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Abstract

This thesis presents a practical pipeline for object-goal navigation on
a quadruped robot in real indoor spaces. The workflow has two stages.
In the first stage, an operator teleoperates the robot along a short
trajectory while SLAM Toolbox builds a two-dimensional occupancy
grid, and the semantic stack runs in parallel. An object detector pro-
cesses RGB-D images, confirmed detections are fused with depth and
projected into the map frame, and they are written onto the grid as
a semantic layer of labelled object instances. At the end of this run,
both the 2D map and the semantic database are saved. In the second
stage, during operation, a user selects a target from the list of recorded
objects (e.g., a chair or a person). A small command-line client looks
up the chosen instance in the semantic database and sends this goal to
the navigator.

Navigation uses a layered costmap: the static map from the mapping
stage, an obstacle layer from a two-dimensional laser scanner, and infla-
tion that keeps a safe margin around people and obstacles. A classical
global planner sets the path, and a local controller tracks it within
speed and acceleration limits. We focus on integration, not on new
methods; standard tools provide mapping and localization. During
navigation, we do not run SLAM; the robot only localizes on this pre-
computed grid map.

All components run on a compact onboard computer mounted on the
quadruped robot, with no discrete graphics card. A small supervision
layer handles lost targets, short-term occlusions, and simple recovery
actions so behavior remains steady and explainable. Despite its limi-
tations, the work represents the first attempt in our lab to enable au-
tonomous navigation for the Boston Dynamics Spot robot using only
onboard sensing and computation. By adding an object-based semantic
layer on top of the occupancy grid, the robot can also navigate goal-
orientedly towards mapped object classes, rather than only following
manually specified pose commands.



We demonstrate the system in three real indoor environments: a church,
the Dynamic Legged Systems laboratory, and a large test room at the
Istituto Italiano di Tecnologia. In both the church and the lab, we show
that the mapping pipeline can produce usable occupancy grids in wide,
cluttered spaces. In the IIT test room, we build semantic maps with
chairs and a person, and we run object-goal navigation experiments in
which the robot is commanded to visit specific objects using only the
saved map and object poses. The evaluation is mainly qualitative, sup-
ported by trajectory plots and analysis of failure cases such as depth
misalignment and localization errors. Overall, the results indicate that
a lightweight, modular stack can provide semantic object-goal naviga-
tion for a quadruped robot under tight compute and cost constraints,
while also highlighting the main limitations and directions for future
improvement.

This work is the outcome of an internship at the Dynamic Legged
Systems laboratory of the Istituto Italiano di Tecnologia. It reflects the
design, integration, and experimental evaluation carried out there. An
extended abstract focusing on the mapping and semantic-layer phase
has been published in the proceedings of the Italian Conference on
Robotics and Intelligent Machines (I-RIM 3D 2025).
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Chapter 1

Introduction

1.1 Problem statement

The development of embodied agents that can follow simple human requests such
as “go to that chair” or “find the printer” is a long-standing theme in robotics
and Artificial Intelligence (Chaplot et al., 2020). This capability is often for-
mulated as Object–Goal Navigation (ObjectNav), where a robot must navigate
an environment to reach an instance of a target object category (Batra et al.,
2020). ObjectNav and the related area of semantic navigation are now established
research topics with public benchmarks, challenges, and realistic simulation envi-
ronments. Within this setting, a central question is how rich the representation of
the environment needs to be to support reliable navigation (Chaplot et al., 2020).

Many high-performing semantic navigation methods rely on rich, computa-
tionally expensive world models. A typical representation is a 3D metric–semantic
map, which is a volumetric or mesh-based reconstruction that stores both geo-
metrical data and semantic labels (e.g., object classes) (Agha et al., 2021; Rosinol
et al., 2020). Other systems organize the same information as a scene graph,
where nodes represent objects, rooms, or agents, and edges encode relations such
as “on top of”, “inside”, or “in front of”. Frameworks such as Kimera are repre-
sentative: they run real-time metric–semantic SLAM and output dense, labelled
3D reconstructions of the environment (Rosinol et al., 2020). Maintaining these
structures online requires frequent fusion of new depth and image data, significant
memory, and often GPU support. More recent zero-shot navigation approaches
add another layer by using large pre-trained vision–language models to interpret
scenes and score candidate goals (Majumdar et al., 2022). Systems like VLFM
(Yokoyama et al., 2023) keep dense maps and query large models for semantic rea-
soning, which typically demands powerful mobile GPUs to run in real time. This
dependence on heavyweight perception and online dense mapping is a limitation
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1.2 Motivation

for platforms with tight power, cost, or size constraints.
At the same time, there is growing interest in deploying these capabilities on

quadruped robots in realistic indoor settings. Legged platforms are attractive for
inspection and search-and-rescue tasks because they can traverse stairs, clutter,
and uneven terrain where wheeled robots struggle. Recent work has demonstrated
autonomous navigation on quadrupeds such as Mini Cheetah and Spot in real-
world scenarios, using combinations of robust perceptive locomotion policies and
map-based planning (Dudzik et al., 2020; Koval et al., 2022; Miki et al., 2022;
Raheema et al., 2024). Open-vocabulary navigation on quadrupeds has also been
explored, typically using embedded GPUs to host the semantic models (Busch
et al., 2024). These examples highlight a tension between rich semantic reasoning
and the reality of resource-constrained, battery-powered legged robots.

This thesis focuses on that gap by studying ObjectNav for a quadruped robot
in a known indoor environment under tight computational constraints. Instead of
performing a dense 3D map online or running large vision–language models, the
system assumes a pre-built 2D occupancy map and builds a lightweight seman-
tic layer in real time from local RGB–D detections. The core idea is a modular
pipeline: a static 2D map for localization and planning, plus a lightweight seman-
tic layer that maintains persistent object hypotheses over time and exposes ob-
ject–goal targets to the navigation stack. The goal is to retain the key behaviours
of semantic navigation while running entirely on the robot’s onboard computer,
enabling practical object–goal navigation on a quadruped in real indoor environ-
ments.

1.2 Motivation

In recent years, legged robots have been deployed in real buildings for sustained,
routine missions rather than remaining confined to lab demonstrations: teams have
demonstrated long-range autonomous exploration in GPS-denied settings, robust
perceptive locomotion in cluttered indoor spaces, and map-based navigation with
Spot in real facilities. Figure 1.1 shows a Spot robot operating as part of one
of these deployments, equipped with a field sensor payload in a real inspection
scenario (Bouman et al., 2020; Koval et al., 2022; Miki et al., 2022). These de-
ployments share practical constraints such as limited energy budgets, tight timing
and staffing windows, and strict requirements for predictable behavior around peo-
ple and infrastructure, which make reliability, explainability, and low integration
overhead as important as raw performance.

In parallel, many of the semantic navigation systems are built on assump-
tions that are hard to meet on a battery-powered quadruped: online dense 3D
metric–semantic reconstruction or scene graphs that must be maintained in real

2
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time (Armeni et al., 2019; Rosinol et al., 2020), and, increasingly, zero-shot or
open-vocabulary pipelines that lean on large vision–language models and modern
detectors (Busch et al., 2024; Majumdar et al., 2022; Unlu et al., 2024; Yokoyama
et al., 2023). While these choices deliver richer semantics and broader generaliza-
tion, they typically drive up compute and power draw, enlarge the software stack,
and complicate validation and maintenance, which are trade-offs that run counter
to long-duration missions and conservative safety cases on mobile platforms.

A different operating point is both common and valid in labs and industrial
sites: the environment is known. In these settings, a 2D occupancy map already
exists (or can be created offline) and is sufficient for global localization and path
planning; empirical studies with Spot in confined indoor environments confirm that
a 2D map can support reliable autonomous operation without online dense 3D re-
construction (Koval et al., 2022). What is missing, practically, is a lightweight
semantic layer that turns per-frame RGB–D detections into persistent object in-
stances that a standard navigator can target, so that object-centric tasks can be
executed without inflating the perception stack.

This motivates a modular design that keeps the deterministic planners and
localization on a known 2D map, adds a lightweight semantic layer only where it
creates task value (object goals), and deliberately avoids heavy online 3-D process-
ing or large VLM inference. The result aims to deliver a deployable stack that is
easier to tune, and maintain over time, while still enabling the semantic behavior
that makes indoor legged robots practically useful (Bouman et al., 2020; Busch
et al., 2024; Koval et al., 2022; Majumdar et al., 2022; Miki et al., 2022; Rosinol
et al., 2020; Unlu et al., 2024; Yokoyama et al., 2023).

1.3 Assumptions and Constraints

We work under a small set of practical assumptions. They shape the architecture,
limit what we ask from the hardware, and define how we read the results of our
experiments. We assume:

• Known, single-floor indoor environments (labs, offices, corridors);

• A 2D occupancy map for global localization and path planning;

• Static objects as targets (e.g, chairs or desks);

• Preference for lightweight and robust methods that run on limited hardware
over more complex high-compute approaches.

3
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Figure 1.1: Boston Dynamics Spot integrated with the NeBula autonomy stack (“Au-
Spot”): Spot base with the NeBula Sensor Package (NSP) and the NeBula Power and
Computing Core (NPCC). The platform was deployed in the DARPA Subterranean
Challenge and demonstrates building-scale autonomy on a legged robot (Agha et al.,
2021; Bouman et al., 2020).

Environment and mapping. We assume known indoor spaces in which a 2D
occupancy grid either already exists or can be built offline and is sufficient for
global localization and planning. Field reports show reliable quadruped navigation
in confined indoor environments using 2D maps with Cartographer and AMCL,
without maintaining an online dense 3D reconstruction (Koval et al., 2022). Re-
cent work on low-cost legged platforms treats the 2D grid as the default navigation
representation and sometimes augments AMCL with visual odometry to reduce
drift in repetitive corridors (Aditya et al., 2025). The navigation stack itself oper-
ates on a locally planar workspace. Elevation changes such as stairs are handled
by the platform’s locomotion controller and are out of scope here.

Representation and computation. Online 3D metric–semantic SLAM and
scene graphs offer rich context but add substantial computational, memory, and
software complexity compared to 2D navigation maps (Armeni et al., 2019; Rosinol
et al., 2020). In practice, systems intended for field use often down-project to lower-
dimensional maps (e.g., 2.5D height maps) because planning in full 3D is rarely
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practical for real-time operation on small platforms (Wellhausen & Hutter, 2023).
Dense volumetric semantic pipelines can run at around 1Hz on mobile hardware,
which is already tight for closed-loop navigation (Grinvald et al., 2019). For this
work, we do not use any 3D representation at runtime and rely on the 2D map for
deterministic planning and localization.

Semantic capability vs. acceleration. Zero-shot and open-vocabulary navi-
gation and mapping provide more flexible semantic understanding, but typically
rely on a GPU to run in real time. Recent systems report the use of RTX-class
GPUs or embedded modules, such as the Jetson Orin AGX, for online open-
vocabulary mapping and frontier selection (Busch et al., 2024; Yokoyama et al.,
2023). Multi-floor zero-shot policies are likewise evaluated in multi-GPU execution
environments (Zhang et al., 2024). In this thesis, we avoid large vision–language
inference at runtime; the stack is intended to run on the robot’s onboard computer.

Quadruped deployment constraints. Legged deployments emphasise relia-
bility, power awareness, and predictable behavior around people. Field reports
document long-range autonomous exploration in GPS-denied sites, where sensing
fusion compensates for noisy legged odometry (Bouman et al., 2020), and broader
autonomy stacks for subterranean missions stress offline-capable operation and ro-
bustness to communication dropouts (Agha et al., 2021). Real inspection scenarios
highlight hardware-independent operation without internet connectivity (Betta
et al., 2024) and raise human-factors concerns (social navigation and incidental
encounters) that argue for navigation behavior that is easy to understand and to
audit (Hauser et al., 2023). These constraints favour modular stacks with limited
complexity and stable failure modes.

Sensors and perception. The semantic layer relies on short-range RGB–D
sensing within line of sight. Occlusions, motion blur, and low illumination degrade
detections (Unlu et al., 2022). Typical indoor camera setups operate within a few
metres (with reliable depth usually below about 5m), so standoff distances are kept
conservative and transient observations are filtered across multiple views (Chen
et al., 2023). Dynamic agents, such as people, are not kept as persistent objects;
the layer targets static objects and applies de-duplication and confirmation before
exposing targets to the navigator.

1.4 Contributions

This work builds a navigation pipeline that takes an object–level command in a
known indoor environment and drives a quadruped to an useful pose near the

5
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referenced object. In a first stage, an operator teleoperates the robot. At the
same time, the SLAM Toolbox builds a two-dimensional occupancy grid, and the
semantic nodes run in parallel, turning RGB–D detections into a small set of
static object instances anchored in the map frame. At the end of this task, both
the occupancy grid and the semantic database are saved. In a second stage, the
robot is returned to the same environment, the saved map and semantic layer are
loaded, and the operator selects a target object either from a command–line menu
or via a short voice command. An object–goal client looks up the chosen instance
in the semantic database, converts it into a navigation goal in the map frame, and
sends this goal to Nav2 for planning and control.

The contribution of the thesis is a complete, deployable implementation of this
pipeline on a real quadruped, with three tightly coupled pieces:

• A semantic layer aligned to a known 2D occupancy map, built online from
RGB–D detections and designed to stay compact and stable over time.

• An object–goal generation method that turns a selected object instance into
a PoseStamped goal in the map frame, positioned at a fixed offset near the
object and oriented in a well-defined way relative to it.

• A ROS 2/Nav2 stack deployed on Boston Dynamics Spot, including a safety
supervisor and practical launch/configuration, logging, and visualization tools
tuned for repeated operation rather than one–off demos.

At runtime, the semantic mapper maintains a database of confirmed object
instances in the map frame, each with a running confidence score. Per–frame
RGB–D detections are projected into the map frame through TF and fused in a
two–stage memory: new observations enter a proposal buffer, and only detections
that are repeatedly supported within distance and angle gates are promoted to the
static table. Near–duplicate instances are merged by spatial gating. A recorder
node exports this static table to a YAML file, and a command–line client presents
it as a menu of object instances. For each selected object, the client turns the
stored instance pose into a navigation goal in the map frame and hands it to
Nav2.

Planning and execution then rely on standard Nav2 layered–costmap naviga-
tion. The global planner computes a path on the static map, accounting for infla-
tion, and the local controller tracks that path under speed and acceleration limits.
Internal states (map, semantic markers, TF tree, global path, local trajectory, and
goal pose) are visualised in RViz to support debugging and auditing.

Sensors and data flow are kept minimal on purpose. The robot is equipped
with a tracking camera for odometry, a 2D LiDAR for range scans, and an RGB–D
camera for object detections; the base accepts /cmd vel commands. During the
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1.4 Contributions

Figure 1.2: Our quadruped platform: Boston Dynamics Spot with the onboard com-
puter and sensor payload used in this thesis.

teleoperated pass, SLAM builds the map while the semantic layer is populated.
For navigation, the mapping nodes are stopped, and the system reloads the saved
occupancy grid and semantic database. Nav2 uses this map, together with layered
costmaps derived from the 2D LiDAR, to plan and execute paths to the goals pro-
duced by the object–goal client. A driver bridge forwards the velocity commands
to the robot, and a small supervision node monitors progress and clearance, trig-
gering stop, replan, or retreat actions when the robot gets stuck or new obstacles
appear.

The next chapter surveys related work in quadruped object–goal navigation,
semantic mapping, and ROS 2/Nav2–based navigation under similar constraints.
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Chapter 2

State of the Art

2.1 Scope and Search Method

This review looks at recent work on legged robots that use semantic context to
navigate to objects in indoor spaces. The emphasis is on real-robot studies, object-
level goals, and methods that report enough detail to compare sensors, compute,
and planning stacks. This section summarizes representative quadruped systems
and highlights how they differ from our constraints (pre-run semantics, on-board
compute, object-goal execution, conservative safety).

2.2 Quadruped Object–Goal Navigation

Object–Goal Navigation (ObjectNav) asks a robot to reach an instance of a re-
quested object class. It is usually evaluated in Habitat on photorealistic indoor
scans, with Success and SPL / Soft-SPL as the main metrics (Chen et al., 2023;
Yokoyama et al., 2023). Two strands dominate current work: (i) modular, map-
based approaches that build explicit representations and plan over them (for ex-
ample, SemExp) (Chaplot et al., 2020); and (ii) zero- or open-vocabulary variants
that steer classical exploration with vision–language scoring or open-vocabulary
features (Busch et al., 2024; Qu et al., 2024; Unlu et al., 2024; Yokoyama et al.,
2023). A recurring issue is semantic reliability: false positives and unstable detec-
tions waste exploration budget, so filtering and confirmation layers have a clear
impact on performance (Busch et al., 2024). Many high-capacity systems also
rely on accelerator-class hardware for real-time semantic inference. By contrast,
known-map deployments on Spot show that a 2D occupancy grid is sufficient for
robust global planning and localization when the environment is fixed, and that
the main challenges then shift to execution reliability rather than online dense 3D
mapping (Bouman et al., 2020; Koval et al., 2022).
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2.2 Quadruped Object–Goal Navigation

For quadruped robots, the same ObjectNav problem comes with additional
constraints that are less pronounced on wheeled bases. The stepping motion and
body oscillations of legged platforms induce high-frequency perturbations on cam-
eras and LiDAR, which degrade feature tracking and can corrupt SLAM estimates
unless IMU, leg odometry, or stereo cues are tightly fused (Aditya et al., 2025;
Da Silva et al., 2023; Jin et al., 2024; Zhang et al., 2024). On uneven or inclined
terrain, quadrupeds may pitch enough that a 2D laser repeatedly detects the floor
as an obstacle; recent systems therefore stabilize scans using inertial measure-
ments or gate them based on pitch and roll (Da Silva et al., 2023; Wellhausen
& Hutter, 2023). Motion planning must respect stability and terrain constraints
while remaining efficient, combining grid-based global paths with kinodynamic or
reachability-based local controllers, and, in some cases, dynamic manoeuvres such
as constrained jumping (Gilroy et al., 2021; Liu & Yuan, 2024; Wellhausen & Hut-
ter, 2023). At the same time, quadrupeds carry a limited payload and computing
power while already running intensive state estimation and locomotion control.
Inspection and ObjectNav systems, therefore, often keep safety-critical planning
and control onboard and offload heavyweight open-vocabulary semantics or com-
monsense reasoning to Jetson-class modules or remote hosts (Bouman et al., 2020;
Ginting et al., 2024; Jiang et al., 2025; Xu et al., 2024; Zhou et al., 2025). These
quadruped-specific constraints make lightweight, map-based ObjectNav with reli-
able but compact semantics an attractive operating point for field deployments,
especially in the indoor environments considered in this thesis.

On-robot ObjectNav and adjacent systems. VLFM demonstrates zero-shot
semantic navigation on Spot in office-like spaces: depth builds an occupancy grid
while a pre-trained vision–language model scores frontiers; semantics are com-
puted online and require a laptop-class GPU (Yokoyama et al., 2023). OneMap
constructs an open-vocabulary feature map from RGB-D to support single- and
multi-object search on a quadruped, running in real time on a Jetson Orin; the
map fuses CLIP-aligned features with uncertainty and guides target sequencing
(Busch et al., 2024). SEEK targets inspection on Spot, combining prior structure
(e.g., floor plans) with online reasoning in a dynamic scene graph; sensing combines
cameras and 3D LiDAR with GPU inference (Ginting et al., 2024). Doubly Right
demonstrates zero-shot object-goal navigation on a Unitree B1 in an apartment,
building an online 2D semantic navigation map and verifying detections with a
vision–language model; core modules run on the robot CPU, with an auxiliary
host for commonsense reasoning (Unlu et al., 2024). IPPON extends informative
path planning with open-vocabulary cues, filling a 3D object-probability map and
using a language model for commonsense guidance; validations include real indoor
scenes (Qu et al., 2024). Au-Spot (NeBula on Spot) reports long-range explo-
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2.2 Quadruped Object–Goal Navigation

Table 2.1: Representative ObjectNav systems and adjacent deployments. Assumptions relevant
to a known-map, lightweight-semantics, limited-compute setting.

Method Map used Online 3D GPU at run Semantics Planner / Pol-
icy

Platform Reported
metric

SemExp (Chaplot et al., 2020) 2D semantic grid
(built online)

No Yes Closed-set de-
tector (Mask
R-CNN)

Map-based ex-
plorer

Habitat (sim) 65.0% / 33.0
(Gibson)

VLFM (Yokoyama et al., 2023) 2D occupancy
+ VLM-scored
frontiers

No Yes Open-vocabulary
VLM (BLIP-2)

Frontier (value
map)

Spot (real) 52.5% / 30.4
(HM3D)

OneMap (Busch et al., 2024) Open-vocabulary
feature map
(RGB-D)

No Jetson Orin CLIP-aligned fea-
tures + uncer-
tainty

Greedy / multi-
object sequencing

Quadruped (real) Qualitative +
ablations

SEEK (Ginting et al., 2024) Prior + dynamic
scene graph (on-
line)

Often (LiDAR) Yes Lightweight RSN
+ relational rea-
soning

Probabilistic
global + local
control

Spot (real) Inspection task
success

Doubly Right (Unlu et al., 2024) 2D semantic nav
map (online)

No Mixed (aux host) VLM-verified de-
tections

Frontier + Fast
Marching

Unitree B1 (real) Qualitative tri-
als

IPPON (Qu et al., 2024) 3D voxel proba-
bility map

Yes Yes Open-set cues +
LLM common-
sense

Informative path
planning

Real + sim Challenge /
real demos

Au-Spot (NeBula) (Bouman et al., 2020) 2D/3D geometric
maps (online)

Yes Onboard PC Artifact-centric
detection

Mission / global /
local stack

Spot (real) DARPA SubT
field results

Koval et al. (Koval et al., 2022) 2D occupancy
(known)

No No Geometric stack Classical (A* /
Nav2)

Spot (real) System eval.
(confined env.)

This thesis 2D occupancy
(known) + thin
semantic layer

No No RGB-D detec-
tions + confirma-
tion (closed set)

Map-then-act
(Nav2; standoff
+ facing)

Spot (real) Real-world
eval. (Success,
SPL*, errors)

SPL* only where benchmark shortest-path ground truth applies.

ration and artefact search in DARPA SubT with LiDAR-centric mapping and a
mission / global/local planning stack, with a geometric focus rather than explicit
“go-to-class” semantics (Bouman et al., 2020).

Our operating point differs on four axes: we assume a known 2D map, we target
low computational cost, we use a small, closed set of object classes, and we favour
conservative, explainable behaviour over raw coverage. The table below contrasts
representative systems with these choices and with the constraints of this thesis.

Summary. Map-based ObjectNav remains competitive when semantics are reli-
able and closely integrated with the planner (Chaplot et al., 2020). Zero-shot and
open-vocabulary approaches broaden the range of possible queries but typically as-
sume GPU-class inference and have to deal with additional semantic noise (Busch
et al., 2024; Unlu et al., 2024; Yokoyama et al., 2023). On quadruped robots, where
sensing is less stable and computing is often tighter, these costs are even more pro-
nounced. For fixed indoor spaces, prior fieldwork on Spot and other quadrupeds
supports a simpler stack: a 2D map for planning and localization, a lightweight
semantic overlay to confirm static objects, and conservative standoff-and-facing
goal generation (Aditya et al., 2025; Bouman et al., 2020; Koval et al., 2022; Well-
hausen & Hutter, 2023). This is the operating point adopted and evaluated in this
thesis.
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2.3 Metric and Semantic Mapping

2.3 Metric and Semantic Mapping

State-of-the-art metric mapping for indoor navigation still relies on 2D occupancy
grids. They are compact, planner–friendly, and integrate cleanly with mature
localization and planning stacks (AMCL, layered costmaps) (Hess et al., 2016).
On quadruped platforms in confined or structured interiors, prior deployments
show that a prebuilt 2D map is sufficient for global localization and path planning
without maintaining an online dense reconstruction (Aditya et al., 2025; Koval
et al., 2022). For legged robots operating in the field, layered costmaps are the
common interface to planners and controllers, with inflation and obstacle layers
shaping safe motion (Unlu et al., 2024; Wellhausen & Hutter, 2023).

Beyond pure 2D, two families dominate. The first uses height / 2.5D or ESDF /
TSDF layers to expose traversability and clearance for local planning; these maps
trade memory for local geometric fidelity and are widely used when foot clear-
ance or step height matters (Oleynikova et al., 2017; Wellhausen & Hutter, 2023).
The second builds dense 3D or scene-graph representations to couple geometry
with semantics. While these structures enable richer reasoning (objects, rooms,
relations), they carry higher memory and compute costs and typically assume
accelerator hardware; several recent open-vocabulary pipelines report sub-Hz to
∼1Hz updates or GPU-bound components that complicate tight real-time control
on mobile bases (Armeni et al., 2019; Jiang et al., 2025; Longo et al., 2025).

Semantic mapping spans a spectrum from lightweight overlays to dense met-
ric–semantic maps. Open-vocabulary mapping approaches fuse CLIP-aligned fea-
tures or VLM scores into maps to support text queries and object search; strong
results are reported on quadrupeds, often with embedded or laptop-class GPUs. A
recurring issue across ObjectNav systems is semantic reliability, because false pos-
itives and drifting labels reduce true success; as a result, confirmation filters and
de-duplication are now standard practice in high-performing stacks (Busch et al.,
2024). Recent work on resource-limited inspection introduces distilled, compact
models to reduce runtime costs while preserving the class signal for navigation
(Ginting et al., 2024). In parallel, Betta et al. build a multi-layer semantic grid
on top of a 2D LiDAR map for search-and-rescue: each layer stores per-cell confi-
dence values for doors, people, cracks, and stairs, sharing the same 2D substrate
as the obstacle map rather than lifting semantics into full 3D (Betta et al., 2024).
Figure 2.1 shows their door and person layers overlaid on the obstacle map at two
test sites.

In summary, today’s mapping choices reflect a clear trade space. 2D occupancy
grids plus layered costmaps remain the default substrate for indoor navigation
because they are stable, efficient, and well supported by localization and planning
toolchains (Hess et al., 2016; Koval et al., 2022). Height / ESDF layers add local
clearance structure when needed (Oleynikova et al., 2017; Wellhausen & Hutter,
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2.4 Quadruped Navigation with ROS 2 / Nav2

Figure 2.1: Example multi-layer semantic maps from Betta et al. (Betta et al., 2024).
Left: obstacle layer (black) with Door cells (yellow) at the first location. Right: obstacle
layer (black) with Person cells (yellow) at the second location.

2023). Dense 3D and scene graphs offer richer semantics and global reasoning at
the price of memory, latency, and accelerator assumptions (Armeni et al., 2019;
Jiang et al., 2025; Longo et al., 2025). Multi-layer semantic grids, such as those
of Betta et al. keep semantics in raster form on top of 2D maps when full object
reasoning is not required (Betta et al., 2024).

2.4 Quadruped Navigation with ROS 2 / Nav2

For indoor legged platforms, the mainstream pattern is a ROS 2/Nav2 stack with a
global planner on a 2D prior and a high-rate local controller over layered costmaps
(Macenski et al., 2020). In recent ObjectNav implementations, the planner is
delivered as a Nav2 plugin, and the world model combines a static map with
obstacle and inflation layers so trajectories respect geometry and clearances (Ra-
heema et al., 2024; Unlu et al., 2024). The costmap serves a continuous occu-
pancy/clearance field that global planners can optimize over (Raheema et al.,
2024). Spot deployments in confined interiors confirm that a prebuilt 2D map
with AMCL suffices for global localization and planning, so no persistent online
dense reconstruction is required. (Aditya et al., 2025; Koval et al., 2022).

At the global level, planning is usually straightforward graph search on the
inflated grid, typically using A* or Dijkstra, trading a little path length for extra
clearance (Raheema et al., 2024). The local layer then turns that path into dynam-
ically feasible commands within the robot’s kinematic limits. In practice, legged
stacks use simple waypoint followers (pure-pursuit/PID) in structured spaces and
switch to kinodynamic MPC when fast disturbance rejection or risk-aware traver-
sal is needed; in both cases, the local plan is refreshed at a high rate (tens of hertz)
to cope with sudden perception changes and tight geometry (Agha et al., 2021;
Wellhausen & Hutter, 2023).

Robustness sits one level up, in a behavior tree or compact FSM that sequences
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2.5 Online 3D vs. 2D SLAM

actions and recoveries such as clearing costmaps, rotating in place to reacquire,
backing up, and replanning. It rides through the communication hiccups typical
of real facilities (Agha et al., 2021). Safety for legged bases is encoded directly
in parameters: conservative inflation to reflect footprint and human-space buffers,
explicit limits on speed and acceleration, and asymmetric bounds for forward vs.
reverse motion that controllers must obey (Aditya et al., 2025; Koval et al., 2022;
Liu & Yuan, 2024).

Object–goal layers tend to plug into the same Nav2 backbone in two patterns
(Macenski et al., 2020). In simulator-centric work, exploration is steered by open-
vocabulary scoring from vision–language models or CLIP-style feature maps; it
works, but it assumes accelerator-class inference at run time (Busch et al., 2024;
Yokoyama et al., 2023). On hardware, teams lean on the costmap and behavior-
tree stack: some add a lightweight semantic bias on top of a known 2D map, others
fold floor-plan priors and room cues into online reasoning to direct the search, all
of it still funneled through the same planner, controller, and recoveries (Unlu et al.,
2024). Across papers, the constants are the same layered costmaps for planning
and control, high-rate local replanning, BT/FSM supervision, and conservative
speed and clearance limits encoded in the parameters.

2.5 Online 3D vs. 2D SLAM

Why is a pre-run 2D map enough here? Indoor navigation on legged robots is
most stable when localization and planning run on a compact 2D substrate and
the heavy lifting is done before deployment. Mature LiDAR-based systems like
Cartographer deliver real-time mapping and loop closure at centimeter resolu-
tion (Hess et al., 2016); the resulting occupancy grid works directly with AMCL
and layered costmaps, which is exactly what prior Spot deployments in confined
interiors rely on (Koval et al., 2022). Recent quadruped studies echo the same pat-
tern: 2D grids remain the de facto baseline for path planning and localization in
buildings, with pose-graph tools (e.g., SLAM Toolbox) used for efficient back-end
optimization and map management (Aditya et al., 2025).

Full 3D pipelines add detail and semantics but at a clear computational cost.
Metric-semantic stacks (e.g., Kimera) combine VIO, reconstruction, and factor
graph inference to produce dense 3D maps or scene graphs (Rosinol et al., 2020).
These representations are powerful, yet they typically assume accelerator-class
compute and accept lower update rates; recent open-vocabulary 3D mapping re-
ports sub-Hz around the fusion loop, which is a poor fit for tightly coupled local
control on mobile platforms (Jiang et al., 2025). Field work on legged navigation
highlights where richer geometry helps, for example, with uneven terrain, step
heights, and clearance checks, which are often handled with 2.5D or ESDF layers
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2.5 Online 3D vs. 2D SLAM

Table 2.2: Canonical SLAM toolchains for mobile robots.

Name Primary
source

Typical sensors Map type Core method Loop clo-
sure

Runtime profile

Cartographer (Hess et al.,
2016)

2D/3D LiDAR,
IMU

2D occupancy Branch&bound
scan-to-submap;
pose graph

Scan/submap
constraints

CPU-only; high
rate (≈ 5.3× RT
reported)

RTAB-Map (Labbé &
Michaud,
2019)

RGB-D, 2D/3D
LiDAR, IMU

2D grid; 3D
cloud/mesh

Appearance-
based LC +
graph opt.

Visual/scan
proximity

CPU (dense can
use GPU); updates
≈ 1 Hz

SLAM Tool-
box

(Macenski &
Jambrecic,
2021)

2-D LiDAR,
odom

2D occupancy Pose-graph (g2o);
lifelong mapping

Graph con-
straints

CPU-only; ROS 2
native; real-time

Kimera (Rosinol
et al., 2020)

RGB-D/IMU
(VIO)

3D mesh;
DSG

Factor-graph
VIO; mesh-
ing/semantics

Pose-graph High; CPU/GPU;
metric–semantic
outputs

GMapping (Grisetti
et al., 2005)

2D LiDAR, odom 2D occupancy RBPF (adaptive
proposals)

Implicit via
particles

CPU-only; classic
2D baseline

ORB-
SLAM2/3

(Campos
et al., 2021;
Mur-Artal
& Tardós,
2017)

Mono/stereo/RGB-
D (+IMU)

Sparse 3D
map

Feature-based
BA, keyframes

DBoW2
place recog.

CPU (feature/BA
heavy); high-rate
VIO

LOAM (Zhang &
Singh, 2017)

3D LiDAR 3D cloud Decoupled
odom+mapping
(edge/plane ICP)

Geometric
LC

CPU-oriented;
real-time

LIO-SAM (Shan et al.,
2020)

3D LiDAR+IMU 3D cloud
(factor graph)

Tightly-coupled
smoothing &
mapping

Scan-context CPU for odom;
back-end heavier;
robust long halls

KinectFusion (Newcombe
et al., 2011)

RGB-D Dense 3D
TSDF

Dense ICP +
TSDF fusion

Local ICP GPU; real-time
dense indoor recon

LOCUS/LAMP
(NeBula)

(Agha et al.,
2021)

3D LiDAR, IMU,
VIO

3D geometric
+ 2D proj.

Factor-graph
back-end (multi-
modal)

LiDAR/visual
LC

High-end
CPU/GPU; cen-
tralized opt. when
available

rather than maintaining a full global 3D reconstruction (Wellhausen & Hutter,
2023). For long corridors and other repetitive geometries, teams routinely fuse
VO/VIO or wheel/IMU odometry to stabilize localization when scan matching
drifts (Aditya et al., 2025; Agha et al., 2021).

Given those trade-offs, a pre-run LiDAR pass to build a static 2D map (Cartog-
rapher/SLAM Toolbox), followed by runtime AMCL on that prior, with optional
VO/VIO fusion, is a pragmatic operating point for a quadruped operating in known
offices and corridors. It keeps memory and latency predictable, leaves headroom
for perception and safety checks, and aligns with the Nav2 planning stack used
across recent systems (Aditya et al., 2025; Koval et al., 2022). Representative
SLAM toolchains and their runtime profiles are summarized in Table 2.2.
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Chapter 3

Methods

3.1 System Overview

This chapter describes how the system is put together on the real robot. We begin
with the hardware, including the quadruped platform and its sensors. We then
describe the ROS 2 architecture running on the onboard computer and finally
explain how data and transforms flow through the system. The aim is to provide a
clear picture of what runs where before delving into mapping, semantic mapping,
and object–goal navigation.

3.1.1 Robot and Sensors

All experiments are carried out on a Boston Dynamics Spot quadruped equipped
with a small onboard computer and a minimal sensor payload. The robot is
controlled via velocity commands in the body frame (/cmd vel); low-level loco-
motion, joint control, and state estimation within the robot are treated as black
boxes. From the navigation stack point of view, Spot behaves as a mobile base
with reliable odometry and a safety-rated stop.

An Intel NUC-class computer is mounted on the robot as the central compute
unit. It runs Ubuntu and ROS 2 Humble and hosts all mapping, localization, se-
mantic mapping, and navigation nodes. There is no discrete GPU and no external
compute; all perception and planning run on the onboard computer. The NUC
communicates with Spot over Ethernet, and all external sensors are wired directly
to the NUC. This setup matches the constraints discussed in Chapter 1: every-
thing runs locally on the robot, with no cloud or offboard compute, and bring-up
is reproducible from a single machine.

Figure 3.1 shows the platform with the full payload used in this thesis (Razavi
et al., 2025).
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3.1 System Overview

Figure 3.1: Spot by Boston Dynamics with the onboard payload used in this work:
1) Intel RealSense T265 tracking camera, 2) Intel RealSense D435 RGB–D camera, 3)
2D LiDAR, 4) Intel NUC 11 i7-1165G7 onboard computer, and 5) external lithium-ion
battery powering the NUC.

The external sensor suite is intentionally small and focused on the needs of an
object–goal navigation pipeline:

• 2D LiDAR. A planar LiDAR is mounted on the robot with a clear view of
the surroundings. Its scans are used together with odometry in a short pre-
run to build a 2D occupancy grid with SLAM Toolbox. During navigation,
the same sensor feeds the obstacle and inflation layers of the Nav2 costmaps
and supports AMCL. The LiDAR therefore provides the system’s metric
backbone: it defines the static map and reflects newly appearing obstacles
in the scene.

• Camera pair (Intel RealSense D435 and T265). The robot carries a
pair of Intel RealSense cameras: a D435 RGB–D camera and a T265 tracking
camera, mounted on a common bracket. This follows the tracking and depth
configuration described in the Intel whitepaper on combined tracking and
depth sensing (Schmidt et al., 2019). The D435 provides aligned RGB and
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3.1 System Overview

Figure 3.2: Intel RealSense Depth Camera D435 and Tracking Camera T265 used
together in this work (image adapted from (Schmidt et al., 2019)). The RGB–D cam-
era provides colour and depth for object detection, while the tracking camera provides
visual–inertial pose estimates used to consistently place detections in the global map
frame.

depth images; the RGB stream is passed to an object detector, and depth is
used to back-project detections into 3D. The T265 provides visual–inertial
odometry in a frame aligned with gravity. In our setup, the T265 pose
and the calibrated extrinsics between the two cameras are integrated into
the TF tree, so that each 3D detection from the D435 can be consistently
expressed in the map frame without requiring dense 3D reconstruction or
heavy registration.

Spot’s internal sensors (IMU, joint encoders, body cameras) are not used di-
rectly in the semantic mapping pipeline, only for the manufacturer’s state estima-
tor and locomotion controller.

This combination of a 2D LiDAR and a compact camera pair (D435 + T265) is
sufficient to support the proposed pipeline: the LiDAR and odometry provide the
information needed for mapping, localization, and costmaps, while the RGB–D
camera and detector supply the semantic observations used to build the semantic
layer. The following subsections describe how these sensors are wired into the
ROS 2 architecture and TF tree, and how their data flow into mapping, semantic
mapping, and object–goal navigation.

3.1.2 ROS 2 Architecture

All software runs on the onboard Intel NUC under Ubuntu and ROS 2 Humble.
Everything is on a single machine: the nodes that communicate to Spot, the
mapping and localization stack, the semantic layer, and Nav2. This keeps the
overall setup simple and aligns with the constraints from Chapter 1: all processing
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3.1 System Overview

stays on the robot, with no cloud or offboard compute. Figure 3.3 gives an overview
of the central nodes and how they are connected.

The interface to the robot is a ROS 2 driver that bridges the Spot API to stan-
dard topics and services. It publishes odometry and the base pose, exposes basic
robot state (battery, faults, E-stop), and accepts velocity commands on /cmd vel.
From the rest of the system, and as already noted in Section 3.1.1, Spot is seen
as a mobile base with a fixed base link frame and a safety-rated stop; low-level
locomotion and state estimation inside the robot stay opaque.

Mapping and navigation are split into two phases. In a short pre-run, a SLAM
node based on SLAM Toolbox (Macenski & Jambrecic, 2021) subscribes to the
2D LiDAR and odometry topics from the T265 and builds a 2D occupancy grid of
the environment. A map saver node writes this grid to disk. During navigation,
SLAM is turned off. Instead, a map server node loads the saved grid, and an
AMCL node estimates the robot pose in the map frame using LiDAR scans and
the same T265-based odometry. Together, map server and AMCL provide the
usual Nav2 interface: a static 2D map and a continuous transform between map,
odom, and base link.

Separate drivers handle the two RealSense cameras (D435 and T265). The
D435 runs in its own container and publishes colour and aligned depth images,
while the T265 driver runs together with the mapping stack and publishes a track-
ing pose (Schmidt et al., 2019). An object detection node subscribes to the D435
RGB stream and outputs per-frame detections with class labels and scores. A
small projection node then combines each detection with the aligned depth image
to recover a 3D point (or small cluster) in the D435 frame. Using the TF tree
and the calibrated extrinsics between the cameras, these points are transformed
to base link and then to map. This whole detection–projection pipeline runs in
parallel with SLAM Toolbox during the teleoperated pass, so object hypotheses
are placed directly in the same map frame that is being built. This is the only
place where the D435 depth and T265 tracking information are fused; there is no
dense 3D reconstruction in the loop.

On top of this, a custom semantic mapper node subscribes to projected de-
tections and TF. It maintains a compact, confirmed-only database of static ob-
ject instances in the map frame. New observations first enter a proposal buffer,
and only detections that are seen repeatedly within distance and angle gates are
promoted to the static table; near-duplicate instances are merged. A separate
semantic recorder node writes the static objects to a YAML file, and a navi-
gation client (semantic nav cli) reads this file and presents a list of object in-
stances. The operator chooses which object to go to, and the client converts the
stored instance pose into a goal pose in the map frame, which is sent to Nav2 as a
NavigateToPose action.
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Figure 3.3: System overview of the onboard hardware and ROS 2 pipeline used in this
work. The Intel RealSense T265, 2D LiDAR, and Intel RealSense D435 are connected
to the Intel NUC, whose low-level drivers feed three main subsystems: (i) mapping and
localization (SLAM Toolbox in mapping mode, map server and AMCL in navigation
mode); (ii) semantic perception and mapping (YOLO detector, 2D–3D projection node,
semantic mapper, and semantic recorder with its YAML database); and (iii) nav-
igation and interfaces (Nav2 stack, object–goal client, and the Spot ROS 2 interface
bridging to the Boston Dynamics Spot base).

Nav2 handles the navigation stack: the global planner, local controller, behavior-
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3.1 System Overview

tree navigator, and costmap servers. These nodes use the occupancy grid from
map server, the AMCL pose estimate, and LiDAR scans to build layered costmaps
and plan paths. The obstacle and inflation layers define a safety margin around
mapped and observed obstacles, and Nav2’s standard recoveries (spin, backup,
wait) are used when the controller stalls or cannot progress.

In the last layer, additional safety is provided by the Spot driver itself. The
driver exposes E-stop and fault handling, and the robot’s internal controller en-
forces its own safety envelope (for example, stopping or modifying motion when
it detects potential collisions). We do not add a separate safety node in ROS 2;
instead, we rely on conservative costmaps and Nav2 recoveries at the planning
level, and on Spot’s built-in safety mechanisms at the locomotion level.

RViz is used for visualization and runs either on the NUC or on a tethered
laptop. It shows the occupancy map, TF tree, costmaps, semantic markers, and
the current Nav2 path and goal. During experiments, rosbag recording is used to
log LiDAR scans, camera detections, semantic outputs, and Nav2 topics for offline
analysis and debugging.

Overall, the architecture stays close to standard ROS 2 components (SLAM
Toolbox, AMCL, Nav2, RealSense drivers, Spot driver) and wraps them with two
custom pieces: the semantic mapping pipeline (including the semantic recorder)
and the object-selection client used for object–goal navigation.

3.1.3 Dataflow and Modes of Operation

The system runs in two simple modes: a short mapping mode to build the 2D
occupancy grid, and a navigation mode in which the robot uses that map, together
with the semantic layer, to reach object goals. The hardware and TF tree are the
same in both cases; what changes is which nodes publish commands and which
mapping components are active.

The T265 driver (and a small helper node) provides the robot’s pose, which
we treat as the odom frame. A static transform relates the T265 tracking frame
to base link, so that all other sensors can be tied into the same tree. The D435
RGB–D camera is used only for detection and depth-based back-projection, not
for visual odometry.

Mapping mode. In mapping mode, the operator drives the robot manually
with a joystick. A standard teleop node publishes /cmd vel, which the spot nav

package forwards to the Spot driver. The driver sends these velocity commands
to the robot.

The T265 publishes its pose, which we expose as the transform odom→ base link.
The 2D LiDAR publishes scans in a lidar frame that is rigidly attached to
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base link. SLAM Toolbox subscribes to LiDAR scans and the T265-based odom-
etry, estimates the robot pose in the map frame, and builds a 2D occupancy grid as
the operator drives through the environment. When coverage is sufficient, a map
saver node writes the grid to disk, and mapping mode ends.

The TF tree in this phase has a small backbone:

map → odom → base link → {lidar, d435 link, t265 link},

with the last three transforms static and measured offline (or from the RealSense
configuration).

Navigation mode. In navigation mode, SLAM is turned off, and the rest of the
stack is brought up. A map server node loads the saved occupancy grid. AMCL
subscribes to LiDAR scans and uses the same T265-based odometry to re-estimate
map → odom online. The Nav2 costmap servers use the occupancy grid and LiDAR
scans to build global and local costmaps. The global planner and local controller
run on top of these costmaps and output velocity commands on /cmd vel.

The command path is:

Nav2 → spot nav → Spot driver → robot.

The spot nav package acts as a thin bridge: it takes /cmd vel from Nav2, adapts
it to the Spot API, and forwards it to the driver. Spot’s own odometry and
higher-level behaviours remain unused; from the navigation stack’s point of view,
the robot is just a base that executes commanded velocities.

In parallel, the RealSense driver publishes RGB and depth images from the
D435 and the tracking pose from the T265. As described in Section 3.1.2, an
object detector subscribes to the D435 RGB stream, a projection node combines
detections with depth to recover 3D points, and these points are expressed in map

through the TF tree. The semantic mapper subscribes to these projected detec-
tions, maintains its confirmed-only database of object instances, and publishes
markers for visualisation.

When the operator wants to navigate to an object, they run the semantic nav cli

client described in Section 3.4. The client loads the recorded semantic objects from
the YAML file, presents a menu of instances (for example, the chairs in the envi-
ronment), and, for the chosen entry, computes a goal pose in the map frame near
the object. Nav2 then plans and executes the motion using the same T265-based
odometry and LiDAR-based costmaps as in mapping mode.

In general, dataflow remains simple: the T265 provides odometry, the LiDAR
supports mapping, localization, and costmaps, the D435 provides colour and depth
for semantics, and everything is tied together through a small fixed TF tree cen-
tered on map, odom, and base link. The next section focuses on the mapping
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mode in more detail and describes how the 2D occupancy grid used by the rest of
the pipeline is built and managed.

3.2 Mapping and Localization

This section explains how the robot builds and then reuses a 2D map of the
environment. The overall idea is simple: we first run a short mapping session to
create a static occupancy grid of the lab and corridors, and later we use that same
map for localization and planning during all navigation and semantic experiments.
Mapping and localization are therefore separated in time. The mapping pass is
done once per environment, under supervision, and the runtime system only has
to keep track of the robot pose on a fixed map.

This design follows the assumptions from Chapter 1. The robot operates in
known indoor spaces that do not change dramatically from one day to the next.
In this setting, a 2D occupancy grid is usually enough for global navigation. It is
compact, well supported by standard tools, and easy to inspect in RViz. At the
same time, we still want the underlying SLAM to be robust: long straight corridors,
glass panels, and occasional moving people can all confuse a näıve pipeline. For
this reason, we use SLAM Toolbox (Macenski & Jambrecic, 2021) with the T265
as odometry and the 2D LiDAR as the main sensor, and we always check the
resulting map visually before using it.

At runtime, localization is handled by AMCL and the Nav2 stack. The map
created in the first step is loaded by the map server, and AMCL uses LiDAR
scans and T265-based odometry to estimate the robot pose in the map frame.
Nav2 then plans and controls motion entirely on the basis of this 2D map and
the associated costmaps. In the rest of this section, we first describe how SLAM
Toolbox is configured for mapping, then how we create and save maps, and finally
how localization is done during navigation.

3.2.1 SLAM Toolbox Setup

The mapping pass is built around SLAM Toolbox (Macenski & Jambrecic, 2021).
The goal is simple: during a short, manual run we want to build a clean 2D
occupancy grid of the environment that we can later reuse for localization and
planning. We keep the setup as standard as possible so that it is easy to rerun or
adapt in other buildings.

All of our mapping runs use the same frames and topics. The T265 tracking
camera provides odometry, which we expose as the transform odom → base link.
The 2D LiDAR publishes scans in the laser frame. In the SLAM Toolbox con-
figuration, we set:
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• map frame = map,

• odom frame = odom,

• base frame = base link,

• scan topic = /scan.

This means SLAM Toolbox listens to the LiDAR scans on /scan and uses the
T265-based odometry to predict motion between scans. It then corrects that
motion with scan matching and closes loops when it revisits the same area.

We use the standard Ceres-based solver plugin provided by SLAM Toolbox
(parameters solver plugin, ceres linear solver, and so on). These control
the optimization backend but are mostly left at the recommended values. More
important for us are the parameters that control when new scans are accepted,
how often the map is updated, and how aggressive loop closure is. For example:

• minimum travel distance and minimum travel heading set how much the
robot needs to move before a new scan is used. We keep them at moderate
values (0.5 m and 0.5 rad) to avoid overloading the system with almost
identical scans.

• do loop closing is set to true, and the various loop match * parameters
are tuned so that obvious loops are closed while avoiding spurious matches.

• resolution is set to 0.05 m, which gives a good balance between detail and
file size for indoor corridors and labs.

We also enable use odom topic = true and provide odom frame = true. In
our case, “odom topic” really means the T265 pose published through the Re-
alSense driver (Schmidt et al., 2019). SLAM Toolbox treats this as the motion
prior and still corrects it with scan matching and loop closure. This setup is con-
venient: the T265 soaks up small motions and drift over short distances, and the
LiDAR and SLAM Toolbox take care of long-term consistency.

The configuration enables use map saver = true, which allows us to save the
current occupancy grid directly from SLAM Toolbox when the mapping pass is
complete. The transform publish period and map update interval parame-
ters control how often the map transform and the occupancy grid are updated.
We keep them at a few Hertz so that RViz feels responsive but the CPU is not
overloaded.

Finally, we use rolling window = true during mapping. This keeps the ac-
tive scan matching window around the robot and helps the solver stay focused on
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the area we are currently exploring, while still maintaining the global map inter-
nally. Combined with the loop closure settings, this is enough to produce a single,
consistent 2D map of the lab and corridor areas used in the experiments.

Overall, the SLAM setup is intentionally conservative. We rely on standard
components, avoid exotic settings, and use the T265 as a stable odometry source.
This makes the mapping runs predictable and easier to repeat when we need to
adjust the map or extend it to a new part of the building.

3.2.2 Map Creation and Saving

Map creation happens entirely in mapping mode. The workflow is straightforward
and based on manual teleoperation.

We start by launching the mapping setup:

ros2 launch mapping_docker slam_nav_setup.launch.py mode:=mapping

At this point, the T265 node, LiDAR, static transforms, pointcloud to laserscan,
SLAM Toolbox, and RViz are all running. In a separate terminal, we launch a
joystick teleop node that publishes /cmd vel. The spot nav bridge forwards these
velocity commands to the Spot driver, and the operator drives the robot through
the environment.

While the robot moves, SLAM Toolbox builds the 2D occupancy grid in the
map frame. In RViz we can see the live map, the robot pose, and the laser scans.
This visual feedback is important: it helps the operator decide which areas still
need to be covered, and it reveals problems like glass walls, reflective surfaces, or
moving obstacles that might confuse the LiDAR.

We follow a simple strategy: first, trace the main corridor loop, then sweep into
side rooms and around large objects, and finally close the loop again. Because loop
closure is enabled, revisiting the same area allows SLAM Toolbox to correct drift
and tighten the map. We try to avoid large dynamic obstacles during mapping (for
example, groups of people moving around) and pick times when the environment
is relatively quiet.

The SLAM configuration has use map saver = true, so once coverage looks
good we save the map. This can be done either through the SLAM Toolbox service
or through RViz’s SLAM Toolbox panel. In both cases the result is a standard
occupancy grid written to disk: a .pgm image file and a .yaml file describing
the resolution, origin, and thresholds. In our setup, these maps are stored un-
der the mapping docker/maps directory. By convention, the final map used for
experiments is called final map.yaml.

In addition to SLAM Toolbox’s own saver, we also integrate map saving with
Nav2’s map server format. The launch file passes the map YAML as map yaml, and
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we use the same structure that Nav2 expects. This means the map produced in
mapping mode can be loaded by the Nav2 map server in navigation mode without
conversion.

After saving, we usually restart RViz and load the saved map directly through
the map server node to check that the static map, the robot pose, and the laser
scans all align well. If we see noticeable misalignment (for example, walls not
matching scans, or drifting corridors), we rerun the mapping pass, sometimes with
slightly adjusted SLAM parameters or a slower teleoperation pace.

In the end, map creation is not fully automatic, but the process is reproducible:
one launch command, teleoperate the robot with joystick, watch RViz, save the
map, and visually verify. Once a map for a given environment is stable, we reuse
it for all later navigation and semantic mapping experiments in that environment.

3.2.3 Runtime Localization

Runtime localization happens in navigation mode and is handled by a standard
combination of AMCL and Nav2, with the T265 as the odometry source.

We launch the system in navigation mode:

ros2 launch mapping_docker slam_nav_setup.launch.py mode:=navigation

The T265 node, LiDAR, static transforms, and pointcloud to laserscan still
run as before. Instead of SLAM Toolbox, the launch file now starts:

• nav2 map server, configured with final map.yaml;

• nav2 amcl, using the same map, odom, and base link frames as in mapping
mode;

• the Nav2 planner, controller, behaviour tree navigator, and behaviour server;

• the Nav2 lifecycle manager, which brings all of them to the active state.

The map server loads the saved occupancy grid and publishes it as a static
map. AMCL subscribes to the LiDAR scan topic and the T265-based odometry
and estimates the robot pose in the map frame. Effectively, AMCL replaces SLAM
Toolbox’s localization component while keeping the same TF structure:

map → odom → base link.

Using AMCL on top of the T265 odometry is important for two reasons. First,
it anchors the pose estimate to the static occupancy grid and compensates for the
slow drift that accumulates in the visual–inertial odometry. Second, the particle
filter in AMCL can recover from short tracking losses of the T265 by re-aligning
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the pose with the LiDAR scans of the environment. In practice, this combination
is more stable over long traversals than relying on T265 odometry or scan matching
alone (Aditya et al., 2025).

The Nav2 costmap servers subscribe to the map, LiDAR scans, and robot pose
and build global and local costmaps. The global costmap is aligned with the static
map and is used for long-range planning; the local costmap is centred on the robot
and reacts to new obstacles.

During navigation experiments, goals are sent either manually from RViz or
via the object-selection CLI described in Section 3.4. In both cases, Nav2 receives
a PoseStamped goal in the map and handles planning and control.

Because odometry still comes from the T265, the behaviour of the system
during navigation matches what SLAM saw during mapping. This helps keep the
map and runtime localization aligned. If the drift of the T265 grows too large,
AMCL can still pull the pose back towards the map using LiDAR scan matching.
In practice, this combination was sufficient for the lab and corridor environments
considered here.

RViz is used again as the main debugging and monitoring tool. It shows
the static map, the AMCL pose estimate, the LiDAR scans, the global and lo-
cal costmaps, and the current Nav2 path. This visualisation is also useful when
running semantic mapping and object–goal experiments: it makes it easy to see
whether failures are due to localization errors, poor costmap settings, or issues in
the semantic layer.

3.3 Semantic Mapping Pipeline

The semantic mapping pipeline sits between perception and navigation. Its job
is simple to state: turn a noisy stream of camera detections into a small, stable
set of named objects placed on the existing 2D map. The rest of the stack does
not care about single frames or image coordinates. It only needs to know that, for
example, “there is a chair at (x, y) in map, with this confidence, and it has been
seen many times”. Once this layer is in place, object–goal navigation only needs
to query this object list and turn it into goal poses.

The pipeline follows the same idea we used in our earlier work on online object-
level mapping for quadrupeds (Razavi et al., 2025). YOLO detector (Redmon
et al., 2016) runs on RGB images from the Intel RealSense D435 and produces 2D
bounding boxes and scores for a small set of classes. Depth, aligned to the color
stream, provides a distance for each box. Using the calibrated camera intrinsics
and the transform between the camera and the robot body, we back-project each
detection to a 3D point in the camera frame and then into the map frame. A light
association and memory step merges near duplicates and keeps only confirmed,
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static objects over time. In this section, we focus on the first two stages: detector
runtime and 2D–to–3D projection.

Figure 3.4 illustrates the standard YOLO detection pipeline that underlies our
detector.

1. Resize image.

2. Run convolutional network.

3. Non-max suppression.

Dog: 0.30

Person: 0.64

Horse: 0.28

Figure 3.4: YOLO detection pipeline, adapted from Redmon et al. (2016). The input
RGB image is first resized to a fixed resolution. A single convolutional network processes
the entire image in a single forward pass and predicts, for each cell on a coarse grid,
a small set of bounding boxes along with class scores and confidence values. A final
non-maximum suppression step discards low-confidence and highly overlapping boxes,
leaving a compact set of object detections for the semantic mapping layer.

3.3.1 Detector Runtime

The semantic pipeline starts from an RGB stream coming from the Intel RealSense
D435. The camera runs at a moderate resolution and frame rate (for example,
640×480 at 15–30Hz) so that the onboard NUC can keep up without a GPU.
Depth is enabled and aligned to the color stream, but the detector itself only
works on the color images. Depth is used later in the projection step.

For object detection, we use a YOLOv11 model, in a small configuration suit-
able for CPU inference (Redmon et al., 2016). The goal is not to cover hundreds
of classes, but to reliably detect a small, closed set of objects that are meaningful
for navigation in indoor spaces: chairs, people, desks, doors, and similar man-
made structures. In the experiments described in 4.2, we limited the semantic
map to persons and chairs, which were sufficient to test the layer’s stability and
its usefulness for future navigation tasks.

Each RGB frame is pre-processed before it reaches the network. The image is
resized to the network input size, normalized, and optionally cropped to remove
parts of the field of view that are not useful (for example, the top of the image when
there is only the ceiling). The detector node then runs a forward pass and produces
raw bounding-box predictions: for each candidate box, it outputs a class label, a
confidence score, and a 2D bounding box in pixel coordinates. Non-maximum
suppression (NMS) operates on these raw outputs, keeping only the strongest box
per object.
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The detector uses a global confidence threshold, and we also allow per-class
thresholds in the ROS 2 parameters. In practice, we noticed that some classes (such
as “person”) are detected very reliably, while others (for example, certain furniture
classes) can be noisier. By exposing a parameter like class score thresholds,
we can raise the minimum confidence only for those classes that tend to produce
more false positives, while keeping a lower threshold for the classes that the model
handles well. If a detection does not meet the threshold for its class, it is discarded
immediately and never reaches the mapping step.

The detection node publishes its results as a ROS 2 message on a dedicated
topic (for example /yolo/detections). Each message contains a header with the
timestamp and frame ID (the camera frame), and an array of per-object entries.
For each object, we store at least: the class name (as a lowercase string), the
confidence score, and the 2D bounding box. In our implementation, this is a
custom message type compatible with later stages and easy to visualize in RViz.

To debug and tune the system, the detector also publishes an overlay image
that displays the bounding boxes and labels on top of the original RGB frame.
This stream is not used anywhere in the pipeline; it is purely for the operator.
When mapping or navigating, we often keep this view open in RViz to see when
the detector is struggling, for example, under strong backlight, motion blur, or
partial occlusions. This is important in practice because the semantic layer will
only ever be as good as the input detections.

Runtime performance is a key constraint. The detector runs on the same
onboard NUC as the rest of the pipeline, with no dedicated GPU. To keep latency
under control, we keep the model size small, we avoid very high input resolutions,
and we sometimes throttle the detector by skipping frames when the robot is
moving slowly. In the experiments reported in section 4.1.3, the RGB camera
stream runs faster than the detector, and the semantic layer runs slower again.
The system is designed to tolerate this: semantic association works with whatever
detection messages arrive, and the objects in the map remain visible even when
no new frames are being processed.

A second important design choice is to limit the set of classes that the detector
is allowed to pass to the mapper. The show object parameter lets us specify a
comma-separated list of class names (for example, “chair, person”). Only detec-
tions whose class is in this allow-list are forwarded. This avoids cluttering the
semantic map with objects that are not meaningful for the navigation task at
hand. For instance, in a lab we might want to see chairs and desks, but not small
items like keyboards or mugs. Filtering at the detector layer also saves work in
the later stages.

Finally, the detector does not try to do any temporal smoothing or tracking.
Each message is a snapshot of what the camera saw at a given time. We deliber-
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ately keep the detector stateless and modular: it does not need to know about the
occupancy map, the robot pose, or any past detections. All temporal logic (for ex-
ample, deciding that a chair has been seen many times from different viewpoints
and should be kept as a confirmed object) is handled by the semantic mapper.
This separation keeps the detector simple, makes it easier to swap in a different
model in the future.

In summary, the detector runtime has three responsibilities. It takes RGB
frames from the D435, runs a lightweight YOLO model on CPU, and publishes a
clean list of 2D detections (class, score, bounding box) in the camera frame. It
filters out low-confidence and irrelevant classes, and it provides a debug overlay
for the operator. It does not do mapping, memory, or navigation. The next
subsection explains how we combine these 2D detections with depth to obtain 3D
object positions that can be placed on the 2D map.

3.3.2 2D to 3D Projection with D435

The second step in the pipeline is to turn each 2D detection into a 3D point that
we can place on the map. This happens in two stages: first we use the depth image
and the D435 intrinsics to lift pixels from image space into the camera frame; then
we use the calibrated transforms to move that point into the robot and map frames.

The Intel RealSense D435 provides synchronized color and depth streams with
depth already aligned to the color image (Schmidt et al., 2019). For every RGB
frame used by the detector, there is a corresponding depth frame with the same
resolution. The camera driver also exposes the intrinsic parameters of the color
camera: focal lengths (fx, fy), the principal point (cx, cy), and the depth scale that
converts raw depth units into metres. These values are published on the ROS 2
topic and are also saved in the calibration files.

Given a 2D bounding box from the detector and the aligned depth image, we
first choose a representative point inside the box. In principle, we could use the
exact center of the box, but we found that using a small window around the center
and taking the median (or a trimmed mean) of the depth values is more robust
to noise and outliers. For example, if the box covers a person, the depth at the
very top of the box might be the wall behind them, while the center region is more
likely to sit on the torso. In practice the window can be a fixed k × k patch (for
example, 5 × 5 or 7 × 7 pixels) around the box center, ignoring invalid or zero
depth values.

Once we have a valid depth value Z in metres and the pixel coordinates (u, v) of
the chosen point, we compute the 3D point in the camera frame using the standard
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pinhole model,

X =
(u− cx)

fx
Z, Y =

(v − cy)

fy
Z, Z = Z.

This gives us a point (X, Y, Z) in the optical frame of the D435. Conceptually,
this is a point in space that lies along the ray from the camera center through
that pixel, at the distance given by the depth measurement. We also attach an
orientation to this point, but since we are building a 2D semantic layer, we do not
care about full 3D orientation. In the implementation, we later reset roll and pitch
and keep only a yaw angle, so that objects “stand” on the floor plane.

Depth data is noisy and has its own failure modes. Close to the camera, very
small depth errors can produce large lateral errors in (X, Y ). On shiny or dark
surfaces, the depth sensor may fail and return zeros. To reduce the effect of these
issues, we apply a few simple filters at projection time. We discard detections
whose projected range is outside a sensible interval (for example, less than 0.3m
or more than 5m from the camera). We also discard boxes where the center patch
has too many invalid depth pixels. These checks are cheap and remove many
obviously bad cases before they reach the map.

The next step is to move the 3D point from the camera frame to the robot
body frame and then into the map frame. We rely on the standard TF tree for
this. During setup we calibrate and fix the static transform between the D435 and
the robot body, so we have a transform from base link to the camera frame. The
Intel whitepaper on T265 and D435 describes the typical way to mount and align
the two devices and highlights the importance of accurate extrinsics for tracking
and depth fusion (Schmidt et al., 2019). In our system we follow the same idea:
the physical mount is rigid, the extrinsic transform is measured once and then kept
constant in the TF tree.

At runtime, the SLAM Toolbox maintains a transform between map and odom,
and the T265 provides odometry between odom and base link. Combining these
with the static transform from base link to the camera, we can transform the 3D
point from camera coordinates to the global map frame. In ROS 2 this is a standard
TF lookup and transform operation, and it is exactly what the semantic mapper
node does internally: given a detection message with a timestamp, it requests the
transform chain up to map at that time and applies it to all points in that frame.

Because our semantic map lives on a 2D occupancy grid, we then “flatten” the
3D point onto the floor plane. In other words, we take the (x, y) coordinates in
map and set z to a fixed value (usually zero or a small constant that matches the
map height). For orientation, we keep only the yaw part of the quaternion and
set roll and pitch to zero. This makes each object look like a small cube sitting
on the map. This simplification is enough for the navigation tasks we target: we
care about where the object is on the floor, not about its exact 3D shape.
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In the thesis, this projection step is where the RGB–D camera, the T265 track-
ing camera, and the SLAM map all meet. The D435 and YOLO give us a class
label and a direction in image space. Depth turns that direction into a physical
distance. The T265 and SLAM Toolbox tell us where the robot was in the global
map when the frame was taken. Putting these pieces together, we can say “there
is a chair around (x, y) in map coordinates”, with a confidence taken from the
detector. This is the basic ingredient that the semantic layer needs to build its
object list.

We also observed some limitations here. The depth plane of the D435 is not
perfectly aligned with the LiDAR scan plane that was used to build the occupancy
grid. As a result, there can be a small bias in range when placing objects on the
map. In the lab this shows up as objects that are slightly closer to or further from
walls than they should be. For this thesis we accept this limitation, since the main
goal is to provide approximate object locations for navigation, not centimeter-
accurate 3D reconstructions. A more detailed calibration or a joint optimization
of LiDAR and depth data could reduce this error in future work.

To sum up, the 2D–to–3D projection step takes the output of the detector and
turns it into 3D points in the map frame, using the D435 depth image, the camera
intrinsics, and the TF tree that links the camera to the map. It filters out obviously
bad depth readings, flattens the result onto the floor plane, and passes on a simple
structure: class, confidence, position in map, and a yaw-only orientation. The next
subsections (not shown here) use these projected detections to build and maintain
a stable set of confirmed objects over time.

3.3.3 Transforms to the Map Frame

The semantic mapper relies heavily on TF. Every detection starts in a camera-
related frame and must end up in the global map frame. If the transforms are
wrong or missing, the whole semantic layer fails, so this part of the pipeline is
quite careful.

The node exposes two main parameters for this: global frame (by default map)
and fallback frame (by default base link). The idea is simple: the semantic
map lives in the global frame, so all object positions must be expressed there. At
the same time, we want the node to tolerate small changes in how upstream nodes
publish frames.

Each incoming detection message contains a header and an array of detections.
In our setup, the detections come from the D435 RGB–D camera or from a small
projection node that already did the image-to-3D step. The first thing the semantic
mapper does is choose a “source frame” for the whole message. It checks each
detection and tries to read a frame id from the 3D bounding box. If it finds one,
it uses that. If not, it falls back to the header frame. If that is still empty, it finally
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falls back to fallback frame. This is a small detail, but it makes the node robust
to small changes in the detector or projection code: we do not need to hard-code
a specific camera frame name.

Once the source frame is known, the node asks the TF buffer for a transform
from this frame to the global frame (map). It tries to get the transform at the
exact timestamp of the message, with a short timeout (for example 0.1 s). This
is the ideal case: the 3D point is placed where the robot actually was when the
camera captured that frame. If this lookup fails (for example, because TF is
slightly delayed or the robot just started), the node does a second attempt with a
“latest available” transform. Only if this second attempt also fails do we give up
on transforming the detections from that message.

Even when we skip a message due to missing TF, we still keep the semantic
layer visible. The node calls a small re-publish function that takes the last known
header (or a fresh header with the current time) and publishes the current set of
confirmed objects. This way, RViz still shows the semantic map, and downstream
consumers still see the same objects, even if there is a short TF hiccup or a gap
in detections.

After the transform from source frame to map has been found, each detection
goes through two possible transforms. First, if its 3D pose is expressed in a sub-
frame (for example, a local “depth frame” inside the D435), the node transforms
it into the selected source frame. Then, it transforms it from the source frame
into map. In code this is just two calls to the TF library, but conceptually we are
walking along the chain:

map → odom → base link → camera frame → depth frame,

or the reverse, depending on how the frames are defined in the actual tree.
Once a detection is in the map frame, the node optionally clamps it to a fixed

plane and removes roll and pitch from the orientation. Clamping means we set the
z coordinate to a constant value (for example, 0.0m). Removing roll and pitch is
done by extracting the yaw from the quaternion and creating a new quaternion
with only that yaw. This matches the idea of a 2D semantic layer on top of a 2D
occupancy grid: objects live on the floor plane and have a heading, but we do not
care about their full 3D pose.

By the end of this step, all valid detections are represented as “points with
yaw” in map. They share the same global frame as the SLAM map, the Nav2
costmaps, and the robot pose. This makes later operations much simpler. For
example, downstream components can directly query costmap values around each
object to reason about clearance.

A final point is that the semantic mapper never writes to the TF tree; it only
reads it. All transforms are produced by other parts of the system: SLAM Toolbox
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or AMCL maintain map to odom, the T265 node publishes odom to base link, and
static transform publishers provide the camera and LiDAR frames. This separation
keeps responsibilities clear: mapping and localization maintain the geometry; the
semantic layer consumes it and stays read-only with respect to TF.

3.3.4 Static Memory and De-duplication

Once detections are in the map frame, the pipeline must decide which ones to keep
and how to store them. Detections are noisy. The same chair might appear slightly
shifted from frame to frame. False positives also appear from time to time. If we
took every detection at face value and inserted it into the map, we would soon end
up with a cloud of points instead of a clean list of objects.

To avoid this, the semantic layer implements two ideas: it only keeps static
objects that have been seen many times, and it merges observations that are
close to each other in the map. In other words, it does both confirmation and
de-duplication.

The long-term memory of objects is a simple dictionary keyed by an integer
ID. For each object we store:

• the class label (for example, chair or person),

• a fixed position (x, y, z) in map,

• a yaw-only orientation,

• a confidence score,

• a hit count (how many times we saw it),

• timestamps for when it was first created and when it was last seen.

These are the “static” objects that we publish to other nodes and show in RViz.
We expect them to correspond to things like chairs, desks, or common spots where
a person stands, not to transient noise.

To decide whether a new detection should contribute to an existing object or
start a new one, we use a distance-based matching rule. For a given class, we
look for the nearest confirmed object within a certain radius. If we find one,
we treat the detection as another sighting of that object. We do not move the
object’s position; we only update its last-seen time, increase its hit count, and,
optionally, raise its score if the new detection has a higher confidence. This choice
is deliberate: we want the map to be stable. An object should not walk around
the map just because the detector jittered a few centimetres.
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If there is no confirmed object of the same class within this radius, we treat
the detection as a potential new object. However, we do not immediately insert
it into the static list. Instead, we use a short-term memory of “candidates” that
aggregates repeated detections in roughly the same area.

Conceptually, each candidate keeps:

• class label,

• an averaged position and yaw in map,

• a list of confidence scores,

• a hit count,

• the time of the first and last sighting.

When a new detection comes in, we look for a nearby candidate of the same class.
If we find one, we pull its stored position slightly towards the new detection (a
simple exponential moving average), append the score to the list, and update the
hit count and last-seen time. If no candidate is close enough, we start a new one
at the detection position.

Candidates that are not seen again within a short time (for example 1.5 s) are
dropped. This acts as a time-based filter that removes isolated detections: if we
saw something once and then never again, it is more likely to have been noise than
a real static object. The time window also encourages the robot to keep the object
in view for a moment if it wants that object to be confirmed.

Promotion from candidate to static object follows three simple conditions:

• the candidate must have been seen at least a given number of times (for
example 10 hits),

• all hits must have occurred within a given time window (for example 2 s),

• the average confidence score must be above a threshold (for example 0.5).

Only when all these conditions are met do we consider the object “confirmed”. At
that point, we check once more whether there is already a confirmed object of the
same class within a slightly larger radius. If not, we create a new static object with
the averaged position, mean score, and hit count from the candidate. If there is an
existing static object in that guard radius, we do not create a new one. Instead,
we treat the candidate as additional evidence for that existing object.

This two-level radius scheme (one radius for merging into an existing static
object, another for deciding whether to create a new one) helps to keep the se-
mantic map compact. Objects that are very close together merge into a single

34



3.3 Semantic Mapping Pipeline

entry. Objects that are further apart but still within the guard radius are treated
carefully to avoid duplicates. The exact values of these radii are parameters and
can be tuned depending on the size of the environment and the typical spacing of
objects.

There is also de-duplication within a single frame, as described in the previous
subsection. There, we avoid keeping multiple detections of the same object in
the same image by only accepting the highest-score detection in a small area.
Combined with the longer-term aggregation described here, this gives us three
layers of filtering:

1. per-frame: only high-score detections and no multiple boxes for the same
object;

2. short-term: only detections that repeat in the same place within a short
time;

3. long-term: only objects that survive the promotion conditions and are not
near an existing static object.

The end result is a small, stable set of objects in the map frame. Their positions
do not flicker; their scores only ever go up when strong detections arrive; and their
hit counts give a rough measure of how often the robot has seen them. This is
exactly the behaviour we need for object–goal navigation: the robot can trust that
“chair at (x, y)” is not going to vanish just because the detector missed it for a
few seconds.

3.3.5 Data Structures and Interfaces

The semantic mapper node is meant to be a reusable component in a larger ROS 2
system, so its internal data structures and external interfaces are kept simple and
explicit. This also makes it easier to debug and to connect to other parts of the
stack, such as the semantic recorder and object-selection CLI.

Internally, the node keeps two main dictionaries in memory: one for confirmed
objects and one for short-term candidates. Both are keyed by integer IDs. The
choice of integer keys is practical: it makes it easy to assign a stable ID to each ob-
ject for RViz markers and logs, without depending on contents that might change.

Each confirmed object entry stores a small set of fields: class, position, yaw,
score, hit count, creation time, and last-seen time. These are plain Python types
(floats, ints, strings). There is no nested structure, no dynamic fields, and no
direct references to ROS messages. This makes it straightforward to copy these
entries into outgoing messages or into markers. It also makes it easy to extend
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the structure in the future if needed, for example to store a small covariance or a
per-object bounding radius.

Each candidate entry stores a similar set of fields, plus a list of past scores
and two timestamps (first and last sighting). Again, the fields are simple scalars
and lists. This design avoids heavy dependencies and keeps the memory footprint
small, which is useful when the node runs for long periods.

On the output side, the main interface is a Detection3DArray message on the
topic /semantic/detections map. Each confirmed object becomes one Detection-
3D. The center of the detection’s bounding box is set to the stored pose in map, and
the result list has one ObjectHypothesisWithPose entry. The class ID is stored
as the class name (for example “chair”), and the score field carries the object’s
current confidence. This structure is intentionally simple: downstream nodes that
already understand Detection3DArray can consume it without modification.

The node also publishes a MarkerArray on /semantic/markers. For each
confirmed object, it creates two markers: a cube at the object position and a text
label slightly above it. The cube uses a fixed scale (configurable via parameters)
and a fixed colour. The text label shows the class name and hit count. Marker
lifetimes can be set to infinite or to a finite duration. Because the publishers use
transient-local durability, markers remain visible in RViz even if RViz is restarted
or connects later.

For inputs, the node subscribes to the YOLO detection topic (/yolo/detections 3d

in our setup). The QoS profile for this subscription is reliable, with a small history.
This is enough because we do not need a large backlog: detections that arrive late
are not very useful for mapping. The output QoS for the semantic detections and
markers is also reliable and uses transient-local durability, so that new subscribers
can immediately get the latest state without waiting for a new callback.

Configuration is handled through standard ROS 2 parameters. There are pa-
rameters for topic names (input, output, markers), frame names (global frame,
fallback frame), TF timeouts, and all of the thresholds mentioned earlier: global
minimum score, per-class thresholds, frame de-duplication radius, merge and guard
radii, hit counts, time windows, and marker properties. In the thesis, we fix most
of these values in a YAML file under the semantic mapping package, and we only
adjust them when moving to a significantly different environment.

From a system perspective, the semantic mapper’s interface to navigation is
one-way. It does not talk directly to Nav2. Instead, the semantic recorder sub-
scribes to /semantic/detections map and periodically saves the confirmed ob-
jects to a YAML file, and the object-selection CLI loads this file, lets an operator
choose a target, and converts that choice into a goal pose for Nav2. This separation
keeps the roles clear: the semantic mapper is responsible for “what and where”;
the navigator handles “how to get there”.
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Finally, the node is designed to behave well in long runs. A periodic timer
re-publishes the current static objects and markers at a fixed rate, even when
no new detections come in. This keeps the semantic layer visible in RViz and
makes logging easier: rosbag recordings always contain a regular stream of semantic
snapshots. Because the internal data structures are small and simple, this periodic
republishing has a low cost and does not put pressure on the CPU.

Overall, the combination of simple internal structures and standard ROS mes-
sages makes the semantic mapper easy to integrate. It provides a clear, typed
interface for “objects in the map” that can be consumed by navigation, monitor-
ing, or logging components, while hiding the noisy details of raw detections and
association behind a small, self-contained node.

3.4 Object-Goal Navigation

The previous chapters described how we build a 2D map, how we localize the robot
on that map, and how we maintain a thin semantic layer of confirmed objects in
the map frame. This section explains how that information is used to move the
quadruped: given a target class and a specific object instance on the map, the
system computes a goal pose with a safe offset and sends it to Nav2, which, in
turn, drives Spot through the spot ros2 bridge.

A small recorder node converts the live semantic layer into a static YAML
database of object poses, and a command-line client lets the operator choose either
an object from that list or an initial “home” pose. For each choice, the client
generates a standoff-and-facing goal in the map frame and submits it as a standard
NavigateToPose action.

Once Nav2 accepts the goal, the rest of the pipeline is identical to classical map-
based navigation: a global planner finds a path on the 2D occupancy grid, local
controllers track it under speed limits, and the Spot driver consumes /cmd vel

commands (Macenski et al., 2020). In this way, object–goal navigation is reduced
to three pieces that are easy to inspect and debug: object selection, goal pose
generation, and the existing Nav2 + spot ros2 stack.

3.4.1 Object Selection Logic

Once the semantic mapper has built a stable list of objects in the map frame, we
still need a simple way to pick one of these objects as a navigation target. In
this thesis, we keep this step very explicit and transparent. Instead of a black-box
policy, we use a small “recorder + CLI” pipeline that makes the object list visible,
stores it on disk, and allows an operator to choose which instance to visit.
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From live semantic layer to static database. The first step is to convert
the live semantic map into a persistent database. The node semantic recorder

subscribes to the confirmed object stream on /semantic/detections map (the
output of the semantic mapper described in Section 3.3). This topic carries a
Detection3DArray message in the map frame. Each detection holds a pose and at
least one hypothesis with a class label and a score.

The recorder maintains an in-memory list of objects. Each entry is a dictio-
nary with:

• class: the object class as a lowercase string (e.g., chair, person),

• x, y, z: position in the map frame,

• yaw: heading in the plane, derived from the quaternion (qz, qw),

• score: the maximum confidence score seen so far for this object.

This list is periodically written to a YAML file (by default semantic objects.yaml)
under the mapping package. The file has a single top-level key, objects, and is
human-readable, so it can be inspected or edited as needed.

On startup, the recorder can either clear the file or reload it, depending on
the reset on start parameter. In the mapping runs used in this thesis, we
set reset on start = true so that each recording session starts with an empty
database and captures only the current environment. The node creates the di-
rectory if needed, removes the old file during a reset, and immediately writes an
empty database so that the path always exists.

Merging nearby instances. When a new Detection3DArray message arrives,
the recorder loops over its detections. For each detection, it selects the highest-
score hypothesis (if there are several) and extracts the class label, pose, and score.
The pose is already in map, so we only need (x, y, z) and the yaw angle. The yaw
is recovered from the stored quaternion using a simple analytic formula.

Before inserting a new object into the list, the node calls a de-duplication
function. The idea is that the semantic mapper may still publish several very close
instances of the same class, either because two static objects are close together or
because the confirmation logic allowed small shifts in the final position. In the
object database, we want each physical object to appear at most once.

The de-duplication checks all existing entries with the same class and computes
the squared distance in the map plane. If the closest one lies within a configurable
radius (for example, 0.5m), the recorder does not create a new entry. Instead, it
updates the existing one with a smoothed position and a higher score:
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• position is updated with an exponential moving average, so the object drifts
slowly towards the new observation but does not jump,

• yaw is replaced by the latest yaw (we assume small errors here are accept-
able),

• score is updated to the maximum of the previous and current scores.

If no existing entry of that class is close enough, the detection is treated as a new
object and appended to the list.

This extra de-duplication step is intentionally simpler than the semantic map-
per’s internal memory. The mapper is optimized for online filtering of noisy detec-
tions; the recorder is only concerned with producing “one entry per object” and
a reasonable pose for each entry. The smoothing and maximum score logic help
remove residual noise while preserving the fact that there are only a handful of
objects in the scene.

Periodic saving. To avoid heavy disk usage, the recorder does not write the
YAML file on every message. Instead, it keeps track of the last save time and
calls save() only after a fixed interval (e.g., every 2 seconds). The save function
dumps the current list to YAML:

objects:

- class: chair

x: ...

y: ...

z: ...

yaw: ...

score: ...

- class: person

...

On shutdown, the node writes one final copy so that no recent changes are lost.
This behaviour makes the database robust across runs: even if the node is inter-
rupted, the file contains a recent snapshot of the semantic map.

Manual object selection via CLI. The second part of the object selection
logic is implemented in the semantic nav cli node. This node does not process
sensor data. Instead, it loads semantic objects.yaml, prints a menu, and lets
the operator pick which object to navigate to.

When semantic nav cli starts, it reads the YAML file into a list of dictionaries
with the same structure as above. If the file is missing or invalid, it reports an
error and shows an empty list. The main loop then prints a simple text menu:
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• entry 0 is an “initial point”, defined by parameters initial x, initial y,
and initial yaw. This is useful for sending the robot back to a known
parking or start pose.

• entries 1, 2, . . . list the recorded objects in order. For each object, the menu
shows the class and the (x, y) position in map.

The user types a number to choose a target, or r to reload the database from disk
(for example, after updating the semantic map), or q to quit. This simple interface
keeps the control loop explicit: it is always clear which object the robot is going
to, and the operator remains in the loop.

When the user selects entry 0, the node builds a goal at the initial point.
When the user selects an object entry, the node calls a helper function to compute
a standoff goal in front of the object (Section 3.4.2). In both cases, the result is a
NavigateToPose goal that is sent to the Nav2 action server.

In summary, the object selection logic is built from two small components:
a recorder that converts the live semantic layer into a clean YAML database of
objects, and a CLI that loads that database and allows an operator to select
a specific target or the initial pose. This keeps the behaviour transparent and
debuggable: we can always inspect the YAML file, see the menu, and understand
which object is being used for navigation.

3.4.2 Goal Pose Generation (Offset and Facing)

Once an object has been selected, the system must convert its stored pose into a
navigation goal that is meaningful for Spot. The goal should not be precisely on
the object centre; instead, the robot should stop at a safe distance and face the
object. This subsection describes how the semantic nav cli node computes such
goals in the map frame and hands them to Nav2.

Goal representation. Nav2 expects goals as NavigateToPose actions. Each
goal wraps a PoseStamped:

• the header frame is the global frame (here map),

• the position is (x, y) in that frame (we keep z = 0),

• the orientation is a quaternion that encodes yaw only.

To keep things simple, the CLI uses a small helper that takes (x, y, yaw), sets the
frame to map, stamps it with the current time, converts yaw to a quaternion, and
builds the corresponding NavigateToPose goal.
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Reading the robot pose. To compute a standoff point in front of an object,
it is useful to know the robot’s current location. The CLI uses the TF buffer to
look up the transform from map to the base frame (by default base link). From
this transform it extracts:

• the robot position (x, y) in map,

• the robot yaw, again reconstructed from the quaternion’s qz and qw.

If this TF lookup fails (for example, because localization has not started yet), the
node falls back to a simpler rule described later. In normal operation, though,
TF is available and the standoff point can be defined relative to the current robot
pose.

Standoff along the line of sight. Assume we have an object at (ox, oy) and
the robot at (rx, ry). The CLI computes the vector from the robot to the object,

dx = ox − rx, dy = oy − ry,

and its length,

d =
√
d2x + d2y.

We want the robot to stop at a fixed standoff distance doff in front of the object
(for example, 0.30m), measured along this line of sight. If the robot is already
closer than this distance, there is nothing to do; the goal is set to the current
position. If it is further away, we move along the segment from robot to object,
but we stop early:

dstop = max(d− doff, 0), scale =

{
0 if d ≈ 0,

dstop/d otherwise,

gx = rx + dx · scale, gy = ry + dy · scale.
The goal yaw is set so that the robot faces the object:

yawg = atan2(dy, dx).

The final goal pose is (gx, gy, yawg) in the map frame. Intuitively, this means: “walk
straight towards the object, but stop doff metres in front of it, looking at it”.

This construction has a few nice properties. The line from the robot to the goal
lies entirely on the line of sight to the object, so if the global map and costmaps
are consistent, the robot should get a clear view of the object near the end of the
trajectory. The standoff distance is configurable via the standoff m parameter,
allowing us to be more conservative around people and desks and a bit closer to
walls or shelves if needed.
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Fallback using object heading. If TF is unavailable or the robot pose cannot
be computed for some reason, the CLI cannot define the standoff point relative to
the robot’s current position. In that case, it falls back to a rule based on the stored
object heading. The object pose in the database includes a yaw angle yawo, which
roughly indicates “which way the object is facing” in the map. For a person, this
might be the direction they were facing in the frame when they were recorded; for
a chair, it might be the direction the chair was pointing.

In the fallback mode, the goal position is computed as:

gx = ox − doff cos(yawo), gy = oy − doff sin(yawo),

and the goal yaw is set to yawo. In words: we place the robot “in front” of the
object along its heading, at the chosen standoff distance, and orient the robot in
the same direction as the object. This works best when objects are near walls and
their heading points into the room; the robot ends up between the object and the
free space.

In practice, TF is usually available, so the line-of-sight rule is used. The fallback
is primarily a safety net and a way to keep the CLI usable even when localization
is not fully configured.

Sending goals and handling cancellation. Once the goal pose has been com-
puted, the CLI sends it to Nav2 through an ActionClient on the configured action
name (by default navigate to pose). The node waits for the action server to be
available, then sends the goal and enters an “active navigation” loop. While the
goal is active, the node:

• periodically spins ROS so that feedback and result messages are processed,

• watches the result future to see when Nav2 finishes,

• listens to the terminal input so the operator can type s or stop to cancel.

If the operator cancels, the CLI calls the action’s cancel API and, as an extra
precaution, publishes a zero Twist on /cmd vel. This makes sure the robot stops
even if the action cancellation takes a moment to propagate. When the navigation
finishes normally, the node prints the result code and returns to the menu, ready
for another selection.

The same goal-generation logic is used for all objects and for the initial point.
For the initial point, the goal pose is taken directly from the configured (x, y, yaw)
instead of being computed from an object. This is useful for quickly returning the
robot to a known safe pose after visiting one or more objects.

Overall, the goal pose generation is intentionally geometric and straightforward.
It uses the object pose in the map, the current robot pose (when available), and a
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single standoff parameter to produce a goal that is both practical (a clear view of
the object, a conservative distance) and easy to reason about. This fits well with
the rest of the system: the semantic mapping and object selection steps produce a
small, interpretable list of targets, and the goal generation step turns those targets
into standard Nav2 goals without hiding any of the geometry behind a black-box
policy.

3.4.3 Integration with spot ros2

The last step in the pipeline is turning Nav2 velocity commands into real motion
on Spot. In this work we do not touch any low-level locomotion or internal state
estimation on the robot. All of that stays inside the official spot ros2 driver
and the Boston Dynamics SDK. Our code in the spot nav package only does two
things:

• send high-level trigger commands (claim, power on, stand, sit, power off,
release, etc.) to manage the robot’s lifecycle;

• bridge planar velocity commands from Nav2’s /cmd vel topic to the driver’s
namespaced /cmd vel, with clamping and a small timeout.

This keeps the integration thin and easy to understand. From the mapping
and navigation stack point of view, Spot behaves like a mobile base that accepts
/cmd vel in the base link frame, publishes odometry and TF, and exposes a few
services for startup and shutdown.

Trigger services via SimpleSpotCommander. The spot ros2 driver exposes a
set of Trigger services under the robot namespace. In this thesis we wrap them
in the SimpleSpotCommander class. The list of services we bind to is:

claim, release, stop, self right, sit, stand, power on, power off,
estop/hard, estop/gentle.

On construction, SimpleSpotCommander receives an optional robot name (used
as a ROS namespace) and a node handle. It then:

1. builds the fully qualified service name for each base command, optionally
prefixing it with the robot namespace (for example /my spot/stand);

2. calls create client(Trigger, service name) for each of them;

3. waits for each service to become available before returning.
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All clients are stored in a small dictionary keyed by the base command name.
The command() method then just looks up the right client and calls it with an
empty Trigger.Request. If the command is unknown, it returns a failed response
and logs the problem. This wrapper is used in two places:

• in a small standalone CLI that allows manual typing of commands like stand,
sit or self right (useful for debugging the driver on its own);

• inside the main SpotControl class, which uses a fixed sequence of commands
for startup and shutdown.

In practice, each experiment follows the same script. Initially, we call claim
to lock the robot, then power on, and finally stand. At the end, we send a few
zero velocity commands, then sit, power off, and release. Emergency stop
commands remain available via services, but are not part of the automatic logic
in this thesis.

SpotControl: bridging /cmd vel. The core of the integration is the SpotControl
class in spot nav. This class is started as a ROS 2 process using a small helper
(synchros2.process.main), which sets up the node and then spins it. The con-
structor:

• creates or reuses a node;

• reads parameters that control how velocity is bridged;

• sets up publishers, subscribers, and a timer;

• constructs a SimpleSpotCommander instance.

The key parameters are:

• in cmd vel topic (default /cmd vel): the topic where Nav2 publishes ve-
locity commands;

• out cmd vel topic: the topic where the Spot driver expects commands; by
default this is /robot name/cmd vel if a robot name is given, or /cmd vel

otherwise;

• keepalive rate: how often the last command is re-published (for example,
20Hz);

• timeout: how long we allow the last command to be reused before forcing a
stop (for example 0.5 s);
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• max linear, max angular: absolute limits on linear and angular speed.

A subscriber listens on in cmd vel topic, and a publisher writes to out cmd vel topic.
The callback on twist() is triggered whenever a new Twist message arrives and:

1. creates a new Twist called out;

2. clamps each velocity component:

• linear.x and linear.y are saturated in [− max linear, max linear];

• angular.z is saturated in [− max angular, max angular];

3. publishes the clamped twist to the driver;

4. stores out as last cmd and records the time as last time.

All other fields of the original message are ignored. The clamp function is just
a simple max(lo, min(hi, v)). These limits are an extra safety layer on top of
Nav2’s configuration. Even if a wrong parameter in Nav2 allowed higher speeds,
SpotControl would keep them within the chosen bounds.

Keepalive and automatic stop. To avoid sending commands only when new
messages arrive, SpotControl also runs a small timer at keepalive rate. The
timer callback tick() checks how much time has passed since the last command:

• if the elapsed time ∆t is less than or equal to timeout, it simply re-publishes
last cmd on the Spot command topic;

• if ∆t exceeds timeout and last cmd is non-zero, it publishes a zero Twist

once and resets last cmd to zero.

This behaviour forms a basic “watchdog” for the driving commands. As long
as Nav2 is alive and calling /cmd vel, the bridge repeats the last command at
a steady rate, ensuring the driver always receives fresh messages. If Nav2 stops
for any reason (crash, stop, misconfiguration), the bridge notices that no new
commands have arrived, and forces a stop after at most timeout seconds.

On shutdown, SpotControl cancels the timer and, before using the trigger
services, sends a few more zero Twist messages with short delays. This is a small
extra precaution to ensure the robot does not move when sit and power off are
sent.
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Lifecycle: from ROS to the robot. Putting all the pieces together, a typical
run in this thesis looks like this:

1. Driver and sensors. The spot ros2 driver is started, together with the
T265, LiDAR, and external cameras. The driver publishes TF and odometry
and exposes the trigger services.

2. Bridge startup. The spot nav process starts. SpotControl creates the ve-
locity bridge, connects SimpleSpotCommander, and calls initialize robot()

and stand up(). If any of these steps fail (for example the driver is not ready,
or the claim fails), the node logs the error and exits.

3. Navigation. Mapping or navigation nodes are launched. When Nav2 is run-
ning and receives a goal (either from RViz or from the object-goal selector),
it publishes /cmd vel. The bridge clamps and forwards those commands to
the driver at the configured keepalive rate. The robot walks according to the
Nav2 plan.

4. Cancel and stop. If the operator cancels a Nav2 goal from the CLI, the
CLI cancels the action and optionally publishes a zero Twist. Even without
that, if /cmd vel stops updating, the bridge timeout sends a stop. In all
cases, the robot does not continue moving on stale commands.

5. Shutdown. When the session ends or the user presses Ctrl+C, SpotControl
stops the timer, sends a few zero velocity commands, and then calls sit,
power off, and release. The robot returns to a stable sitting pose and is
powered down.

This integration keeps the ROS 2 and robot sides clearly separated. Nav2, the
semantic mapper, and the object-goal selector only ever see standard ROS topics
and actions (/cmd vel, TF, NavigateToPose). The Spot-specific details (trigger
services, robot namespace, and command expectations) are hidden inside a small,
testable bridge.

3.5 Goal Selection Interfaces and Human–Robot

Interaction

The object–goal navigation loop described above only needs a single input: a pose
in the map frame with a standoff and facing constraint. How that pose is chosen
is a front–end design choice. In this work we expose two interfaces that produce
exactly the same type of goal for Nav2:
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• a menu–based command–line tool (semantic nav cli), where the user picks
an object instance by number; and

• a small language and voice interface that lets the user say commands such
as “go to the nearest chair” or “go back to the second person”.

Both interfaces operate on the same semantic database produced by the mapper
and recorder. They do not change the underlying mapping or navigation stack;
they only decide which object in the database should be turned into a standoff goal.
In the experiments we still use the original menu interface for repeatable trials,
and we treat the language interface as a lightweight human–robot interaction layer
on top of the same pipeline.

3.5.1 Menu-Based Goal Selection

Semantic database as a shared backend. The semantic mapper and recorder
described in Section 3.3 maintain a YAML file on the NUC with one entry per
confirmed object:

{class, x, y, z, yaw, score, ...}.

For goal selection we only need the object class and its pose in the map frame. A
small helper node publishes the current contents of this file as a std msgs/String

on /semantic objects yaml whenever the file changes.
The two goal–selection front ends both read from this shared stream. The CLI

tool parses the same YAML file directly from disk, while the language interface
subscribes to the topic and keeps an in–memory copy of the object list. In both
cases the semantic database is treated as read-only; the front ends never modify
object positions.

Menu–based goal selection (baseline). The baseline interface is the Python
node semantic nav cli. It loads the YAML database, prints a numbered list of
objects (for example, “1. chair at x = 1.2, y = 0.5”), and lets the operator choose
a target by typing an index. Index 0 is reserved for a manually defined “initial
point”. Once an object is selected, the node computes a standoff pose in front of
it using the geometry in Section 3.4.2 and sends a NavigateToPose action goal to
Nav2.

This tool is simple but useful for debugging and repeatable evaluations: each
run can be started from the same terminal, with the same index, on the same map.
It also provides a clear fallback if the language interface is unavailable or mishears
a command.
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3.5.2 Voice Command Interface

To enable spoken commands without changing the underlying navigation logic, we
add a small speech frontend made of two ROS 2 nodes:

• a speech-to-text node (voice stt node) that records a short audio clip on
demand and transcribes it; and

• a text-to-speech node (tts feedback node) that reads back short feedback
messages so the user knows what the robot understood.

Both nodes communicate with the rest of the system only through simple text
topics. This keeps the speech components optional and easy to replace.

Speech-to-text with Whisper. The VoiceSTTNode exposes a simple “push-
to-talk” interaction on the NUC console. Every 0.1 s it polls stdin. When the
user presses Enter, the node records a fixed-duration audio clip (by default 5 s)
from the system microphone at 16 kHz using sounddevice. The audio is then
passed to a local Whisper model (Radford et al., 2022) via the faster whisper

library (Klein, 2023).
Parameters configure the node:

• model size: which Whisper size to load (default small);

• device: cpu or cuda if a GPU is available;

• compute type: quantisation mode (for example int8) to reduce CPU load;

• sample rate: audio sampling rate (16 kHz in our setup);

• record seconds: recording length per command; and

• language: expected language of the commands (here English).

We use Whisper because it is robust to background noise, works well on short
commands, and is available in efficient variants that run locally on the NUC.
The small model, quantised to int8, offers a good trade-off between recognition
quality and CPU usage; it avoids streaming audio to an external service and keeps
all speech data on board (Radford et al., 2022).

Whisper returns one or more text segments. The node concatenates these into a
single command string, logs it, and publishes it as a String on the /nav query text

topic. If the user types “q” or “quit” instead of pressing Enter, the node shuts
down cleanly. No audio is stored to disk; only the recognised text is passed on.

48



3.5 Goal Selection Interfaces and Human–Robot Interaction

Feedback via text-to-speech. The language goal node (Section 3.5.3) pub-
lishes short feedback messages on /nav feedback text, for example:

• “Navigating to: chair at (1.20, 0.50)”;

• “I could not match your request to any mapped object”; or

• “Navigation finished.”

The tts feedback node subscribes to this topic and passes each message to a
local text-to-speech engine, which reads the text aloud on the lab speakers. We
use a lightweight offline TTS backend so that the node remains responsive on the
CPU-only NUC and does not depend on network connectivity. The exact synthesis
quality is not critical here; the goal is simply to confirm what the robot understood
without requiring the user to read the console.

3.5.3 Language-Based Goal Selection

The central piece of the language interface is the VLMLanguageGoalNode. It turns
the transcribed text from /nav query text and the current semantic database
from /semantic objects yaml into a standard NavigateToPose goal for Nav2.
At runtime we only use language signals, but the model behind this node is a
vision–language model: CLIP (Radford et al., 2021). We rely on CLIP’s text
encoder because it has been trained on image–text pairs and therefore captures
object-level semantics in its language space.

Initialisation and model choice. On startup, the node:

• creates a TF buffer and listener, to query the robot pose in the map frame;

• initialises an ActionClient for the Nav2 NavigateToPose action;

• subscribes to /semantic objects yaml and /nav query text; and

• loads a CLIP text encoder (Radford et al., 2021) using the open clip li-
brary (Cherti et al., 2023).

We use the text branch of a CLIP ViT-B/32 model with OpenAI weights.
This variant is widely used, small enough to run in real time on the NUC (es-
pecially when only the text tower is used), and provides good-quality text em-
beddings for common object classes. The node loads the model on GPU if avail-
able, otherwise on CPU, and keeps it in evaluation mode. A small publisher on
/nav feedback text is used to send textual feedback to the TTS node.
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Unlike a full VLM-based planner, we never run CLIP on images during nav-
igation. All images have already been processed by the detector and semantic
mapper. Here CLIP serves only as a language embedding model that helps match
free-form commands (“take me to the other chair”, “go to the person near the
table”) to the discrete set of objects in the semantic map.

Maintaining an in-memory semantic database. Whenever a new YAML
message arrives on /semantic objects yaml, the node parses it with yaml.safe load

and extracts a list of objects in the form

{class: str, x: float, y: float, yaw: float}.

Other fields in the YAML (e.g. height or a confidence score) are ignored here.
The class labels are stored in a list self.labels. The node then calls a helper
encode text that tokenises all labels, runs them through CLIP’s text encoder,
and L2-normalises the resulting vectors. The result is a matrix of label embeddings
label embs of size N ×D, with N the number of objects.

This step is cheap and only runs when the YAML changes. It gives a compact
representation of the semantic map in CLIP’s language space. A small dictionary
last idx for class stores, for each class label, which object index was chosen
last, so that commands like “another chair” can cycle through instances.

Understanding a text command. When a new /nav query text message
arrives, the node processes the string in several stages:

1. Stop and home commands. The text is lowercased and scanned for
keywords:

• If it contains “stop”, “cancel”, or “abort”, the node cancels any active
Nav2 goal and sends a feedback message.

• If it mentions “initial”, “start”, or “home”, the node sends a goal to
a predefined initial pose (xinit, yinit, ψinit), using the same convention as
the CLI tool.

2. Ordinal extraction. The node then looks for ordinal expressions such as
“second”, “third”, or “6th” using a small dictionary and a regular expression.
If found, it records the desired index (for later use when there are multiple
instances of the same class).

3. Direct string match for class labels. The simplest case is when the user
explicitly mentions a class name that appears in the semantic database (for
example “chair” or “person”). The node scans the command for each known
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class label and collects indices of matching objects. If more than one class
appears in the text, it picks the one whose name occurs first in the sentence.

If at this point one or more objects of the chosen class are available, the node
has a set of candidate indices. If no class name can be matched at all, it falls back
to CLIP.

CLIP similarity as a fallback. When there is no direct string match, the
node embeds the whole command text with the same CLIP text encoder used for
labels and computes cosine similarities between the query embedding and each
label embedding:

si = ⟨êi, q̂⟩, i = 1, . . . , N.

The index with the highest similarity is selected. If the best similarity is below a
configurable threshold (default 0.25), the node refuses the command and replies
that it could not match the request to any mapped object.

Otherwise, the chosen label defines a class (for example, “office chair” and
“chair” would both be treated as chairs), and all objects of that class become
candidates. This CLIP-based step allows simple paraphrases or longer sentences
to work even when the exact label string is not present in the command.

Choosing one instance among candidates. Given a class and a set of can-
didate object indices, the node applies a small set of rules to choose one index:

• If the text contains “closest” or “nearest” and there are at least two can-
didates, the node queries the robot pose in map using TF and picks the
candidate with the smallest Euclidean distance.

• If an ordinal was extracted (“second chair”, “third person”), it uses that to
index into the sorted list of candidates. If the requested index is out of range
(for example, “third chair” when only two chairs exist), the node reports this
explicitly.

• If the text contains words such as “another”, “other”, or “next”, and there
is more than one candidate, the node cycles through instances of that class.
It stores the last index used for that class and returns the next one in the
list, wrapping around if needed.

• If none of the above applies, it simply picks the first candidate.

These rules cover simple but common patterns in human commands (“nearest
chair”, “the second person”, “another chair”) without requiring a full natural
language parser.
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Goal generation and Nav2 interaction. Once an object index has been cho-
sen, the node retrieves the stored map coordinates (xo, yo) and yaw ψo from the
semantic database. It then computes a standoff pose in the same way as the CLI
tool:

• If the current robot pose in map is available from TF, it places the goal on
the line from the robot to the object, at a fixed distance standoff m in front
of the object, and oriented to face it.

• If the robot pose is not available, it falls back to a pose at a fixed offset in
front of the object using the stored object yaw.

This pose is wrapped into a PoseStamped in the global frame (usually map)
and sent as a NavigateToPose goal to Nav2. Before sending a new goal, the node
cancels any active goal to avoid overlap. Feedback messages such as “Navigating to:
chair at (x, y)” and “Navigation finished” are published on /nav feedback text

and read aloud by the TTS node.
From Nav2’s point of view, there is no difference between a goal triggered by the

CLI and one triggered by the language node: both are standard NavigateToPose

actions in the same frame, using the same standoff distance and tolerances.

Role in this thesis. This language and voice interface is deliberately limited
in scope. It does not change the mapping or semantic modules, and it does not
introduce new perception. Instead, it sits on top of the confirmed-only semantic
map and gives the user a second way to choose goals:

• the menu-based CLI for repeatable, scriptable experiments; and

• the language interface for small human–robot interaction demos, where the
operator can talk to the robot using short English commands.

In the experimental chapter we mainly use the CLI interface to keep conditions
controlled. The language interface is included as a proof-of-concept front end
that shows how the same modular semantic map can support both classical and
conversational goal selection without changing the underlying navigation stack.
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Chapter 4

Experimental Results

This chapter reports how the system behaves on a real robot across three indoor
environments. In this first part, the focus is only on the geometric backbone:
building 2D occupancy maps with SLAM Toolbox using the 2D LiDAR and the
T265 odometry. Semantic mapping and object–goal navigation experiments are
described in the following sections.

4.1 2D Mapping with SLAM Toolbox

All the maps used in this thesis are built with the same setup described in Chap-
ter 3. The robot carries a 2D LiDAR and an Intel RealSense T265 tracking camera.
The T265, running through the realsense2 camera driver, publishes the odom-
etry that we treat as the odom frame. The 2D LiDAR publishes a planar scan
on /scan from a frame rigidly attached to base link. SLAM Toolbox runs in
online asynchronous mode and fuses /scan and the T265-based /odom into a 2D
occupancy grid.

During mapping, the robot is driven entirely with the official Spot tablet and
joystick interface. No velocity commands are sent from ROS in this phase, and
the spot nav bridge is not used. From the ROS side, the only information used
for mapping is the T265 odometry and the LiDAR scans. The Spot ROS 2 driver
may be running for convenience and safety, but its internal odometry output is
ignored in the SLAM pipeline.

Once coverage of the area looks sufficient in RViz, the current SLAM Toolbox
map is saved to disk and reused for later experiments in that environment. We do
not update the map during navigation; each environment uses a single fixed 2D
occupancy grid as the geometric backbone for semantic mapping and object–goal
navigation.

We built maps in three real environments:
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4.1 2D Mapping with SLAM Toolbox

• a small church, as an example of mapping outside the laboratory;

• the main DLS lab space;

• a large open indoor room at IIT used for experiments with Spot.

The same mapping procedure and SLAM configuration are used in all three
cases.

4.1.1 Mapping Procedure

The mapping procedure is intentionally simple so that it can be repeated without
fine-tuning:

1. Launch the system in mapping mode (SLAM Toolbox active, Nav2 off).

2. Check in RViz that the LiDAR scans, T265 pose, and TF tree are correct.

3. Drive the robot slowly through the environment with a joystick.

4. Close at least one loop so that SLAM Toolbox has a chance to correct drift.

5. When the map looks stable, save it to disk and stop the mapping run.

Maps are saved using the standard Nav2 map saver. The tool writes a .pgm

file with the occupancy grid and a .yaml file with the resolution, origin, and
threshold parameters. Later, these files are loaded by the navigation stack and by
the semantic mapping node. We keep one map per environment and reuse it for
all later experiments.

4.1.2 Church Environment

The church environment is a compact public space with a central hall and side ar-
eas. The structure is mostly open, with long straight walls, columns, and benches.
This environment lets us test the mapping pipeline outside the usual laboratory
setting: the space is larger than the DLS lab, the ceiling is higher, and there is
more open volume with fewer nearby obstacles.

During mapping, Spot starts near one of the entrances and is driven along the
main corridor of the hall. Using the Spot tablet and joystick, the operator first
follows the long central aisle, then traces the perimeter of the accessible area, and
finally crosses the centre again to close a loop. The total path is on the order of a
few hundred metres, driven at walking speed.

As in the other environments, SLAM Toolbox runs online and fuses the 2D Li-
DAR scans on /scan with odometry from the Intel RealSense T265, which defines
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4.1 2D Mapping with SLAM Toolbox

Figure 4.1: 2D occupancy grid of the church environment built with SLAM Toolbox,
with a long navigation path overlaid. Grey cells show the map, magenta circles mark
successive robot poses, and red arrows indicate local heading samples from the planner
based on T265 odometry. The map captures the main rectangular hall and side areas as
free regions separated by straight walls and obstacles.

the odom frame. The result is a 2D occupancy grid in the map frame together with
a consistent transform chain map → odom → base link. No AMCL is used in this
experiment; localisation is entirely handled inside SLAM Toolbox.

Figure 4.1 shows an RViz snapshot of the final map and a long navigation run
over it. The grey background is the occupancy grid built by SLAM Toolbox. The
magenta circles mark a sequence of robot poses along a global path, and the red
arrows are local heading samples from the planner and controller, expressed from
the T265–based odometry.

Qualitatively, the map captures the main structure well. The long straight walls
of the nave appear as straight segments without obvious double–wall artefacts, and
the side areas are correctly aligned with the central hall. The entrance region and
interior obstacles (columns, benches, and small furniture) show up where expected
from the physical layout.

The overlaid path and arrows illustrate that localisation stays consistent over
the full length of the hall. The T265–based poses follow the central corridor
without visible drift into the walls, and the local headings remain aligned with the
corridor direction except at deliberate turns near the far end. This suggests that,
in this type of open indoor environment, the combination of T265 odometry and
2D LiDAR is sufficient to maintain a usable global pose for long straight runs.

In this thesis, the church map is mainly used as an example of mapping and
long–range localisation outside the laboratory. We do not run the semantic layer
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Figure 4.2: 2D occupancy grid of the main DLS lab space. The room boundary and
large internal obstacles, such as desks and benches, are visible. This map is later reused
for semantic mapping and navigation experiments in the lab.

or object–goal navigation here, but the experiment shows that the same SLAM
Toolbox configuration that we use in the DLS lab and IIT room can also pro-
duce stable maps in a public indoor space with different geometry and lighting
conditions.

4.1.3 DLS Lab Environment

The second environment is the main DLS laboratory space. This is a medium-sized
room with desks, workbenches, shelves, and free floor area for experiments. Com-
pared to the church, the geometry is more cluttered, with more small obstacles,
but the overall footprint is smaller and more regular.

The mapping run starts near one corner of the lab. The robot is driven along the
perimeter of the room, then through the central area between desks and equipment.
The aim is to see the walls from different angles and to observe the main pieces of
furniture at least once with the LiDAR. Because the environment is indoors and
relatively controlled, the mapping session is shorter than in the church.

Figure 4.2 shows the occupancy grid produced by SLAM Toolbox.
The map shows a clear rectangular outline of the room. There are no apparent

large-scale inconsistencies: walls close correctly, and corners align. Some minor
details, such as chair legs or small boxes, are either blurred into larger occupied

56



4.1 2D Mapping with SLAM Toolbox

Figure 4.3: 2D occupancy grid of the mapped portion of the large IIT room. The open
central area appears as free space, with occupied regions corresponding mainly to walls
and two elements. This map is later used for semantic mapping and object–goal trials
in a less constrained layout.

regions or disappear entirely, as expected at the chosen resolution.
This map is essential because it is the main testbed for later experiments:

semantic mapping and object–goal navigation are both run in this lab environment.
The quality of the 2D grid seen in Figure 4.2 is sufficient for that purpose. Nav2
can plan paths through the free areas, and the semantic layer can be aligned with
the same map to store object locations.

4.1.4 Large IIT Room

The third environment is a large indoor room at IIT, generally used for robot
testing. For our mapping run, the room was essentially empty: most furniture
and equipment had been cleared, leaving the space mostly open. Compared to the
DLS lab, there is less clutter and fewer small obstacles, but the overall footprint
is larger.

The mapping procedure is again the same, but we only cover part of the envi-
ronment. Starting from one side of the room, the operator drives the robot along
a section of the perimeter, then across the interior in a loose pattern, without
completing a full loop of the room. Because the space is open and empty, the Li-
DAR often sees long unobstructed ranges, which helps SLAM Toolbox align scans
over distance, but there are fewer strong geometric features than in the lab. To
compensate, we repeat some passes over the same area and monitor the live map
in RViz to ensure the partial map remains stable.

Figure 4.3 shows the resulting occupancy grid for the mapped portion of the
room.
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The map shows a large free central area, with occupied regions around the
desks and structural elements. As in the lab, small objects are either merged into
larger blocks or filtered out by the map resolution and SLAM configuration. For
navigation, this is acceptable: the main structure (walls, significant obstacles, free
corridors) is cleanly captured, and Nav2 can use the map to navigate through the
space while maintaining a safe distance from occupied cells.

This environment is used later to test how the semantic layer and object–goal
navigation behave when the robot has more room to maneuver and when object
locations are not constrained to narrow corridors.

4.1.5 Discussion

Across the three environments, the mapping behaviour of SLAM Toolbox with the
T265 odometry and the 2D LiDAR is consistent. Using a single parameter set and
the same driving procedure, we obtain occupancy grids that align well with the
actual geometry for planning and attaching semantic information.

A few points are worth noting:

• The mapping pipeline does not rely on Spot’s internal odometry. All maps
are built from the RealSense T265 odometry and the LiDAR scans.

• We do not perform any post-processing or manual clean-up of the maps.
The grids shown in Figures 4.1–4.3 are the direct outputs of SLAM Toolbox,
saved via the standard map saver.

• Small artefacts exist (extra occupied cells near moving people, slight soften-
ing of sharp corners). Still, they do not prevent the planned use of the maps
as a fixed backbone for semantic mapping and object–goal navigation.

From here on, we treat these 2D occupancy grids as given. The following
sections place a lightweight semantic layer on top of the two occupancy grid maps
and evaluate how well the system can record object locations and navigate to
object–goal poses in these same environments.

4.2 Semantic Mapping in Real Environments

This section evaluates the semantic layer on top of the 2D maps produced by
SLAM Toolbox. The SLAM node, RealSense driver, and semantic mapper are
launched together, and the robot is driven by the operator using the Spot tablet
and joystick.
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While SLAM Toolbox fuses the 2D LiDAR scans with odometry from the Intel
RealSense T265 and maintains the transform between map, odom, and base link,
the semantic mapper subscribes to 3D detections that are already expressed in the
map frame. Confirmed objects are saved to a small YAML database and later used
for object–goal navigation.

In all runs, we restrict the classes to chair and person. The detector may
output other classes, but the semantic mapper discards them early, so the static
database stays compact and easy to inspect.

We report results from two environments:

• the DLS lab, where we place two chairs and two people in a cluttered lab
space; and

• a large open test room at IIT, with two chairs, and in one run, an extra
person.

For each environment, we show the final occupancy map with semantic markers,
a photo of the real scene, and, for the lab, timing plots of the main streams.

4.2.1 DLS Lab: Two Chairs and Two People

Environment and setup. The first experiment takes place in the main DLS
lab. Geometrically, this is a typical research lab: benches along the walls, robots
and carts parked in different corners, shelves, cables, and various objects on the
floor. For the semantic test, we focus on a smaller part of the lab to control the
classes of interest.

Two office chairs are placed in front of a table, roughly one metre apart and
facing the same direction. Two people stand near the chairs, at slightly different
distances from the table. The rest of the background (monitors, computers, other
robots) is left untouched. We do not try to simplify the scene; we want to see how
the mapping and semantic stack behave in a realistically messy lab.

On the software side, we start:

• SLAM Toolbox in online asynchronous mode, subscribed to the 2D LiDAR
topic /scan and to the T265 odometry, publishing the map frame and the
transform map → odom;

• the RealSense driver, publishing RGB and aligned depth from the D435 and
a tracking pose from the T265;

• the YOLO-based detector on the RGB stream, with outputs restricted to
chairs and people. An example detector output from the robot’s viewpoint
is shown in Figure 4.4;

59



4.2 Semantic Mapping in Real Environments

Figure 4.4: Example YOLO output from the robot’s RGB camera during the DLS lab
experiment. The detector runs on the D435 colour stream and overlays class labels and
confidence scores, here identifying two person instances and one chair. This is the same
scene used for the semantic mapping experiment in Figures 4.5 and 4.6.

• the 2D–3D projection node, which back-projects detections with depth and
transforms them into map;

• the semantic mapper and semantic recorder; and

• RViz for live visualisation.

The robot is driven solely by a joystick and the Spot app; low-level locomotion
and the internal Spot state estimator remain within the manufacturer’s stack.
From ROS 2 we only consume T265 odometry and the LiDAR scans.

Trajectories and mapping behaviour. The operator teleoperates Spot around
the chairs and people in several loose loops. At first the robot does a wider loop
to give SLAM Toolbox enough structure (walls and benches), then closer passes
are made around the small cluster. Speed is kept moderate to avoid motion blur
on the camera and to maintain smooth LiDAR scans.

As the robot moves, SLAM Toolbox incrementally fills the occupancy grid.
The part of the lab we use for this experiment, which is roughly the area around
the table and chairs, is covered multiple times. The final map for this experiment
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Figure 4.5: Occupancy grid of the DLS lab with the semantic layer overlaid. The two
chairs and two people used in the experiment appear as four semantic markers anchored
in the map frame, on top of the 2D LiDAR map.

is shown in Figure 4.5 (left): walls appear as thick continuous lines, benches and
large objects show up as solid blocks, and free space around the chairs is clearly
visible.

To make the correspondence clear, Figure 4.6 shows a photograph of the same
area from a similar viewpoint. The two chairs are in front of the table, while
the two people stand close to them. We rely on these photos only for qualitative
inspection; they are not used by the system itself.

Evolution of the semantic map. During the first seconds of the run, the
semantic layer is empty: the detector has not yet seen any chairs or people from a
good angle, and the proposal buffer contains at most a few short-lived candidates.
As Spot completes the first loop and passes in front of the cluster, the detector
starts to output confident bounding boxes for the two chairs and both people.

For each detection, the projection node produces a 3D point in the D435 frame
using the aligned depth image, then transforms it into map. These points are
passed to semantic mapper as a stream of Detection3DArray messages. Inside
each callback, the mapper:

1. filters detections to keep only chairs and people, discarding other labels;
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Figure 4.6: Real DLS lab scene used for the semantic mapping experiment. Two chairs
are placed in front of a table and two people stand nearby. This layout corresponds to
the semantic markers in Figure 4.5.

2. merges detections of the same class that lie within a small radius in the same
frame (frame-level de-duplication);

3. looks for a nearby existing static object within the guard radius; if found, it
simply updates that static’s hit count and confidence; otherwise

4. matches or creates a proposal in the proposal buffer, updating its smoothed
position, yaw, hit count, and score history.

Each proposal is temporary. Only when it has been seen enough times, within
a fixed confirmation window and radius, and with an average score above the
threshold, is it promoted to the static database. Promotion creates one entry in
static db and one cube+label marker in RViz, both anchored in map.

In the DLS lab run, this mechanism behaves as intended:

• Two chair proposals appear near the front of the table and quickly accumu-
late hits as the robot passes by from different angles. After several observa-
tions, they satisfy the confirmation conditions and are promoted. From this
point onward, new chair detections near those positions update the existing
static rather than creating additional objects.
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• Two-person proposals follow a similar pattern, though with slightly more
motion as the people occasionally shift their stance. The exponential update
in the proposal state smooths this motion. Once confirmed, the person static
remains anchored in roughly the correct places on the map.

• Occasional misdetections (for example, a monitor briefly tagged as “person”
or a partial view of a chair) either fail the per-class score threshold or are not
re-observed within the confirmation window. They die out from the proposal
buffer without ever becoming static.

At the end of the run, the YAML database saved by semantic recorder con-
tains exactly four entries, matching what is visible in Figure 4.5: two chairs and
two people. Their (x, y) positions on the map line up with the observed layout in
Figure 4.6: chairs appear just in front of the table edge, and the people are slightly
offset.

Runtime behaviour in the lab. To check that the semantic pipeline can run
continuously together with SLAM on the NUC, we logged the rates of the main
streams during this DLS lab experiment. Figure 4.7 shows four plots:

• Panel (A) reports the final average frame rate for four topics: camera RGB,
aligned depth, the detector’s debug image, and the semantic map output.
The approximate averages are 21.9 Hz for RGB, 25.7 Hz for depth, 8.0 Hz
for the debug image, and 14.1 Hz for the semantic map.

• Panel (B) shows the running average rate of the RGB and depth streams as
a function of the window size. Both streams start higher and slowly settle;
depth remains slightly faster than RGB because it does not go through the
detector.

• Panel (C) tracks the detector debug image topic. The rate fluctuates more
at the beginning and stabilises around 8 Hz.

• Panel (D) tracks the semantic map publication rate, which climbs quickly to
about 13–14 Hz and then remains stable.

These numbers are enough for our purposes. The semantic map refreshes faster
than the 10 Hz local controller used later for navigation, and none of the topics
show long gaps or drops to zero that would indicate overload. Mapping and se-
mantic processing comfortably share the CPU budget.

In this scene (two chairs, two people), we logged the semantic detections on
/semantic/detections map for about 70 s. The semantic map contained at least
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Figure 4.7: Runtime behaviour of the semantic stack during the DLS lab experiment.
(A) Final average frame rate of the four main topics. (B) Running average frame rate
for camera RGB and aligned depth. (C) Running average for the detector debug image.
(D) Running average for the semantic map output (/semantic/detections map).

one chair and at least one person in 99.6% of the recorded frames, with the longest
gap without any detection of approximately 0.9 s. For people, both individuals
were present in the map in the same fraction of frames. In practice, these short
gaps correspond to moments when the robot turns or an object is briefly occluded.
We did not observe spurious extra chairs or people in this sequence. These results
suggest that, in this indoor setting, the overall detection–and–mapping pipeline is
robust enough for our object–goal navigation experiments.

4.2.2 IIT Test Room: Two Chairs and One Person

The second environment is a large test room at IIT. Compared to the DLS lab, it
is more open and less cluttered. Most heavy equipment and furniture are pushed
to the sides, leaving a wide central area for experiments. This gives a different
stress test for the semantic mapper: fewer strong geometric features, but long free
corridors and clear views of the objects.
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Figure 4.8: Occupancy grid of the IIT test room with semantic markers for two chairs
and one person. The additional person instance appears next to the right–hand chair in
the otherwise open central area.

Environment and trajectories. We use the same hardware and software con-
figuration as in the lab: SLAM Toolbox, the RealSense driver, the detector, the
projection node, the semantic mapper, and the recorder all run together while the
operator drives the robot with the Spot tablet and joystick. The T265 odometry
again defines the odom frame, the 2D LiDAR publishes /scan, and SLAM fuses
them into the map frame.

For this experiment we place two identical chairs in the open part of the room,
a few metres apart and facing roughly the same direction. One person stands close
to the right–hand chair. The rest of the room is left as–is so that the background
remains realistic.

The operator drives Spot in wide loops that cover the central area and, more
densely, the region around the chairs and the person. Because the room is open, the
LiDAR often sees long stretches of walls and corners, which helps SLAM Toolbox
keep the map consistent even when the robot moves far from the objects. The
resulting occupancy map, with the semantic layer overlaid, is shown in Figure 4.8:
a large open space with obstacles mainly along the perimeter and three semantic
markers in the centre.

To make the layout clear, Figure 4.9 shows a photograph of the corresponding
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Figure 4.9: Real IIT test-room scene for the IIT experiment. Two chairs are placed
in the central open area, and one person stands next to the right–hand chair, matching
the semantic markers in Figure 4.8.

real scene. The two identical chairs are placed in the open area, and the person
stands near the right–hand chair. We use this photo only for qualitative compari-
son; it is not part of the online pipeline.

Semantic layer behaviour. From the D435 point of view, the scene is simple:
the chairs are well separated and appear against a mostly uniform background,
and the person is clearly visible near one of them. As the robot loops around the
cluster, the detector repeatedly finds both chairs and the person whenever they are
in view. For each detection, the projection node back–projects the centre of the 3D
bounding box using the aligned depth image and transforms the resulting point
into the map frame. The semantic mapper then applies the same confirmation
logic as in the DLS lab experiment.

The internal behaviour is as follows:

• Detections of each chair form tight clusters in the proposal buffer. Because
the chairs are static and the viewpoints are varied, their proposals reach the
required number of hits very quickly and are promoted to static objects early
in the run.

• Person detections are slightly more noisy in position and orientation, since
the person occasionally shifts weight or moves an arm. The exponential
smoothing in the proposal state absorbs most of this motion. After sev-
eral consistent observations, a single person static is confirmed next to the
right–hand chair.
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• When the detector briefly confuses parts of the person and chair (for example,
a leg of the chair tagged as “person” or a piece of clothing tagged as “chair”),
those boxes fall within the guard radius of an existing static instance and
only update its statistics instead of creating a new object. This prevents the
map from filling with near–duplicate objects.

By the end of the run, the YAML database saved by semantic recorder

contains exactly three entries: two chairs and one person. Their (x, y) positions
align with the layout seen in Figure 4.9. In RViz, the three markers in Figure 4.8
appear in the open area of the map, at distances and relative angles that are
consistent with the physical scene. The residual error is small compared to the
standoff distance that we later use for navigation.

One limitation of the current design is also visible here. Once the person leaves
the room and we reload the semantic database along with the static map, the
person instance remains. The semantic layer, by design, does not automatically
remove statics when objects disappear; it assumes that once an object is confirmed
it is part of the long–term environment. This is appropriate for furniture and doors,
but dynamic classes such as “person” should be used with care when building maps
intended for repeated reuse.

Summary of semantic mapping results. Across both environments, with
very different layouts, the behaviour of the semantic layer is consistent:

• The combination of SLAM Toolbox, T265 odometry, 2D LiDAR, and the
RealSense cameras provides enough stability to run semantic mapping in
parallel with geometric mapping.

• The confirmed-only design keeps the semantic database small: in the DLS
lab we end up with two chair and two person instances; in the IIT room we
obtain two chairs and one person, matching the real scene.

• False detections are mostly filtered out by the confirmation logic. Only
objects that are re-observed at similar positions over a short time are stored.

• The runtime of the semantic stack, measured in the DLS lab, stays comfort-
ably within real-time bounds on the CPU-only NUC.

These semantic maps are the starting point for the next part of the evaluation,
where we use them to drive object–goal navigation with Nav2.
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4.3 Semantic Object–Goal Navigation in Real En-

vironments

In the previous sections, we described the whole pipeline: a 2D occupancy grid
built with SLAM Toolbox, a confirmed-only semantic layer aligned to that grid,
and an object–goal interface that turns a selected instance into a navigation goal
for Nav2. Here we test this pipeline in real environments, using only saved maps
and object poses. SLAM is not running during these experiments; the system
reloads a previously built map and semantic database, localises with AMCL, and
relies on Nav2 for planning and control.

We report three real-world experiments on two different maps. Two of them
reuse the same IIT test room with different object layouts (four chairs; two chairs
and one person). The third experiment uses a second map with a different geom-
etry and object placement. In all cases, the user selects targets at the semantic
level, for example, by asking for a specific chair index through a voice interface,
and the system converts that choice into a PoseStamped goal in the map frame.

The following subsections describe each experiment in detail, starting from the
four-chair scenario in the IIT test room.

4.3.1 Object–Goal Navigation with Four Chairs

For the first object–goal navigation experiment, we use the same large test room
at IIT that was used in the mapping trials, but we rearrange the furniture so that
four identical chairs are placed in the central open area. The rest of the room
remains empty primarily, with walls and heavier furniture concentrated near the
perimeter. The intention here is not to fill the room with obstacles but to create
several similar targets in a relatively uncluttered space, and then test whether the
system can reliably visit them one after another using only the saved map and
object poses.

The underlying 2D occupancy grid is generated with the SLAM Toolbox using
the same configuration as in the previous mapping experiments. Once a satis-
factory map is obtained, we save it to disk and stop SLAM. For this object–goal
experiment, we do not attempt to remap the whole room: we reload the stored
occupancy grid and the semantic database and use them as a static world model
for navigation. In this way, the test shows that, once the semantic pass has been
completed, the system can be restarted in a navigation mode that depends only
on the saved map and the list of objects.

Figure 4.10 shows the occupancy grid together with the confirmed semantic
layer. Each chair appears as a blue cube in RViz, positioned at the estimated
3D centre of the seat and projected into the map frame. The text overlay next
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Figure 4.10: Semantic map of the IIT test room used for the four–chair experiment
(left) and the corresponding real environment (right). The grey cells represent free and
occupied space in the 2D occupancy grid, while the photo shows the actual placement
of the four chairs in the central area of the room.

Table 4.1: Positions of the four chairs in the map frame used for the four–chair
experiment. Coordinates are expressed in metres and rounded to two decimal
places.

Chair x [m] y [m]

Chair 1 1.68 -0.04
Chair 2 3.65 1.38
Chair 3 3.39 2.68
Chair 4 0.70 2.74

to each cube shows the class name and the number of detections collected during
the semantic pass. No dynamic objects are present in this experiment; the only
semantic instances in the room are the four chairs.

To make the geometry of the setup explicit, Table 4.1 reports the map–frame
coordinates of the four chairs as exported by the semantic mapper. Values are
rounded to two decimal places for readability.

In addition to the frame sequence, we also visualise the robot trajectory in
the map frame using the pose estimates from /amcl pose. During the experiment
we log this topic and, offline, we plot the (x, y) positions together with the chair
centres and a circle of radius 0.30m around each chair, corresponding to the chosen
standoff distance. The resulting trajectory is shown in Figure 4.11: the robot starts
near the origin, passes through the standoff regions around chairs 2 and 3, and
finally reaches the region around chair 1.
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Figure 4.11: Robot trajectory for the four–chair experiment, reconstructed from the
/amcl pose estimates. The blue line shows the robot path in the map frame. Green dots
mark the chair, and dashed circles of radius 0.30m indicate the standoff region around
each chair.

Object ordering and interface. During the semantic mapping pass, the
semantic mapper node records each confirmed instance to a YAML file in the
order in which the object was first confirmed. When we later reload this database
for navigation, the object–selection CLI assigns a simple index to every entry in
the file: “chair 1”, “chair 2”, “chair 3”, and “chair 4”. The system does not
introduce any additional notion of importance or distance; the ordering is exactly
the confirmation order.

For this experiment, we connect the object–selection CLI to the speech interface
used elsewhere in the system. The user can therefore issue voice commands such
as “go to the second chair” or “now go to the third chair”, which are transcribed
into text and parsed into the corresponding menu choices. In this way, the user
never interacts directly with coordinates or pose messages: they only refer to the
chairs by their index.
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Goal generation and stopping distance. When a chair is selected, the CLI
looks up its stored pose in the map frame and combines it with the current robot
pose from TF. A standoff–and–facing goal is then computed along the line con-
necting the robot to the object. For the four–chair experiment, we chose a standoff
distance of

doff = 0.30 m,

so the navigation goal is placed thirty centimetres in front of the chair, and the
yaw is chosen so that the robot faces the seat. The resulting pose is sent to Nav2
as a standard NavigateToPose action goal; from this point on, the usual global
planner, local planner, and costmaps take over. No additional tuning of Nav2 is
explicitly introduced for object–goal navigation.

Experiment protocol. The robot starts from an initial pose close to one side
of the mapped area. After the system is brought up in navigation mode (map
server, AMCL, costmaps, BT navigator, and the semantic services), the following
sequence is executed:

1. The user issues a voice command: “go to the second chair”.

2. The speech recogniser converts the audio into text and passes the parsed
index (2) to the object–selection CLI.

3. The CLI looks up “chair 2” in the semantic database, computes the corre-
sponding standoff–and–facing pose, and sends it as a goal to Nav2.

4. Nav2 plans and executes the path. The robot starts moving immediately
and stops when it reaches the neighbourhood of the goal, that is, roughly
30 cm in front of chair 2.

5. Without moving the robot manually, the user then asks for “the third chair”,
and the same process is repeated for chair 3.

6. Finally, the user asks for “the first chair”, and the robot navigates from
chair 3 to chair 1 using the same pipeline.
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Figure 4.12: Sequence of sixteen frames from a representative four–chair run. Each
row shows a pair of images: on the left, a view of the real scene in the IIT test room;
on the right, the RViz view of the occupancy grid with the robot pose, the global plan,
and the local trajectory.
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At no point during this sequence is teleoperation used. All motions from one
chair to the next are driven by the object–goal pipeline and the Nav2 stack. The
behavior is easier to follow in the numbered frames of Figure 4.12. Frames 1–6
show the robot going to chair 2; frames 7–9 correspond to the command for chair 3;
and frames 10–16 show the final motion towards chair 1. In frames 1, 7, and 10,
we highlight the currently selected target chair with a light blue overlay in both
the real image and the RViz view; these three frames mark the moments when a
new object–goal is issued, and the previous goal has been reached.

Qualitative behavior. Figure 4.12 illustrates how the robot moves between the
chairs. In each row, the left image shows the physical robot in the room, while the
right image shows the corresponding state of RViz. The global planner produces
a path from the current robot pose to the generated standoff pose, and the local
planner refines it into a smooth trajectory that keeps a safety margin from walls
and other obstacles.

When the user first commands the robot to go to the second chair, the planned
path bends through the central free space, avoiding the chairs that are not the
current target. As the robot approaches the goal, the path shortens and aligns
with the chair so that the robot arrives facing the seat and stops once the goal
tolerance is satisfied. The subsequent transitions to chair 3 and chair 1 follow the
same pattern: a new standoff goal is computed from the stored object pose, Nav2
replans, and the robot follows the updated path without manual intervention.

Discussion. Even though the four–chair setup is simple, it stresses several im-
portant aspects of the system:

• It shows that once an initial semantic mapping run has been completed,
navigation only needs a lightweight representation: a fixed 2D occupancy
grid plus a list of object poses. There is no need to maintain an online
semantic map during navigation.

• Indexing objects by confirmation order and exposing that index to the user
through the interface makes behavior easy to explain. When the user asks
for the “second” or “third” chair, there is a clear, deterministic mapping
from that command to one of the instances in Figure 4.10.

• The experiment also illustrates how the standoff parameter can be used as
a simple but effective way to encode task constraints. In our case, a fixed
30 cm offset is enough to keep a comfortable distance from the chairs while
still bringing the robot close enough for interaction.
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Overall, the four–chair scenario confirms that the proposed pipeline can turn a
small, static semantic database into a usable interface for object–goal navigation.
The next experiments build on this by changing the set of objects and the room
configuration while keeping the same basic interaction pattern.

4.3.2 Object–Goal Navigation with Two Chairs and One
Person

We now reuse the semantic map from Section 4.2.2, where two identical chairs and
one person are present in the central area of the IIT test room. As before, we load
only the saved occupancy grid and the semantic YAML file: SLAM is not running,
and navigation relies on AMCL for localization and on Nav2 for planning and
control. The three semantic instances from the mapping experiment (two chairs
and one person) are taken as potential object goals.

In this scenario we use the nav cli interface directly, without the speech wrap-
per. The operator selects one of the semantic instances by index and issues the
corresponding object–goal command from the terminal. The standoff distance is
kept equal to the previous experiment, doff = 0.30m.

Table 4.2 reports the map–frame centres of chair 1, chair 2, and the person
as exported by the semantic mapper. Coordinates are expressed in metres and
rounded to two decimal places for readability.

Table 4.2: Positions of the two chairs and the person in the map frame for the two–
chairs–and–person experiment. Coordinates are expressed in metres and rounded
to two decimal places.

Object x [m] y [m]

Chair 1 2.09 0.07
Chair 2 0.95 -2.68
Person 2.16 -2.03

During the experiment we log the robot pose from /amcl pose while issuing
three object goals in sequence: first the person, then chair 1, and finally chair 2.
Offline, we plot the (x, y) positions together with the object centres and a circle
of radius 0.30m around each object, matching the chosen standoff distance. The
resulting trajectory is shown in Figure 4.13.

The plot highlights a limitation of the current stack. The first and third goals
behave as expected: the trajectory enters the standoff circles around the person
and chair 2, showing that the object–goal interface, Nav2, and the costmaps are
able to drive the robot into the desired neighbourhood. However, for the second
goal (chair 1) the robot does not reach the corresponding 30 cm circle. Instead,
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Figure 4.13: Robot trajectory for the IIT test room with two chairs and one person,
reconstructed from the /amcl pose estimates. The blue line shows the robot’s path in
the map frame. Green dots mark the centres of chair 1, chair 2, and the person, and
dashed circles of radius 0.30m indicate the standoff region around each object.

the path bends in the general direction of chair 1 but stops short of the target
region.

Inspection of the logs indicates that this failure is not due to the semantic layer
or the goal generation, but to inconsistencies between the Spot driver and the pose
estimate from /amcl pose. In this run, AMCL maintains a biased estimate of the
robot pose, and the driver reports an offset between the internal odometry and
the pose used for planning. As a result, Nav2 believes that the robot is closer to
chair 1 than it actually is and prematurely considers the goal satisfied.

When we subsequently send a goal to chair 2 using the same nav cli inter-
face, the robot successfully reaches its standoff region despite the earlier error.
Figure 4.13 thus summarises the scenario: all three objects are available as se-
mantic goals, the person and chair 2 are reached, but chair 1 is missed because
of a localization problem rather than a failure in the semantic navigation pipeline
itself.
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Chapter 5

Conclusions and Future Work

This thesis has presented a modular pipeline for semantic object–goal navigation
on a quadruped robot in known environments. The system follows a two-stage
strategy: first, building a 2D map of the environment, and then reusing that
map, together with a semantic layer, for navigation. A 2D occupancy grid of the
environment is built with SLAM Toolbox. On top of this, a semantic layer is
constructed online from RGB–D detections, producing a small database of object
instances anchored in the map frame. Finally, an object–goal interface converts a
selected instance into a navigation goal for Nav2.

All components run on a ROS 2 stack on Spot, using standard packages where
possible (SLAM Toolbox, Nav2, AMCL, RealSense drivers) and custom nodes
where necessary (projection, semantic mapper, recorder, object–goal CLI and
voice interface, safety supervisor). The pipeline was evaluated in three real en-
vironments: a church, the DLS lab, and a large IIT test room with different object
layouts. The experiments covered both mapping and semantic mapping, and three
object–goal navigation scenarios in the IIT room (four chairs; two chairs and one
person; a second map with a different layout).

The primary outcome is not a new SLAM or detection algorithm, but the
integration of existing tools into a workflow that a human operator can actually
use: build a map once, record a small set of semantic objects, and later come back
and ask the robot to “go to chair 2” or “go to the printer” instead of clicking poses
on an occupancy grid.

5.1 Summary of Contributions

The work provides three main contributions:

• A confirmed–only semantic mapping layer that takes 3D detections
from an RGB–D camera, projects them into the map frame, and maintains
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a compact database of static object instances. The layer is decoupled from
SLAM: it assumes an existing 2D map and uses only pose estimates to anchor
objects.

• A semantic object–goal interface that runs on top of Nav2 and turns a
selected object instance into a PoseStamped goal in the map frame. The in-
terface supports a standoff distance and facing constraint, and can be driven
either from a terminal (nav cli) or from a simple speech wrapper.

• A set of real-world experiments on Spot that demonstrate the full pipeline
working end to end: maps built in large indoor spaces, semantic databases
extracted from real runs, and object–goal navigation between multiple in-
stances, including failure cases where localization issues prevent a goal from
being reached.

All components are deliberately modular. The semantic mapper does not de-
pend on Spot; it only expects poses, depth images, and detections. The navigation
layer assumes a Nav2-compatible robot base and a localization source. This mod-
ularity is important for future reuse across different robots and environments.

5.2 Observed Limitations

The experiments also make apparent several limitations of the current design.

Depth and sensor alignment

The most visible limitation on the semantic side is depth misalignment. The
D435 depth image is not perfectly aligned with the 2D LiDAR scan plane used by
SLAM Toolbox to build the map. As a result, the 3D points obtained from the
detector centres and projected into the map frame carry a small but systematic
bias in range and sometimes in angle. This bias shows up as chairs and other
objects appearing slightly closer or further away than they are in the occupancy
grid.

In many of our runs this error remained within the 30 cm standoff radius and
did not prevent navigation, but it reduces the precision with which objects can
be placed in the map. For tight manoeuvres or smaller standoff distances, this
misalignment would become problematic.

Object representation and association

The current semantic layer makes two simplifying assumptions:
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• Each detection is represented only by the centre of its 3D bounding box.
The system does not explicitly model object extent or orientation, nor does
it use keypoints or shape information. For chairs and similar furniture, this
is usually sufficient, but it ignores the functional structure that could make
the pose estimate more robust.

• Association between detections and existing objects is purely geometric.
A new detection is matched to an object if it falls within a fixed radius in the
map frame. There is no appearance model, no tracking across frames, and
no re-identification. This makes the implementation efficient and straight-
forward, but it also means that closely spaced objects of the same class may
be more challenging to separate reliably.

These design choices were reasonable for the target environments and for a
lightweight system, but they limit how far the approach can be pushed without
additional cues.

Localization and navigation issues

On the navigation side, the main limitation observed in the experiments is local-
isation quality. In most runs, AMCL combined with the Spot driver provided
sufficiently accurate poses for Nav2 to reach the standoff regions around the target
objects. However, in the two–chairs–and–person scenario, one of the goals (chair 1)
was not reached, even though the semantic goal was generated correctly.

The trajectory plot for this experiment shows that the robot moves in the
general direction of chair 1 but stops outside the 30 cm standoff circle. Logs
indicate a mismatch between the pose used by Nav2 (/amcl pose) and the internal
odometry reported by the Spot driver. In effect, the navigation stack believed the
robot was closer to the goal than it actually was and prematurely considered the
goal satisfied.

This failure underlines an important point: even with a correct semantic layer
and a valid goal, the overall behavior is only as good as the localization estimate.
Robust semantic navigation requires tighter integration and monitoring of the
localization component, and perhaps independent sanity checks of goal satisfaction
(e.g., verifying the expected relative pose of the target object in the camera image).

Evaluation scope and environment type

Another limitation is the scope of the evaluation. All mapping and navigation
experiments were performed indoors: a church, a lab, and a large test room. These
settings are practical and realistic for many service tasks, but they do not cover
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outdoor scenes, multi-floor buildings, or environments with significant elevation
changes and rough terrain.

On the semantic side, all test objects were everyday furniture or people. The
pipeline should extend to other classes supported by the detector, but this was
not validated in the current work. Similarly, dynamic crowds or heavy pedestrian
traffic were not considered.

Static–world assumption

The semantic layer is designed for a static world. Once an object is confirmed and
written to the YAML database, it is treated as part of the long-term map. This
fits well for doors, cabinets, printers, and other relatively static assets, but it is less
appropriate for dynamic classes such as “person” or “bag”. In our experiments,
the person instance remains in the semantic map even after the person leaves the
room.

For navigation, this means that the robot could be asked to “go to the person”
even when no one is actually standing there. In practice, this is more of a user-
interface issue than a catastrophic failure, but it highlights the need for strategies
to handle dynamic or short-lived objects.

5.3 Future Work

Several directions could address these limitations and enhance the system’s use-
fulness.

Improved depth and sensor calibration

The first step towards more accurate object placement is a better alignment be-
tween the RGB–D camera and the LiDAR. A dedicated calibration procedure that
estimates the relative pose between the D435 depth frame and the laser frame could
reduce the range bias observed in the experiments. Another option is to fuse depth
and LiDAR information explicitly in the mapping stage, so that semantic points
are anchored in a representation that accounts for both modalities.

Within the semantic mapper, representing objects by more than just their
centers (e.g., storing approximate size and orientation, or using a small set of
keypoints) could make pose estimates less sensitive to depth noise.
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Richer association and appearance cues

To move beyond purely geometric association, future versions of the semantic layer
could incorporate simple appearance cues. Examples include:

• tracking instance IDs from the detector, where available;

• maintaining per–object feature descriptors extracted from the RGB image;

• using a small tracker to follow detections across frames before promoting
them to static.

These additions would increase complexity and compute load, but they could
help separate objects that are close together and make the system more robust in
cluttered scenes.

Stronger localization and safety checks

The localization failure observed in the two–chairs–and–person scenario suggests
two lines of improvement:

• Tighter integration between Nav2, AMCL, and the robot’s internal odom-
etry, including monitors that detect sudden inconsistencies and trigger re-
covery behaviors (e.g., reinitialising AMCL or asking the operator for a new
initial pose).

• Independent goal verification at the semantic level. When Nav2 reports
that the goal has been reached, the system could check whether the target
object appears in the expected region of the camera image and at roughly
the expected distance. If not, the goal could be considered unsatisfied, and
a small local search could be attempted.

For robots that share space with people, a safety layer that monitors both
localization quality and proximity to semantic objects (such as doors and stairs)
would also be important.

Dynamic and changing environments

Handling dynamic worlds requires changes in both the semantic and planning
layers. On the semantic side, dynamic classes could be stored with a finite lifetime
or a confidence that decays over time, so that people and other short-term objects
eventually disappear from the map unless they are seen again. Another possibility
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is to maintain two layers: a long-term static layer for furniture and structure, and
a short-term layer for dynamic objects used only for the current session.

On the planning side, integrating online perception during navigation, for ex-
ample, temporary obstacles detected by the camera or LiDAR, would allow the
robot to react when chairs are moved or people step into the path without having
to rebuild the entire semantic map.

Broader evaluation and different robots

Because the pipeline is modular and built on ROS 2, it should be possible to deploy
it on other platforms with minimal changes: wheeled bases, other quadrupeds, or
even mobile manipulators, as long as they provide a TF tree, a localization source,
and a Nav2-compatible controller. Testing the same semantic layer and object–
goal interface on different robots would help separate robot-specific issues (such as
the Spot driver behavior) from limitations of the mapping and navigation pipeline
itself.

Similarly, running the system in a broader range of environments, such as
offices, corridors, multi-room floors, or semi-structured outdoor spaces, would give
a more complete picture of its robustness and practical utility. That would involve
longer maps, more diverse object classes, and scenarios with more people moving
around.

Towards task–level interaction

Finally, the current interface stops at object–goal navigation: the robot can be
sent “near” a chair or a printer, but it does not understand tasks beyond reaching
a standoff pose. A natural extension is to couple semantic navigation with higher-
level behaviors, such as:

• patrolling a list of semantic locations;

• inspecting or scanning a region around a given object;

• handing over or picking up items near a specific piece of furniture.

Because the pipeline already exposes a compact semantic database and a simple
goal API, these behaviors could be built on top without changing the underlying
mapping and navigation components.
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5.4 Closing Remarks

The work in this thesis shows that a relatively lightweight, modular stack can bring
semantic object–goal navigation to a real quadruped robot in everyday indoor
environments. The system is far from perfect: depth misalignment, simple object
models, localization issues, and static world assumptions all limit what it can do.
At the same time, the experiments demonstrate that once a map and a small
semantic database exist, a robot like Spot can be driven by semantic commands
rather than solely by coordinates.

The hope is that this kind of pre-mapped semantic navigation pipeline can
serve as a practical foundation: something that is easy to deploy, transparent
enough for operators to understand, and flexible enough to be reused on different
robots and in various places, while leaving room for richer perception, stronger
localization, and more complex tasks in future work.
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Appendix A

Extra

A.1 Launch Setup and Modes

For mapping and navigation we use a single ROS 2 launch description, with a mode
argument that can be set to mapping or navigation. This avoids maintaining
separate launch files and keeps the configuration aligned between the two phases.

Some nodes are always running, independently of the mode:

• RealSense T265 node publishing pose and the odom transform (configured
with base link as base frame and odom as odometry frame);

• LiDAR driver;

• static TF publishers between t265 pose, base link and laser;

• RViz, preconfigured to show map, robot, and laser scans.

In mapping mode the launch file starts SLAM Toolbox with our mapping con-
figuration. Nav2 is not launched. The operator teleoperates the robot and SLAM
Toolbox incrementally builds the 2D occupancy grid, which is later saved to disk.

In navigation mode SLAM Toolbox is disabled and the Nav2 stack is brought
up: planner and controller servers, behaviour-tree navigator, behaviour server,
map server, AMCL, and lifecycle manager. The map server loads the selected
occupancy grid, and all Nav2 nodes share a common parameter file for planners,
controllers, costmaps, and recoveries.

This single-launch design keeps the workflow simple: each environment is
mapped once in mapping mode, the resulting grid is saved, and all experiments in
that environment are then run in navigation mode using exactly the same frames
and sensor configuration.
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A.2 Map Storage and Management

All 2D maps are stored under the mapping docker/maps directory. Each mapping
run produces one occupancy-grid pair (image and YAML), typically with a name
that encodes the environment (for example, lab1, corridor, church).

For experiments we usually select a single map per environment and normalise
its name to final map.yaml. The launch file always points to this name, so
switching maps is done by changing which YAML file is copied or symlinked to it.

The YAML files follow the standard Nav2 format, specifying:

• path to the occupancy-grid image file;

• resolution (0.05m in our experiments);

• origin of the map in world coordinates;

• occupancy thresholds for free and occupied cells.

After each mapping run we apply a small quality-check routine:

• load the map via map server and verify alignment with live LiDAR scans;

• drive the robot along representative paths (e.g., the main corridor) and check
that AMCL remains stable;

• visually confirm that walls, doors, and large obstacles have the correct shape
and position.

Maps that do not pass these checks are remade, sometimes with slightly ad-
justed SLAM parameters or a slower teleoperation pace. We keep a small history
of maps for each environment, with timestamps in the filenames, so later changes
in the scene (moved furniture, new equipment) can be tracked and older maps can
still be reused in simulation or for semantic-map visualisation.

A consistent directory structure and naming convention also helps other mem-
bers of the lab reproduce our experiments: as long as they use the same mapping docker

package and maps directory, they can launch mapping or navigation without touch-
ing hard-coded paths.

A.3 Nav2 Configuration Summary

This section summarises the main Nav2 settings used in navigation mode. The
corresponding parameters are stored in a single nav2 params.yaml file.
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A.3 Nav2 Configuration Summary

Behaviour tree and planner/controller.

• Behaviour tree navigator runs a standard navigation tree with replanning
and recoveries enabled.

• Global planner is NavfnPlanner configured to use A* and to allow unknown
cells in the map, with a goal tolerance of about 0.5m.

• Local planner is the DWB local planner, with linear velocity limited to about
0.4m/s and angular velocity to about 1.0 rad/s.

• Controller frequency is set to 10Hz, with a simple progress checker (radius
0.5m and time allowance 10 s) and a relatively loose goal checker (posi-
tion tolerance around 0.6m and yaw tolerance close to2π rad). These values
favour robustness and smooth behaviour over very precise docking.

Costmaps and obstacles.

• The global costmap is defined in the map frame, aligned with the static
occupancy grid and updated at about 1Hz.

• The local costmap is defined in the odom frame, rolling with the robot, and
updated at about 5Hz.

• Both costmaps include an obstacle layer driven by the 2D LiDAR scan
(/scan) and an inflation layer to maintain a safety margin around obsta-
cles.

• Typical inflation radii are around 0.7m for the local costmap and 0.4m for
the global one, with cost-scaling factors tuned to keep paths slightly away
from walls and furniture.

Recoveries and AMCL.

• A recovery server provides spin, backup, and wait behaviours that can be
triggered when the planner or controller stalls.

• AMCL uses the LiDAR scan topic and the T265-based odometry, with par-
ticle counts in the range 500–2000. The global frame is map, the odometry
frame is odom, and the base frame is base link.

• Initial pose is typically seeded near the expected start location of the robot,
which speeds up convergence.

In summary, Nav2 is used in a conventional 2D configuration; the thesis-specific
elements are the semantic mapping pipeline that produces object poses in map and
the client that converts those poses into goals for Nav2.
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