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Abstract

Legged robots represent a versatile platform due to their ability to locomote over

rough terrains thanks to their legs. A wide variety of applications can be performed,

such as search and rescue operations, logistics, and maintenance. Recently, robust

locomotion strategies and availability of reliable quadruped platforms has pushed

the legged locomotion community to add manipulation capabilities to these systems

by equipping them with a manipulator arm. Additionally, in order to make this type

of platform, commonly referred as legged manipulator, fully autonomous, vision is

required. In this context, this thesis proposes a control pipeline that uses images

and point clouds from an Eye-in-hand camera to identify, approach to and grasp

a target object using a quadruped manipulator. First, the camera, mounted on

the arm’s end-effector, scans the environment and seen objects are classified and

localized in the camera frame by a neural network (NN). Once the target object is

found, visual feedback is used to center the object in the camera and approach to

it. During this phase, the arm control is split into two part: the joints controlling

the links with lower mass are used for keeping the object centered in the camera,

while the links controlling higher mass are used to place the arm aligned with the

object. Finally, an off-the-shelf software package determines the grasping pose, and

the arm is controlled through visual and proprioceptive information to grab it. A

Behavior-Tree framework dictates the sequence of actions and allows to modularly

encode additional tasks. The approach is validated through a set of simulations using

the HyQ quadruped platform equipped with a 7-DoF manipulator arm.

Keywords: Behavior-Tree, Visual Servoing, Loco-manipulation, Quadruped robots
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Notations

Visual Servoing

e error

s current value of the features

s∗ desired value of the features

vc velocity of the camera expressed in the frame of the camera

Ls Iteraction matrix related to s

L̂s estimated Iteraction matrix related to s
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Abbreviations

BT Behavior Tree

CoM Center of Mass

CV Computer Vision

DLS Dynamic Legged Systems

DoF Degrees of Freedom

FSM Finite State Machine

GRFs Ground Reaction Forces

HSV Hue, Saturation, Value

IBVS Image-based visual servoing

IIT Istituto Italiano di Tecnologia

IoU Intersection over Union

mAP mean Average Precision

MPC Model Predictive Control

RGB Red, Green, Blue

RCF Reactive Control Framework

RGBD Red, Green, Blue, Depth

RL Reinforcement Learning

ROS Robot Operating System

SAG Search, Approach and Grasp

TO Trajectory Optimization

w.r.t. with respect to
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WBC Whole-Body Controller
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Chapter 1

Introduction

1.1 Motivation

One of the big purposes of robots is to be deployed in environments which are

dangerous for human operators. An example of that can be an area after a disaster

both natural (e.g. earthquakes) and human-made (e.g. Fukushima explosion).

Another example is the exploration of new planets which present inhospitable

conditions.

(a) ANYmal C [5]. (b) IIT’s HyQ [6]. (c) Mini Cheetah [7].

(d) HyQReal [8] (e) Spot [9].

Figure 1.1: Examples of commercial and research quadrupedal robots.
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Most of these scenarios present an uneven ground formed by rubble and boulders,

on which it is hard to move with a wheeled or biped robot. Indeed quadruped robots

are more suited to this type of context, because they have more mobility than a

robot with wheels and a definitely bigger support area than two-legged ones. In the

last decades several quadrupeds robot have been developed. Examples of them are:

MIT’s Mini Cheetah [7], Anybotics’s ANYmal C [5], IIT’s HyQ [6], IIT’s HyQReal

[8], Boston Dynamics’s Spot [9]. A major drawback of this type of robots is the lack

of proper manipulation capabilities, which affect deeply the range of feasible tasks.

In previous years researchers have tried different solutions in order to deal with this

problem. There are quadrupeds which use part of their legs for manipulation [10],

there are others that have special grippers attached to their legs [11]. However these

solutions perturb significantly the stability of the robot and, more importantly, do

not allow to perform manipulation and locomotion at the same time. The system

which solves these problems is a quadruped with an additional arm mounted on the

top of it (generally in front) and it is named as quadruped manipulator. We report

in Fig. 1.2 examples of this type of platform in literature.

(a) ANYmal B with a Kinova robotic
arm. [12].

(b) HyQReal with INAIL-IIT robotic
arm [13].

Figure 1.2: Examples of quadruped manipulators.

To fully enlarge the number of tasks legged manipulators can execute, vision is

required. The use of vision has shown successful results for locomotion [14], allowing

the robot to select safe footholds and to increase the traversability of difficult terrains.

When it comes to quadruped robots with arm, many of the manipulation tasks

(e.g opening doors, pick and place of objects) has been done assuming to know the

environment. Hence, to enhance the autonomy of legged manipulators, vision need
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to be taken into account.

1.2 Contributions

To fill the gap, this thesis proposes and verifies a control strategy using vision to

search, approach and grasp (SAG) an object. The different operations are managed

by a behavior tree, that selects the action the robot has to take and to produce the

high level commands to the robot. In more details, references to control a quadruped

manipulator are generated, to locomote the base and to center the object through

visual feedback. It is important to mention that for the visual control only an

Eye-in-Hand RGBD camera placed on the gripper of a robotic arm is used.

1.3 Outline

This document is organised in the following way: Chapter 2 describes the related

works and introduces the reader to the problem. Chapter 3 explains the tackled

problem and gives to the reader the mathematical background used. Chapter 4

illustrates the metholodogy and describes the developed control approach. In Chapter

5, simulation results validates the approach and implementation details are provided.

Finally, Chapter 6 ends the manuscripts with a summary of the work, considerations

and suggestions about future improvements of this work.
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Chapter 2

Related works

In order to build the framework, many components which come from different robotics

fields are required. One of them is the control, used to generates command signals to

track the desired motions of the robot. Another necessary component for this project

is an object detection strategy, since most of the robot behaviors are dependent

to the target object. In order to achieve the final goal of the SAG problem, there

is the necessity to understand the grasping position and orientation of the object

with respect to the robot. Lastly, all the modules derived from these fields need

to be managed and synchronized by an higher component. Regarding the latter, a

Behavior Tree is used.

2.1 Control of Quadruped Manipulators

This new type of robots has brought new challenges. One example is the robustness

against the internal and external disturbances both for the two systems. Indeed,

the walking or trotting of the quadruped can perturb the task of the manipulator

and vice versa. A specific case, regarding a small quadruped, is a possible lack of

balance when the arm is performing manipulation tasks or is carrying a heavy load.

This is caused by the fact that the Center of Mass (CoM) of the quadruped can

be shifted significantly. Generally, for multi-degree of freedom (DoF) floating-base

systems, such as quadrupeds, optimization-based techniques are prominently adopted

for whole-body control (WBC) design [15], [16], [17]. Such control schemes optimize

control objectives for multiple tasks, while handling physical constraints, such as

actuation limits, friction cone constraints, etc. Generally, these optimization problems

generates accelerations and contact forces, which are used lately through inverse

dynamics in order to compute the torques of the joints. Some of the approaches tend
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to consider the robotic manipulator as a disturbance and model the controller to

stabilize the base [18]. Other approaches, as in [12], generates together the motion

for base and manipulator respecting the zero-moment point constraints. Other

approaches use Reinforcement Learning (RL) policies for locomotion and Model

Predictive Control (MPC) for controlling the arm and predicting, based on future

arm motion, the disturbance on base [19]. Some other approaches use whole-body

planners to generate a reference for the system. One example of that is [20], in which

a whole-body MPC planner is used to avoid self and environment collisions which

may happen during a locomanipulation task.

2.2 Object Detection

Object detection is a family of algorithms which are able to recognize an object in an

image. Since in this thesis such type of algorithm is used to detect a specific object

in the environment in real-time, two characteristics are needed: real-time detection

speed and a high accuracy of the result. Two categories of algorithms which satisfy

the two above requirements are Conventional Computer Vision and Deep Learning

for Computer Vision.

Starting from the first category, a very important algorithm is Color-based Object

Detection. It is a good choice if the scenarios are simple which means if the color of

the background is very different from the color of the target object. That because

that algorithm extracts from an image only the regions which have a high amount of

a precise chosen color. Therefore all the background is removed and the output is an

image with only the target object. After that, in order to avoid noise interference, is

extracted the largest pixel block in the connected area. As last step, is computed

the position of the centroid of the pixel block which is considered the position of

the center of the target object. An important consideration on this method is that

the great part of the cameras are RGB (Red, Green, Blue) and it is very sensitive

to illumination. To solve this problem is possible to transform into HSV (Hue,

Saturation, Value) the color space of the image.

To be more precise, Hue contains the color information, Saturation contains the

intensity of the color and Value contains the brightness of the color. So the color of

the target object is known, the Hue component is the one to take into account. HSV

is also coherent with the form in which humans perceive colors. Another interesting

property of doing HSV-based object detection is that it is able to adapt to the change
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(a) Initial image generated
by an RGB sensor

(b) Red color segmentation
with HSV.

(c) Output of the algo-
rithm

Figure 2.1: [1] Example of Conventional CV algorithm: Color-based Object Detection.

of color which is provoked by different illuminations. An example of that algorithm

can be observed in Fig.(2.1).

The second category is Deep Learning for Computer vision. It is a neural-based

approach to object detection. It is a good choice if the scenarios are complex, which

means that there are a lot of colors in the background, and also if the target object

has no color characteristics (note that in both cases the color-based object detection

doesn’t work but it is significantly less computationally expensive). In particular an

efficient object detection algorithm of this category is called YOLOv3 [2]. It is based

on neural network and it has two features. The first is the use of bounding boxes on

the image to determine the positions of the detected objects. The second feature

is the classification of each bounding box, in order to know which type of object is

inside them. An example of these two features can be seen in Fig.(2.2).

Figure 2.2: [1] Example of bounding boxes and class predictions computed by
YOLOv3.

To be more precise the input is an image and the output is a tensor which contains

the class predictions and the bounding boxes. The latter is composed by five elements

(x, y, w, h, c), where x, y are the coordinates of the center of the box, w and h are

respectively width and height of the box and c is the confidence that the network
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has in that box. YOLOv3 has a network structure based on DarkNet-53, which is

formed by 53 convolutional layers. In particular, YOLO has 106 layers in total, 53

are used for feature extraction and the other 53 for detection. YOLOv3 has more

precision and is faster than other similar models, this can be seen in Fig.(2.3).

Figure 2.3: [2] Deep Learning CV algorithms comparison, using mAP (mean Average
Precision) at 0.5 IoU (Intersection over Union).

Now, is time to describe the other algorithm which is in the title of this section,

the Object Tracking algorithm. It allows to locate, in videos (so over multiple frames),

the same chosen objects. It can be seen as the step after object detection, because

when a target object is detected it continuous to track it. But when there are more

than one object in the same image is difficult to understand which is the target one.

To solve this problem is possible to compute the Euclidean distance between the

target object of the previous frame and every object of the new frame, after that the

minimum Euclidean distance determines the target object, as is explained in [1].

2.3 Search and Approach of Objects in Mobile

Manipulators

The goal of mobile manipulation is to allow a robotic arm to perform tasks on objects

which, initially, are not in its workspace and/or in its field of view. That definition

includes all the manipulators which are able to move in the environment, this includes

wheel bases and legged bases. In the literature it is possible to find a large quantity of

papers which describe the problem of mobile manipulation. As we already explained,

some approaches use a whole-body controller such as [21], [12]. Instead others deal

with that kind of robot as two different systems, such as [22], [23]. Recently, with the

growth of reinforcement learning, some policies to achieve this behavior have been
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developed, examples are [24] and [25]. However most of them focus their contribution

on the manipulation, using for the navigation a trajectory planner. This brings to a

lack of variety and novelty in the methods of searching and approaching the object.

One research which addresses that problem from the detection of the object to the

grasping is [22]. In particular they use a Toyota Human Support Robot (HSR) [26],

which is a wheeled robot with a 4 DoF manipulator and it has one RGBD camera

in the head (which is actuated by a 2 DoF mechanism) and one RGB camera in

the parallel gripper. They implemented the search phase moving the head camera

through a series of search poses, but they made the assumption that the target object

is in front of the camera. Once the object is detected they build a map of all the

detected objects and they use visual servoing with the camera on the gripper to reach

a desired pose relative to the target object. They implemented a learning strategy to

estimate correctly the depth from the camera to the object, since their Eye-in-Hand

camera is RGB and does not present a stereo-vision module. After that their grasp

phase uses visual servoing to center the object which is approximated to a cylinder

to perform the grasping. The assumptions in that work are quite strong, since they

did not implement a real search behavior and the grasping part is very simplified

also because they always point down the end-effector camera, so that approach will

work only for objects which are on the ground. Another interesting paper is [21].

Their method uses a whole-body trajectory optimization which is able to create

trajectories for a locomanipulation task. Their search phase strategy is to move the

base slowly forward while the Eye-in-Hand camera is scanning the area in the front

from right to left and vice versa. This implies that also in this case they made the

assumption of the target object in front of the robot. Instead, in the approach phase

their TO is able to track and follow the object firstly with the arm and after slowly

with the base. This allows the base to don’t perform aggressive maneuvers. This

is used also for the grasping phase, and it is done adopting the 3-D position of the

target object as equality constraint. In addition, the just presented papers, use a

simple finite state machine (FSM) to change between states.

2.4 Object grasping

The grasping of objects is still an open problem in research and is becoming in-

creasingly important. That can be demonstrated by the number of publications on

IEEExplore which include the keywork “6DoF” in the document and “Grasping” in
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the metadata, Fig.(2.4).

Figure 2.4: [3] Number of publications on IEEExplore including “6DoF” in the
document and “Grasping” in the metadata.

Starting from the beginning, a “grasp pose” defines the position and orientation of the

end-effector in order to achieve a successful grasp. The procedure of finding that pose

is called grasp synthesis and there are mainly two types: 4DoF and 6DoF. The first

class of methods is characterized by having the desired pose of the gripper composed

by a 3-D position and only one orientation which is around the axis perpendicular

to the object. So usually it used with the camera perpendicular to a table and the

end-effector simply moves up and down. That is the reason why such approaches

are also referred as Top-Down. Obviously, is easy to understand that it is a strong

assumption and it is cannot be applied in many real cases. For that reason researchers

invented the 6DoF methods, which as can be imagined, have as output both position

and orientation in the three dimensional space. For both this two types, it is possible

to make a further categorisation regarding the gripper which is in use. In fact, some

implementations are for dexterous hands, like human hands with five fingers, and

the others are for parallel hands, two fingers grippers. Talking about techniques for

finding these grasping poses, there are two big categories: analytical approaches and

data-driven approaches. The first category has been developed until the beginning of

the 21st century and the goal was to model and estimate physical conditions of the

grasping, in [27] the reader can find a survey about them. However these methods

were very complex and not applicable in real-time. For that reason researchers

started to develop the second class of methods which use features extracted from a

group of known object to find the right grasp pose for them but also for unknown

ones. At the beginning the features where hand-designed, for example searching

which part of the object fits in the gripper, more information on that are available

in [28]. From the second decade of the century and to the present, the growth of
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machine learning and neural networks has influenced also this field, allowing the

researchers to use learned features to detected the correct grasp. The number of

these approaches is very large and for that reason it is possible to divide them into

four main methodologies. The first type of algorithms is grasp pose sampling, they

generate one or more grasp samples and after they evaluate each of them individually

using a learned quality function. Another approach is to perform a direct regression

considering all the possible grasp globally and learning a function to predict only

good ones. After that there are the reinforcement learning (RL) methods, which

are based on the maximization of a cumulative reward function which depends on

the actions of the robot. Last but not the least there is the category of examplar

methods which generate grasps from an existing database using a similarity metric.

In addition, depending on the precise implementation of the method, which could

be one of the presented four, the input can be different and usually is one of the

following four: RGB image, RGB image, PointCloud, Voxel Grid. For the sake of

this thesis there is no reason to go deeper on that topic, however for gaining more

information that survey [3] can be used.

2.5 Behavior Trees

A behavior tree (BT) is a hierarchical node structure which controls the switching

between the finite states of a system. BTs were born in the gaming industry as

an evolution of Finite State Machine (FSM) in order to solve their drawbacks. In

particular, it is difficult to determine who was the real inventor of BTs since many key

aspects were shared in conferences and workshops, but it is possible to underline some

milestones by Andrew Stern and Michael Mateas [29] and Damian Isla [30]. After

some years, the first journal paper on that topic was published [31] and subsequently

also the ones related to robotics [32], [33]. The key word for BTs is modularity, which

is the main problem of FSMs. In particular the latters encode the transitions inside

the state and that means each state has to know about the existence and capabilities

of the other states. Instead, a BT node has just to know if it succeeded or not; each

node in the tree can return three values: success, running, failure. In conclusion

FSMs can bring to complexity and difficulty in extending, adapting and reusing

the states. While, with BTs is possible to reuse a tree by inserting it as a sub-tree

in another tree, their graphical representation is easy to read and understand, and

finally there are many types of nodes which can create a more complex control flow.
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The functioning of BTs is very simple, starting from the root node the graph is

traversed (tick) until a leaf node, the one which really contains a control action.

Depending on the result of that node, the tree can be traversed more or it may ends

returning back to the root and restarting again the procedure. If the leaf node return

running, that node is continuously tick until it returns one of the other two states.

An example of BT is shown in Fig.(2.5).

Figure 2.5: Example of Behavior Tree [4].

There are three main types of nodes: Composite, Decorator and Leaf. Composite

nodes are the only ones which can have more than one child node. The ones of the

second type can have only single child and can alter its result or tick it more than

one time. The last category is straightforward: it contains nodes which do not have

a child. In the following lines, the most important nodes will be explained. Starting

from the Composite ones, the most used is Sequence. It is also the simplest one and

it will tick all the children from the left to the right until the last returns success or

until one of them returns failure. That node can also be seen as a logical AND. The

other very important component of that category is the Fallback and it is also known

as Selector. That second name is very explanatory, in fact it ticks the children from

right to left until one returns success, so if the first child is ticked and it returns

success, the Fallback exits returning success. This can also be seen as a logical OR.

The next category, Decorator nodes, is the biggest one, because it contains all the

nodes which can modify the behaviour of its child. One of them is the Inverter node,

it reverts the result of the child, so if the latter returns success the Inverter return

failure, and the other way round. Other nodes are Force Success, Force Failure,

Repeat, Retry, Keep Running Until Failure. The name of all these nodes already

explain their behavior and there is no need to explicitly describe them. Last but

not least, the category of Leaf nodes. They can be only of two types: Action and

Condition. The main difference is that Conditions cannot return running, while
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Actions can. That is done because the Conditions have to be instantaneous, like

“isDoorOpen” in the example, while Actions are meant as real interaction of the agent

with the environment, which in the large part they need some time to complete,

like “OpenDoor” in the example. Before concluding, it is important to say that BTs

have another strong advantage. It is possible to modify their structure also online,

because it is written in a textual representation, like XML, which does not need to

be compiled.
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Chapter 3

Problem Formulation

From the previous chapter it is depicted a lack in the state of the art regarding

a complete pipeline which allows a quadruped manipulator to search, approach

and grasp (SAG) a general object in the environment. To accomplish this task, in

literature many assumptions have been generally used: the position of the object is

known a priori [34], it does not move and stays in front of the camera [22], and it

has a basic shape [21]. However, in [21], the authors implements something closer

to a SAG behavior, but without explaining their search phase and using only color

segmentation and basic shape object (a red ball). This thesis has the objective to fill

that gap, implementing a complete SAG pipeline which can be generalised to any

object, using trained object detection and grasping pose generator neural networks.

In order to achieve that, there is the need to define the problem in a proper way

including also the principals on which the solution is based. In particular first we

define the dynamic model of such type of robot, which will be used to formulate

the torque controller. After there is an explanation about visual servoing which is

used to generate a control strategy based on images. At the end of this chapter our

solution to the problem is described briefly.

3.1 Dynamic Modelling of a Quadruped Manipu-

lator

Here, the dynamic model of the quadruped manipulator is split into the model of

the quadruped itself and the model of the arm. First, the former is presented. A

quadruped robot is a particular case of legged robot with four legs. Indeed we can

consider it as a free-floating base, which can be referred as B, with a set of limbs

attached to it. In order to describe the motion of the system (base B plus four legs)
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Figure 3.1: Quadruped manipulator model with the inertial frame W , base frame B
and end-effector frame EE.

it is important to define a fixed inertial frame, which is referenced as world W . Now

is possible to define the position of B in the inertial frame w.r.t. (with respect to)

W as WpWB ∈ R3. Instead, the orientation of B w.r.t. W can be defined by the

roll, pitch and yaw angles (in XYZ convention), denoted as qWB. Regarding the

limbs, the total number of joints (four legs) is nj and their positions (joint angles)

are stacked in the vector of generalized coordinates defined as qj ∈ Rnj . The position

of the base, its orientation and the joint legs are stacked in the vector of generalized

coordinate denoted by q as follows:

q =

WpWB

qWB

qj

 ∈ Rns (3.1)

where ns = 6 + nj being the total number of degrees of freedom of the quadruped

subsystem.

As it has been explained, the other subsystem is the manipulator arm with na

joints. The position of all its joints is described by the generalized coordinates vector

denoted by qa ∈ Rna .

3.1.1 Robot Dynamics

To describe the evolution in time of our system’s dynamics. In order to do that, a

model of the system has to be developed using a mathematical description that takes
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into account the evolution in time of the system components. That description is

referred as dynamic model. In this work, the base and the arm are decoupled, the

consequence is that there are two different dynamic models. Starting from the one

of the quadruped. It is possible to describe the dynamic model of a floating base as

follows:

M(q) q̈+ h(q, q̇) = J⊤
stFg + τ (3.2)

where M(q) ∈ Rns×ns is the inertia matrix, q̈ is the generalized acceleration vector

and it is composed as follows q̈ = [W v̇⊤
WB W ω̇⊤

WB q̈⊤
j ]

⊤, with WvWB and WωWB

the linear and angular velocities of the floating base B in the world frame w.r.t. W .

Instead, h ∈ Rns is the vector of Coriolis, centrifugal and gravity terms, while q̇ is the

generalized velocity vector and it is structured as follows q̇ = [Wv⊤
WB Wω⊤

WB q̇⊤
j ]

⊤.

On the other side of the equation the first J⊤
stFg ∈ Rns term accounts the ground

forces, in particular Fg ∈ R3 via the contact points Jacobian J⊤
st ∈ Rns×3. Last, τ ∈

Rns is the vector of joint torques. As is written before, that formulation includes

both the floating base and the joints of the legs. So it is possible to write it in a

more explicit way by dividing the two parts as follow:

[
Mb Mbl

Mlb Ml

][
ξ̇b

q̈l

]
+

[
hb

hl

]
=

[
J⊤
st,b

J⊤
st,l

]
Fg +

[
06×1

τl

]
(3.3)

where Ma ∈ R6×6 and Mbl ∈ R6×j are the inertia matrix of the base and the inertia

coupling matrix between the base and the legs, while Mlb ∈ Rj×6 and Ml ∈ Rj×j

are the inertia coupling matrix between the legs and the base, and the inertia matrix

of the legs. Instead ξ̇b = [W v̇⊤
WB W ω̇⊤

WB]
⊤ ∈ R6 is the total acceleration of the base

(both linear and angular) and q̈l is the acceleration of the leg joints. Regarding the

Coriolis, centrifugal and gravity terms for the base, those terms are denoted by hb ∈
R6, while for the limbs these terms are denoted by hl ∈ Rj. Contact Jacobians are

denoted for the base and for the legs respectively as J⊤
st,b ∈ Rns×3 and J⊤

st,l ∈ Rl×3.

As is possible to see, since the base is unactuated, τ, while the torques for the legs

are denoted by τl.

Instead, for the robotic manipulator the following model is used:

Ma(qa) q̈a + ha(qa, q̇a) = τa (3.4)
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where Ma(qa) ∈ Rna×na is the inertia matrix of the arm and q̈a ∈ Rna is the

acceleration vector of the manipulators’ joints. Instead, h ∈ Rna is the vector of

Coriolis, centrifugal and gravity terms, while q̇a is the velocity of the joints of the

manipulator or. Concluding, on the other side of the equation there is τa ∈ Rna

which is the vector of joint torques. It is important to note that, in this model other

external forces are not taken into account.

3.2 Visual Servoing

Visual servoing [35] is a category of control methods which use the vision data in

order to control the motion of a robot. In particular, vision data can be given by

a camera which is mounted on a manipulator, which is called Eye-in-Hand, by one

which looks at the manipulator and is called Eye-to-Hand, or a camera mounted on

a mobile robot.The aim of all vision-based control schemes is to minimize an error

e(t):

e(t) = s− s∗ (3.5)

Where s are the current states of the image features seen by the camera and s∗

are the goal states of them. With these features it is possible to design a velocity

controller. Indeed, the time variations of s are related to the camera velocity vc by

the following relation:

ṡ = Lsξc (3.6)

Where Ls ∈ Rk×6 (k is the number of used features) is called the interaction matrix

related to s and it links how the features vary if the camera moves. That matrix has

always to be estimated L̂s because it depends on the calibration of the camera and

on quantities which are measured.

Considering vc as the input to the robot controller and the objective to ensure

an exponential decoupled decrease of the error (i.e., ė = −λe), is possible to obtain:

ξc = −λL̂+
s e (3.7)

where L̂+
s ∈ R6×k is the Moore-Penrose pseudoinverse of the estimated interaction

matrix. Applying substitutions in the previous equations is obtained the time

variation of the error ė :

ė = Lsvc = −λLsL̂
+
s e (3.8)
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where LsL̂
+
s is used to study the stability, since the sufficient condition is:

LsL̂
+
s > 0 (3.9)

There are different approaches to design s, the most commons are image-based visual

servo control (IBVS) and position-based visual servo control (PBVS).

3.2.1 Image-based visual servo control (IBVS)

Regarding IBVS (Image-based visual servoing) that error is generated from the

difference between the desired image features and the current image features. The

simplest features are points, while some more articuled are polar coordinates of a 2-D

line or a more complex 2-D shape. An important remark is that these 2-D points are

expressed in the projection plane. To map from image space (pixels) to projection

plane space the intrinsic parameters of the camera are used as follows:
x =

(xp − cx)

fx

y =
(yp − cy)

fy

where cx and cy are coordinates of the principal point, fx and fy are the focal lenght

on the two axes, xp and yp are the pixel coordinates. Another useful mapping is

between the 3-D space and the projection plane space, which is as follows:
x =

X

Z

y =
Y

Z

where X, Y and Z are the 3-D coordinates. For example the interaction matrix of a

2-D point is the following:

Ls2D =

[
− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

]
(3.10)

Rotational motions of the camera are the most problematic for IBVS. In this case

the camera parameters influence the trajectory performed by the robot but will

never affect the accuracy of the position reached. On the other hand, when the

movement is long, the camera may reach a local minima or may cross a singularity
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of the interaction matrix.

3.3 Solution of the SAG problem

As previously mentioned, the SAG problem deals with the search, approach and

grasp of a target object in the environment. Here, we do not lower the complexity

assuming the object to be known a priori. However, we rely on an existing work [36]

for determining the grasping pose, being this still an open problem in robotics, and

for the object detection we rely on YOLOv5 neural network [37].

In this section, we state the objectives for each of the three above mentioned

phases. More specifically, while searching, the aim is to reduce the time required to

find the object, penalizing base displacements and avoiding camera occlusions. The

first penalization is motivated by the arm having lower inertia compared to the base.

In other words, moving the arm can lead to faster motion; hence a lower time to scan

the surroundings. In contrast, the second penalization is related to the fact that the

quadruped can occlude the view of the camera, causing the impossibility to examine

a portion of the environment and potentially to have fault detections. Differently, the

objective of the approach task is to align the heading of the base in order to point the

object and to reach a desired distance between the arm’s end-effector and the object.

Here, no assumption are made about the object being fixed in the world. Finally,

during the grasping task, the robot’s goal is first to position the arm’s end-effector

within the object’s workspace and subsequently to grab the object.
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Chapter 4

Methodology

In this thesis, to solve the SAG problem a dedicated pipeline is implemented. That

means the need of controllers to generate the desired motions. Indeed, in this work

are developed several controllers for the manipulator. While, regarding the base

the controllers are external modules. In this chapter, first is explained the main

idea behind the proposed control strategy for the arm. After, the pipeline and the

controllers are described.

4.1 A decoupled control approach

Manipulators are composed by joints which are connected between them with links.

The latters, usually are heavier at the beginning of the arm and they become lighter

at the end. This is done because the first links have to hold all the others and also

to enlarge the workspace of the robotic arm. This difference between the initial

and final links of a manipulator allows to categorize them based on their inertia.

In particular the first links can be seen as high inertia ones and the last links as

low inertia ones. An example of that, it is the manipulator used in this work, a

Kinova Gen3 7-DoF [38]. In fact, as it is possible to observe in Fig.(4.1), the first

four links (blue ellipse) of that robotic arm have more inertia than the last three

(yellow ellipse).

In other words, this grouping of links suggests to use the last ones to perform motion

which have to be fast and reactive. The developed control strategy here presented

relies on this concept. The reason is that in our case the robotic arm is mounted on

top of a quadruped robot. The latter creates disturbances when moving, and these

perturbations have to be compensated. To be more precise, a key aspect in a SAG

pipeline is to keep visual on the object, even if the robot is moving. That task is

30



Figure 4.1: Representation of our manipulator split into two groups: in blue, high
inertia links, while in yellow low inertia links.

very sensible to disturbance and a reactive control is needed.

4.2 Control Pipeline

Regarding the control strategy, the quadruped manipulator is controlled with force

control. This brings several advantages to the system. One of them is the possibility

to implement compliant control strategy, in presence to external disturbances. Instead

with other control methods the system has not that possibility, for example with

velocity or position control the joints remain stiff. Having that type of compliant

behavior, is a key factor for these types of robots, since nowadays they have also the

purpose to operate in environments where humans are present. In this project the

two subsystems, quadruped and robotic arm, are controlled separately. In particular,

the manipulator is directly controlled by our framework, since it generates as output

the torques, τa, for its joints. Instead, concerning the quadruped, our work outputs

a reference twist for the base, ξb, which is composed by the desired linear and

angular velocities. That is taken by the Reactive Control Framework (RCF) [39]

which generates the desired wrench for the base, ζb, which is composed by the forces

and moments. After that, as last module, there is the Trunk Controller [40] which

starting from the desired wrench for the base outputs the torques for the legs’ joints,

τl. The graphical description of this pipeline is represented in Fig.(4.2).
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Figure 4.2: Graphical representation of the overall control pipeline.

4.2.1 RCF: Reactive Control Framework

The reactive control framework [39] is a controller that generates a desired wrench to

stabilize the base and references for swing legs based on desired footholds. Regarding

the balancing of the robot, a desired wrench is computed based on the error between

desired and measured linear and angular acceleration, using a PD control law such

as:

W v̇WBd = Kp (WpWBd − WpWB) +Kd (W v̇WBd − W v̇WB) (4.1)

W ω̇WBd = Kp (qWBd − qWB) +Kd (WωWBd − WωWB) (4.2)

where W v̇WBd ∈ R3 is the desired linear acceleration of the base, WpWBd and WpWB

are the desired and current base trajectories, while W v̇WBd and W v̇WB are the desired

and current base linear velocities. All the K∗ ∈ R3×3 are the PD gains. Instead,

W ω̇WBd ∈ R3 is the desired angular acceleration of the base, qWBd ∈ R3 and qWB

∈ R3 are Euler angles representing the desired and actual orientation of the base

with respect to the World reference frame, WωWBd and WωWB ∈ R3 are the desired

and current angular velocities of the base.

4.2.2 Trunk Controller

Once the desired wrench to stabilize the base is calculated from the RCF, another

module called Trunk Controller finds the ground reaction forces to exert the desired

wrench on the base. To avoid slipping, friction constraints are imposed to bound

the tangential and lateral component of the ground reaction forces. Hence, an

optimization problem is solved where a cost function expressed in the form of a

wrench tracking is optimized, and the decision variables, i.e contact forces, are found

imposing the above-mentioned friction constraints. In more details, the ground
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reaction forces (GRFs, fe) are computed using the base dynamics model:

[
I . . . I

S(p1) . . . S(pnc)

]
︸ ︷︷ ︸

A


fe, 1
...

fe, nc


︸ ︷︷ ︸

fe

=

[
M bW v̇WBd

Ib W ω̇WBd

]
+ hb︸ ︷︷ ︸

b

(4.3)

with p∗ ∈ R3×nc the contact positions and nc is the number of contacts points. M b

and Ib being respectively the mass and inertias of the trunk. S(p∗) denotes a skew-

symmetric matrix used for calculating vector products between the contact point

and contact force with the ground. At each control loop, the following quadratic

programming problem is solved as:

fde = argmin(Afe − b)⊤S(Afe − b) + αf⊤e W fe

s.t. d < Cfe < d

(4.4)

where S ∈ R6×6 and W ∈ R3nc×3nc are positive-definite weight matrices, α ∈ R
weighs the secondary objective, C ∈ Rp×3nc is the inequality constraint matrix that

defines friction constraints and upper and lower bounds in the z direction, d, d ∈ Rp

the lower/upper bound respectively, with p being the number of inequality constraints

and nc the number of contact points.

Subsequently, the found ground reaction forces are converted to joint torques through

the Jacobian. This torque component is referred as feedforward component and it is

obtained as τff :

τff = −J⊤
c fe (4.5)

where Jc ∈ Rnc×ns is the stacked jacobian of the contact points, S = [Inj×nj
0nj×6] is

a selection matrix that selects the actuated joints and nj is the number of joints. For

safety reasons and for generating the motion of the swing legs, a second component

is computed using a PD joint-position controller with low gains. This second term,

τl, is referred as feedback term and is calculated as:

τl = τff + PD(qj, q̇j, cst) (4.6)

where cst is a boolean vector that represent the stance condition of the legs. The

overall torque is sent to the low-level controller that closes the loop in torque and

track the desired joint torques. While the trunk controller runs at 250 Hz, the
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low-level controller runs at 1 kHz, providing an higher stabilization to the robot.

4.3 Developed Framework

In the previous section has been introduced the framework which is the result of

this thesis. It is meant as the core that guides the robot in all the actions which are

necessary in order to achieve a SAG task. In fact, the main idea is to include all

the different control tools in a single space and manage them with a Behavior Tree.

Since the SAG problem can be split into three parts, also this framework can be

divided in that manner. However, it is also possible to introduce a general structure

which is shared by all the three.

Figure 4.3: Graphical representation of the general structure of the framework, that
is shared between all the three phases (search, approach and grasp).

The first element of this structure is the Behavior Tree (BT), which is connected

to all the other modules in order to synchronize them. After that, there are the

reference generators, which are split into three, one for the manipulator, one for the

34



base, and the last for the gripper. The latter is treated as another subsystem, since

usually it is not included in the arm joints. The purpose of such type of elements is

to group different methods to compute the desired states for the subsystems starting

from the their current states. In each control iteration the methods are chosen by

the BT. The generated references depend on the chosen methods, but for the base

they are always twists, for the gripper is always a boolean, instead for the arm there

are different possible types which will be explained in details in the next sections.

Since there is only one reference generator for the gripper and it simply outputs

if the gripper has to be open (0) or close (1), it will not be included in the next

sections. At that point, regarding the base, the references are summed to obtain

the final one which is the first output of the framework. Concerning the base the

boolean is directly the second output of the framework. Instead, regarding the arm,

the references are sent to another element which contains all the torque controllers.

As before, in each control loop the controllers are chosen by the BT. Lastly, the

torques generated from these controllers are summed together to obtain the final

torques which are the second and last output of our framework. Concerning the

torque controllers they are more precisely impedance ones and they use the following

control law (that is in Cartesian space but the one in joint space can be derived by

substituting the term J⊤
a [Kp ep +Kd ėd] with a PD controller which has the errors

in joint space):

τa = J⊤
a [Kp ep +Kd ėd] + ha (4.7)

which is derived from the manipulator’s dynamic model, described by the equation

3.1.1 in section 3.1, making some approximations (e.g. the derivative of the Jacobian

can be approximated to zero). All the K∗ ∈ R3×3 are the PD gains. As last thing,

in our work the maximum number of degrees of freedom needed by all the tasks is

six, since our manipulator is a 7-DoF one, has been decided to keep the third joint

always in the same position. The latter is the reason why in the following section

the reader will not find the torques for the third joint.

4.3.1 Control for searching the object

In order to completely understand the control strategy developed for the search phase,

it is fundamental to recall the objective which has been fixed for that task: reduce

the time required to find the object, penalizing base displacements and avoiding

camera occlusions. To achieve it, a policy which avoid singular configurations and
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self collisions for the robot arm is developed. The main idea is to first scan what is

placed in front of the robot base, and lately what is behind it.

(a) Manipulator home posture with
elbow down.

(b) Manipulator home posture with el-
bow up.

Figure 4.4: Examples of manipulator home postures with joints far from the base.

First, the arm is brought to a home configuration where the joints are kept not in the

proximity of the base, as shown in Fig.(4.4). Then, a circular motion for the arm’s

end-effector is generated. In particular, collisions between the base and the arm are

avoided moving the latter around a circle with center the arm’s base. While, to

avoid singularities, the circle’s diameter is chosen lower than the maximum allowable

distance for the arm. That circumference is chosen because the circle defined with

center the robot’s base has a too large radius that doesn’t allow to move enough

without reaching singularities and also because the arm moves only in the front of

the robot and not also on the sides.

The next space to scan is behind the quadruped, this has to be divided into two

steps, one on the left and one on the right of the base, this is done to avoid image

occlusions caused by the robot being in the field of view of the camera. To perform

these tasks two circular trajectories for the end-effector can be used. In that case

the center of the circles has to be the wrist of the robotic arm. To avoid collisions

and singularities also during these motions, it is better to perform them only with

the last joints since the others are not necessary. Unifying the above-mentioned

pipeline with the fact that in the next phases a decoupled approach is necessary, it is

possible to use the high inertia links to perform the first circular trajectory and the

low inertia links to perform the other two. In addition, to uniform the three motions,

the first circle can be computed for the wrist instead of the end-effector. With that

strategy it is possible to finish the first circular trajectory having the wrist already

in a right position to start immediately the second one. A graphical representation

of these three circles trajectories can be found in Fig.(4.5). In the particular case

of our robotics arm, the wrist is the sixth joint. Currently, the only thing missing
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Figure 4.5: Graphical representation of the trajectories used in the search phase
(with solid lines), the one with the dashed line indicates the non feasible one with
center in the quadruped’s base).

is a way to compute the left and right extreme points on the first circumference,

the ones used as centers for the other two circles. In order to do that the following

assumptions are made:

• the home posture is not in the proximity of the singularities, as already shown

in Fig.(4.4)

• the height of the wrist along the first trajectory is constant and equal to the

one in the home posture
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• the radius of the first circumference, centered in the base of the arm, is the

distance between the base and the wrist when the robotic arm is in the home

posture

• the arm is placed in the front of the robot

Using these assumptions and considering that the wrist cannot move after the

line passing through the arm’s base, since in that case there will be collision with the

quadruped, the circular trajectory is always inside the workspace of the manipulator’s

wrist. The just made observation is done because the arm is mounted with a certain

roll angle with respect to the base plane, that implies the workspace of the robot,

which is centered in the shoulder, to be shifted from the arm’s base. So, to define

the left and right limits is possible to use a desired distance from the base of the

arm in order to be sure that the manipulator doesn’t collide with the quadruped’s

base. That distance is shown with the double grey arrow in Fig.(4.6).

With the described pipeline, there is the little part on the hind of the quadruped

which is not scanned to avoid camera occlusions. To solve that, if the object is not

found during the three circular trajectories, the quadruped base will rotate around

the yaw of π and after the pipeline is repeated. In other words, the quadruped moves

only in a particular case and that confirms the fixed objective.

Regarding the control structure, in the search phase there are five arm reference

generators and two base reference generators. Let’s start describing briefly the role

of each generator starting from the ones for the arm. The generator “Home Posture

Arm Joints” computes the desired position of the joints, qad ∈ Rna , in order to reach

the home configuration. Regarding the wrist, there is “Desired Position Circle Arm

Wrist”, which compute the next desired position on the circle for the wrist, BpBWrist

∈ R3, in order to reach the desired point of the circular trajectory. Instead “Desired

Position Arm Wrist” computes the reference to bring the wrist in a desired cartesian

point. For the end-effector, there are two generators, the first “Height and Roll

Arm EE” solves the problem to maintain the height and the roll of the end-effector

when the wrist moves on the circle. The last reference generator for the robotic

manipulator computes the next desired position on the circle for the end-effector,

BpBEE ∈ R3, in order to reach the desired yaw orientation needed to look backwards.

Concerning the reference generators for the base, “Maintain Pose Base” generates a

zero twist, ξb ∈ R6, in order to don’t change the current state of the base. The other

“Rotate Yaw Pi Base” generates a twist which has only a z angular component, in

order to achieve a rotation of π relative to the orientation of the robot before start
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Figure 4.6: Graphical representation of the first circular trajectory used in the search
phase (in orange), the workspace of the arm’s wrist (in yellow), the line passing
through the arm’s base (in light blue), the distance (double grey arrow) from the
arm’s base which defines the line of the left and right limits (in blue).

rotating. Moving to the torque controllers for the arm, they are four. For the sake

of this thesis, only the general ones are going to be described since are applicable

also to other robots, while “Custom Arm EE” is dependent on the arm used in this

work. The three remaining controllers, as said at the beginning of this chapter, PD

impedance controller (equation 4.3). More precisely the first is in joint space and

controls all the joints, the proportional and derivative errors are the following:

ep = qad − qa (4.8)
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ed = −q̇a (4.9)

where qa ∈ Rna is the vector of the current joints’ positions and q̇a ∈ Rna is the

vector of the current joints’ velocities.

Instead, the other two controllers are in cartesian space and they use the decoupled

approach. Starting from the first, which is for the high inertia links, so joints 1, 2

and 4 (because the third is kept in a constant position), it has the following control

laws:

τa12d = J⊤
at12wrist [Kp ep +Kd ed] + ha12 (4.10)

τa4d = J⊤
at4wrist [Kp ep +Kd ed] + ha4 (4.11)

where τa12d ∈ R2 is the torque vector only for the first two joints, Jat12wrist ∈ R2×3

is the translational part of the Jacobian matrix from base arm to wrist only for

joints one and two, the last term ha12 ∈ R2×1 is the compensation vector for Coriolis,

centrifugal and gravity only for the first two joints. The same definitions are valid for

the second equation, the one regarding the fourth joint, with differences in dimensions

as τa4d ∈ R, Jat4wrist ∈ R1×3 and ha4 ∈ R. Regarding the proportional and derivative

errors, in that case they are:

ep = BpBWristd − BpBWrist (4.12)

ed = −BvBWrist (4.13)

where BpBWristd ∈ R3 is the reference cartesian position for the wrist with respect

to base frame and expressed in base, BpBWrist ∈ R3 is the current position of the

wrist with respect to base and expressed in base frame, and BvBWrist ∈ R3 is the

current translational cartesian velocity of the wrist with respect to base frame and

expressed in base. The reason why in that case there are two control laws is because

the joints are not concatenated since between the second and the fourth there is the

three. The last thing that the controller does is to insert the computed torques in

the associated indexes of a vector τa124 ∈ Rna in order to after add them with the

torques of joints of the low inertia links.

The last controller in this phase is the one for the joints 5, 6, and 7. As the one

just presented it is in cartesian space but having end-effector has target instead of

the wrist as before. The controller has the same logic as the previous one, but this

time the joints are consecutive, and so there is only one control law:
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τa567d = J⊤
at567EE [Kp ep +Kd ed] + ha567 (4.14)

where τa567d ∈ R3 is the torque vector only for the last three joints, Jat567wrist ∈ R3×3

is the translational part of the Jacobian matrix from base arm to end-effector only

for joints five, six and seven, the last term ha567 ∈ R3×1 is the compensation vector

for Coriolis, centrifugal and gravity only for the last three joints. Instead for the

errors, they are:

ep = BpBEEd − BpBEE (4.15)

ed = −BvBEE (4.16)

where BpBEEd ∈ R3 is the reference cartesian position for the end-effector with

respect to base frame and expressed in base, BpBEE ∈ R3 is the current position of

the end-effector with respect to base and expressed in base frame, and BvBEE is the

current translational cartesian velocity of the end-effector with respect to base frame

and expressed in base. As before, these result torques are inserted in the associated

indexes of a vector τa567 ∈ Rna in order to after add them with the torques of joints

of the high inertia links. The graphical representation of the control structure of the

search is in Fig.(4.7).

4.3.2 Control for approaching the object

Once the object is detected, the approach phase starts and it can be divided in two

stages, alignment to the object and approach of the object.

Starting from the alignment, to understand how much the base has to rotate, it

is possible to define its target yaw orientation relative to the one before the start of

the rotation. To do that the yaw difference between the segment which connect the

object with the base and the x axis of the base is computed, as shown in Fig.(4.8).

During the alignment, the base creates disturbances for the arm due to the trot.

These disturbances can bring the camera to lose the object, to avoid that a robust

policy is needed. For that purpose Visual Servoing is adopted, since it allows to

keep the object in the center of the image. In particular, that is done taking as

features the coordinates of a pixel, and imposing as desired value the coordinates of

the center pixel in the image. Remember that these pixel coordinates have to be
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Figure 4.7: Graphical representation of the framework structure during the search
phase.

expressed in the projection plane. Therefore the error vector is the following:

es′ =

[
x− x∗

y − y∗

]
(4.17)

where x and y are the current pixel coordinates and x∗ and y∗ are the desired ones,

42



Figure 4.8: Graphical representation of the yaw error in order to align the base to
the object.

all expressed in projection plane. Since the object detection neural network outputs

the bounding box of the detected object, it is possible to use the coordinates of its

center as the current features. Instead regarding the desired values, the center of the

image expressed in projection plane has coordinates (0, 0), because it is the origin.

So the errors become only the coordinates of the current center of the bounding box

expressed in projection plane. Instead, the interaction matrix associated to these

features is well known in the literature, and it is the equation 3.2.1. However, using

only these features, the end-effector is free to change its roll orientation since all the

rotations around the z axis of the camera are allowed. For the sake of that work it is

preferable that the camera stays always oriented parallel to the base. To achieve that,

it is possible to add a third feature which constrains such rotation of the camera. In

order to define that feature is important to describe the problem in a formal way.

Indeed, looking at the frame of the base and the one of the camera in Fig.(4.9), it is

possible to note that when the camera is oriented parallel to the base, its y axis is

minus the z axis of the base and as a consequence the x axis of the camera is always

orthogonal to that axis.

From the vector theory is know that two vectors are orthogonal when their dot

product is zero. Now, knowing that for Visual Servoing the error has to be expressed

in camera frame, the following equation is derived:
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Figure 4.9: Graphical representation of the camera frame.

xC · (CRB zB)
⊤ = 0 (4.18)

where xC ∈ R3 is the vector of the x axis of the camera frame, CRB ∈ R3×3 is the

rotation matrix from base to camera and zB ∈ R3 is the vector of the z axis of the

base frame. Performing the computations it is possible to obtain the following result:

(BRC)zx = 0 (4.19)

where (BRC)zx ∈ R is the component of the rotation matrix which is at third row

and first column. Regarding the interaction matrix for that feature s′′, it can be

derived knowing that the translations of the camera cannot change its orientation

and the time derivative of a rotation matrix is the rotation matrix multiplied by

the skew symmetric of the angular velocity BṘC = BRC [ωB]×. Indeed, it is the

following:

Ls′′ =
[
0 0 0 0 −(BRC)zz (BRC)zy

]
(4.20)

Finally, stacking the new feature with the other two it is possible to obtain the final

error vector and interaction matrix:

es =

 x

y

(BRC)zx

 (4.21)
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Ls =

−
1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

0 0 0 0 −(BRC)zz (BRC)zy

 (4.22)

s = In order to reduce even more the possibility to lose the object, the decoupled

control approach is applied. Actually, the just mentioned Visual Servoing is used

only on the last joints of the arm, which are the ones moving the low inertia links

allowing a more reactive behavior. Instead, the first joints, the ones moving the high

inertia links, are used to guide the wrist in a desired cartesian position on the same

circular trajectory used during the search phase. Concerning the desired point on the

circle for the wrist, it is necessary to create a policy to choose it. To avoid redundant

motions of the arm and to bring the wist in a position in which it can help the last

joints to keep the object centered, the idea is to compute the intersection between

the circle of the wrist’s trajectory and the segment which connects the base and the

target object. In that way the wrist will always reach the final alignment before the

base giving more stability to the pipeline. However, when the object is on the side

or behind the robot, that desired point on the circumference is after the left limit

if it on the left of the robot and after the right limit otherwise. In these cases the

wrist is brought at the limit on the circumference and when the desired point goes

inside the limits the wrist will reach it. Some examples of desired points which are

inside and outside the limits can be found in Fig.(4.10).

Once the base is aligned to the object, the approach stage starts. During that

task, the manipulator uses the decoupled approach composed by Visual Servoing,

using the previous defined features, for the last joints and a desired cartesian position

for the wrist with the first joints. To be more precise the cartesian position for the

wrist is the one it has when the arm is in home configuration, which is the same

position in which the wrist is at the end of the alignment. Regarding the base, it

approaches the object until the distance, on the plane xy of the base, between the

end-effector and the object has reached a desired value. In particular, using the error

between the desired distance and the current one, a translational velocity along x for

the base is generated. However, using that reference the base is able only to move

forward and if the object moves the base is not able to reach it. In order to solve

that problem, another reference for the base is computed. This second reference is

an angular velocity around the yaw axis for the base, and it is generated considering

the error between the current yaw of the end-effector and the one that it has in the

home posture (which is aligned with the heading of the base). That computation is
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Figure 4.10: Graphical representation of the desired points on the circular trajectory
for the wrist during the alignment of the base. The dotted lines are the segments
from the base to the objects. Instead, the markers are the desired positions of the
wrist on the circle, green ones are inside the limits, while the red ones are outside
the limits.

possible since the end-effector follows the object with Visual Servoing. Using these

two references, the base is able to approach the object even if it moves. A graphical

representation of the two quantities used to compute the two references for the base

can be found in Fig.(4.11).

Regarding the control structure, in the approach phase there are four arm reference

generators and three base reference generators. Regarding the ones for the arm, the

first four are the same used in the search phase. Instead, “Visual Servoing Arm

EE”, as the name suggest is the one which generates the references starting from the

output of the Visual Servoing. In particular, as explained in section 3.2, the control

law of Visual Servoing produces a twist for the camera. That twist is transformed in

base frame and from that are subtracted the twist of the wrist and the twist of the
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Figure 4.11: Graphical representation of the two quantities used to generate the
references for the base during the approach stage. The grey double arrow denotes
the distance between the end-effector and the object. Instead, the green line is the
angle between the current yaw of the end-effector (dashed orange line) and the one
in home posture (dashed light blue line).

base. The latter operation is done as a compensation for the motion of the wrist and

of the base and it allows to use low λ gain in the Visual Servoing control law. After

the just computed twist in base frame is pre-multiplied by the transpose of Ja567EE ∈
R6×3, which is the Jacobian matrix from base arm to end-effector only for joints five,

six and seven. The result of this operation is q̇a567d ∈ R3 which is the vector of desired

velocities for the last joints. Finally integrating these joints velocities, it is possible

to obtain qa567d ∈ R3 which is the vector of the desired positions for the last joints

and also the output of the reference generator. Concerning the reference generators

for the base, the first is also used in search phase. Instead, “Move Forward Distance

EE Object Base” generates a twist, ξb ∈ R6, which has only the x translational

component which allows the robot to reach the desired distance from end-effector

to the object. The other reference generator for the base, “Rotate Yaw As EE”,

produces a twist with only a z angular component, in order to keep aligned the

base to the object using the yaw error of the end-effector as was explained before.

Proceeding with the torque controllers for the robotic manipulator, in the approach

phase they are three. The first two are the same already described in the previous

section. Instead, the third arm controller is similar to the first, because it is a PD
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impedance controller in joint space, but in this case it controls only the last joints.

Indeed, the proportional and derivative errors are q̇a567d = J⊤
a567EE ξtot :

ep = qa567d − qa567 (4.23)

ed = −q̇a567 (4.24)

where qa567 ∈ R3 is the vector of the current positions of joints five, six and seven

and q̇a567 ∈ R3 is the vector of the current velocities of joints five, six and seven. So

the control law generates only torques for the last three joints, τa567d ∈ R3, which

are inserted in the associated indexes of a vector τa567 ∈ Rna in order to be added

after with the torques of joints of the high inertia links. The graphical representation

of the control structure of the search is in Fig.(4.12).

4.3.3 Control for grasping the object

Once the distance between the end-effector and the object reaches the desired value,

the quadruped stops trotting and the grasp phase starts. In this phase the quadruped

manipulator goes closer to the object and adjust its orientation to finally grab the

target. Since this framework is developed for general objects, the grasp phase is

structured in such a way that the robot can use another model for the object detection

neural network in order to grasp a different object with respect to the one detected

during the previous phases. The reason of the latter choice is that the target object

to grasp can be far from the robot, therefore if the object is small it can be difficult

to directly detect it. In these cases if the target is part of a bigger object, the

latter can be used to bring the robot closer, hence it can be used for the search and

approach phases. An example of that is the handle of a door, indeed it can be not

detectable from the distance, while the door around it is visible also if the robot

is far. Therefore, when the grasp phase starts the robot detects the (same or new)

object, after that it computes the grasping pose with respect to the world frame

and expressed in the world using an external module which takes as input the point

cloud generated from the depth image of the RGBD camera. At that moment, the

next motion performed by the robot is to bring the manipulator at the height of the

grasping point. This is done to simplify the future grasping operation and to avoid

the loss of the object by the camera since when the robot starts to go closer the field

of view of the sensor gradually reduce. During this operation the decoupled control

48



Figure 4.12: Graphical representation of the framework structure during the approach
phase.

approach is adopted, using the visual servoing for the last joints to keep centering the

object and the first joints to reach the desired height with the wrist. In particular

the desired height component of cartesian point for the wrist is computed as the

closest height to the one of the grasping position in order to maintain the wrist inside

its workspace. In order to do so, it is useful to bring the arm as close as possible to

the base, without overcoming a minimum distance. The motivation behind that is
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the increase of the arm workspace in terms of height and also the increase, even in

a small percentage, of the field of view of the camera. Instead, regarding the third

component of the desired wrist position, it is set to the same as the grasping point

in order to have the end-effector already aligned with it. In Fig.(4.13) an example of

the final cartesian position of the wrist is shown, just notice that in this example

the grasping position is too low to be achieved by the manipulator. In additon in

the example the target object is below the base, but the policy is also applicable for

objects which are higher than the base.

Figure 4.13: Graphical example of the height adjustment of the wrist during the
grasp phase. The double grey arrow indicates the minimum distance from the wrist
and the base, the orange dotted line is the segment connecting the camera to the
grasping position, while the green dotted line is the height of the grasping position.

After that the robot moves forward until the grasping position is inside the workspace

of the manipulator. During that motion the arm adopts again the decoupled approach,

suing Visual Servoing for the last joints and the first joints to maintain the the

cartesian position of the wrist. Once that motion has finished the grasping position

is already in the workspace of the robot, but in order to simplify the grasping and to

enlarge the workspace of the manipulator, the base performs a rotation around the

pitch until the desired orientation is reached. During that motion the manipulator

uses the same control strategy as the previous motion, the only difference is that the

desired wrist position to adjust its height is computed again and expressed in world

frame. That allows to maintain the same cartesian position even if the base frame is

changing its orientation. In Fig.(4.14) an example of the robot after that motion is

shown, a note regarding it is that the object is small and on the ground, that implies

the end-effector to be such close to the object in order to have the grasping position
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in the workspace of the robotic arm.

Figure 4.14: Graphical example of the pitch adjustment of the base during the grasp
phase. The light blue dotted line is the initial pitch of the base, while the orange
dotted line indicates the final pitch of the base.

Lastly the manipulator reach the grasp pose using all the joints and once in that

desired pose it closes the gripper. An example of that can be seen in Fig.(4.15).

Regarding the control structure, in the grasp phase there are five arm reference

generators and three base reference generators.

Figure 4.15: Example of the final result of the grasp phase.

Starting from the ones for the manipulators, three of them are the same used in

the other two phases. Instead, “Adjust Height Arm Wrist” computes the desired
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cartesian position of the wrist, BpBWristd ∈ R3, in order to bring it as close as possible

to the height of the grasping position, using the method described above. The other

new reference generator for the arm, “Grasping Pose Arm EE”, it generates the

desired position BpBEEd ∈ R3 and orientation expressed as the rotation matrix from

base to desired end-effector frame BREEd
∈ R3×3 in order to reach the grasping pose.

Concerning the reference generators for the base, the first is present also in the other

two phases and has already been presented. Instead, the second “Move Forward

Grasp in Workspace EE” generates a twist, ξb ∈ R6, with only the x translational

component which allows the grasping position to be in the workspace of the robotic

manipulator. The other reference generator for the base, “Adjust Pitch To Grasp

Base”, produces a twist with only a y angular component, in order to enlarge the

workspace of the manipulator in the direction of the grasping position. Continuing

with the torque controllers for the robotic arm, the first four are present also in the

previous phases. Instead, the last torque controller, “Cartesian Pose Arm EE”, as

the name suggest is an impedance controller in cartesian space which controls all

the joints. That precise control law has already been presented in equation (4.3).

Instead the proportional and derivative errors are the following:

ep =

[
BpBEEd − BpBEE

BREE a(EEREEd
)

]
(4.25)

ed = −ξEE (4.26)

where BpBEEd and BpBEE ∈ R3 are the desired and current cartesian positions of

the end-effector, a(·) : R3×3 → R3 is a mapping function from rotation matrix to the

associated angle axis representation, while BREE ∈ R3×3 and BREEd ∈ R3×3 are the

rotation matrices from end-effector to base and from desired end-effector frame to

end-effector. Instead ξEE ∈ R6 is the current twist of the end-effector expressed in

base frame. The graphical representation of the control structure of the grasp is in

Fig.(4.16).
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Figure 4.16: Graphical representation of the framework structure during the grasp
phase.
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Chapter 5

Simulation Results and
Implementation Details

The developed framework has been tested and validated with simulations. The robot

used in these simulations is IIT’s HyQ [6], which is an hydraulic quadruped that

weights 90 kg. In addition, it is equipped with a 7-DoF Kinova Gen3 [38] manipulator.

Each part of the framework is tested, starting from the decoupled approach and

ending with the grasping phase. This order is the same used for the sections of this

chapter. All the simulations are perfomed using Gazebo and RViz as visualizer. The

last section of this chapter 5.5 concludes providing implementation details of the

framework.

5.1 Decoupled Approach Simulations

In the previous chapter the decoupled approach has been described. To show that the

proposed Visual Servoing approach works, two set of simulations are presented with

different conditions: robot in stance (four legs on the ground) and robot trotting in

place. During these simulations, the used reference generators are: “Desired Position

Arm Wrist” and “Visual Servoing Arm EE”. In other words, the first joints bring

the wrist to a desired Cartesian position, while the last three joints are controlled by

Visual Servoing. In that case the desired Cartesian position of the wrist is the home

one in Fig.(4.4b). Regarding the simulations, the desired object is a bottle, since

the pretrained models of YOLOv5 [37] are able to detect it with high accuracy. In

particular, two tests are performed.

Regarding the target object, this is positioned on the ground on the left of the robot.

In that way there is an error both for the x and y pixel coordinates expressed in the

projection plane, since the object is on the bottom left of the image. The starting
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conditions are shown in Fig.(5.1).

(a) External view of the starting condition. The
arm is in home posture and the object on the left
of the robot.

(b) Eye-in-Hand camera view. The
target object is in the bottom left.

Figure 5.1: Starting condition of the decoupled approach simulations.

The results of the two simulations are in Fig.(5.2) and Fig.(5.3).
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Figure 5.2: Results of decoupled approach with base steady.

Observing these plots, it is possible to note that when the base is steady the error

crosses the zero earlier than when the base is trotting. In the latter case there are

also oscillations around zero after that point is reached. The higher time needed to

bring the error to zero and the oscillations, are due to the disturbances generated by

the trot. However the amplitude of the oscillations is small. That means the object

remains always close to the image center. In other words, our approach is able to

don’t lose the object even when the base is trotting.
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Figure 5.3: Results of decoupled approach with base trotting.

5.2 Search Phase Simulations

During the search phase, different motions are performed by the robot. In particular

the first motion performed by the arm is a circular trajectory with the wrist. The

other two motions are the circular trajectories with the arm’s end-effector. Regarding

the base, it performs a rotation of π around the yaw axis. In absence of target object,

the overall sequence of these motions is the following:

1. Reach left limit on circle with the wrist

2. Move back and forward on the circle with the end-effector

3. Reach right limit on circle with the wrist

4. Move back and forward on the circle with the end-effector

5. Rotate the base around the yaw of π

In order to validate that phase a simulation with no objects is performed. That allows

the quadruped manipulator to execute all the pipeline. The results are illustrated in

Fig.(5.15) and Fig.(5.16). As it is possible to observe from these plots, wrist and

end-effector perform circular trajectories, as previously explained in section 4.3.1.

Regarding the base, to represent its heading it is used the base of the arm pointing
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in the positive x axis of the base. That because it is fixed in the front of the base

and aligned with the center of the base. Regarding the base, it is possible to observe

that the π rotation around the yaw axis, is performed correctly. The sequence of

simulation frames of that phase is depicted in Fig.(5.4).

Figure 5.4: Sequence of the search phase in simulation.
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5.3 Approach Phase Simulations

The approach phase is divided into two parts. The first one is the alignment with

the object. Instead, the second part is about moving the robot closer to the object

until a desired distance, on the xy plane, between end-effector and object has been

reached. Starting from the alignment, it is possible to divide it into two motions.

The first one is to move the wrist to the position on the circle which is intersected

by the line connecting the base and the object. The other motion is to rotate the

base in order to align its heading to the object. These motions have already been

validated in the previous sections, 5.1 and 5.2. Therefore, to prove the alignment a

sequence of simulation frames is used. In particular, two simulations are performed.

The difference between the simulations is the position of the object. In particular, in

the first simulation the object is inside the limits of the wrist circle. Hence, in that

simulation the wrist can directly reach the desired position, as is shown in Fig.(5.5)).

Figure 5.5: Sequence of the alignment in approach phase with object inside wrist
limits.
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Instead, in the second simulation, the object is outside the limits of the wrist circle.

In that case the wrist goes first to the left limit, since the object is in that direction.

After the base starts to rotate. During that rotation, once the desired point enters

in the limits of the wrist, the latter reaches it. The sequence which describes this

second test is in Fig.(5.6).

Figure 5.6: Sequence of the alignment in approach phase with object outside wrist
limits.

Instead, in the second simulation the object moves two times, one time to the left

and the other to the right. As explained in Section 4.3.2, to realign to the object the

yaw error of the end-effector is used. The consequence of that is the behavior of the

base which follows the end-effector. It is possible to observe that in Fig.(5.8).
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Figure 5.7: Sequence of the robot getting closer to steady object in approach phase.

Regarding the second part of the approach phase, it is also composed of two

motions. The first is to bring the robot forward, keeping the wrist in home position

and using visual servoing to maintain the object centered in the camera. The second

one is to realign the base rotating around yaw if the object moves. Also for that part,

sequence of simulation frames are used. The reason is that the new motion, moving

forward the robot to reach a desired distance, does not need plots to be validated.

Also in this case are used two different simulations. This time, the initial position

of the object does not change. In both simulations, the desired distance between

the end-effector and the object is set to 60 centimeters. More precisely, in the first

simulation the object remains steady. That means the robot can go straight because

it does not have to realign with the object. This behavior is shown in Fig.(5.7).

5.4 Grasp Phase Simulations

During the grasp phase the robot performs several motions. It is possible to divide

these motions into four parts. The first one is to bring the wrist closer to the base

and as close as possible to the height of the grasping position. The second part is to

get closer to the object to get it into the workspace of the arm. The third one is to

pitch the base to enlarge the workspace of the arm in the direction of the grasping

position. Lastly, the fourth part is to grasp the object bringing the end-effector to the

grasping pose. All these parts can be validated with sequences of simulation frames.

60



Figure 5.8: Sequence of the robot getting closer to changing position object in
approach phase.
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Regarding the height adjustment for the wrist, in this simulation the object is on

the ground so the grasping position is below the base of the robot. The associated

sequence is represented in Fig.(5.9).

Figure 5.9: Sequence of wrist height adjustment in grasp phase.

Concerning the part which brings the robot closer to the object, it is similar to the

one in the approach phase. One difference is the distance measured, since it is the

one from the center of the workspace of the arm to the object. The other difference

is the desired position for the wrist. Indeed the achieved height is maintained by the

arm. The sequence for that part is in Fig.(5.10).

Before grasping the object, there is the third part of this phase. It is the adjustment

of the pitch of the quadruped. Again, in this simulation the object is on the floor so

the rotation around the pitch is positive. During that motion the wrist is moved to

maintain the height. That part is illustrated in Fig.(5.11).

It is time to perform the grasp. The last part of the pipeline. That is not the scope of

our framework, since it is an open problem in robotics. For that reason the grasping

position is computed with an external module GPD [36]. The grasping is performed

in open loop. The reason is the time required by the module to compute the grasp

pose and also because the camera on the wrist loses the object when it is very close

to it. Despite that, also that part is validated via a simulation. The frames of the

latter are depicted in Fig.().
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Figure 5.10: Sequence of robot moving to allow the object to be in the arm workspace
in grasp phase.

Figure 5.11: Sequence of base pitch adjustment in grasp phase.
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Figure 5.12: Sequence of robot grabbing the object in grasp phase.
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5.5 Implementation Details

The developed framework is based on the Robot Operating System (ROS) and

it is structured into two packages. The first one was named “acquire and detect”

and it is written in Python. Its function is to extract images from the camera, to

perform the inference with YOLOv5’s object detection neural network [37] and to

take the bounding box which has the name of the target object. In case there are

several bounding boxes relative to the same type of object, the one with highest

accuracy is selected. That package also uses “depth image proc” [41], as external

dependency, to transform a depth image into a point cloud, which is sent then to

GPD [36] for the computation of the grasping pose. The second main package of

the framework is structured into three classes, all written in C++. The first class is

called “SearchApproachGrasp”, and contains all the arm controllers and the reference

generators, apart from the visual servoing one. Indeed the latter it is implemented in

the second class, called “VisualServoing”, which computes the twist for the camera

using the features from the bounding box of the target object. The third class is

called “SAGBehaviorTree” and implements the Behavior Tree of the framework

using the library BehaviorTree.CPP [4]. The framework is structured in that way

since the two packages are meant to run in two different environment. In particular

acquire and detect should be executed on a machine which has the possibility to use

CUDA [42], such as an NVIDIA Jetson [43]. Instead, regarding the second main

package, SearchApproachGrasp has to be included in the code which contains the

control loop of the robot. This is done because SearchApproachGrasp offers three

functions, to compute the torques for the arm, the twist for the base and the state

of the gripper (open or close). These three functions are meant to be called at each

iteration of the control loop. In details, each of the three functions execute internally

another function in order to use the right control modules. These last three functions

are decided by the Behavior Tree depending on the current state of the robot. The

graphical representation of the just explained implementation structure can be found

in Fig.(5.13). Instead, the Behavior Tree including all the three phases is represented

in Fig(5.14).
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Figure 5.13: Graphical representation of the implementation structure.
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Figure 5.14: Behavior Tree of all the SAG pipeline.
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Figure 5.15: Graphical representation of wrist, end-effector and base arm positions
during each motion.
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Figure 5.16: Graphical representation of wrist, end-effector and base arm positions
during all the motions.
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Chapter 6

Conclusion

This thesis presented a framework to perform the search, approach and grasp of

an object using a quadruped manipulator. The two subsystems, namely base and

robotic arm, are controlled in a decoupled fashion. Hence, the base is used to

locomote the robot close to the object, when it is not reachable by the arm. A

previously introduced locomotion stack is employed constituted by a trunk controller,

that maps a desired wrench on the base to ground reaction forces, and a reference

generator for the swing legs. For the arm, the higher inertia links are used to guide

the arm’s wrist to a desired position, and visual feedback is used to control the

arm’s end-effector using an RGBD camera. When the base is commanded to move, a

dynamic gait is chosen, and visual feedback is shown to mitigate the disturbance of

the base at the arm’s end-effector. For the grasping pose, an off-the-shelf package is

employed. Here, a straight line trajectory is used to drive the arm’s end-effector from

the object’s proximity to the desired grasping pose. During this phase, given the

limitation of the camera in terms of minimum depth, only proprioceptive information

are processed. Managing the high number of actions for the goal of grasping an

object, a Behavior Tree has been used. The developed framework has been validated

performing simulations on the 90kg IIT’s HyQ robot, equipped with a 7 DoFs Kinova

Gen3 robotic arm. The framework is not limited to only quadrupedal based platforms,

but it can be further extended to other type of mobile base and legged systems.

6.1 Future Works

Even if the framework is already validated with simulations, implementing it on

a real robot would be a further validation of the adopted strategy. In addition to

that, the pipeline could be tested with different types of objects having different
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sizes and shapes. Regarding the grasping, a closed loop control strategy would

benefit the overall performances, in terms of grasping accuracy and task repeatability.

Additionally, another camera can be mounted on the robot for increasing the field of

view when the camera at the arm’s end-effector is occluded by the object. When the

object exits the camera’s view, the proposed strategy brings the arm to a default

configuration, and start a new search phase. Future work could aim at improving

this heuristics, considering past memory of the object location. Finally, to avoid

collisions with the objects or with other entities interacting with the arm, an obstacle

detection and avoidance module would benefit the safety of the overall system.
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