
Politecnico di Torino

Master of Science in Mechatronic Engineering

Master’s Degree Thesis

Localization and Mapping for Legged Robots

Supervisor:

Prof. Giovanni Gerardo Muscolo

Co-supervisor:

Dr. Geoff Fink

Co-supervisor:

Dr. Claudio Semini

Student:

Giovanni Rosato

ID. 254947

Accademic Year

2019/2020

Abstract

This thesis has been conducted at Ististuto Italiano di Tecnologia (IIT). IIT is an Italian

scientific research centre based in Genoa (Italy, EU). In the work, we present an experi-

mental analysis of two methods in the Simultaneous Localization And Mapping (SLAM)

literature and two autonomous Localization methods. The SLAM and localization meth-

ods have been simulated and tested on a legged robot. Legged robots have a more compli-

cated design with respect to wheeled or tracked vehicles. They are used for important

challenges, such as dynamic locomotion over rough terrain, extremely rough surfaces

and structural robustness to falls. Legged robots with the capability to recognize the

surrounding environment, rather than wheeled vehicles, are able to avoid obstacles by

adjusting their height. They are conceived for reaching high versatility and mobility.

We performed simulations as well real experiments using the quadruped robot HyQReal.

It is approximately 0.9 m tall, weighs 130 kg, and has onboard hydraulics and battery.

In addition to the default sensors, such as an IMU and cameras, our robot is equipped

with a Velodyne VLP-16 LiDAR. Light Detection And Ranging (LiDAR) sensors work

without any artificial or natural light because they send and receive their own laser

impulses and does not require ambient light to operate. The 3D LiDAR is installed with

an angle of 15➦ on the y-axis on the back of the robot providing a full 360 degrees view.

We provided an insight study of solutions available in Robotic Operating System (ROS)

in the context of autonomous exploration of unknown indoor and outdoor environments

on a legged robot. We are interested in verifying which SLAM packages works in the

best way out-of-the box for such system.

We discussed about the development of mapping and localization processes in 3D with

the algorithm Lightweight and Ground-Optimized Lidar Odometry and Mapping (LeGO-

LOAM). We examined about 2D mapping processes with methods such as Gmapping

and Hector SLAM. In addition, the Monte Carlo localization (MCL) algorithm was im-

plemented. We tested two versions of the MCL: the first one, works with a 2D pre built

map and it produces a position estimate in three dimensions (x, y, yaw). The second

one uses a 3D pre built map and it generates a position estimate in six dimensions (x,

y, z, roll, pitch, yaw). This algorithms allow to obtain an estimated position as precise

as the generated map is. We present simulated as well as real-world experiments with

the quadruped robot and thoroughly evaluate the best approach while the robot moves.

i

We adopted a metric for the accuracy analysis. For each algorithm we took into account

the: mapping accuracy, path accuracy and computational load.

We tested them in a simulation environment. We divided the map in three sections

with different sizes. For each section we looked for the accuracy parameters in the

mapping and localization processes. The simulations show that LeGO-LOAM requires

an high computational load, higher then Hector SLAM. In the experimental section,

the algorithms on the HyQReal robot are verified. The experiments were carried out in

two different environments: the first was a laboratory, which is an indoor room, instead

the second one was larger and partly outdoors. For the first experiment, we had a

motion capture system which allowed us to obtain a real time position ground truth.

We created a 3D model of the laboratory starting from the floor plans. This information

was used to compare the accuracy of the map and the estimated position. During both

experiments, we had an interference with the robot’s safety structure, which prevented it

from accidentally falling. To overcome this problem, we implemented a 2D filter named

LaserScan filter and, a 3D filter named CropBox filter, both of them are part of the

pointcloud library. For the second experiment the robot travelled more than 100 m with

the aim of verifying the accuracy of the algorithms over long distances. We made the

robot go back and forth 10 times. We didn’t have a motion capture system, hence we

calculated the drift in body position for both the real and the estimated ones on the basis

of some markers placed on the ground. Quantity and qualitative results demonstrate

that a SLAM algorithm requires efficiency with respect to runtime and memory usage.

Moreover, to have a versatile and fast legged robot, it has to estimate a position and to

build a map as accurate as possible.

Contents

Abstract i

List of Figures v

List of Tables vii

Acknowledgements xi

Introduction 1

1 Lidar Odometry, Localization and Mapping 5

1.1 Introduction to SLAM . 5

1.1.1 General model . 6

1.1.2 EKF SLAM . 8

1.1.3 ICP . 8

1.1.4 3D LIDAR data representation . 9

1.1.5 Octomap . 9

1.1.6 2D LIDAR data representation . 10

1.2 Choice of SLAM algorithm . 10

1.2.1 RBPF . 10

1.2.2 Hector Mapping . 10

1.2.3 LOAM . 11

1.2.4 LeGO-LOAM . 11

1.3 Monte Carlo Localization . 13

2 Ros Configuration 15

2.1 System Overview . 15

2.1.1 Hector SLAM . 15

2.1.2 LeGO-LOAM . 16

3 Simulations 19

3.1 Overview . 19

3.2 Mapping accuracy . 21

3.2.1 Small map . 22

3.2.2 Medium map . 24

3.2.3 Large map . 26

3.2.4 Conclusion . 29

3.3 Path accuracy . 29

iii

3.3.1 Small map . 30

3.3.2 Medium map . 31

3.3.3 Large map . 32

3.4 Average position error . 33

3.5 Average CPU Load . 34

3.6 Conclusion . 34

3.7 Self Localization . 34

3.7.1 Simulation 2D Localization . 34

3.7.2 Simulation 3D Localization . 35

3.8 Conclusion . 36

4 Experiments 39

4.1 Indoor Environment . 39

4.1.1 Path Accuracy . 41

4.1.2 3D self localization . 44

4.1.3 CPU load . 44

4.2 Outdoor Environment . 45

4.2.1 Mapping Accuracy . 46

4.2.2 Path Accuracy . 48

4.3 Conclusion . 50

5 Conclusion and future work 51

A Hardware/Software Description 55

A.1 HyQReal and DLS’s framework . 55

A.2 Velodyne-VLP 16 Puck Lite . 55

A.3 Robot Operating System . 56

A.3.1 Gazebo . 56

A.3.2 Rviz . 56

A.4 Vicon’s Motion Capture System . 58

Bibliography 59

List of Figures

1 Pointcloud aroud the robot, the Velodyne is on the back 2

2 HyQReal . 3

3 Thesis workflow . 3

1.1 Fig. 1.1a shows HyQReal in Gazebo. Fig. 1.1b shows the generated point-
cloud in Rviz . 9

1.2 Overview on the pointcloud conversion and mapping. 11

1.3 LeGO-LOAM’s system overview . 12

1.4 Example of the constructed map made by LeGO-LOAM 13

1.5 Particle distribution in the simulation environment 14

2.1 The ROS computation graph shows the LaserScan converted from the
PointCloud and the required Hector SLAM’s nodes 16

2.2 In Fig. 2.2a the white line, parallel to the ground, is the laserscan. The
white map on the ground is the gridmap provided by Hector SLAM. In
Fig. 2.2b the map built with Octomap using the estimated odometry from
Hector SLAM . 16

2.3 Hector SLAM’s computation graph . 17

2.4 LeGO-LOAM’s computation graph . 17

3.1 Graph of the interconnections for Hector SLAM and LeGO-LOAM 20

3.2 Fig. 3.2a is the simulated environment. In Fig. 3.2b we can see the overall
path travelled by the robot, from the start to finish. 20

3.3 Each map shows the path travelled by the robot 21

3.4 Small map’s ground truth . 22

3.5 2D maps built by the Hector SLAM and LeGO-LOAM in a small map . . 22

3.6 3D maps built by Hector SLAM with Octomap and LeGO-LOAM 23

3.7 Medium map’s ground truth . 24

3.8 2D maps built by the Hector SLAM and LeGO-LOAM in a medium map.
LeGO-LOAM detects the window and a slope, marked by a red circle,
instead Hector SLAM produces empty cells in that position. 25

3.9 3D maps built by the Hector SLAM and LeGO-LOAM 25

3.10 Large map’s ground truth . 26

3.11 2D maps built by the Hector SLAM and LeGO-LOAM in a large map . . 27

3.12 3D maps built by the Hector SLAM and LeGO-LOAM 28

3.13 The red line is the small path, red plus green is the medium one and all
together become the large path. 29

v

3.14 Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a small
map. Red is the ground truth, green is Hector SLAM and blue is LeGO-
LOAM . 30

3.15 The plots show the trajectories for each axis and in the last one there are
the yaw angles in a small map . 30

3.16 Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a medium
map. Red is the ground truth, green is Hector SLAM and blue is LeGO-
LOAM . 31

3.17 The plots show the trajectories for each axis and in the last one there are
the yaw angles for in a medium map . 31

3.18 Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a large
map. Red is the ground truth, green is Hector SLAM and blue is LeGO-
LOAM . 32

3.19 The plots show the trajectories for each axis and in the last one there are
the yaw angles in a large map . 32

3.20 Global localization based on AMCL in 3D 35

3.21 Particle distribution centred on the baselink 36

3.22 Global localization based on AMCL in 6D 36

4.1 Gazebo and Octomap models of the LAB 39

4.2 Filtered pointcloud. 40

4.3 Final result at the end of the experiment for Hector SLAM and LeGO-
LOAM, respectively . 40

4.4 Maps built from both Hector SLAM and LeGO-LOAM. On the left the
map without filters. On the right the filtered one 41

4.5 2D ground truth of the indoor environment. In blue the trajectory from
the MCS . 42

4.6 Trajectories for each axis. Blue is the ground truth, red is Hector SLAM
and green is LeGO-LOAM. 43

4.7 Global localization in an indoor map with the filter on the pointcloud . . 44

4.8 Global localization in an indoor map without the filter on the pointcloud 44

4.9 Trajectory travelled by HyQReal during the experiment. 45

4.10 LeGO-LOAM’s down-projected map with the ground and the ceiling . . . 45

4.11 2D maps from Hector SLAM, LeGO-LOAM and Hector SLAM with Oc-
tomap . 46

4.12 On the back of the robot, there is the dromedario, it is a safety protection
for the arm, close to it there are pipes and behind it there is also a
colleague that maintains the crane . 46

4.13 3D maps built with Octomap . 47

4.14 Real position of the feet during the experiment 48

4.15 Position of the feet during the simulation 49

4.16 Red dots are the estimated initial positions, the blue dots are the esti-
mated final positions. The circles are the real feet positions and the dots
in the mile represent the position the base link respectively 49

4.17 The overall trajectories for each axis . 50

A.1 HyQReal in simulation environment with the velodyne on its back 55

A.2 HyQReal’s tf tree . 57

A.3 HyQReal in a real and simulated environment 58

List of Tables

3.1 2D Accuracy parameters in a small map 23

3.2 3D Accuracy parameters in a small map 23

3.3 2D Accuracy parameters in a medium map 24

3.4 3D Accuracy parameters in a medium map 25

3.5 2D Accuracy parameters in a large map 28

3.6 3D Accuracy parameters in a large map 28

3.7 RMSE for a small map . 33

3.8 RMSE for a medium map . 33

3.9 RMSE for a large map . 33

3.10 CPU usage statistics in simulation environment. (100 corresponds to full
usage of one core) . 34

4.1 3D Accuracy parameters of the indoor map 40

4.2 2D Accuracy parameters of the indoor map 41

4.3 CPU usage statistics in an indoor map. (100 corresponds to full usage of
one core) . 45

4.4 CPU usage statistics in an outdoor map. (100 corresponds to full usage
of one core) . 47

4.5 2D Accuracy parameters for the outdoor map 47

4.6 3D Accuracy parameters for the outdoor map 48

vii

Dedicated to my family, my parents Domenico and Annalisa, my
sisters Irma and Fracesca, my friends and my love Gabriella. . .

ix

Acknowledgements

I would like to express my gratitude to my primary supervisor, Prof. Giovanni Gerardo

Muscolo, who allowed me to get in touch with the Italian Institute of Technology. He

followed me step by step along the process and was very helpful and professional. I would

also like to show my deep appreciation to my supervisor, Dr. Geoff Fink, who guided

me throughout this project. Thanks to him I was able to develop professionalism and

responsibility in the workplace. His help and knowledge were of fundamental importance

to me. Last but not least, Dr Claudio Semini, PI of the Dynamic Legged System Lab,

who gave me the opportunity to become part of the DLS family. The months spent in

the laboratory are for me a priceless. The international team and professional workplace

allowed me to grow and to motivate myself during the project. I would also like to thank

my friends and family who supported me and offered deep insight into the study. I wish

to acknowledge the help provided by the technical and support staff in the DLS lab.

xi

“We can live a wonderful life in the world if we know how to work and love, work for

those we love and love what we work for.”.”

Lev Tolstoj

Introduction

The Company

This thesis has been conducted at Ististuto Italiano di Tecnologia (IIT). IIT is an italian

scientific research centre based in Genoa (Italy,EU) with eleven centers throughout Italy

and two outstations in the USA in collaboration with MIT and Harvard. IIT as a

company focuses heavily on technology areas such robotics, drug discovery, neuroscience,

nanotechnology, computer vision, optical microscopy. The thesis work was conducted at

IIT’s Dynamic Legged System Lab on the quadruped robot HyQReal.

Background

Mobile robotics is the branch of robotics focused on mobile robots and the methods of

achieving navigation and interaction tasks with the environment. Mobile robotics poses

different problems than industrial robotics, focused on manipulators. For example, the

scene framed by a sensor mounted on a mobile base tends to change suddenly with the

movements of the robot. Instead, an industrial robot mounted on a fixed base, can

move its joints, and has a limited workspace. In mobile robotics, however, workspace is

virtually infinite and, therefore, the space of configurations is introduced, defined as the

number of parameters needed to express a robot pose. It follows that the perception of

the environment is a strong element compared to industrial robotics.

The traditional sensors used in mobile robotics are typically proximity ones, such as

sonar, laser scanner and bumper. Generally, these sensors are active and continuously

measure the distance between the sensor and the first obstacle encountered along the

path of propagation of the signal itself, measuring the flight time, i.e. the time it takes

the signal to go from the laser to the object and go back after being reflected.

One environment sensing technology, commonly used for obstacle detection, is Light

Detection and Ranging (LIDAR).

1

2

By moving the ranging sensor during the scan a point cloud representing the environment

is generated. LIDAR sensors work well also during the night because a LIDAR unit sends

out and receives its own laser impulses and does not require ambient light to operate.

The actual calculation for measuring how far a returning light photon has travelled to

and from an object is quite simple:

Distance = (Speed of light x Time of flight)/2

Although its resolution is not considered dense it allows us to get consistent results.

In Fig. 1 we can see a legged robot in an unknown environment, the pointcloud shows

different colours based on the distance from LIDAR. These point clouds can be used

for 3D map construction and motion estimation in order to solve the Simultaneous

Localization and Mapping (SLAM) problem.

Figure 1: Pointcloud aroud the robot, the Velodyne is on the back

A dilemma in robotics is that in order to construct a map, accurate robot position

estimation is necessary, but to know the robot’s position a map is required. SLAM is

the process of updating a map of an unknown environment while keeping track of the

position of the vehicle. SLAM has been applied in self-driving cars, unmanned aerial [2]

and underwater vehicles, planetary rovers, and even within humanoid robot [3].

A typical approach in the SLAM problem is to divide it in two tasks: how to create an

accurate map and how to estimates the pose (position and orientation) of the robot.

Thesis Scope

In this thesis we analyse two algorithms in the SLAM literature and a localization

method. For 2D SLAM we present Hector SLAM, instead for a 3D SLAM we analyse

LeGO-LOAM, as 2D and 3D localization method, we analysed the behaviour of the

Adaptive Monte Carlo Localization method (AMCL). The mapping and localization

3

methods have been simulated and tested on a quadruped robot, HyQReal [4], running

the Robot Operating System (ROS) [5]. HyQReal is an improved version of HyQ and

HyQ2Max. IIT’s robots that demonstrated a wide repertoire of indoor/outdoor motions

ranging from running and jumping to careful walking over rough terrain.

Figure 2: HyQReal

The building of a 3D perception system also gives the basis for future works and other

skills to the robot. The choice of the sensor fell into the Velodyne Puck Lite 16 in

Fig. ??.

Only LIDAR based sensors will be examined, other vision sensors such as mono and

stereo cameras will not be examined. Which SLAM algorithm to be chosen will be

supported by a theoretical investigation.

Fig. 3 illustrates the workflow of this thesis. The first phase is a prestudy, where the

basic theory of SLAM algorithms will be studied and ROS/Gazebo/Rviz tutorials will

be conducted. This is just to get a good initial understanding of the subject. The

next phase of the thesis is to doing a theoretical investigation on the SLAM algorithms

chosen for investigation in this thesis. Once the base is done, some ROS implementation

is needed to be able to perform simulations. When the simulations are done, the same

procedure has been conducted on the real robot in order to observe the results.

Figure 3: Thesis workflow

4

Outline

The organization of the thesis takes into account the work done and the obtained results,

comparing them with similar international researches. The outline is the following:

❼ In Chapter 1 we will analyse the theoretical works in literature in terms of SLAM

works and algorithms that have been developed robotics, general models and the

choice of SLAM algorithms.

❼ In Chapter 2 we discuss about the ROS implementation and how each algorithm

has been implemented on the model in Gazebo and Rviz.

❼ In Chapter 3 we will simulate each algorithm in three scenarios, and we will analize

them in term of mapping accuracy, path accuracy and computational effort.

❼ In Chapter 4 we will discuss about the real experiments. We collected data in two

scenarios: a small map in an indoor environment, and a big map in an outdoor

environment.

❼ In Chapter 5 we conclude the thesis with a discussion about all the presented

algorithms and results.

Chapter 1

Lidar Odometry, Localization and

Mapping

1.1 Introduction to SLAM

In the last few years, with the expansion of several robotics applications, there have been

proposed many approaches in autonomous navigation. The SLAM problem is generally

divided in two tasks: how to create an accurate map with all its characteristics in 3D and

2D; how to estimates the pose (position and orientation) of the robot. These arguments

are treated a lot in the scientific community and many key papers have been proposed.

Methods that are using LIDAR sensors, work well also during the night because a LIDAR

unit sends out and receives its own laser impulses and does not require ambient light to

operate. Although its resolution is not considered dense it allows us to get consistent

results. A generic overview on the SLAM algorithm and its development is contained

in [6]. It is based on the work contained in [7], where it is established a high degree of

correlation between estimates of the location of different landmarks in a map and how

these correlations would grow with successive observations.

We can see that the source of error between estimated and true landmark locations is

the error in knowledge of where the robot is when landmark observations are made. As

the robot moves through the environment and takes observations of landmarks it builds

a network linked by relative location whose precision increases whenever an observation

is made.

As a solution method the Extended Kalman filter (EKF) was applied to estimate the pose

of the robot, but the performance was not ideal. For some strong non-linear systems,

this method will bring more truncation errors, which may lead to inaccurate positioning

5

6 Chapter 1 Lidar Odometry, Localization and Mapping

and mapping. Particle filter approaches were introduced because they can effectively

avoid the non-linear problem, but it also leads to the problem of increasing the amount

of calculation with the increase of particle number.

In recent years, based on the works of LiDAR-SLAM, some researchers have started to

carry out the research of integrating new methods in order to achieve better results in

real-time and accuracy.

The typical approach for finding the transformation between two LIDAR scans is itera-

tive closest point (ICP) [8]. By finding correspondences at a point-wise level, ICP aligns

two sets of points iteratively until stopping criteria are satisfied. When the scans include

large quantities of points, ICP may suffer from prohibitive computational cost.

1.1.1 General model

Robot process model is a dynamic differential equation to describe the movement of a

robot in a given environment and system input. It is related to the robot pose. The

robot pose can be determined by its position and orientation.

According to [9]: “In a global coordinate system OXYZ, a robot position (pv) is expressed

by (x, y, z)T , and its orientation can be expressed by Euler angles, rotation matrix, axis

and angle, or quaternion. From any one of the orientation representations, it is possible

to compute the other representations. For simplicity, Euler angles are selected as a robot

orientation state vector. Therefore, the state vector of the robot Xv can be expressed as

Xv =

"
pTv

θTv

#
=



x

y

z

θx

θy

θz


(1.1)

where T is the transpose of a matrix and assuming that the robot moves relative to its

current pose with speed v and changes direction with Euler angles (δθx, δθy, δθz), the

input to the robot can be expressed by

Chapter 1 Lidar Odometry, Localization and Mapping 7

U =


v

δθx

δθy

δθz

 (1.2)

where v is the robot speed in scalar, and the direction of the speed is always in the

robot’s forward pointing axis of its body. In order to simplify its implementation, the

Euler angles need to be expressed in the form of a rotation matrix Mv

Mv = Rz(θz)Ry(θy)Rx(θx) (1.3)

where Rz, Ry, and Rx are the rotation matrices which are the rotation around the z, y,

x-axis, respectively, in right hand coordinate system with positive angle θx, θy, θz, the

positive angle is at counter-clockwise direction. Then, the robot process model can be

expressed as

θu(k + 1) =


θx(k + 1)

θy(k + 1)

θz(k + 1)

 =


f1(θx(k), δθx, δθy, δθz)

f2(θy(k), δθx, δθy, δθz)

f3(θz(k), δθx, δθy, δθz)

 (1.4)

and

Pu(k + 1) =


x(k + 1)

y(k + 1)

z(k + 1)

 =


x(k)

y(k)

z(k)

 +Mu(k)


cos(α)

cos(β)

cos(γ)

 vδt (1.5)

where δt t is the sampling time, Mv(k) is the rotation matrix, which corresponds to

the Euler angles (δθx, δθy, δθz) at time k. In Equation 1.4, the angle corresponds to the

matrix Mv(k + 1), which has following equation

Mv(k + 1) = Mv(δθ) ·Mv(k) (1.6)

where Mv(δθ) is a matrix which corresponds to the Euler angle δθ, and in Equation 1.5

the α, β, γ are direction angles corresponding to the Euler angles, θx, θy, θz,

8 Chapter 1 Lidar Odometry, Localization and Mapping

By combining the Equation 1.4 and 1.5, the process model can be written as a non-linear

equation

Xu(k + 1) = F (Xu(k), U(k) + µ(k) + ω(k)) (1.7)

where µ(k) the input is noise, and ω(k) is the process noise, at the sample time k.

The noise is assumed to be independent for different k, white, and with zero mean and

covariance Qv(k).”

1.1.2 EKF SLAM

The EKF (Extended Kalman Filter) [10] SLAM approach keeps track of where the

robot is likely positioned within a map, as well as keeping track of specific landmarks

observed. Hence, when the robot is turned on, the LIDAR will gather information

of the positioning of the robot. Moreover, landmarks from the environment are also

extracted based on new observations from the LIDAR which is mounted on the robot.

These new observations are associated with previous observations and updated in the

EKF algorithm. However, if an observation of a landmark cannot be associated to a

previous observation the observation itself is presented to the EKF algorithm as a new

observation. First and foremost, the robot localizes itself within the map being created

using observed landmarks and information from the sensors. The landmarks should

preferably be observable from multiple angles, as well as not being separated from other

landmarks. These prerequisites gives the EKF algorithm a good possibility to distinguish

between landmarks at a later time. Moreover, the landmarks being used should also be

stationary.

1.1.3 ICP

Iterative Closest point(ICP) [8] is an algorithm, which minimizes the difference between

two point clouds by iteratively finding correspondences between the two sets of points.

In the algorithm, one cloud, the Target, is fixed while the other cloud, the Source, is

transformed. In each iteration the closest neighbour of each point in the source is found

by using a search algorithm. The entire target point cloud is then transformed using the

rigid body transformation estimation and a new closest neighbour search is performed.

This process is iterated until convergence, thus the name Iterative Closest Point.

Chapter 1 Lidar Odometry, Localization and Mapping 9

(a) HyQReal in Gazebo (b) Generated pointcloud

Figure 1.1: Fig. 1.1a shows HyQReal in Gazebo. Fig. 1.1b shows the generated
pointcloud in Rviz

1.1.4 3D LIDAR data representation

A first basic data structure, it’s a point cloud intended as a vector of points, characterized

by three values indicating position (x, y, z) and three values indicating, where present,

the colour of the pixel (r, g, b), see Fig. 1.1b. One of the first data structure introduced

specifically to represent three-dimensional data was the voxel grid [11], a grid of cubic

cells of equal size that allows to discretize the acquired image, reducing the amount of

stored data depending on the dimension of the cells (resolution). However, this is not

enough, as a low resolution (large cells) does not allow to faithfully represent the scene,

while a high resolution (small cells) increases exponentially the memory occupation,

especially in the three-dimensional. In fact, the grid should still be initialized to the size

of the bounding box which encloses the whole area to be acquired.

1.1.5 Octomap

One implementation of an approach to storage is Octomap [12], it is based on octree,

hierarchical data structures in which each node represents the space contained in a cubic

cell, named voxel [11], but with the addition of the tree hierarchy.

Due to the tree structure, octrees are well suited to model Boolean properties such as the

occupation of a voxel. If a voxel is found to be occupied, the corresponding node of the

tree is initialized with a precise value; if instead it is detected as free, the corresponding

node is initialized to the other boolean value. Uninitialized nodes represent the unknown

space. The main advantage of a tree structure concerns the possibility of cutting the

nodes whose children are all occupied or all free, for reduce the amount of data to be

stored.

10 Chapter 1 Lidar Odometry, Localization and Mapping

1.1.6 2D LIDAR data representation

The data representation greatly influences the management of the robot’s navigation

behaviour. In this sense, in the three-dimensional world, the literature provides various

types of data structures for information management perception deriving from sensors

such as laser scanners. In the planar world, the most used data structure is the 2D

gridmap, that is a two-dimensional matrix in which each cell contains a value and it

represents the free, occupied or unknown state of that particular position [13].

1.2 Choice of SLAM algorithm

1.2.1 RBPF

For 2D SLAM approaches a milestone of LIDAR method is Rao-Blackwellized particle

filter (RBPF) which is implemented in the ROS Gmapping package [14]. EKF and

other Kalman filter based algorithms are efficient for representing linearised distribution,

but the RBPF is a better way to represent non-gaussian distribution, because in real

world measurements are not linearly distributed, which is suitable for presented test

environments. Basic principle of RBPF is to set state of hypotheses, where each particle

keeps state, with measurements obtained by laser sensor. Each landmark is associated

to the corresponding particle. With given weights the strongest hypotheses is kept, after

resampling the weak one is been omitted. Each state represents the posterior and each

particle can redefined as a potential pose of the robot.

1.2.2 Hector Mapping

As an effective alternative to Gmapping, Hector SLAM [15] makes use of high scanning

rates of rangefinders, which heavily rely on consecutive scan matching of sensor data and

combines with multi-resolution occupancy grid maps. Those two algorithms differ from

the information sources used for localization and mapping: GMapping uses odometry

and laser scan; Hector Slam, instead, uses the laser scan only. Theoretically GMapping

should perform better than Hector Slam especially on environments that cause laser

scan estimated pose to be ambiguous (large space or long hallway without features): in

those scenario GMapping can rely on odometry for robot localization. By other hand

Hector Slam does not require odometry (so its a forced choice if robot does not provide

it); another big advantage is that Hector Slam can work with laser mounted not planar

to ground (as required by GMapping).

Chapter 1 Lidar Odometry, Localization and Mapping 11

However, these solutions work best in planar environments, rely on available, sufficiently

accurate odometry and do not leverage the high update rate provided by modern LIDAR

systems. An overview of the proposed framework is shown in Fig. 1.2.

Figure 1.2: Overview on the pointcloud conversion and mapping.

1.2.3 LOAM

LIDAR Odometry and Mapping in Real-time (LOAM) is an algorithm for odometry and

mapping using range measurements from a 2-axis LIDAR moving in 6-DOF. It achieves

both low-drift and low-computational complexity without the need for high accuracy

ranging or inertial measurements [16], [17]. The method decomposes the problem by

two algorithms running in parallel. An odometry algorithm estimates velocity of the

LIDAR and corrects distortion in the point cloud, then, a mapping algorithm matches

and registers the point cloud to create a map. Combination of the two algorithms ensures

feasibility of the problem to be solved in real-time. Additionally, a two-step method is

proposed to remove the distortion [18]: an ICP based velocity estimation step is followed

by a distortion compensation step, using the computed velocity.

1.2.4 LeGO-LOAM

The Lightweight and Ground-Optimized LIDAR Odometry and Mapping (LeGO-LOAM)

method for real-time 6-DOF pose estimation leverages the presence of ground plane in its

segmentation and optimization steps [1]. Real-time performance is achieved by novelly

dividing the estimation problem across two individual algorithms. One algorithm runs

12 Chapter 1 Lidar Odometry, Localization and Mapping

at high frequency and estimates sensor velocity at low accuracy. The other algorithm

runs at low frequency but returns high accuracy motion estimation. The two estimates

are fused together to produce a single motion estimate at both high frequency and high

accuracy.

The system receives input from a 3D LIDAR and outputs 6 DOF pose estimation. The

overall system is divided into five modules. The details of these modules are introduced

in Fig. 1.3.

Figure 1.3: LeGO-LOAM’s system overview

The first, segmentation, takes a single scan’s point cloud and projects it onto a range

image for segmentation. The segmented point cloud is then sent to the feature extraction

module. Then, LIDAR odometry uses features extracted from the previous module to

find the transformation relating consecutive scans. The features are further processed in

LIDAR mapping, which registers them to global point cloud map. At last, the transform

integration module fuses the pose estimation results from LIDAR odometry and LIDAR

mapping and outputs the final pose estimate. The proposed system seeks improved

efficiency and accuracy for ground vehicles, with respect to the original, generalized

LOAM framework of [16] and [17].

We can further eliminate drift for this module by performing loop closure detection. In

this case, new constraints are added if a match is found between the current feature set

and a previous feature set using ICP. The estimated pose of the sensor is then updated

by sending the pose graph to an optimization system such as iSAM2 [19].

The map selection technique is similar to the method used in [16]. However, a full 3D

occupancy grid map is necessary since the map needs to encode both occupied and free

volumes. In our system, we employ the octree-based mapping framework that models

Chapter 1 Lidar Odometry, Localization and Mapping 13

occupied as well as free and unknown areas in the environment in a probabilistic and

memory-efficient way. This enables our robot to use map resolutions as small as 2 cm

for a complete 3D indoor map. The map representation is available as an open-source

library [12].

Figure 1.4: Example of the constructed map made by LeGO-LOAM

In Fig. 1.4 there is the estimated pointcloud elaborated with Octomap in an occupancy

3D grid map. Octomap also has the functionality to down-project the 3D map on the

ground in an occupancy grid map in two dimensions.

1.3 Monte Carlo Localization

The Monte Carlo localization (MCL) algorithm is a probabilistic localization algorithm

applied to a two-dimensional occupation grid map [20]. A particle swarm is used to

describe and track the current possible pose of mobile robots in known maps [14]. It

can globally estimate the pose with a small amount of computations and a low memory

footprint. The estimated pose is very smooth during locomotion and is suitable for

navigation control of mobile robots [21]. However, it is always affected by the strong

non convexity of the sensor model and complex unstructured features of the environment.

MCL is a Bayes filtering technique which recursively estimates the posterior about the

robot’s pose xt at time:

p(xt | o1:t, u1:t) = η ·
sensor modelz }| {
p(ot | xt) ·Z

xt−1

p(xt | xt−1, ut)| {z }
motion model

· p(xt−1 | o1:t−1, u1:t−1)| {z }
motion model

dxt−1

(1.8)

14 Chapter 1 Lidar Odometry, Localization and Mapping

In the formula, η is a normalization constant resulting from Bayes rule, u1:t denotes the

sequence of all motion commands executed by the robot up to time t, and o1:t is the

sequence of all observations. The term p(xt|xt−1, ut) is called the motion model and

denotes the probability that the robot ends up in state xt given it executes the motion

command ut in state xt−1. The sensor model p(ot|xt) denotes the likelihood of obtaining

observation ot given the robot’s current pose is xt.

In MCL, the belief distribution over the robot’s current state is approximated by a set of

n weighted samples or pose hypotheses Xt = {hx(1)t , w
(1)
t i, . . . , hx(n)t , w

(n)
t i}. Here, each

x
(i)
t is one pose hypothesis and w

(i)
t is the corresponding weight, which is proportional

to the likelihood that the robot is in the corresponding state. The update of the belief,

also called particle filtering, consists of prediction, correction, and resampling.

When a laser sensor is used to locate robot on a 2D grid map, if the robot pose is given,

it is very easy to calculate the agreement between the laser beams and the occupied

grid. Therefore, the MCL algorithm can be used, which represents the pose of the robot

with many particles, as shown in Fig. 1.5. Calculate the weight of the particle according

Figure 1.5: Particle distribution in the simulation environment

to the agreement with the map; then, determine the estimated pose and locate the

robot. However, there are some problems in the MCL algorithm: it cannot solve the

robot kidnapping problem. Once the pose changes discontinuous, the localization will

fail. To improve the localization accuracy, many particles need to be added and result

in slow localization convergence rate. The Adaptive Monte Carlo Localization (AMCL)

algorithm is adapted from the MCL algorithm to solve above problems. The AMCL

algorithm randomly adds free particles during resampling.

Chapter 2

Ros Configuration

2.1 System Overview

The transform tree is a critical aspect of any ROS implementation and requires much

care. It describes how each coordinate frame relates to each other. The tree can have

both parent and child elements. Each child can only have one parent frame but each

parent can have multiple children. This means that the way a tree can be built is limited.

Frames, coordinate systems, in ROS are 3D and right handed (X forward, Y left and Z

up). Therefore, if a component publishes its data in a different orientation, it must be

adjusted. Ros REP-0105 specifies the conventions that should be taken when building

a transform tree. Most frames are published in a chain form, earth to map to odom to

baselink. Here, baselink represents a point rigidly attached to the mobile robot base.

HyQReal contains different coordinate frames that change over time. The world frame

is the only fixed at z = 0 in the simulator. All the frames that are connected to the

world are considered mobile frames.

We can see how the tf tree shows the complexity of HyQReal in Fig. A.2 in Appendix A,

there is a transformation for each joint, sensor, camera and baselink.

2.1.1 Hector SLAM

Hector SLAM can be used without odometry as well as on platforms that exhibit roll

pitch motion. It leverages the high update rate of the LIDAR systems and provides 2D

15

16 Chapter 2 Ros Configuration

pose estimates at scan rate of the sensors [22]. To use Hector we need a source of sen-

sor msg/LaserScan data or bagfiles. The LIDAR provides its own LaserScan but it is an-

gled, and Hector doesn’t work properly. This configuration led to the adoption of a pack-

age with the aim to convert the PointCloud into LaserScan. Furthermore, with the aid of

this package it possible to choose the orientation of the laserscan. The proposed package

is a ROS package that provides components to convert sensor msgs/msg/PointCloud2

messages to sensor msgs/msg/LaserScan messages and back, see Fig. 2.1.

Figure 2.1: The ROS computation graph shows the LaserScan converted from the
PointCloud and the required Hector SLAM’s nodes

As well simulations as experiments Hector SLAM provides a tf transformation between

the estimated pose and the real one. We used the /laser topic as input for Hector SLAM

and we also provided a 3D map from Octomap based on the estimated odometry, see

Fig. 2.2.

2.1.2 LeGO-LOAM

In Fig. 2.3 we can see the interconnections graph of LeGO-LOAM, the main node that

takes the pointcloud as input, and the Octomap as output, the topic /aft mapped to init

is the estimated trajectory and the /laser cloud surround is the pointcloud generated

from the algorithm. LeGO-LOAM contains its own prebuilt transform tree. In Fig. 2.4

(a) LaserScan and gridmap (b) 3D map made by Octomap

Figure 2.2: In Fig. 2.2a the white line, parallel to the ground, is the laserscan. The
white map on the ground is the gridmap provided by Hector SLAM. In Fig. 2.2b the

map built with Octomap using the estimated odometry from Hector SLAM

Chapter 2 Ros Configuration 17

Figure 2.3: Hector SLAM’s computation graph

LeGO-LOAM calls the LIDAR frame camera, thus the initialisation of the LIDAR po-

sition is called camera init.

Figure 2.4: LeGO-LOAM’s computation graph

The bottom most child of the LeGO-LOAM’s tree is baselink. This baselink is different

from the baselink provided by the tf transformation of the robot but it is computed by

LeGO-LOAM and it is fixed to the robot model.

Chapter 3

Simulations

3.1 Overview

In order to determine which algorithm was suitable to use on the robot, simulations were

performed on the simulation environment. Three maps were created, each of different

size and each map containing different amount of features in the environment. This is

to check the performance of each algorithm during different circumstances. All required

the topics were recorded for each map, so that an identical path could be used for each

simulation. The SLAM algorithms simulated are Hector SLAM for 2D and LeGO-LOAM

for the 3D implementation. Thorough descriptions of all these nodes can be found in

Chapter 2.

Different types of tests were performed on each algorithm, namely:

❼ Mapping accuracy

❼ Path accuracy

❼ Average center of mass’s position error

❼ Average CPU load

19

20 Chapter 3 Simulations

Unlike what we have seen previously, now we testing both of them together. In Fig. 3.1

we can see the interconnection’s nodes.

Figure 3.1: Graph of the interconnections for Hector SLAM and LeGO-LOAM

Each SLAM algorithm is working on a specific simulated environment, see Fig. 3.2. In

Fig. 3.2a we have the model implemented in gazebo, it is the willowgarage model.

Fig. 3.2b is the downprojection of the map made by a plugin in gazebo named gazebo

model plugin. From the start position we can see 3 different colours (red, green and

blue). They show the travelled path during the small, medium and large simulation,

respectively.

(a) 3D Model mplemented in Gazebo

(m
)

(m)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45

Start
Finish

(b) 2D representation

Figure 3.2: Fig. 3.2a is the simulated environment. In Fig. 3.2b we can see the overall
path travelled by the robot, from the start to finish.

Chapter 3 Simulations 21

(a) Small map (b) Medium map

(c) Large map

Figure 3.3: Each map shows the path travelled by the robot

3.2 Mapping accuracy

Three maps were designed for the simulation. The main idea was to have three maps

which grow in size, as all SLAM algorithms scale with the map size, and this might give

an idea of how well a particular algorithm scales. The maps are shown in Fig. 3.3. From

left to right the map is growing in size.

In the mapping accuracy test the maps are compared in Matlab with specific functions

for the OccupancyGridMap both in 2D and 3D. We have prepared tables that show the

accuracy for each map.

Furthermore, in experiment we do not know this transformation. Hence we took the

estimated trajectory from Hector SLAM and we obtained a 3D map with Octomap. By

doing so we used its estimated odometry for building a 3D representation with a 2D

SLAM algorithm. We also tested the accuracy of Hector SLAM’s map in 2D with the

2D down projected map made by LeGO-LOAM.

In conclusion, we tested them with the self localization methods, to see which map

produces the best result.

22 Chapter 3 Simulations

3.2.1 Small map

Fig. 3.4 below shows the results for the mapping of the small map. The results of each

algorithm model appear to be fairly similar.

Figure 3.4: Small map’s ground truth

In Fig. 3.5 we can see the results from the 2D SLAMs. We said before that Octomap

has the capability to down project the 3D map, in this way we can compare them also

in 2D. We can see in Fig. 3.5a that the generated map from LeGO-LOAM produces a

less dense pointcloud than the real one.

(a) LeGO-LOAM (b) Hector SLAM

Figure 3.5: 2D maps built by the Hector SLAM and LeGO-LOAM in a small map

Chapter 3 Simulations 23

(a) Hector SLAM with Octomap (b) LeGO-LOAM

Figure 3.6: 3D maps built by Hector SLAM with Octomap and LeGO-LOAM

In Table 3.1 we see how the number of occupied cells of LeGO-LOAM is higher than

Hector SLAM. However, LeGO-LOAM produces an high percentage of occupied cells

that should be empty. This behaviour could be corrected with a loop closure.

Number of Hector-SLAM LeGO-LOAM

cells that should be occupied 13308

occupied cells 3278 (24.63%) 5205 (39.11%)
occupied cells that should be occupied 1568 (11.63%) 1740 (13.11%)
occupied cells that should be empty 1324 (9.94%) 2908 (21%)
empty cells that should be occupied 11740 (88.21%) 9089 (68%)
unknown cells that should be occupied 0 0% 2479 (18%)

Table 3.1: 2D Accuracy parameters in a small map

Now we are comparing the 3D maps. In this situation we can see the big difference in

accuracy between them, see Table 3.2. The 3D pointcloud made by LeGO-LOAM has

a lot empty points. Moreover, the Octomap built by Hector SLAM can be considered

as a ground truth. It is the best approximation of the environment, it is as good as

the estimated pose. In order to say which behaviour has higher performance we have

to analyse the path accuracy. From the table we can just see the low density of LeGO-

LOAM, it is of 0.2% of the real one, with an error of 2.04%.

Number of LeGO-LOAM

voxels that should be occupied 104289

occupied voxels 3999 3.83%
occupied voxels that should be occupied 276 0.2%
occupied voxels that should be empty 2133 2.04%
empty voxels that should be occupied 14590 13.99%
unknown voxels that should be occupied 89423 85.74%

Table 3.2: 3D Accuracy parameters in a small map

24 Chapter 3 Simulations

3.2.2 Medium map

Starting from Fig. 3.4 we can see that the difference in Fig. 3.7 is that the map contains

also a corridor on the left. Here we can see a first difference between them. Due to the

fact that Hector SLAM creates the map from a single laserscan at same height of the

velodyne, it detects only obstacles at that height. Instead LeGO-LOAM builds the map

by downprojecting everything that is detected from the velodyne in three dimensions.

This difference increases the accuracy for LeGO-LOAM.

Figure 3.7: Medium map’s ground truth

In Fig. 3.8a at the bottom side we can see what happens when there is a window and

a long corridor during the path. It is marked with a red circle. LeGO-LOAM starts

to estimate a slope at the end of the corridor. This wrong estimate produces an high

percentage of occupied cells that should be empty, as we can see, it is 26.66%.

Number of Hector-SLAM LeGO-LOAM

cells that should be occupied 22802

occupied cells 7603 33.34% 13154 57.68%
occupied cells that should be occupied 3415 14.97% 5659 24.81%
occupied cells that should be empty 3795 16.64% 6081 26.66%
empty cells that should be occupied 17365 76.15% 11004 48.25%
unknown cells that should be occupied 2022 8.86% 6139 26.92%

Table 3.3: 2D Accuracy parameters in a medium map

In Fig. 3.9 we can see the produced map in 3D. An important issue can be observed in

Fig. 3.9b where the different composition of colors indicates that the estimated odometry

of the robot has a big error in the z position. More details are explained in Section 3.4.

For the accuracy in Table 3.4, LeGO-LOAM prints some wrong points on the ground,

for this reason the occupied voxel’s percentage is higher than 100%. As we said, this

Chapter 3 Simulations 25

(a) LeGO-LOAM’s projected
map

(b) Hector SLAM

Figure 3.8: 2D maps built by the Hector SLAM and LeGO-LOAM in a medium map.
LeGO-LOAM detects the window and a slope, marked by a red circle, instead Hector

SLAM produces empty cells in that position.

(a) Hector SLAM with Octomap (b) LeGO-LOAM

Figure 3.9: 3D maps built by the Hector SLAM and LeGO-LOAM

behaviour is caused to an error on the pose estimation. For this reason the cells that

should be empty are higher than 56%.

Number of LeGO-LOAM

voxels that should be occupied 50804

occupied voxels 59998 118.09%
occupied voxels that should be occupied 6685 13.15%
occupied voxels that should be empty 28668 56.42%
empty voxels that should be occupied 28743 56.57%
unknown voxels that should be occupied 15376 30.26%

Table 3.4: 3D Accuracy parameters in a medium map

26 Chapter 3 Simulations

3.2.3 Large map

The large section test below, contains a big part of the real map. We can observe the

2D ground truth in Fig. 3.10 and the real path made by the robot.

Figure 3.10: Large map’s ground truth

We can notice a loop closure interaction it means that the algorithm is able to identify

a recent room by comparing the actual pointcloud with an history in the memory. By

doing so, LeGO-LOAM detects the room that it travelled during the first simulation

and it corrects the map and the trajectory, see the circle in Fig. 3.11a. In the room

the it travelled during the first simulation it deletes the points on the ground the z-axis

estimate is corrected.

Chapter 3 Simulations 27

(a) LeGO-LOAM’s projected map (b) Hector SLAM

Figure 3.11: 2D maps built by the Hector SLAM and LeGO-LOAM in a large map

28 Chapter 3 Simulations

(a) Hector SLAM with Octomap (b) LeGO-LOAM

Figure 3.12: 3D maps built by the Hector SLAM and LeGO-LOAM

In Fig. 3.12 are shown the 3D maps as we have seen previously. Table 3.5 depicts the

final mapping accuracy between these two algorithms. LeGO-LOAM is still detecting

a big amount of feature in the environment rather than Hector SLAM. However, in

Table 3.6 we still have a large error in the estimate, as we can see, the occupied voxels

that should be empty is 45.36%.

Number of Hector-SLAM LeGO-LOAM

cells that should be occupied 12146

occupied cells 1707 14.05% 6662 54.84%
occupied cells that should be occupied 389 3.20% 1677 13.80%
occupied cells that should be empty 1170 9.63% 4259 35.06%
empty cells that should be occupied 9376 77.19% 8585 70.68%
unknown cells that should be occupied 2381 19.60% 1884 15.51%

Table 3.5: 2D Accuracy parameters in a large map

Fig. 3.12 show the final result in 3D and the Table 3.6 lists the differences in accuracy.

Number of LeGO-LOAM

voxels that should be occupied 77731

occupied voxels 112995 145.36%
occupied voxels that should be occupied 15687 20.18%
occupied voxels that should be empty 35264 45.36%
empty voxels that should be occupied 35698 45.92%
unknown voxels that should be occupied 26346 33.89%

Table 3.6: 3D Accuracy parameters in a large map

Chapter 3 Simulations 29

3.2.4 Conclusion

In conclusion we can say that LeGO-LOAM produces a 2D map with more details rather

than Hector SLAM. However, LeGO-LOAM produces a calculation error in the estima-

tion of the trajectory. More details will be explained in the next sections. However, we

can conclude that both algorithms estimate loop closures with an accurate probability.

3.3 Path accuracy

The path accuracy test compares the generated path of each algorithm with the actual

path that the kinematic robot has travelled. This is presented in a plot which includes

the actual path, and the generated path from each algorithm.

The following sections contain the results of the path accuracy test for all three maps.

Each figure contains the theoretical path as well as the generated path of Hector SLAM

and LeGO-LOAM.

Fig. 3.13 shows all the paths diveded by colors.

(m
)

(m)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45

Start
Finish

Figure 3.13: The red line is the small path, red plus green is the medium one and all
together become the large path.

30 Chapter 3 Simulations

3.3.1 Small map

From now, the colours in the plots are red for the ground truth, green for Hector SLAM

and blue for LeGO-LOAM. The following plots show the overall 2D trajectories, see

Fig. 3.14. Plots in Fig. 3.15 are taking into account the behaviours (x,y,z) axes and the

yaw angles.

Y
(m

)

X (m)

-10

-8

-6

-4

-2

0

2

-2 0 2 4 6 8 10

Start

Finish

Figure 3.14: Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a small
map. Red is the ground truth, green is Hector SLAM and blue is LeGO-LOAM

X
(m

)

t (s)

-2

0

2

4

6

8

10

0 20 40 60 80 100 120 140

Y
(m

)

t (s)

-10

-8

-6

-4

-2

0

2

0 20 40 60 80 100 120 140

Z
(m

)

t (s)

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

Y
A
W

(r
a
d
)

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

Figure 3.15: The plots show the trajectories for each axis and in the last one there
are the yaw angles in a small map

Chapter 3 Simulations 31

3.3.2 Medium map

Fig. 3.16 below shows the generated path of both algorithms compared to the theoret-

ical path when running simulations of the medium map. The generated path of both

algorithms does not deviate greatly from the theoretical path. However, LeGO-LOAM

shows a significantly erroneous path in the z direction.
Y

(m
)

X (m)

-20

-15

-10

-5

0

-10 -5 0 5 10 15 20

Start

Finish

Figure 3.16: Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a
medium map. Red is the ground truth, green is Hector SLAM and blue is LeGO-

LOAM

X
(m

)

t (s)

-5

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Y
(m

)

t (s)

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Z
(m

)

t (s)

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Y
A
W

(m
)

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Figure 3.17: The plots show the trajectories for each axis and in the last one there
are the yaw angles for in a medium map

32 Chapter 3 Simulations

3.3.3 Large map

In this section we analyse the generated path in a large map. In Fig. 3.19 we can see

a good estimation on the x and y axes. The wrong approximation is on the z-axis, at

the end of the simulation LeGO-LOAM is considering a large error. However, the yaw

angles plot produces a good estimation for both of them.

Y
(m

)

X (m)

-20

-15

-10

-5

0

5

10

-15 -10 -5 0 5 10 15 20

Start

Finish

Figure 3.18: Trajectories of ground truth, Hector SLAM and LeGO-LOAM in a large
map. Red is the ground truth, green is Hector SLAM and blue is LeGO-LOAM

X
(m

)

t (s)

-20

-15

-10

-5

0

5

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Y
(m

)

t (s)

-20

-15

-10

-5

0

5

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Z
(m

)

t (s)

-20

-15

-10

-5

0

5

10

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Y
A
W

(m
)

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680

Figure 3.19: The plots show the trajectories for each axis and in the last one there
are the yaw angles in a large map

Chapter 3 Simulations 33

3.4 Average position error

The average position error is a performance metric which shows how much the estimated

position from the SLAM algorithm differs from the actual position. This is calculated

by computing the difference between the estimated position and actual position at each

time instance, and computing the mean.

In the following table we can see the RMSE for each algorithm. Hector SLAM has a

good value of RMSE in all the simulations. Although, LeGO-LOAM corrects its estimate

with the loop closure after a while it has wrong behaviour again. We notice this error

by observing the RMSE on the z-axis.

Root Mean Square Error

Hector Mapping LeGo Loam

x[m] 0.1145 0.6588
y[m] 0.0703 0.5581
z[m] 0.0022 0.2419
yaw[rad] 0.3157 0.7346

Table 3.7: RMSE for a small map

Root Mean Square Error

Hector Mapping LeGo Loam

x[m] 0.3337 2.1316
y[m] 0.1410 1.1844
z[m] 0.0019 0.5490
yaw[rad] 4.4908 4.4988

Table 3.8: RMSE for a medium map

Root Mean Square Error

Hector Mapping LeGo Loam

x[m] 0.2365 1.0397
y[m] 0.1561 1.0426
z[m] 0.0022 0.3586
yaw[rad] 0.9524 0.9457

Table 3.9: RMSE for a large map

34 Chapter 3 Simulations

3.5 Average CPU Load

The Table 3.10 shows tha CPU-load during the simulations. As we said previously, they

are all working together. Poitcloud2Laserscan is the node used by Hector SLAM for

taking a 2D representation of the Pointcloud. This should increase the effort due to this

algorithm, but how we have previously, its accuracy is higher than LeGO-LOAM.

Code/CPU Usage Average CPU Usage

Hector SLAM 9.9%

LeGO-LOAM 12.3%

OctoMap 8%

Pointcloud2Laserscan 15%

Table 3.10: CPU usage statistics in simulation environment. (100 corresponds to full
usage of one core)

3.6 Conclusion

In conclusion we can say that the mapping process both in 2D and 3D is very accurate

for both of them. Hector SLAM has always a good accuracy in map and path accuracy.

Instead, LeGO-LOAM produces some errors in the pose estimation and this cause an

error in mapping process. The final tables in the large map accuracy test depicts the

overall errors. Even though, the z-axis error is less than the others, from the plots we

can see that it is the worse estimate. We conclude that, as we said before, Hector SLAM

produces the best map because Octomap is using the whole pointcloud and the pose

estimation from the algorithm is very accurate.

Instead LeGO-LOAM is using the whole pointcloud for calculating the pose estimate

and this means that computational effort is higher and for reducing this problem it

decreases the density of the elaborated pointcloud.

3.7 Self Localization

3.7.1 Simulation 2D Localization

The following sections are used to test the accuracy of the generated map with the self

localization algorithm MCL.

The map is an occupancy map and it is represented as

Chapter 3 Simulations 35

(a) Global localiza-
tion

(b) Convergence
(c) After Conver-

gence
(d) Final Result

Figure 3.20: Global localization based on AMCL in 3D

❼ An image showing the floor plans of the environment

❼ A configuration file (yaml) that gives meta information about the map (origin, size

of a pixel in real world)

We have tested both a map produced by Hector SLAM. The Hector SLAM’s 2D occu-

pancy grid map is more clear than the LeGOs one. In Fig. 1.5 the red arrows represents

the pose particle, the white line, as we have seen previously is the laserscan converted

from the LIDAR by Hector SLAM and the 2D map of the environment is the 2D occu-

pancy grid map of the overall simulated world provided by Hector SLAM.

The scenes in Fig. 3.20 display the evolution of 20.000 particles during a global local-

ization experiment. After the initialization, the particles were distributed uniformly in

the free space.

The procedure to find the real pose of the robot is structured as follow:

❼ Convergence: in 3s

❼ After convergence: in 5s

❼ Final result: in 8s

3.7.2 Simulation 3D Localization

We applied Monte Carlo localization to globally determine and reliably track a legged

robot’s 6D pose, consisting of the 3D position and the three rotation angles.

The method presented in [3] is able to accurately estimate the 6D pose of the HyQReal’s

base link while walking.

A full 3D occupancy grid map is necessary since the map needs to encode both occupied

and free volumes. During the simulation, we used the octree map made by LeGO-LOAM.

36 Chapter 3 Simulations

Figure 3.21: Particle distribution centred on the baselink

(a) Global localiza-
tion

(b) Convergence
(c) After Conver-

gence
(d) Final Result

Figure 3.22: Global localization based on AMCL in 6D

Fig. 3.22 displays the same evolution of particles that we have seen previously during

the global localization. After initialization, the particles were distributed uniformly in

the free space on different levels.

We can see, the distribution quickly converged to the baselink of the robot. The proce-

dure to find the real pose of the robot is structured as follow:

❼ Convergence: in 5s

❼ After convergence: in 7s

❼ Final result: in 10s

Obviously, global localization requires more particles than pose tracking. However, once

the initial particle cloud has converged, the robot’s pose can be tracked using fewer

particles, as shown in Fig. 3.22.

3.8 Conclusion

In conclusion, the self localization method allows a quadrupedal robot to find its position

in a known map. This procedure allows the robot to solve kidnapping problems, when it

loses the orientation, it can repeat the global localization procedure and find the pose.

From the simulations it is clear that both algorithms with good probability reach an

Chapter 3 Simulations 37

accurate final result. However, in order to have fast and versatile motions, a quadruped

robot needs a 6D algorithm that allows it to obtain more detailed information.

Chapter 4

Experiments

4.1 Indoor Environment

Starting from the blueprints of the environment, actually our LAB, we built a model

in Gazebo. Just for visualization the following 3D model is without the ceiling, see

Fig. 4.1a.

The obtained ground truth for the benchmarking results are the following in Fig. 4.1b.

The main problem during this experiment was the presence of many objects in the room.

We created the model in Gazebo as accurate as possible but in the real world we had

desks, people and other objects. Besides we had mounted a safety crane for avoiding

accidental damages on the robot that caused a lot of interferences during the SLAM

procedure.

In Fig. 4.2 we can see the filtered pointcloud that has been removed during the exper-

iment. It is a 3D filter implemented from the pcl ros library, it is named ”CropBox”

filter. We did the same also in 2D with a filter on the LaserScan, it is the laserscan filter

(a) Gazebo model of the MOOG lab (b) Best approximation of the 3D map

Figure 4.1: Gazebo and Octomap models of the LAB

39

40 Chapter 4 Experiments

Figure 4.2: Filtered pointcloud.

(a) Octomap built with the estimated po-
sition made by Hector SLAM

(b) Octomap built with the estimated po-
sition made by LeGO LOAM

Figure 4.3: Final result at the end of the experiment for Hector SLAM and LeGO-
LOAM, respectively

from the pcl’s library. They take the pointcloud and remove all the point near to the

baselink in a range of 50cm on each axis.

Hector SLAM produces an approximation of the position, and by using the velodyne

points as input for the Octomap node we can produce the map in Fig. 4.3a.

In the Fig. 4.3b there is the map produced by LeGO-LOAM. The main difference between

these two maps is the density of the pointcloud. Hector SLAM is calculating the pose

and Octomap elaborates the pointcloud based on the variable pose. In the following

sections we will analyse the metrics used before.

Number of LeGO-LOAM

voxels that should be occupied 149467

occupied voxels 6676 4.4665%
occupied voxels that should be occupied 372 0.25%
occupied voxels that should be empty 3289 2.20%
empty voxels that should be occupied 9845 6.58%
unknown voxels that should be occupied 139250 93.16%

Table 4.1: 3D Accuracy parameters of the indoor map

Chapter 4 Experiments 41

(a) Hector SLAM filter (b) LeGO-LOAM
(c) Hector SLAM with Oc-

tomap

Figure 4.4: Maps built from both Hector SLAM and LeGO-LOAM. On the left the
map without filters. On the right the filtered one

In Table 4.1 we can see the result obtained from Matlab and we can observe how Hector

SLAM is denser than LeGO-LOAM in an indoor map.

Moreover we can analyse the differences also in 2D. In Fig. 4.4 we have three cases, in

Fig. 4.4a there are the Hector SLAM’s maps with and without the laser scan filter, as

we can see the presence of the crane has been deleted in the filtered map on the right.

In Fig. 4.4b we have the 2D down-projected map from LeGO-LOAM, and what we can

see is the presence of other objects inside the map, this is because the map is a down-

projection of the 3D occupancy grid map, then it is more dense. Instead in Fig. 4.4c

there is the down-projected map made by Hector SLAM by using OctoMap. The main

difference we can observe is the importance of the filter, it is useful for avoiding useless

data. We can analyse the accuracy of the maps in the Table 4.2. We used the 2D map

generated by Hector SLAM with Octomap as ground truth. The final result shows as

for the simulations, an accurate estimate for Hector SLAM with a low percentage of oc-

cupied cells that should empty, and with a 6.5% of occupied cells that should be occupied.

Number of Hector-SLAM LeGO-LOAM

cells that should be occupied 26392

occupied cells 2964 11.23% 8468 32.08%
occupied cells that should be occupied 1721 6.5% 4368 16.55%
occupied cells that should be empty 945 3.58% 3074 11.64%
empty cells that should be occupied 21942 83.13% 18375 69.62%
unknown cells that should be occupied 2729 10.34% 3649 13.82%

Table 4.2: 2D Accuracy parameters of the indoor map

4.1.1 Path Accuracy

In order to obtain a robot’s pose as close as possible we positioned markers on the trunk

of the robot. We used the Motion Capture System (MCS) from Vicon. We considered

42 Chapter 4 Experiments

the output from the MCS system as a ground truth for the experiment and then we

compared it with the estimated trajectories from Hector SLAM and LeGO-LOAM.

The estimated trajectory from the MCS is used as ground truth and it is printed on the

2D map in Fig. 4.5

Figure 4.5: 2D ground truth of the indoor environment. In blue the trajectory from
the MCS

The experiment has been conducted for 500s and we can see in Fig. 4.6 the overall

trajectories for each algorithm. In blue we have the ground truth from the MCS, in

red Hector SLAM and in green LeGO-LOAM. We can notice the presence of different

holes in the MCS’s estimate, this is due to the presence of the crane. The interference is

caused because it hides the markers and the motion capture is not able to detect them.

Furthermore, we can see that the estimates are very different from each other, expect for

Hector SLAM. We can’s show a RMSE due to the presence of that holes. Even though,

we can graphically conclude that they are similar to each other on the x and y axes,

although on the z axis LeGO-LOAM is presenting, as we have seen in the simulations,

a calculation error. However, this error seems to be always under 0.1 m.

Chapter 4 Experiments 43

X
(m

)

t (s)

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Y
(m

)

t (s)

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Z
(m

)

t (s)-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Figure 4.6: Trajectories for each axis. Blue is the ground truth, red is Hector SLAM
and green is LeGO-LOAM.

44 Chapter 4 Experiments

4.1.2 3D self localization

(a) Global localiza-
tion

(b) Convergence
(c) After Conver-

gence
(d) Final Result

Figure 4.7: Global localization in an indoor map with the filter on the pointcloud

We have tested the 3D self localization process to determine its accuracy in a noisy

map, with and without the filter. In Fig. 4.7 there is the AMCL procedure by using the

filtered map made by Hector SLAM. We choose this map because it is more clear than

the LeGO-LOAM’s one, the convergence time is faster and the accuracy is higher.

❼ Convergence: in 2s

❼ After convergence: in 5s

❼ Final result: in 10s

Moreover in Fig. 4.8 we analyse the process without the filter and we can see that it is

not even able to find the position at the end of the simulation.

(a) Global localiza-
tion

(b) Convergence
(c) After Conver-

gence
(d) Final Result

Figure 4.8: Global localization in an indoor map without the filter on the pointcloud

4.1.3 CPU load

Finally we have tested the CPU usage during the off-line simulation. We can check them

in Table 4.3.

The main effort comes from LeGO-LOAM. During the experiment it uses 153% of CPU,

although the final result is better than the simulation. It has high accuracy in the

mapping and localization processes.

Chapter 4 Experiments 45

Code/CPU Usage Average CPU Usage

Hector SLAM 10.9%

LeGO-LOAM 153%

OctoMap 11%

Pointcloud2Laserscan 44%

CropBox Filter 6.9%

Table 4.3: CPU usage statistics in an indoor map. (100 corresponds to full usage of
one core)

4.2 Outdoor Environment

Figure 4.9: Trajectory travelled by HyQReal during the experiment.

The goal of this experiment was to travel in an outdoor environment for at least 100 m

and to find which algorithm has the best fit between 3D mapping, 2D mapping and

trajectory estimation. In this environment there are no slopes, but there are several

boxes, pipes and other working tools.

In Fig. 4.9 we can see the path that we made during the experiment. The robot has

travelled 10 m forward and backwards 10 times.

Figure 4.10: LeGO-LOAM’s down-projected map with the ground and the ceiling

In Fig. 4.10 we can see the down-projected map made by the LeGO-LOAM. As we can

see it is very noisy and for this reason in the following images the maps will be shown

without the ground and the ceiling. This is just for visualization and for having a better

46 Chapter 4 Experiments

(a) Hector Slam (b) LeGO-LOAM (c) Hector with Octomap

Figure 4.11: 2D maps from Hector SLAM, LeGO-LOAM and Hector SLAM with
Octomap

resolution. The 2D down-projected maps are computed from 10 cm up to 1.50 m as for

LeGO-LOAM as for Hector SLAM.

4.2.1 Mapping Accuracy

We have seen in the previous section that the presence of the filter is necessary in a small

environment. But when we tested Hector SLAM with and without the filter, we noticed

that in this situation the filter on the LaserScan is not necessary. In Fig. 4.11 (a) we can

see the final 2D map made by Hector SLAM. We made it without the laserscan filter,

and we can conclude that if the robot travels several times on the same path Hector

SLAM is able to remove moving objects.

For LeGO-LOAM the case is different. LeGO-LOAM is not always able to remove

moving objects, it recognizes the safety crane that is beside the robot, the pipes for the

power supply and the external pumps.

In order to avoid the calculation of these objects we have introduced the CropBox filter

mentioned before.

In Fig. 4.12 we can see the pointcloud that we deleted for the mapping process.

Figure 4.12: On the back of the robot, there is the dromedario, it is a safety protection
for the arm, close to it there are pipes and behind it there is also a colleague that

maintains the crane

After the implementation of the filter we can see the final 2D map made by LeGO-LOAM

in Fig. 4.11b. As we have done for the previous experiment, we have mixed the 2D pose

Chapter 4 Experiments 47

(a) Hector SLAM with Octomap (b) LeGO-LOAM’s 3D map

Figure 4.13: 3D maps built with Octomap

estimation algorithm (Hector SLAM) with a 3D mapping process (Octomap). The final

result in a two dimensional point of view is shown in Fig. 4.11c. It is the best result

in terms of 2D/3D map accuracy and CPU usage. The only nodes were Hector SLAM

and Octomap, and as we can see in Table 4.4 the CPU usage from Hector SLAM is less

than LeGO-LOAM.

Code/CPU Usage Average CPU Usage

Hector SLAM 11.98%

LeGO-LOAM 153.2%

OctoMap 52%

Pointcloud2Laserscan 44.2%

CropBox Filter 7%

Table 4.4: CPU usage statistics in an outdoor map. (100 corresponds to full usage of
one core)

In Table 4.5 we see the differences between the two results in terms of 2D map accuracy.

Their behaviour are similar to the simulations. The percentage of occupied cells that

should be empty represent the error in the mapping process. Even though Hector SLAM

is less dense than LeGO-LOAM it is always more accurate.

Number of Hector-SLAM LeGO-LOAM

cells that should be occupied 25275

occupied cells 2640 10.44% 4719 18.67%
occupied cells that should be occupied 1323 5.23% 2434 9.63%
occupied cells that should be empty 975 3.85% 1728 6.83%
empty cells that should be occupied 22270 88.11% 20087 79.47%
unknown cells that should be occupied 1682 6.65% 2754 10.89%

Table 4.5: 2D Accuracy parameters for the outdoor map

In Fig. 4.13a we can see the 3D map made by Hector SLAM, its representation as we

said is better than LeGO-LOAM. As for the preciouses maps, the ground is represented

by the purple voxels, instead the ceiling is green. As we have said before the environment

is not very clear, and we can see that the green voxels are pipes and cables.

48 Chapter 4 Experiments

In Fig. 4.13b we have the 3D Octomap made by LeGO-LOAM. The main difference from

the previous one is the density of the pointcloud. Its representation is due to the fact

that the algorithm is calculating the odometry by using the whole 3D pointcloud. By

doing so, it must to reduce the time by decreasing the acquired data. First it converts

the pointcloud in a voxel grid with a lower density, and, obviously the output has a

lot of empty points. For increase the quality of this map we should move the robot in

different orientations.

In Table 4.6 we see the differences between the two results in terms of 3D map accuracy.

Number of LeGO-LOAM

voxels that should be occupied 41187

occupied voxels 7121 17.28%
occupied voxels that should be occupied 44 0.1%
occupied voxels that should be empty 702 1.7%
empty voxels that should be occupied 4195 10.18%
unknown voxels that should be occupied 36948 89.70%

Table 4.6: 3D Accuracy parameters for the outdoor map

4.2.2 Path Accuracy

Due to the fact that we don’t have a MCS in this environment we can’t have a ground

truth in order to see an error between the real and the simulated trajectory. For solving

this situation we have performed an error on the estimated position of the feet.

(a) starting point (b) ending point

Figure 4.14: Real position of the feet during the experiment

In Fig. 4.14 we have two pictures that show the position of the feet respect to 4 markers

on the ground. As we can read from the caption, the picture on the left shows the

position of the feet before starting, and the right one the final position at the end of the

experiment.

Chapter 4 Experiments 49

(a) starting point (b) ending point

Figure 4.15: Position of the feet during the simulation

We have performed the simulation by using the estimated position of the trunk made

by Hector SLAM. Hence the state estimator that we have on the robot is working only

for the positions of the legs.

In Fig. 4.15 we can see the robot in the same situation that we have seen in Figure 4.14,

it shows the feet positions before and after the simulation.

In order to see in detail the error between the starting position and the ending position

we took the data of the feet from the state estimator.

In Fig. 4.16 we have plotted the estimated positions made by Hector SLAM. The blue

dots are the initial positions of the feet, the red one are the final positions and it is

oriented with the front on the positive direction of X. Moreover we have estimated the

displacement on real robot from the picture. We made an estimate based on a proportion

with respect to the tapes on the ground. Due to the lower precision of the data the circle

is as big as the range of accuracy, it is calculated in a range of [-3,3] cm. Finally we can

conclude that the real feet are very close to the estimated ones.

Y
(m

)

X (m)

Figure 4.16: Red dots are the estimated initial positions, the blue dots are the esti-
mated final positions. The circles are the real feet positions and the dots in the mile

represent the position the base link respectively

Moreover in Fig. 4.17 we have calculated the estimated trajectories for each axis. In red

Hector SLAM, and green LeGO-LOAM.

50 Chapter 4 Experiments

X
(m

)

t (s)

-2

0

2

4

6

8

10

12

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Y
(m

)

t (s)

-2

-1.5

-1

-0.5

0

0.5

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Z
(m

)

t (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100120140160180200220240260280300320340360380400420440460480500

Figure 4.17: The overall trajectories for each axis

We can analyse that on the x axis there is no difference between them, instead on the

y axis there is a slight difference. We have to say that the x axis is directed forward

then for the right hand rule, y is directed to right and the z is looking upward. The

estimation on the z axis, as we said several times, for Hector SLAM is zero because it

is a two dimensional SLAM. Instead we can observe that LeGO-LOAM is very accurate

because when HyQReal moves the trunk in a range of 5 cm.

4.3 Conclusion

We can finally conclude this experiment by saying that Hector SLAM has the low com-

putational effort, the best accuracy in map building and the best accuracy in pose

estimation. Instead LeGO-LOAM, has often leakage in the pose estimation, i.e. in the

z plot in Fig. 4.17, and this situation could generate a growing error.

However we didn’t have the possibility the test the algorithms in non planar environ-

ments, hence we can’t formulate a global conclusion.

Chapter 5

Conclusion and future work

In this work we have analysed two SLAM algorithms. We decided to analyse the be-

haviour of Hector SLAM and LeGO-LOAM. We adopted a metric for the accuracy’s

analysis. For each algorithm we took into account, the mapping accuracy, the estimated

position, the mean square error and the computational load. In addition, two self local-

ization methods based on the Monte Carlo localization (MCL) algorithm were verified.

These allow to obtain an estimated position as precise as the generated map is. The

simulations show that LeGO-LOAM requires an high computational load, higher then

Hector SLAM. The higher computation load causes a slowdown in simulation. The extra

computation time required by Lego-LOAM versus Hector SLAM is caused by the dif-

ference of analysed data. Hector SLAM calculates a position estimate and it generates

a 2D map using a single laser beam. Instead, LeGO-LOAM uses a whole point cloud,

and for a Velodyne-16 Puck Lite each pointcloud is up to 600,000 points per second. To

reduce the calculation time, it introduces a filter to eliminate a part of the informations.

In the large map simulation we can see how the algorithms work in the biggest envi-

ronment. The final result shows a RMSE for Hector SLAM lower than LeGO-LOAM.

Values between 0.14 and 0.33 are produced for both the x and y axis. LeGO-LOAM

estimates the robot position with a low error in the small and medium map, but at the

end of the simulation it accumulates an error higher than 50cm.

Regarding the mapping accuracy, Hector SLAM produces a 2D map using only one laser

beam and this does not take into account all the obstacles. The density of the gener-

ated 2D map is lower than that of LeGO-LOAM, and this does not allow a quadruped

robot to fully identify the surrounding environment. During self operated operations,

the quadruped robot needs a dense map and an high pose accuracy. For teleoperated

operations a legged robot needs to obtain a map estimate as accurate as possible. In

addition, if the robot operates in a known environment, thanks to algorithms such as

51

52 Chapter 5 Conclusion and future work

MCL, it has to obtain an estimate of the position. From simulations we conclude the

robot is able to find its position both in 2D and 3D pre-built maps by Hector SLAM

and LeGO-LOAM.

In the experiment section, their behaviour on the HyQReal robot was verified. The

experiments were carried out in two different environments, the first was a laboratory,

which is an indoor room, instead the second was larger and partly outdoors place.

For the first experiment, we had a motion capture system available which allowed us

to obtain the position of the robot in real time. Moreover we created a 3D model of

the laboratory starting from the floor plans. This information was used to compare

and to elaborate the accuracy of the map and the estimated position. During both

experiments we had an interference with the robot’s safety structure, which prevented

it from accidentally falling. To overcome this problem, we have implemented both 2D

and 3D filters that delete unnecessary informations.

For the second experiment the robot travelled more than 100 m with the aim of verifying

the accuracy of the algorithms over long distances.

In conclusion LeGO-LOAM still has some calculation errors as seen in simulation. How-

ever, the accuracy of the estimated position has improved, and the map turns out to

be denser. This allows us to consider LeGO-LOAM more than Hector SLAM. In order

to operate in variable terrain environments, a quadruped robot requires a 3D SLAM

algorithm capable of identifying closed loops and obtaining an estimate of the position

in 6 dimensions.

Furthermore, we didn’t have a motion capture system, hence we calculated the errors on

feet position for both the real and estimated ones on the basis of some markers placed

on the ground.

We can conclude that LeGO-LOAM has an high computational load and sometimes it

loses accuracy in the mapping and pose estimation. Instead Hector SLAM achieves the

best estimate in each simulation and experiment. However, this SLAM algorithm is

conceived in planar environments.

A first future work it to simulate Hector SLAM with Octomap in variable terrains, to

verify its robustness. It can already be concluded that even though LeGO-LOAM has

problems in processing, many works about SLAM in variable terrains show that it very

accurate. These algorithms have been conceived with the task of allowing the robot to

orient itself in unknown environments. Methods such as Monte Carlo allow to a SLAM

algorithm to find its position in such environments. A future improvement is to develop,

starting from LeGO-LOAM, a better algorithm in order to reduce the computational

Chapter 5 Conclusion and future work 53

effort and to increase the accuracy. A future work could be to develop an algorithm

able to take the information from Monte Carlo and to automatically move the robot in

that position inside the simulator. Furthermore, on the front and on the back of the

robot we have several cameras, the next step is the sensor’s fusion. LIDAR is able to

detect the environment in 360➦ but the robot needs to have more informations in order

to have a safe locomotion. The idea is to design an algorithm which takes into account

the pointcloud generated from both the LIDAR and cameras.

The ultimate goal of this integration could be construction of a navigable 3D map

of an environment, in which the robot can view all the objects already labelled and

classified. This classification would allow the robot to perform obstacle identification,

object picking and autonomous navigation tasks.

Appendix A

Hardware/Software Description

A.1 HyQReal and DLS’s framework

We perform simulations using the quadruped robot HyQReal [4]. It is 0.9 m tall, weighs

130 kg (onboard hydraulics and battery). This means that when fast motions are re-

quired, swing legs play a significant role in the robot dynamics. In addition to the default

sensors such as IMU and cameras, our robot is equipped with a Velodyne VLP-16 Lidar.

The 3D Lidar is mounted in a modified position with an angle of 15➦ on the y axis on

the back of the robot, providing a field of view of 360➦, see Fig. A.1.

Figure A.1: HyQReal in simulation environment with the velodyne on its back

A.2 Velodyne-VLP 16 Puck Lite

Designed for applications that demand a lower weight, the Puck LITE retains the Puck

sensor’s surround view and best-in-class performance. The Puck LITE is perfect for

55

56 Appendix A Hardware/Software Description

use with drones/UAVs, backpacks and other applications requiring reliability and less

weight. The Puck LITE has a range of 100 m with dual return mode to capture greater

detail in the 3D image with a low power consumption. It supports 16 channels and

generates approximately 300,000 points/second from a 360➦ horizontal field of view and

a 30➦ vertical field of view (➧15➦ from the horizon) The Puck LITE has no visible rotating

parts and is encapsulated in a package that allows it to operate over a wide temperature

range and environmental conditions.

A.3 Robot Operating System

ROS [5] is an open-source, meta-operating system for robots. It provides the services

that would be expected from an operating system, including hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides tools and libraries for

obtaining, building, writing, and running code across multiple computers.

ROS implements several different styles of communication, including synchronous RPC-

style communication over services, asynchronous streaming of data over topics, and

storage of data on a Parameter Server. ROS is not a real-time framework, though it is

possible to integrate ROS with real-time code.

Its architecture is based on Peer-to-Peer (P2P) communication between different nodes.

These nodes can be defined as programs that perform various tasks and are running on

one or more computers being part of a network.

The final transform tree utilised on HyQReal is shown in Fig. A.2.

The employed ROS distribution for this project is ROS Kinetic, released on May 2016.

A.3.1 Gazebo

Gazebo is an open-source 3D robotics simulator. It provides realistic rendering of envi-

ronments including high-quality lighting, shadows, and textures. It can model sensors

that ”see” the simulated environment, such as laser range finders, cameras (including

wide-angle), Kinect style sensors, etc.

A.3.2 Rviz

Rviz is a 3D visualizer for the Robot Operating System (ROS) framework. It offers a

view of the robot model, it acquires sensor information from the robot sensors and it

Appendix A Hardware/Software Description 57

Figure A.2: HyQReal’s tf tree

reproduces the acquired data. It can display data from video cameras, lasers, 3D and

2D devices, including images and point clouds. To perform the tasks, Rviz must be open

and connected to a running simulation process, i.e. Gazebo.

To be able to visualize the information published in Rviz, it is necessary to correctly

configure the Global Options: Key parameters:

❼ Fixed frame: Indicates the name of the frame used as reference for all the other

frames.

❼ Robot Model: In order to visualize the Robot Model according to its description

from the URDF model we need to add “Robot Model” from the list.

❼ TF: A most important plugins allow us to visualize the position and the orientation

of all the frames that compose the TF Hierarchy.

In Fig. A.3 we can see the model of the Robot, the generated pointcloud from the

Velodyne and the options in Rviz presented before.

58 Appendix A Hardware/Software Description

Figure A.3: HyQReal in a real and simulated environment

A.4 Vicon’s Motion Capture System

Motion capture (mocap) is the process of recording the movement of objects or people.

The technology originated in the life science market for gait analysis but is now used

widely by VFX studios, sports therapists, neuroscientists, and for validation and control

of computer vision and robotics. There are many different approaches to motion capture.

❼ Optical-Passive: This technique uses retroreflective markers that are tracked by

infrared cameras. It is the most flexible and common method used in the industry.

❼ Optical-Active: This technique uses LED markers that emit light that are

tracked by special cameras. Because of this they need a battery or charger of

some kind.

❼ Video/Markerless:This technique does not require markers and instead relies

on software to track the subject’s movement. Varying tracking methods yield

different results, but real-time and final data error ranges tend to be larger than

marker-based solutions.

❼ Inertial:This technique does not require cameras except as a localization tool.

Inertial sensors (sometimes known as IMUs) are worn by the subject and the data

from the sensors is transmitted wirelessly to a computer or smart device.

Passive optical motion capture is the most accurate, flexible and common type of motion

capture and is a major technology for Vicon.

Bibliography

[1] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-optimized

lidar odometry and mapping on variable terrain. pages 4758–4765, 10 2018. doi:

10.1109/IROS.2018.8594299.

[2] G. Fink, M. Franke, A. F. Lynch, K. Röbenack, and B. Godbolt. Observer design

for visual inertial slam scale on a quadrotor uav. In 2017 International Conference

on Unmanned Aircraft Systems (ICUAS), pages 830–839, 2017.

[3] A. Hornung, K. M. Wurm, and M. Bennewitz. Humanoid robot localization in

complex indoor environments. In 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1690–1695, 2010.

[4] C. Semini, V. Barasuol, M. Focchi, C. Boelens, M. Emara, S. Casella, O. Villarreal,

R. Orsolino, G. Fink, S. Fahmi, G. Medrano-Cerda, and D.G. Caldwell. Brief intro-

duction to the quadruped robot hyqreal. Istituto di Robotica e Macchine Intelligenti

(I-RIM), 2019.

[5] Stanford Artificial Intelligence Laboratory et al. Robotic operating system. URL

https://www.ros.org.

[6] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i.

IEEE Robotics Automation Magazine, 13(2):99–110, 2006.

[7] Randall C. Smith and Peter Cheeseman. On the representation and estimation of

spatial uncertainty. The International Journal of Robotics Research, 5(4):56–68,

1986.

[8] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat.

Comparing icp variants on real-world data sets. Autonomous Robots, 04 2013.

doi: 10.1007/s10514-013-9327-2.

[9] Peter Zhang, Evangelous Millos, and Jason Gu. General Concept of 3D SLAM. 05

2009. ISBN 978-953-307-001-8. doi: 10.5772/6993.

59

https://www.ros.org

Bibliography BIBLIOGRAPHY

[10] J. Alexandersson and O. Nordin. Implementation of slam algorithms in a small-scale

vehicle using model-based development. 2017.

[11] Hans Moravec. Robot spatial perception by stereoscopic vision and 3d evidence

grids,” robotics institute. 04 2011.

[12] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on

octrees. Autonomous Robots, 2013. doi: 10.1007/s10514-012-9321-0. URL http:

//octomap.github.com. Software available at http://octomap.github.com.

[13] Tae Nam, Jae Shim, and Young Cho. A 2.5d map-based mobile robot localization

via cooperation of aerial and ground robots. Sensors, 17:2730, 11 2017. doi: 10.

3390/s17122730.

[14] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MA, USA: MIT Press,

2005.

[15] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping

with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46,

2007.

[16] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. 07

2014. doi: 10.15607/RSS.2014.X.007.

[17] Ji Zhang and Sanjiv Singh. Low-drift and real-time lidar odometry and mapping.

Autonomous Robots, 41:401–416, 02 2017. doi: 10.1007/s10514-016-9548-2.

[18] Seungpyo Hong, Heedong Ko, and Jinwook Kim. Vicp: Velocity updating iterative

closest point algorithm. pages 1893 – 1898, 06 2010. doi: 10.1109/ROBOT.2010.

5509312.

[19] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. isam2:

Incremental smoothing and mapping with fluid relinearization and incremental vari-

able reordering. In 2011 IEEE International Conference on Robotics and Automa-

tion, pages 3281–3288, 2011.

[20] S. Thrun, W. Burgard, and F. Dellaert. Robust monte carlo localization for mobile

robots. volume 128, page 99–141, Artificial Intelligence, 2001.

[21] B. F. Zhang, P. Meng, and H. Yue. Overview of mobile robot location method.

volume 22, page 250–250, Shandong Industrial Technology, 2014.

[22] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible and scalable

slam system with full 3d motion estimation. In Proc. IEEE International Sympo-

sium on Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011.

http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	1 Lidar Odometry, Localization and Mapping
	1.1 Introduction to SLAM
	1.1.1 General model
	1.1.2 EKF SLAM
	1.1.3 ICP
	1.1.4 3D LIDAR data representation
	1.1.5 Octomap
	1.1.6 2D LIDAR data representation

	1.2 Choice of SLAM algorithm
	1.2.1 RBPF
	1.2.2 Hector Mapping
	1.2.3 LOAM
	1.2.4 LeGO-LOAM

	1.3 Monte Carlo Localization

	2 Ros Configuration
	2.1 System Overview
	2.1.1 Hector SLAM
	2.1.2 LeGO-LOAM

	3 Simulations
	3.1 Overview
	3.2 Mapping accuracy
	3.2.1 Small map
	3.2.2 Medium map
	3.2.3 Large map
	3.2.4 Conclusion

	3.3 Path accuracy
	3.3.1 Small map
	3.3.2 Medium map
	3.3.3 Large map

	3.4 Average position error
	3.5 Average CPU Load
	3.6 Conclusion
	3.7 Self Localization
	3.7.1 Simulation 2D Localization
	3.7.2 Simulation 3D Localization

	3.8 Conclusion

	4 Experiments
	4.1 Indoor Environment
	4.1.1 Path Accuracy
	4.1.2 3D self localization
	4.1.3 CPU load

	4.2 Outdoor Environment
	4.2.1 Mapping Accuracy
	4.2.2 Path Accuracy

	4.3 Conclusion

	5 Conclusion and future work
	A Hardware/Software Description
	A.1 HyQReal and DLS's framework
	A.2 Velodyne-VLP 16 Puck Lite
	A.3 Robot Operating System
	A.3.1 Gazebo
	A.3.2 Rviz

	A.4 Vicon's Motion Capture System

	Bibliography

		Politecnico di Torino
	2020-10-14T08:11:36+0000
	Politecnico di Torino
	Giovanni Gerardo Muscolo
	S

