣∣ (4.2.6)

CHAPTER 4. METHODS 35

Figure 4.2: Desired (blue line) and actual (red line) foot velocity in a simulation task of
crawling (no slippage). The light gray background indicates that the foot is in stance.

∆P is also important for the slip detection for another main reason: at the beginning of a
foot contact with the ground there is a little time interval, in which the difference between
desired and actual foot velocities does not instantaneously decrease (4.2). This may be
due to multiple causes: (i) an actual, but small and perhaps not important slippage, (ii)
delay in control and (iii) the current implementation of stance detection (Chap. 3.2). The
current measurement of the contact states of each leg at every time step is required. The
contact state is given by contact status α, and GRFs. In order to detect foot slipping, we
are primarily interested in contact status α, a variable that detects if a leg is in contact
with the ground or not. The contact is detected when the GRF Fi exceed a certain value
Fmin. A GRF Fi for each leg i is computed using the actuated part of the dynamics (Chap.
3.2, Eq. 3.2.1), basing on two important assumptions: (i) there are no external forces on
the swing-foot and the only force exerted on the stance-foot is the reaction exerted by the
ground, (ii) we set accelerations to zero to calculate the inverse dynamics:

Fi = −αi(JTi (qi))
−1(τi − hi(x̄i, ˙̄xi)) (4.2.7)

where Ji ∈ R3x3 is the foot Jacobian for the i−th leg, τi ∈ R3 is the vector of joint torques
of i, hi ∈ R3 is the vector of centrifugal, Coriolis, gravity torques of i and α ∈ [0, 1] is the
contact status selecting if the foot is on the ground (α = 1) or not (α = 0). A threshold
of Fi is used to calculate αi . Hence:

αı =

{
1
∥∥(JTi)−1(τi − hi)

∥∥ > Fmin

0 otherwise
(4.2.8)

CHAPTER 4. METHODS 36

where Fmin > 0. We are assuming that there exists a force threshold Fmin that determines
if the foot is in contact with the environment. This means that there is a small delay in
detecting contact with the ground, and as can be clearly seen from the Fig. 4.2, at the
beginning of the stance phase the error between the desired foot velocity and the actual
one increases for a very short interval of time. Consequently this can facilitate a little
slippage of the foot in this time interval, which however is considered negligible (∼ 1 , 2
cm). To make sure it is not detected by our algorithm we add a condition on ∆P :

∆P =
∣∣∥∥
dx

b
fi

∥∥− ∥∥xbfi∥∥∣∣ > εp (4.2.9)

If the value of ∆P remains below a threshold εp, the slip is considered acceptable. εp has
a constant value, tuned experimentally. Therefore, a slippage is detected when both ∆V
and ∆P exceed their respective thresholds.
We can introduce a flag βi ∈ [0, 1] for each leg i whose value is 1 if there is a slip detection,
0 otherwise.

Having said this, the pseudo-code implementation of the proposed algorithm is:

Algorithm 2 detectSlippage(ẋbfi ,dẋ
b
fi

,xbfi ,dx
b
fi

)

1: ∆V ← scaled diff(ẋbfi ,d ẋ
b
fi

);

2: ∆P ← diff(xbfi ,d x
b
fi

);
3: for each stance leg i do
4: βi ← (∆V > εv) & (∆P > εp);

5: end

where ẋbfi and dẋ
b
fi

are the actual and desired foot velocity for each leg i in B, while xbfi
and dx

b
fi

are the actual and desired foot position for each leg i in the base frame B. εp is

the threshold for ∆P . εv is the threshold for ∆V .

To summarize:

• The approach proposed to address the problem of slip detection is based on the
kinematics of the legs: for each foot we obtain the desired and actual velocity and
position expressed in the base frame.

• We compute ∆V and ∆P , two quantities indicative of how much the slippage causes
a deviation from “normal”conditions

• We threshold ∆V and ∆P taking into account the contact status

• For each leg we obtain a flag that changes its value from 0 to 1 if and when a slip
occurs.

This method has several advantages. It detects the slippage basing on feet velocities
and positions expressed in B. In this way we avoid al the drift-related problems that arise
during state estimation. Errors in the state estimation can affect detection by generating
false positives. The approach can be used to detect the slippage of one or multiple slipping

CHAPTER 4. METHODS 37

legs indiscriminately. It can be adapted to different types of locomotion, because each
foot is treated separately from the others. We show this in Chapter 5.

In Chapters 5 and 6 there are the simulation and experimental results, and a comparison
with the baseline approach.

Chapter 5

Simulations Results

In order to demonstrate the effectiveness of our implementation, we carried out a set of
tests, simulating the dynamic model of HyQ walking on very slippery surfaces. Namely,
ice slabs, with a dynamic friction coefficient µ equal to 0.08, corresponding to the friction
between tire and ice. First of all a C++ implementation of the proposed algorithm was
made. Then we created a simulation scenario in Gazebo where we required HyQ to step
over ice slabs, while crawling and trotting. To check in a fast way and to tune the parame-
ters of the proposed algorithm we used the tool PlotJuggler, that allows to load data from
files and connect to live streaming of data. In this case it was used to open rosbags and
subscribe to ROS topics. Then, all the datas were collected and post-processed on Matlab.

In this simulation tests, the motion generation and the control is done by the Reactive
Controller Framework (RCF). The RCF has a trunk stabilization module that uses leg
contact Jacobians, that, by default considers all contacts happening at the foot level. The
trunk controller also uses the information about the surface inclination and the friction
coefficient to generate GRFs that respect the associated friction cone.

We perform the tests presented in this chapter also using the baseline approach (Chap.
4.1), in order to make a comparison with the new proposed method and underline its
strengths.

5.1 Crawl

5.1.1 One Leg on an ice-patch

A transition from walking on flat terrain to an ice slab (µ = 0.08) is a good template
to demonstrate the effectiveness of the algorithm. Fig. 5.1 shows the sequence of a
movement: the robot starts walking from “normal ”ground and then, moving forward,
the robot walks on a ice-sheet. In this first simple demonstration the leg LF is on the
slippery ice slab and therefore only the respective foot slides for a few moments.

38

CHAPTER 5. SIMULATIONS RESULTS 39

Figure 5.1: HyQ walking to an ice slab.

Aim of the slip detection is not only to detect slippage in the first moments in which it
occurs, but also to be able to identify with some certainty which leg(s) is(are) slipping.
For this simulation test we used the following parameters:

εv prctile(∆V , 99%)
εp 0.03
m 0.3

Table 5.1: Parameters of the simulation test: one leg on ice patch

εv is the threshold for ∆V ((4.2.4)), εp is the threshold for ∆V ((4.2.9)), m is the margin
used in (4.2.3). In Fig. 5.2 the shapes of ∆V and ∆P are shown. They were computed
as explained in Chapter 4.2 and then filtered using a first-order low pass filter. The light
blue stripes indicate that the contact status is one (foot in contact with the terrain). The
light red stripes indicate the slippage. From the figure it is clear that the slippage occurs
between the second and third second. We can see that the change in velocity in the sliding
leg (LF) affects the ∆V shapes of the other legs as well. This is because the velocities are
expressed in the base frame B and means that, when a foot is slipping, the base changes
its position for some instants. Then the velocity vectors of the other legs change (top
figures in each subplots). Adding a further constraint on ∆P (Eq. 4.2.9) prevents this
from affecting the correct detection for the other legs. Fig. 5.3 shows the flags (red) that
identifies the sliding.

CHAPTER 5. SIMULATIONS RESULTS 40

ε

ε

Figure 5.2: Shapes of ∆V and ∆P with the respective thresholds.

Figure 5.3: Flags indicating slippage when the robot move to ice slab

It is clear that the slip detection is correctly done: the flags switch from zero to one for LF,
while the other three flags remain, as expected, at zero for the duration of the simulation.

To better understand when the detection occurs, in Fig.5.4 the position along the x-axis
and y-axis for LF. The red markers indicate that the slipping flag switch to the value one
because the slippage is occurring.

CHAPTER 5. SIMULATIONS RESULTS 41

Figure 5.4: LF foot position along x-axis and y-axis during the simulation. Red markers
MKs indicate the slippage

The trajectory in fig. 5.4 is obtained plotting xwf ∈ R3 the foot position in the world

frame W : xwf = xwb + Rw
b x

b
f , where xwb ∈ R3 is the position of B with respect to W .

Rw
b ∈ R3×3 is the rotation matrix representing the orientation of B. xbf ∈ R3 is the foot

position in B. Red markers (MKs) indicate that a foot slip has occurred.

5.1.2 Comparison with the baseline approach

As already mentioned we implemented the algorithm presented in [43] to make a compar-
ison between the proposed approach and an already existing method. For this purpose
we implemented the algorithm in C++ and used PlotJuggler for the tuning. Then we
took the data recorded from the previous simulation test (Chap. 5.1.1) in order to have
the same scenario in which test both the implementations. In this simulation the slip-
page interested only one leg (LF) of the robot. This is the reason why we implemented
the algorithm described in Chap. 4.1 (Detection of the slippage of one leg). To briefly
summarize the working principle of the algorithm: we compute the stance feet velocities
in the base frame, then we compute the median of these velocities. A flag with value
0 is associated to each leg. If the velocity of one stance foot deviates from the median
beyond a certain threshold, the flag value switch to 1 and the slippage is detected for this
leg. In the following figures we call ∆V the expression |

∥∥ẋbf∥∥−M | , where ẋbf ∈ R3 is
the foot velocity in B and M is the median of the stance feet velocities. The threshold is
εv = 0.4. The slippage occurs between the second and third second. During this interval
∆V increases until it reaches a maximum peak (Fig. 5.5).

CHAPTER 5. SIMULATIONS RESULTS 42

ε

Figure 5.5: Shape of ∆V with the respective threshold. From top-left to bottom-right:
LF - RF - LH - RH

In Fig. 5.6 we see that the LF-flag indicating slippage changes correctly its value
from 0 to 1 in the time interval in which the slippage occurs. As expected, the flags
associated with the other legs remain correctly at 0. However, we note that the flag goes
instantaneously to the value 1 two times before the start of the real slipping. We also
note that this happens at the beginning and at the end of the stance phase. This should
be due to the fact that ∆V does not always instantly go below the threshold. The reason
could be in the current implementation of contact detection. Since there are no further
constraints other than the one on ∆V , it is very likely to incur false positives and therefore
detect a slip even where there is actually no.

Figure 5.6: Flags indicating slip detection

In Fig. 5.7 we show how the LF-foot position changes during the simulation. From this
figure we can clearly see that the sliding occurs mainly in the y-direction (subplot on the
right). The yellow markers (MKsBL) indicate that the baseline algorithm has detected
a slippage. The red markers (MKsNEW), represent the slip detection performed by the
proposed algorithm.

CHAPTER 5. SIMULATIONS RESULTS 43

Figure 5.7: LF leg position along x-axis and y-axis during the simulation

5.1.3 Multiple Legs on ice-patches

A more challenging situation is when the robot walks to ice slabs and, during the motion,
all the legs are slipping. As it is possible to see from Fig. 5.8 the slippage affects legs in
the order LF-RF-LH-RH.

Figure 5.8: Multiple legs on ice slabs

The parameters used for this simulation are the same of the previous one:

εv prctile(∆V , 99%)
εp 0.03
m 0.3

Table 5.2: Parameters of the simulation test: multiple legs on ice patch

Fig. 5.9 shows the shapes of ∆V , ∆P , the contact status and the slippage (red stripes).
Fig. 5.10 shows the flags identifying the sliding.

CHAPTER 5. SIMULATIONS RESULTS 44

ε

ε

Figure 5.9: Shapes of ∆V and ∆P with the respective thresholds

In Fig. 5.10 we show the flag for each leg. On the right side there is a zoom in the
particular time interval the slippage occurs.

Figure 5.10: The slippage for each leg during the “multiple-legs ”ice slab simulation. In
the simulation all four legs walked over and slipped on the ice

In Figs. 5.11-5.14 we show the feet positions along x-axis and y-axis for LF, RF, LH,
RH, with the markers indicating slippages.

CHAPTER 5. SIMULATIONS RESULTS 45

Figure 5.11: LF leg position along x-axis and y-axis during the simulation

Figure 5.12: RF leg position along x-axis and y-axis during the simulation

Figure 5.13: LH leg position along x-axis and y-axis during the simulation

CHAPTER 5. SIMULATIONS RESULTS 46

Figure 5.14: RH leg position along x-axis and y-axis during the simulation

5.1.4 Comparison with the baseline approach

In this test the sliding is never simultaneous, it occurs one leg at a time. So we imple-
mented the strategy described in 4.1 for detect the slippage of one leg. We chose for the
threshold the same value of the previous test, that is εv = 0.04.

ε

Figure 5.15: Shapes of ∆V with the threshold.

In Fig.5.16 we show the two flags obtained using the proposed approach (blue lines)
and the baseline (red lines). Our approach is more reliable in detection: it is faster and
the flag remains at one for the entire duration of the sliding (we manually watched each
foot and then say when it is sliding or not). Furthermore, in the case of the RF leg we
see the baseline approach is not detecting a slippage happening around the second 4 (as
can be seen from the figure 5.18).

CHAPTER 5. SIMULATIONS RESULTS 47

Figure 5.16: Comparison between the flags

0 5 10 15 20 25
Time [s]

0

0.5

1

1.5

2

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 5 10 15 20 25

0

0.5

1

1.5

2

y
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

Figure 5.17: LF leg position along x-axis and y-axis during the simulation. Yellow markers
correspond to the baseline flags = 1

CHAPTER 5. SIMULATIONS RESULTS 48

0 5 10 15 20 25
Time [s]

-0.5

0

0.5

1

1.5

2
x
(t

)
[m

]
slip MKs

NEW

0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

y
(t

)
[m

]

slip MKs
NEW

Figure 5.18: RF leg position along x-axis and y-axis during the simulation. Yellow markers
correspond to the baseline flags = 1

0 5 10 15 20 25
Time [s]

0

0.5

1

1.5

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 5 10 15 20 25
0

0.5

1

1.5
y
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

Figure 5.19: LH leg position along x-axis and y-axis during the simulation. Yellow markers
correspond to the baseline flags = 1

0 5 10 15 20 25
Time [s]

-0.5

0

0.5

1

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 5 10 15 20 25

-0.5

0

0.5

1

y
(t

)
[m

]

y pos
slip MKs

NEW

Figure 5.20: RH leg position along x-axis and y-axis during the simulation. Yellow markers
correspond to the baseline flags = 1

CHAPTER 5. SIMULATIONS RESULTS 49

5.2 Trot

To demonstrate that the proposed method can be used with different types of locomotion,
we tested it in simulation with the robot trotting on slippery terrain. The quadrupedal
trotting is a gait that allows the robot to reach higher speeds. It is more difficult to
manage because the robot uses only two legs at the time (when LF and RH are in stance,
RF and LH are in swing and vice versa) to achieve the desired velocity.
In the next sections we show the results obtained with the proposed slip detection al-
gorithm and we compare them with those obtained using the baseline approach (Chap.
4.1).

5.2.1 One Leg on ice-patch

The robot starts walking from a non-slippery ground and then moves to ice-sheet. In this
simple demonstration, the only leg going to the slab is LF. This is to test if, the slippage
of one leg can affect the slip detection of the others.

Figure 5.21: One leg on ice slabs

We used the following parameters:

εv prctile(∆V , 95%)
εp 0.03
m 0.3

Table 5.3: Parameters of the simulation test: one leg on ice patch

We said that, if LF is in stance, RH is in stance as well, while the others are in swing
(and certainly they cannot slip). From Fig. 5.22 we see that the slippage clearly occurs
around the seconds 5 and 6. And from Fig. 5.22 and 5.23 we clearly see that the slip
detection correctly performed on stance leg (LF) does not affect the slip detection of the

CHAPTER 5. SIMULATIONS RESULTS 50

other stance leg RH (the value of its flag continues to be 0 thanks to the fact that ∆P
remains below the detection threshold).

ε

ε

Figure 5.22: Shapes of ∆V V and ∆P with the respective thresholds

Figure 5.23: Flag indicating slippage

In Fig. 5.24 the evolution of the LF foot trajectory during the test.

CHAPTER 5. SIMULATIONS RESULTS 51

0 2 4 6
Time [s]

0.2

0.4

0.6

0.8

1

1.2

1.4
x
(t

)
[m

]

slip MKs

0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

y
(t

)
[m

]

slip MKs

Figure 5.24: LF leg position along x-axis and y-axis during the simulation

Comparison with the baseline approach

In this case we implemented the method described in sec. 4.1.2. Although there is only
one sliding leg in this test, the median-based approach could not be applied, because
during the trot the legs have pairwise different velocities and there are only two stance
legs on which to calculate the median of velocities.

ε

Figure 5.25: Shapes of ∆V with the threshold. From top-left to bottom-right: LF - RF -
LH - RH

We note that there is a correct detection with both the algorithms in the interval 2-3 s,
when the slippage actually occurs. But we also see that, with the baseline approach, in
some instants the flag goes to 1 and then instantly returns to 0. We can consider them
as false positives again probably due to the implementation of contact detection.

CHAPTER 5. SIMULATIONS RESULTS 52

Figure 5.26: Comparison between the flags

0 2 4 6
Time [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

y
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

Figure 5.27: LF leg position along x-axis and y-axis during the simulation. Yellow markers
correspond to the baseline flags = 1

CHAPTER 5. SIMULATIONS RESULTS 53

5.2.2 Multiple Legs on ice-patches

As a last simulation result we show the case of slip detection in the case of several legs
are on a slippery ground. In particular the robot moves to ice slabs and two legs are on
ice-patches (LF and RF).

Figure 5.28: Multiple legs on ice slabs

We used the following parameters:

εv prctile(∆V , 95%)
εp 0.03
m 0.3

Table 5.4: Parameters of the simulation test: multiple legs on ice patch

Figure 5.29: Flags indicating slippage

CHAPTER 5. SIMULATIONS RESULTS 54

ε

ε

Figure 5.30: Shapes of ∆V and ∆P with the respective thresholds

Figure 5.31: LF leg position along x-axis and y-axis during the simulation

Figure 5.32: RF leg position along x-axis and y-axis during the simulation

CHAPTER 5. SIMULATIONS RESULTS 55

Comparison with the baseline approach

Also in this case we implemented the baseline-algorithm presented in sec.4.1.2.

ε

Figure 5.33: Shapes of ∆V with the threshold

Figure 5.34: Flags indicating slippage

CHAPTER 5. SIMULATIONS RESULTS 56

0 1 2 3 4 5
Time [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

Figure 5.35: LF leg position along x-axis and y-axis during the simulation

0 1 2 3 4 5
Time [s]

0

0.5

1

1.5

x
(t

)
[m

]

slip MKs
BL

slip MKs
NEW

0 1 2 3 4 5

0

0.5

1

1.5
y
(t

)
[m

]
slip MKs

BL

slip MKs
NEW

Figure 5.36: RF leg position along x-axis and y-axis during the simulation

From the simulations it is clear that both algorithms are able to detect single or multiple
slipping, but the algorithm proposed in this project proves to be more robust, faster and,
above all, detects slipping throughout its duration and not only in the first instants, which
instead happens in the case of the baseline approach.

To further validate the method we did experiments on the HyQ robot (Chapter 6)

Chapter 6

Experimental Results

We validated the simulation presented in Chapter 5 on the real platform HyQ. In this
chapter we show two experiments. In the first experiment the robot walks on a non-
slippery terrain. This was done in order to have a ground truth and allows to adequately
tune the parameters of our implementation. To prove the effectiveness of the slip detection,
for the second experiment we used a slippery pallet for the robot to walk on. To make
the pallet slippery, we sprinkled its surface with soap.

6.1 Crawl

For the experiments we used only crawl as gait, because it is more statically stable.

6.1.1 Walking on non-slippery ground

This is the first experiment done on the robot. Here the robot walks on a non-slippery
terrain. This was necessary to tune the parameters used in the next experiment, in which
the robot moves on a slippery pallet.

Figure 6.1

At the end we chose the following parameter:

57

CHAPTER 6. EXPERIMENTAL RESULTS 58

εv prctile(∆V , 95%)
εp 0.04
m 0.3

Table 6.1: Parameters of the experimental test: one leg on slippery patch

Figure 6.2: Flags indicating slippage

Figure 6.3: Shapes of ∆V and ∆P with the respective thresholds

CHAPTER 6. EXPERIMENTAL RESULTS 59

6.1.2 Walking on slippery ground

In this experiment the robot walked on a slippery pallet. Although only the legs LF and
RF were placed in sliding conditions, during the experiment also for the leg LH, in contact
with “normal”ground, a slipping was detected (Fig. 6.5).

Figure 6.4: HyQ walking on a slippery pallet

The legs on slippery pallet are LF and RF. As it is possible to see from the plots all the
detection are correctly performed.

Figure 6.5: Flags indicating slippage

CHAPTER 6. EXPERIMENTAL RESULTS 60

ε

ε

Figure 6.6: Shapes of ∆V and ∆P with the respective thresholds

Figure 6.7: LF leg position along x-axis and y-axis during the experiment

Figure 6.8: RF leg position along x-axis and y-axis during the experiment

CHAPTER 6. EXPERIMENTAL RESULTS 61

Figure 6.9: LH leg position along x-axis and y-axis during the experiment

Figure 6.10: RH leg position along x-axis and y-axis during the experiment

Comparison with the baseline approach

During this experiment, legs LF and RF slipped at the same time, So, to make a compari-
son we implemented the method of “Multiple leg slip detection”We chose for the threshold
the value εv = 1.

CHAPTER 6. EXPERIMENTAL RESULTS 62

Figure 6.11: Flags indicating slippage

Figure 6.12: Shapes of ∆V with the respective thresholds

Figure 6.13: LF leg position along x-axis and y-axis during the simulation

CHAPTER 6. EXPERIMENTAL RESULTS 63

Figure 6.14: RF leg position along x-axis and y-axis during the simulation

Figure 6.15: LH leg position along x-axis and y-axis during the simulation

Figure 6.16: RH leg position along x-axis and y-axis during the simulation

Also in this case the results obtained with the proposed method are better, as they detect

CHAPTER 6. EXPERIMENTAL RESULTS 64

the actual slips, there are no false positives and the flags are also able to show the duration
of the slipping.

Chapter 7

Conclusion

In this thesis we presented a novel slip detection approach for legged robots based on
kinematics, which makes use of velocity and position measurements at the ground con-
tacts. In the field of legged robots, a kinematic-based approach is more suitable than
a force-base approach, which involves the use of 6-axis force/torque sensors at the foot
tips. The provided method shows that it is possible to detect a slippage quickly and
effectively relying on the feet positions and velocities expressed in the base frame. This
allows to avoid problems related to the drift, that usually happen when using the world
frame. We proposed a method suitable for different types of locomotion and which is
easily applicable to situations where the robot is required to change its velocity. Then we
proved the effectiveness of the algorithm through the results obtained in simulation tests
and in experiments. We also compared these results with those obtained using an already
existing algorithm, showing that our implementation is more robust.

7.1 Future Works

An analysis of the maximum amount of slippage which is tolerable in the context of lo-
comotion in order to preserve stability is part of future works. Furthermore we plan to
implement an estimation of the friction properties of the terrain during the locomotion.
This can be useful to set different level of “cautiousness”, selecting more or less conserva-
tive gaits according to the situation. Then we can move on including the slip detection
into the state estimation, on the estimation of the surface normal and an implementation
of a recovery strategy based on the correction of the surface normal, that brings the GRFs
back into the friction cone, when a slippage occurs. A recovery strategy is essential for
locomotion on very slippery terrain as ice and in situation where the inclination of the
terrain is wrongly estimated. In the future we can fuse the proposed approach with infor-
mation coming from vision, that could provide a default value for the friction coefficient
together with an estimate of its roughness. Moreover, the described algorithm should
be tested in different type of scenarios, considering for instance soft terrain. Another
important step will be the implementation of the proposed method at the level of others
contact points: it should be useful to analyze the slippage of the shin when it enters in
contact with an obstacle.

65

Appendices

66

Appendix A

Technical specifications of the robot

Table A.1 provides a summary of technical specifications of the robot and its actuators

Desctiption Value

Dimensions
1.0 m× 0.5 m× 0.98 m

(Length x Width x Height)
Leg length (HAA-ground) from 0.339 m to 0.789 m

Distance left to right HAA axis 0.414 m

Distance left to right HFE axis 0.747 m

Weight 90 kg

Active DoF 12

Joint range of motion 120°
Hydraulic actuator type double-acting cylinders

Maximum torque 145 Nm

Onboard sensors

joint position (relative and absolute)
joint torque

cylinder pressure
foot spring compression IMU

Onboard computer IntensePC with real-time Linux

Control frequency 1 kHz

Table A.1: Technical specifications of the HyQ robot

67

Appendix B

Forward Kinematics

x

y

dLR

dFH

LFLH

RFRH

(a) Top View

z0y0
x0y1
z1

x1

y2
x2

HAA

HFE

z2
KFE

(b) Side View

Figure B.1: Base frame and joint frames used to compute the forward kinematics

This is the procedure to obtain the Transformation Matrix of the leg RF. The same can
be done for the other legs (LF, LH, RH) changing the distances between base and joint
frames.
d12 is the distance between HAA and HFE; d23 is the distance between HFE and KFE;

d34 is the distance between KFE and the foot.

TBHAA =

0 0 1 dfh/2
0 1 0 −dlr/2
−1 0 0 0
0 0 0 1

 (B.0.1)

THAAHFE =

cos(θ1) −sin(θ1) 1 d12cos(θ1)
sin(θ1) cos(θ1) 0 d12sin(θ1)

0 0 1 0
0 0 0 1

 ·

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 (B.0.2)

THFEKFE =

cos(θ2) −sin(θ2) 1 d23cos(θ2)
sin(θ2) cos(θ1) 0 d23sin(θ2)

0 0 1 0
0 0 0 1

 (B.0.3)

68

APPENDIX B. FORWARD KINEMATICS 69

TKFEfoot =

cos(θ3) −sin(θ3) 1 d34cos(θ3)
sin(θ3) cos(θ3) 0 d34sin(θ3)

0 0 1 0
0 0 0 1

 ·

0 0 −1 0
−1 0 0 0
0 1 0 0
0 0 0 1

 (B.0.4)

Bibliography

[1] Alexandra Witze et al., Nasa has launched the most ambitious mars rover ever built: Here’s what
happens next, Nature 584 (2020), no. 7819, 15–16.

[2] Ned Potter, A mars helicopter preps for launch: The first drone to fly on another planet will hitch a
ride on nasa’s perseverance rover - [news], IEEE Spectrum 57 (2020), no. 7, 06–07.

[3] Marc H Raibert, Legged robots, Communications of the ACM 29 (1986), no. 6, 499–514.

[4] Boston Dynamics, Atlas, https: // www. bostondynamics. com/ atlas , accessed in september 2021.

[5] Claudio Semini, Nikolaos Tsagarakis, Emanuele Guglielmino, Michele Focchi, Ferdinando Cannella,
and Darwin G Caldwell, Design of hyq – a hydraulically and electrically actuated quadruped robot,
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering 225 (2011), no. 6, 831–849.

[6] Claudio Semini, Victor Barasuol, Michele Focchi, Chundri Boelens, Mohamed Emara, Salvatore
Casella, Octavio Villarreal, Romeo Orsolino, Geoff Fink, Shamel Fahmi, Gustavo Medrano-Cerda,
Dhinesh Sangiah, Jack Lesniewski, Kyle Fulton, Michel Donadon, Mike Baker, and Darwin G Cald-
well, Brief introduction to the quadruped robot HyQReal, Italian conference on robotics and intelligent
machines (I-RIM), October 2019, pp. 1–2.

[7] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vassilios Tsou-
nis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, Remo Diethelm, Samuel
Bachmann, Amir Melzer, and Mark Hoepflinger, Anymal - a highly mobile and dynamic quadrupedal
robot, 2016 ieee/rsj international conference on intelligent robots and systems (iros), 2016, pp. 38–44.

[8] Boston Dynamics, Bigdog overview (updated march 2010), https: // www. youtube. com/ watch? v=
cnzprsrwumq , accessed in september 2021.

[9] Marco Hutter, Christian Gehring, Michael Bloesch, Mark A Hoepflinger, C David Remy, and Roland
Siegwart, Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion, Adap-
tive mobile robotics, 2012, pp. 483–490.

[10] Boston Dynamics, Atlas — partners in parkour, https: // www. youtube. com/ watch? v=

tf4dml7fiwk , accessed in september 2021.

[11] https: // www. iit. it/ web/ dynamic-legged-systems , accessed in september 2021.

[12] Peter Fankhauser and Marco Hutter, Anymal: a unique quadruped robot conquering harsh environ-
ments, Research Features 126 (2018), 54–57.

[13] Sangok Seok, Albert Wang, Meng Yee Chuah, David Otten, Jeffrey Lang, and Sangbae Kim, Design
principles for highly efficient quadrupeds and implementation on the mit cheetah robot, 2013 ieee
international conference on robotics and automation, 2013, pp. 3307–3312.

[14] Hae-Won Park, Patrick M Wensing, and Sangbae Kim, High-speed bounding with the mit cheetah 2:
Control design and experiments, The International Journal of Robotics Research 36 (2017), no. 2,
167–192.

[15] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M Wensing, and Sang-
bae Kim, Mit cheetah 3: Design and control of a robust, dynamic quadruped robot, 2018 ieee/rsj
international conference on intelligent robots and systems (iros), 2018, pp. 2245–2252.

70

https://www.bostondynamics.com/atlas
https://www.youtube.com/watch?v=cnzprsrwumq
https://www.youtube.com/watch?v=cnzprsrwumq
https://www.youtube.com/watch?v=tf4dml7fiwk
https://www.youtube.com/watch?v=tf4dml7fiwk
https://www.iit.it/web/dynamic-legged-systems

BIBLIOGRAPHY 71

[16] Erico Guizzo, By leaps and bounds: An exclusive look at how boston dynamics is redefining robot
agility, IEEE Spectrum 56 (2019), no. 12, 34–39.

[17] Unitree Robotics, Aliengo, https: // www. unitree. com/ products/ aliengo/ , accessed in septem-
ber 2021.

[18] Michael Bloesch, Christian Gehring, Peter Fankhauser, Marco Hutter, Mark A Hoepflinger, and
Roland Siegwart, State estimation for legged robots on unstable and slippery terrain, 2013 ieee/rsj
international conference on intelligent robots and systems, 2013, pp. 6058–6064.

[19] S. Fahmi, On terrain-aware locomotion for legged robots, Ph.D. Thesis, 2021.

[20] Dominik Belter and Piotr Skrzypczyński, Rough terrain mapping and classification for foothold se-
lection in a walking robot, Journal of Field Robotics 28 (2011), no. 4, 497–528.

[21] Victor Barasuol, Marco Camurri, Stephane Bazeille, Darwin G. Caldwell, and Claudio Semini, Re-
active trotting with foot placement corrections through visual pattern classification, 2015 ieee/rsj
international conference on intelligent robots and systems (iros), 2015, pp. 5734–5741.

[22] Paul Filitchkin and Katie Byl, Feature-based terrain classification for littledog, 2012 ieee/rsj interna-
tional conference on intelligent robots and systems, 2012, pp. 1387–1392.

[23] Lorenz Wellhausen, Alexey Dosovitskiy, René Ranftl, Krzysztof Walas, Cesar Cadena, and Marco
Hutter, Where should i walk? predicting terrain properties from images via self-supervised learning,
IEEE Robotics and Automation Letters 4 (2019), no. 2, 1509–1516.

[24] Lucas Manuelli and Russ Tedrake, Localizing external contact using proprioceptive sensors: The
contact particle filter, 2016 ieee/rsj international conference on intelligent robots and systems (iros),
2016, pp. 5062–5069.

[25] Victor Barasuol, Geoff Fink, Michele Focchi, D Caldwell, and Claudio Semini, On the detection and
localization of shin collisions and reactive actions in quadruped robots, International conference on
climbing and walking robots, 2019.

[26] Sean Wang, Ankit Bhatia, Matthew T Mason, and Aaron M Johnson, Contact localization using
velocity constraints, 2020 ieee/rsj international conference on intelligent robots and systems (iros),
2020, pp. 7351–7358.

[27] Shamel Fahmi, Michele Focchi, Andreea Radulescu, Geoff Fink, Victor Barasuol, and Claudio Semini,
Stance: Locomotion adaptation over soft terrain, IEEE Transactions on Robotics 36 (2020), no. 2,
443–457.

[28] Shamel Fahmi, Carlos Mastalli, Michele Focchi, and Claudio Semini, Passive whole-body control for
quadruped robots: Experimental validation over challenging terrain, IEEE Robotics and Automation
Letters 4 (2019), no. 3, 2553–2560.

[29] Shamel Fahmi, Geoff Fink, and Claudio Semini, On state estimation for legged locomotion over soft
terrain, IEEE Sensors Letters 5 (2021), no. 1, 1–4.

[30] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer, Tingfan Wu, Jesper Smith, Johannes
Englsberger, and Jerry Pratt, Design of a momentum-based control framework and application to the
humanoid robot atlas, International Journal of Humanoid Robotics 13 (March 2016), 1650007–1.

[31] C Dario Bellicoso, Fabian Jenelten, Christian Gehring, and Marco Hutter, Dynamic locomotion
through online nonlinear motion optimization for quadrupedal robots, IEEE Robotics and Automation
Letters 3 (2018), no. 3, 2261–2268.

[32] Andrea Del Prete, Francesco Nori, Giorgio Metta, and Lorenzo Natale, Control of contact forces: The
role of tactile feedback for contact localization, 2012 ieee/rsj international conference on intelligent
robots and systems, 2012, pp. 4048–4053.

[33] Serena Ivaldi, Matteo Fumagalli, Marco Randazzo, Francesco Nori, Giorgio Metta, and Giulio San-
dini, Computing robot internal/external wrenches by means of inertial, tactile and f/t sensors: theory
and implementation on the icub, 2011 11th ieee-ras international conference on humanoid robots,
2011, pp. 521–528.

https://www.unitree.com/products/aliengo/

BIBLIOGRAPHY 72

[34] Yoshiyuki Ohmura, Yasuo Kuniyoshi, and Akihiko Nagakubo, Conformable and scalable tactile sensor
skin for curved surfaces, Proceedings 2006 ieee international conference on robotics and automation,
2006. icra 2006., 2006, pp. 1348–1353.

[35] John Ulmen and Mark Cutkosky, A robust, low-cost and low-noise artificial skin for human-friendly
robots, 2010 ieee international conference on robotics and automation, 2010, pp. 4836–4841.

[36] Alessandro De Luca and Raffaella Mattone, Sensorless robot collision detection and hybrid force/-
motion control, Proceedings of the 2005 ieee international conference on robotics and automation,
2005, pp. 999–1004.

[37] Alessandro De Luca, Alin Albu-Schaffer, Sami Haddadin, and Gerd Hirzinger, Collision detection
and safe reaction with the dlr-iii lightweight manipulator arm, 2006 ieee/rsj international conference
on intelligent robots and systems, 2006, pp. 1623–1630.

[38] Jonathan Vorndamme, Moritz Schappler, and Sami Haddadin, Collision detection, isolation and
identification for humanoids, 2017 ieee international conference on robotics and automation (icra),
2017, pp. 4754–4761.

[39] Michele Focchi, Romeo Orsolino, Marco Camurri, Victor Barasuol, Carlos Mastalli, Darwin G Cald-
well, and Claudio Semini, Heuristic planning for rough terrain locomotion in presence of external
disturbances and variable perception quality, Advances in robotics research: From lab to market, 2020,
pp. 165–209.

[40] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Christian Gehring, C David
Remy, and Roland Siegwart, State estimation for legged robotsconsistent fusion of leg kinematics and
imu, Robotics 17 (2013), 17–24.

[41] Annett Chilian, Heiko Hirschmüller, and Martin Görner, Multisensor data fusion for robust pose
estimation of a six-legged walking robot, 2011 ieee/rsj international conference on intelligent robots
and systems, 2011, pp. 2497–2504.

[42] Hiroshi Takemura, Masato Deguchi, Jun Ueda, Yoshio Matsumoto, and Tsukasa Ogasawara, Slip-
adaptive walk of quadruped robot, Robotics and Autonomous Systems 53 (2005), no. 2, 124–141.

[43] Michele Focchi, Victor Barasuol, Marco Frigerio, Darwin G Caldwell, and Claudio Semini, Slip
detection and recovery for quadruped robots, Robotics research, 2018, pp. 185–199.

[44] Fabian Jenelten, Jemin Hwangbo, Fabian Tresoldi, C Dario Bellicoso, and Marco Hutter, Dynamic
locomotion on slippery ground, IEEE Robotics and Automation Letters 4 (2019), no. 4, 4170–4176.

[45] Jaejun Park, Do Hun Kong, and Hae-Won Park, Design of anti-skid foot with passive slip detection
mechanism for conditional utilization of heterogeneous foot pads, IEEE Robotics and Automation
Letters 4 (2019), no. 2, 1170–1177.

[46] http: // wiki. ros. org/ rviz , accessed in september 2021.

[47] http: // gazebosim. org/ , accessed in september 2021.

[48] https: // www. ros. org/ , accessed in september 2021.

[49] http: // wiki. ros. org/ plotjuggler , accessed in september 2021.

[50] https: // it. mathworks. com/ products/ matlab. html , accessed in september 2021.

[51] Dan Simon, Optimal state estimation: Kalman, h infinity, and nonlinear approaches, John Wiley &
Sons, 2006.

[52] Geoff Fink and Claudio Semini, The DLS quadruped proprioceptive sensor dataset, International
conference on climbing and walking robots (CLAWAR), August 2020, accepted, pp. 1–8.

[53] Victor Barasuol, Jonas Buchli, Claudio Semini, Marco Frigerio, Edson Roberto De Pieri, and Dar-
win G. Caldwell, A reactive controller framework for quadrupedal locomotion on challenging terrain,
May 2013, pp. 2554–2561.

http://wiki.ros.org/rviz
http://gazebosim.org/
https://www.ros.org/
http://wiki.ros.org/plotjuggler
https://it.mathworks.com/products/matlab.html

BIBLIOGRAPHY 73

[54] Ioannis Havoutis, Jesus Ortiz, Stephane Bazeille, Victor Barasuol, Claudio Semini, and Darwin G
Caldwell, Onboard perception-based trotting and crawling with the hydraulic quadruped robot (hyq),
2013 ieee/rsj international conference on intelligent robots and systems, 2013, pp. 6052–6057.

[55] D. Stewart and J.C. Trinkle, An implicit time-stepping scheme for rigid body dynamics with coulomb
friction, Proceedings 2000 icra. millennium conference. ieee international conference on robotics and
automation. symposia proceedings (cat. no.00ch37065), 2000, pp. 162–169 vol.1.

	List of Figures
	List of Tables
	Abstract
	List of Acronyms
	Introduction
	State of the art
	Proprioceptive Terrain-Aware Locomotion
	Contact detection and localization
	Slip detection and recovery

	Aim of this thesis
	Methodologies
	Outline

	Background theory
	State Estimation
	Linear systems theory
	Probability theory
	Propagation of the states and covariances

	The Kalman filter
	The Discrete-time Kalman Filter
	The Continuous-time Kalman filter

	The Extended Kalman Filter
	The continuous-time extended Kalman filter
	The discrete-time extended Kalman filter
	The hybrid extended Kalman filter

	Modelling and Sensing
	Quadruped Robot HyQ
	Robot Modelling
	Onboard Sensors

	Controller
	Reactive Controller Framework

	Methods
	Baseline Approach
	One leg slip detection
	Multiple leg slip detection

	A novel approach for slip detection

	Simulations Results
	Crawl
	One Leg on an ice-patch
	Comparison with the baseline approach
	Multiple Legs on ice-patches
	Comparison with the baseline approach

	Trot
	One Leg on ice-patch
	Multiple Legs on ice-patches

	Experimental Results
	Crawl
	Walking on non-slippery ground
	Walking on slippery ground

	Conclusion
	Future Works

	Appendices
	Technical specifications of the robot
	Forward Kinematics

