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Abstract— Point cloud registration is a critical problem in
computer vision and robotics, especially in the field of navigation.
Current methods often fail when faced with high outlier rates or
take a long time to converge to a suitable solution. In this work,
we introduce a novel algorithm for point cloud registration
called SANDRO1 (Splitting strategy for point cloud Alignment
using Non-convex anD Robust Optimization), which combines
an Iteratively Reweighted Least Squares (IRLS) framework
with a robust loss function with graduated non-convexity. This
approach is further enhanced by a splitting strategy designed
to handle high outlier rates and skewed distributions of outliers.
SANDRO is capable of addressing important limitations of
existing methods, as in challenging scenarios where the presence
of high outlier rates and point cloud symmetries significantly
hinder convergence. SANDRO achieves superior performance
in terms of success rate when compared to the state-of-the-art
methods, demonstrating a 20% improvement from the current
state of the art when tested on the Redwood real dataset and
60% improvement when tested on synthetic data.

I. INTRODUCTION

Point cloud registration is a crucial problem in computer
vision, with applications in robot navigation, object recon-
struction, and manipulation. In robot navigation, point cloud
registration plays a key role in Simultaneous Localization
and Mapping (SLAM), enabling robots to create and contin-
uously update maps of their environment used in obstacle
detection and avoidance, ensuring safe navigation. In object
reconstruction, registration facilitates the merging of multiple
partial scans to create accurate and complete 3D models,
which is essential for various tasks such as 3D modeling, and
industrial inspection [1] [2].

Despite significant advances, point cloud registration faces
several difficulties in real-world scenarios. These include
the presence of noise, outliers, partial overlaps between
scans, and the computational complexity of processing large
datasets. Outliers, in particular, pose a significant challenge,
as incorrect matches between points can introduce large errors
and significantly degrade the performance of traditional regis-
tration algorithms. The impact of outliers on accuracy makes
robust registration methods an important area of research [3].
In the likely case that a large part of the correspondences
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Fig. 1. Example of a symmetric relationship with initial bias. Point cloud
1 (left), is contained within point cloud 2 (right). The two chairs in point
cloud 2 cause current registration methods to fail due to the initial outlier
distribution. The matching chairs are shown with green boxes.

are incorrect, point cloud registration presents a “chicken-
and-egg” problem: the optimal transformation matrix can be
determined if the true correspondences are known; conversely,
accurate correspondences can be identified if the optimal
transformation matrix is provided. However, solving these
two aspects simultaneously is not straightforward [4].

Several techniques have been explored and are widely used
for solving point cloud registration, ranging from traditional
methods, such as the Iterative Closest Point (ICP) algorithm,
to more advanced feature-based approaches. ICP is a well-
established method that iteratively refines the alignment by
minimizing the distances between corresponding points from
two point clouds [5]. However, it requires a good initial guess
to converge to a correct solution. In contrast, feature-based
methods, such as RANSAC, extract and match features from
point clouds to determine correspondences [6], [7].

Feature-based methods often include a pre-processing step
to filter out outliers before solving for the transformation
matrix using the remaining correspondences. These pre-
processing techniques range from simple approaches, such as
the Tuple test, to more advanced methods, such as those
in [8], [9]. However, even with effective filtering, some
outliers may still persist, potentially causing the registration
to fail. Therefore, a robust solver is crucial to ensure accurate
registration when pre-processing does not fully eliminate all
outliers.

Deep-learning-based methods leverage neural networks and
have been used to extract more salient descriptors [10], [11].
However, they lack explainability and need to be pre-trained.
In addition, they are often slow in inference, making them
less suitable for online applications.

This paper proposes SANDRO (Splitting strategy for point
cloud Alignment using Non-convex anD Robust Optimiza-
tion), a new solver for feature-based point cloud registration



that delivers robust performance, even in scenarios with up to
95% outliers. Our method can easily be integrated with widely
used descriptors, such as Fast Point Feature Histograms
(FPFH) features [12] and does not require any initialization.
Furthermore, SANDRO presents a novel splitting strategy
that allows it to surpass current state-of-the-art solvers in
scenarios where symmetries or uneven outlier distributions
are present.

A. Contribution

Although existing methods perform well on various
datasets, many solvers struggle when dealing with symmetric
distributions among correspondences. For instance, in a
scenario with two chairs, as shown in Fig. 1, previous
methods fail to converge to the optimal solution due to the
bias introduced by the non-random distribution of outlier
correspondences.

This paper introduces a novel solver that addresses this
issue by applying Iteratively Reweighted Least Squares
(IRLS) [13] combined with the Geman-McClure [14] robust
function. A key innovation in our approach is the splitting
strategy, where we operate on smaller independent subsets of
the point cloud. By focusing on smaller portions, our method
effectively reduces the initial outlier bias and significantly
improves convergence toward the optimal solution.

Additionally, the proposed method runs in the order of
hundreds of milliseconds when using the splitting strategy,
and tens of milliseconds with no splits, allowing its imple-
mentation in scenarios that require online operation, such
as SLAM. The algorithm, which combines Graduated Non-
convexity (GNC) with a Geman-McClure robust loss and
splitting, demonstrates state-of-the-art performance on both
real and synthetic datasets, even with outlier rates of up to
95%.

In summary, the main contributions of this work are the
following:

• A novel point cloud registration solver that incorporates
GNC with a Geman-McClure robust loss function is used
to change the convexity of the optimization problem in
order to iteratively filter out more outliers and converge
to the non-convex global minimum. Our approach
demonstrates improvements of up to 60% in terms of
success rate when tested on a synthetic dataset with high
outlier rates.

• A splitting strategy which demonstrates a 20% improve-
ment in the registration’s success rate compared to
previous methods in real datasets where symmetries
are present.

These two features make SANDRO optimal for operating in
structured scenarios where symmetries and initial distribution
biases are present, such as shown in Figs. 1 and 2.

The rest of the paper is organized as follows. Section II
gives a literature review, Section III presents the proposed
method, Section IV shows the results, and Section V draws
conclusion and future work.

II. LITERATURE REVIEW

Feature-based point cloud registration detects 3D keypoints
and matches them using feature descriptors. Hand-crafted de-
scriptors such as FPFH are fast but often produce high outlier
rates, sometimes over 90%. In contrast, neural network-based
methods, such as the one proposed by Li et al. [15], generate
more accurate descriptors, but at the cost of longer inference
times, limiting their efficiency in real-time applications.

After matching the keypoints, methods as those proposed
by Horn [16] and Arun [17] provide an optimal maximum
likelihood solution for computing the transformation between
point clouds. These methods work well under the assumptions
that the data is free from outliers, and the noise between
matches follows an isotropic zero-mean Gaussian noise.

To account for the high outlier rate, several methods have
been explored, with the most widely used being RANSAC
and its variations [18]. RANSAC aims to align subsets of
corresponding points until a loss threshold is met [19]. The
goal is to randomly select a subset of points that does not
include outliers. This approach is popular due to its simple
implementation and availability in open-source libraries, e.g.,
Open3D [9], [20]. While RANSAC can theoretically achieve
optimal results given enough time, it tends to fail or become
very slow when dealing with a large number of outliers.

The Branch and Bound (BnB) method has been successfully
applied to solve optimization problems by iteratively dividing
the search space into smaller subspaces, calculating error
bounds, and pruning those subspaces that cannot contain the
optimal solution. In the context of point cloud registration,
Bazin et. al. [21] used a BnB-based method to find the
rotation error, and improvements were proposed by Aoki. et.
al. [22] to improve the computational speed. Although BnB
guarantees a numerically optimal solution, it does so at the
cost of requiring polynomial time, making it computationally
expensive for larger problems and scenarios where local
minima are present.

Hitchcox and Forbes [23] observed that most loss functions
assume that the residuals follow a Gaussian-like distribution
with a mode of zero. However, in many nonlinear least-squares
problems, the residuals are actually defined as the norm of a
multivariate error, which produces a Chi-like distribution with
a nonzero mode. This demonstrates that relying too strongly
on an isotropic zero mean outlier distribution can lead to
poorer results.

Non-minimal solvers, often combined with robust estima-
tors, are designed to leverage data redundancy, making them
less sensitive to measurement noise compared to minimal
solvers [24]. M-estimators modify the nonlinear least-squares
cost function by incorporating robust loss functions, reducing
the influence of outliers during optimization [25].

M-estimators can also be used with GNC, which optimizes
the robust costs by transitioning from convex to non-convex
surrogate functions. This approach helps to avoid local
minima during optimization. Jung et al. [26] explored the
performance of various robust loss functions, both with and
without GNC, and demonstrated that using GNC significantly
improves the robustness of point cloud registration.



Fig. 2. Comparison of FPFH mutual matches between point clouds (left) and registered point clouds using SANDRO with the splitting strategy (right). Red
and blue parts correspond to two different point clouds to be registered. In this example, the presence of two similar chairs in the point clouds causes the
outlier distribution to be highly skewed, preventing convergence with traditional methods. The splitting strategy aims to break the initial bias in distribution
by performing registration on independent subsets. The combined point cloud on the right shows the final registration of SANDRO with 4 splits.

M-estimation is commonly implemented in an IRLS
framework. IRLS and its variants have demonstrated strong
performance in point cloud registration and have been proven
to offer robust convergence properties, as shown by Peng
et al. [27]. A well-known example of M-estimation with
GNC is Fast Global Registration (FAST) by Zhou et al.
[28]. FAST combines an optimization approach based on the
Jacobian matrix with a Geman-McClure robust loss function,
allowing it to iteratively refine the solution and minimize
alignment errors between point clouds. In FAST, the GNC
helps find an initial alignment in convex regions, avoiding
local minima before moving into non-convex areas. The use
of the Jacobian matrix speeds up gradient computation and
improves convergence. Due to its speed and robustness, FAST
is widely used in real-world applications and is implemented
in libraries, such as Open3D [9], making it well-suited for
large-scale registration tasks.

Yang et. al proposed ADAPT [29], a GNC-based optimizer
which showcase state-of-the-art performance when tested on
a variety of datasets. ADAPT was combined with rotation
and translation invariant feature extractions [30]. ADAPT
works by means of Semi-definite programming and it has
been shown to be resilient to up to 90% outliers in a variety of
computer vision applications. In a practical implementation,
ADAPT uses Truncated Least squares alongside GNC and
Black-Rangarajan duality to solve the registration problem.
The optimizer has been shown to reach certifiably optimal
solutions, making it the current state-of-the-art solver for
point cloud registration.

Despite promising advancements in point cloud registration,
current solvers still display poor performance when prefilter-
ing is not applied. Furthermore, even when prefiltering is
present, inlier points can get classified as outliers due to the
initial distribution of the data. Our method aims to overcome
this problem by including all the points in the optimization
process, including all outliers, and by implementing a splitting
strategy to ease the optimization.

III. METHOD

The proposed method incorporates the Geman-McClure
loss, alongside a GNC with exponential decay (see Fig. 3)
in an IRLS framework. Additionally, the optimizer utilizes a

splitting strategy, which allows it to explore several solutions
obtained by taking subsets of the point cloud. This approach
aims to break the initial skewed outlier distribution into
smaller independent subsets which resemble more closely
a zero mean distribution. Our splitting strategy offers an
advantage over methods that take the entire outlier distribution.
Traditional methods fail in the cases where symmetries
are present, such as in Fig. 1. SANDRO accounts for
initial geometric relations within the point cloud that might
otherwise cause premature convergence to local minima
during the GNC evaluation. By doing so, the optimizer
effectively reduces the risk of getting trapped in sub-optimal
solutions.

Fig. 3. GNC applied to the Geman-McClure loss for different values of
the decay parameter α.

A. SANDRO’s algorithm
Given two point clouds, P = {pi} and Q = {qi} with N

matching points, we formulate the registration problem as a
robust least square problem:

min
T

N∑
i

ρ(ri(T)) (1)

where T ∈ SE(3) is the homogeneous transformation matrix
between P and Q, and ri ∈ R3 is the residual ri = pi−Tqi.
For brevity of notation, the dependence of the residuals on
T is omitted. The function ρ : R3 → R is a robust cost
function. As already mentioned, in our approach we combine
the Geman-McClure function with the GNC approach, so (1)
is rewritten as:



min
T

γ =

N∑
i

Ei(T) =

N∑
i

α∥ri∥2

α+ ∥ri∥2
(2)

The function Ei(T) in (2) corresponds to the GNC
surrogate function of the Geman-McClure function [29], and
is solved by iteratively reducing the decay parameter α. We
used an exponential decay, as it allows the loss function to
transition progressively from a convex to a less convex profile,
enabling smoother convergence toward the global minimum.
With each iteration of the IRLS, the optimization problem
becomes locally convex around the current solution, making it
easier for the algorithm to move closer to the global optimum
while avoiding poor local minima.

Equation (2) can be efficiently solved by applying the
IRLS framework and then implementing the weighted SVD
algorithm in [31]. Thus, the minimization problem is rewritten
as:

min
T

N∑
i

1

2
wi∥ri∥2 (3)

The weights wi are updated with the gradient of the robust
cost function Ei(T) with respect to ∥r∥

wi =
1

∥ri∥
∂E(T)

∂∥ri∥
=

1

2

1

∥ri∥
2α2∥r∥2

(α+ ∥ri∥2)2
=

α2

(α+ ∥ri∥2)2
(4)

allowing for the adaptive reweighing during the IRLS process.
As α decreases, the weighting function becomes sharper,
resulting in points with smaller residuals to have a higher
weight. It is important to note that SANDRO does not
explicitly discard outlier points during the optimization.
Instead, it updates them to have a lower impact on the final
transformation matrix.

To summarize, in our algorithm we solve (3), we reduce
α with an exponential parameter and we update the residual
ri and consequently the weights (4) using the transformation
matrix T previously computed. These steps are performed
until no reduction is obtained between two consecutive
steps for the Geman-McClure function (2). Furthermore, our
optimizer does not require a good initial starting point, which
significantly enhances its usability in practical applications
where obtaining such a starting point is challenging.

B. Splitting strategy

As already mentioned, similar approaches that utilize the
entire set of matched points are often unable to converge
due to the initial skew in outlier correlations. To improve
performance, we introduced a splitting strategy, where the
initial point cloud is divided into equal parts called sub-clouds.
The number of splits can be adjusted as a hyper-parameter
dependent on the size of the point cloud. This approach helps
the algorithm to focus on smaller sections without being
influenced by non zero-mean outlier distributions, which could
otherwise hinder the IRLS algorithm’s ability to converge.

The steps described in Sec. III-A are performed indepen-
dently on each sub-cloud. Once the optimization step for each

sub-cloud is completed, the transformation with the lowest
loss is selected as the best estimate to aligning the entire
point cloud.

SANDRO with splitting strategy is summarized in Algo-
rithm 1.

Algorithm 1 SANDRO’s pipeline
Require: Point clouds P = {pi} and Q = {qi}, number of

correspondences N , initial transformation T0, parameter
α, tolerance ϵ , decay rate β

1: Initialize T← T0

2: Define the number of splits s
3: split matches in P and Q by s equal sub clouds
4: repeat
5: Compute residuals ri ← pi −Tqi for all i
6: Compute weights wi ← α2

(α+∥ri∥2)2 for all i

7: Compute robust loss γ ←
∑N/s

i
∥ri∥2

(α+∥ri∥2)
8: Formulate and solve the weighted least squares prob-

lem:

T← argmin
T

N/s∑
i

1

2
wi∥ri∥2

9: Update the transformation T
10: Update the decay parameter α→ α× β
11: Check for convergence:

∆γ ← ∥γ − γprev∥

12: until ∆γ < ϵ where ϵ the termination criterion
13: return T for the sub cloud with the smallest robust

loss.

IV. RESULTS

The proposed method was evaluated on both the Redwood
dataset [32] and on synthetic point clouds obtained in our
lab. The Redwood dataset contains a set of point clouds
obtained from an indoor setting, which allow us to evaluate the
performance of the different algorithms in highly structured
scenarios.

Our method was compared with state-of-the-art registra-
tion techniques, such as ADAPT and FAST. To generate
a substantial number of matches between the two point
clouds, FPFH features with mutual best matching scores
were utilized. Although FPFH features are extremely fast to
compute, they tend to produce a significant number of outlier
correspondences, making them an excellent benchmark for
assessing the effectiveness of the solvers.

A. Evaluation on Redwood Dataset

For the Redwood dataset, the full set of matching point
clouds was provided along with the correct transformation
matrix. The dataset includes both simple scenarios, where
the scans are very similar with minimal deviations, and more
challenging ones, where point cloud pairs have low overlap
and symmetric features, making registration difficult. To
reduce redundant data, the point clouds were downsampled
using a voxel size of 0.05. The points with the reciprocal best



FPFH scores were then selected as representative matches
for the registration process. The results showcasing the
performance of different methods are shown in Fig. 4.

Fig. 4. Comparison of Rotation and Translation Errors, displayed only
for the point cloud pairs which achieved a successful registration in the
Redwood dataset.

TABLE I
COMPARISON OF DISCARDED MATCHES AND SUCCESS RATE BETWEEN

DIFFERENT METHODS. SANDRO WITH 4 SPLITS SUCCESSFULLY

REGISTERS THE MOST POINT CLOUDS

method discarded Success rate (%)

RANSAC [32] 214 35
FAST [28] 226 31

ADAPT [29] 187 43
SANDRO (4 splits) (ours) 124 62

SANDRO (no splits) (ours) 181 45

Successful registrations were defined as those with a
rotation error ≤ 10◦ and a translation error ≤ 1m. These
values were chosen by considering a SLAM application where
the data is later fed into a pose graph optimization module.
While pose graph optimization is a powerful technique that
can correct odometry error, it is often unable to recover the
true pose when the errors are too high, or when there are
a large number of outliers. Figure 4 shows that ADAPT
and SANDRO (no splits) outperform RANSAC and FAST
in terms of error values for both rotation and translation,
considering successful registrations. Since RANSAC can
technically converge to the best possible solution given an
infinite time, 1000 iterations were selected as the maximum
number in order to establish an upper bound. The average
time for 1000 iterations of RANSAC was approximately 0.2
seconds, which is an order of magnitude slower than the other
methods, including FAST, ADAPT, and SANDRO (no splits).

We chose 4 splits for a good trade-off in terms of speed and
success rate. The splitting strategy in SANDRO increases
the computation time linearly; with 4 splits, the execution
time becomes comparable to that of RANSAC with 1000
iterations. Furthermore, it was observed that 4 splits yielded
the best results in term of success rate for alignment.

The success rate of the different registration algorithms on
the Redwood dataset is shown in Tab. I. It is noticeable that
incorporating the splitting strategy in SANDRO significantly
improves the results compared to the other methods tested.
This suggests that the splitting strategy is effective in handling
non-uniformly distributed outliers.

This conclusion is further supported by comparing the
results of SANDRO (no splits) to those of ADAPT. While both
SANDRO and ADAPT minimize (1) using GNC and IRLS,
the Geman-McClure loss function used in SANDRO produces
results similar to the Truncated Least Squares method used
by ADAPT, with only a 2% improvement in success rate.
However, when the splitting strategy is applied, SANDRO
shows a significant improvement over both ADAPT and
SANDRO (no splits).

B. Evaluation on Synthetic Dataset

To evaluate the registration algorithms in a controlled
setting, we captured a point cloud of a standing person in our
lab containing 88669 points, which was downsampled using
a voxel size of 0.02. The lab-captured point cloud shows a
loose symmetry between the left and right sides of the body,
primarily due to the positioning of the subject.

To create a synthetic dataset from the captured point cloud,
we generated outliers by projecting points from the target
point cloud onto a unit sphere. This process was followed by
a random rotation and translation in order to assess different
starting scenarios between the source and target point clouds.

An example of the result of SANDRO is shown in Fig. 5.
It can be seen that SANDRO successfully recovers the
correct transformation between the source and the target point
clouds. The remaining inlier points were perfectly matched to
maintain precise control over the percentage of outliers in the
dataset. Each registration algorithm was tested 40 times with
different translations to ensure that a statistically significant
amount of data was collected for evaluation.

The synthetic dataset was evaluated by comparing the rota-
tion error between the estimated and generated transformation
matrices. Successful attempts were classified to be the ones
with a rotation error ≤ 10° and translation error ≤ 1 m.
Figure 6 shows that for outlier rates of up to 80%, the rotation
errors amongst the different methods remain very similar.
After 80%, all methods except ADAPT increase at similar
rates and reach a rotation error of ≈ 1° at 95% outlier rate.
Figure 7 illustrates the success percentage of different methods
at varying percentage of outlier rates. As shown, both versions
of SANDRO, splitting and no splitting, demonstrate robust
performance, successfully handling outlier rates of up to 95%.
In contrast, ADAPT and FAST show much lower tolerance
at 95% of outliers, with ADAPT maintaining a success rate
of approximately 10%, and FAST achieving around 25%.



This clear disparity highlights the superior robustness of the
SANDRO methods in environments with high levels of noise.

Interestingly, there was no significant difference between
the results of SANDRO with and without splitting. This
lack of distinction could be due to the distribution of the
synthetic dataset’s outliers. The uniform splitting of the point
cloud likely resulted in sub-clouds with similar distributions,
meaning the split sub-clouds did not provide any advantage
over processing the entire cloud. As a result, both methods
converged to similar performance metrics, suggesting that in
this specific synthetic scenario, the splitting did not contribute
meaningfully to the overall robustness.

As done in Sec. IV-A, we selected a maximum number of
1000 iterations for RANSAC. As expected, it failed to reach
a suitable solution when the outlier rates exceeded 60%, due
to the stochastic nature of the algorithm.

C. Discussion

The number of splits on the Redwood dataset was chosen
to be the one showcasing the best results. We observed that
after 4 splits the performance of the registration dropped
for point clouds averaging around 1600 points. This can be
attributed to the sub clouds not having a high enough number
of inlier points, thus preventing it from converging.

In Fig. 6, ADAPT is shown to have a lower rotation error
throughout the different outlier rates compared to the other
tested methods. This performance is most likely caused by
the use of the Black-Rangarajan formulation used to perform
the annealing of the line processes [33]. This method proves
to be more robust in terms of diminishing the rotation error
with the trade-off of a lower success rate, as seen by the
performance of ADAPT in the real and synthetic dataset.

Furthermore, the splitting strategy was observed to increase
the time by a factor of ten. This increase in time was not
caused directly by the optimization within the sub-clouds,
instead it was caused by the non-optimized generation of
the sub-cloud in the pre-processing of the matches. In the
future, an optimized splitting function would be able to
achieve a better computational time. Overall, the method has
demonstrated robust performance, consistently converging to
high-quality solutions even in the presence of a high outlier
rate. This makes it particularly suitable for complex computer

Fig. 5. Aligned point clouds from the synthetic dataset with 50% outlier
rate, representing a person standing. The points in red correspond to the
source cloud, and the points in blue are the target cloud with outliers.

Fig. 6. Rotation errors in the presence of different outlier rates (or “noise
level”) for five point cloud registration methods.

Fig. 7. Comparison of success rate with different outlier rates (or “noise
level”) for five point cloud registration methods.

vision tasks, such as 3D reconstruction, where traditional
methods often struggle.

V. CONCLUSION

In this paper, we introduced a novel state-of-the-art solver
capable of performing point cloud registration, even with high
outlier rates on both real and synthetic datasets. Building on
the GNC approach with the Geman-McClure cost function,
we demonstrated that splitting the point cloud significantly
improves registration success in scenarios with symmetries.
This is shown in Fig. 2, where, on top of the low overlap
between the point clouds, the majority of the matches does
not follow the same distribution, resulting in a very skewed
symmetrical outlier distribution.

When tested on the Redwood dataset, SANDRO, with 4
splits, outperformed previous state-of-the-art methods such
as ADAPT, achieving better registration success rates (38%
discarded versus 57% discarded by ADAPT). Additionally,
in tests on the synthetic dataset, both variations of SANDRO
noticeably outperformed other methods, achieving over 60%
success in registrations with 95% outlier rates, highlighting
its robustness in scenarios with a high outlier rate.

As future works, the splitting strategy used in SANDRO
could be further refined by determining the optimal number of
splits required to account for different data distributions. One
approach to achieve this would be to analyze the distribution
of matched pairs and use that information to determine the
optimal number of splits. Additionally, a novel pre-processing
methodology could be developed to better utilize the splitting
strategy presented in this paper.
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