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Abstract— In this work, a non-gaited framework for legged
system locomotion is presented. The approach decouples the
gait sequence optimization by considering the problem as
a decision-making process. The redefined contact sequence
problem is solved by utilizing a Monte Carlo Tree Search
(MCTS) algorithm that exploits optimization-based simulations
to evaluate the best search direction. The proposed scheme
has proven to have a good trade-off between exploration and
exploitation of the search space compared to the state-of-
the-art Mixed-Integer Quadratic Programming (MIQP). The
model predictive control (MPC) utilizes the gait generated by
the MCTS to optimize the ground reaction forces and future
footholds position. The simulation results, performed on a
quadruped robot, showed that the proposed framework could
generate known periodic gait and adapt the contact sequence
to the encountered conditions, including external forces and
terrain with unknown and variable properties. When tested on
robots with different layouts, the system has also shown its
reliability.

I. INTRODUCTION

The capabilities of legged animals in dealing with different
conditions, such as rough terrains, or effectively react to
external disturbances motivated researchers in developing
bio-inspired legged systems. However, motion planning and
control of this kind of robot represent a difficult challenge
since the system’s motion results from the interaction be-
tween the environment and the feet in contact. Moreover,
the body is often underactuated during dynamic gaits, and
the contact forces are also constrained due to the physical
limitations of the joint actuators and to guarantee non-
slipping conditions.

In most of the previous works as [1], [2] and [3], a
priori knowledge of the motion, such as the future footholds
position, the contact foot sequence, or the overall contact
timing, are taken as assumptions. Introducing these strategies
is necessary to speed up the optimization, especially in real-
time systems, but it also limits the variety of the solution.
Furthermore, the obtained solution profoundly relies on the
handcrafted heuristic required to decouple the gait sequence
problem.

For this reason, various attempts have been made to
incorporate contact information in the overall optimization
framework. The work in [4] avoided the problem of intro-
ducing the contact variables along with the linear comple-
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mentarity constraint (LCC), but the LCC significantly affects
the solver’s speed since it does not satisfy the linear indepen-
dence constraint qualification [5]. [6], and [5] modeled the
contact dynamics by inserting spring and damper systems
between the ground and the feet. Despite resulting in an
explicit contact model with faster solving time, it suffered
from the necessity of a trade-off between good gradients in
the solver and the physicality of the solution. In [7], the LCC
is encapsulated in the phased-based parametrization of the
ground reaction forces (GRF) and foot position. Although it
decreased the solving time significantly, it still was not fast
enough for real-time implementation.

On the other hand, [8] utilized convex mixed-integer
formulation to achieve simultaneous contact, gait, and motion
planning. They used a binary value to represent the stance-
swing phases, the centroidal dynamics model, and fixed
phased duration. Consequently, these assumptions limit the
solution to only symmetrical gait and have shown problems
in more dynamics situations. [9] dropped the convex repre-
sentation in favor of a fully nonlinear model of the dynamics
integrating the duration of the phases as an optimization vari-
able. This Mixed-Integer Non-Linear Programming (MINLP)
formulation is limited to offline use since the average com-
putational time is more than 5 hours. In order to overcome
this limitation, the authors trained a neural network to map
the resolved MINLP solutions for online gait selection.

Knowledge of the contact state for each foot is funda-
mental for GRF and footholds optimization since only feet
in contact with the ground can contribute to the contact
force generated while the feet in the flying phase are free to
move to accommodate the base motion. In this work, instead
of parameterizing the contact information in continuous
variables or as LCC, the problem has been discretized in a
decision-making process. For each time step, one in the range
of the possible combination of legs in contact is chosen.
For a quadruped, this translates to 24 configuration at each
time step. The number increases to 16n when the prediction
horizon is extended to n time steps. As a result of the
combinatorial nature of the problem, the dimension of the
search space easily surpasses the computational limit for
a real-time brute force search. The absence of a practical
heuristic, which can describe the current system status while
expanding the tree, made the classic asymmetric growing
algorithms, e.g., A∗ [10], challenging.

For this reason, the proposed approach uses the Monte
Carlo Tree Search (MCTS) to integrate online contact pre-
diction in an MPC-based control framework. Works like
[11] already have shown some of the benefits of MCTS to
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Fig. 1. Diagram of overall control framework. The ẋuser is defined as
the x, y, yaw directional velocity input from the user. The xest and ẋest
is the estimated state values (we used the true values from the simulation
in this work).

plan large-scale contact problems involving the reordering
of boxes with a robotic arm. Furthermore, in artificial intel-
ligence research, the MCTS has shown remarkable perfor-
mance for solving decision-making problems. One example
is the game of Go, in which the high branching factor and
the absence of an effective heuristic to evaluate non-terminal
state made other algorithms fail [12]. Using MCTS, the
Google AlphaGo system reached the super-human perfor-
mances on the 19x19 board for the first time.

In our work, integration of MCTS is performed by de-
coupling the problem from foothold prediction and GRF
generation while avoiding the limitation of the handcrafted
heuristic besides the MPC cost function. The remainder of
the paper is organized as follows. Section II explains details
of the MCTS algorithm structure used in the proposed algo-
rithm. Section III contains the simulation results in various
scenarios to show the effect of the proposed algorithm.
Section IV discusses the issues about the results. Finally,
Section V concludes the paper.

II. MONTE CARLO TREE SEARCH GAIT
PLANNER

The proposed algorithm is presented in Fig. 1. The user
inputs are ẋ and ẏ, which are respectively the target velocity
in the x and y directions, and ψ̇ that is the target yaw
rate. The user inputs are then used to generate the reference
trajectory for the floating body by integrating the target speed
and keeping the other velocities to zero, while the footholds
reference are generated using a heuristics as in [13]. The
MCTS then uses the current contact information and robot
states with the reference trajectory to generate the contact
sequence used by the MPC.

The MCTS, shown in Algorithm 1, is an asymmetric
growing tree algorithm defined by two different policies, the
tree policy and the simulation policy. The tree policy selects
the nodes to expand while the simulation policy evaluates
the phase sequence defined. The MCTS is employed to
optimize the gait sequence utilized in the overall control
framework. The algorithm creates a tree search where each
node represents one of the possible choices for the con-
tact configuration. Starting from the root node representing
the current contact situation, each node deeper in the tree
represents the sequence of choices that constitute the gait
prediction for the time horizon. At each iteration of the tree
growing process, starting from the most promising node,
new nodes are expanded considering all the available options

Algorithm 1 MCTS-based gait generator
function MCTSEARCH(System state, Contact )

create root node s0 with
the initial contact state c0
while length of cinode

≤ Nstep do
sinode

←−TreePolicy(sinode−1)
J̄inode

←−SimulationPolicy(cinode
)

Backpropagation(J̄inode
)

return cinode

end while
end function

(e.g., 16 combination of possible contact configuration for
quadrupeds). However, only the options that satisfy the
constraint of minimum flying phase duration can be ap-
pended to the tree. This minimum flying phase constraint
is equal to 0.2s, which avoids an unwanted bouncing effect
of the foot. Each added node continues the simulation by
randomly selecting the contact sequence to simulate the
considered time horizon. Once the simulations fulfill the
considered time horizon length, the simulation policy can
be called to evaluate the node. Since the contact sequence
is randomly completed, multiple simulations (which is held
nsim times as in Table. I) from each node are run, and
the evaluations are averaged. The simulation policy operates
by solving a constrained optimization problem to find the
optimal system state and control input combination relative
to the given contact sequence. The optimization formulation
of the simulation policy is the same as the one adopted for
the MPC that stabilizes the system motion. Further details
are reported in section II-B.

After evaluating all the new nodes, the new information
acquired through the simulation is backpropagated to the
parent node. In this way the evaluation of the parent node is
refined. After the tree is updated with the new information,
the tree policy traverses the tree until the next node to
expand is found. The overall iterative growing process can
be synthesized in four steps as shown in Fig. 2.

• Selection: Beginning from the root node, the tree policy
is utilized to traverse the tree and select the next node to
expand by choosing the node with lowest node value (1).

• Expansion: The selected leaf node is expanded checking
each of the feasible phases that can be added to the contact
sequence.

• Simulation: Multiple simulations are performed, com-
pleting the node contact sequence randomly. The node
simulation number in (1) is increased for each nodes
passed by.

• Backpropagation: The resulting simulation cost (6) from
the new simulations of all the child nodes are averaged and
assigned to the parent node. The same process is repeated
through the branch until the root node.

The search terminates when it reaches the maximum com-
putational budget, or the solution converges to a minimum
for the considered time horizon as shown in Fig.2.



Fig. 2. Iterative growing process of the MCTS.

A. TREE POLICY

In this subsection, the tree policy of the MCTS is ex-
plained in detail. The tree policy affects two of the basic
MCTS steps, Selection, and Expansion. After the simula-
tion of the newly expanded nodes, the acquired information
is backpropagated through the tree till reaching the root
node. Once the tree is fully updated, the tree policy is
responsible for the tree traversal that the following node
selection brings. The choice of the next node to expand
represents a crucial part of the MCTS algorithm and con-
stitutes the exploitation-exploration dilemma, [14]. When
deciding the next expansion direction, the algorithm should
balance between favoring the most promising node, which
means converging faster to a solution or exploring the other
possibilities. In order to address these problems, [15] and
[16] implemented the “Upper Confidence Bounds applied
to Tree (UCT)”. The concept behind this popular method
is to compare the upper confidence boundary (UCB) of the
nodes evaluation instead of the average itself and pick the
one with the higher value. Considering that more confident
decisions make narrower confidence intervals, this method
increases the possibility that nodes with close evaluation
values are expanded while the less promising branches are
still discarded for an efficient search. In this work, a variation
of the UCB1 algorithm as in [17] is used with the cost
in (6). In this algorithm, instead of picking the maximum
between the UCB of the node evaluation, the policy selects
the minimum between the lower confidence boundary (LCB),
which is estimated as follows:

LCBinode
= J̄ inode

− c ·

√
logNinode

ninode

, (1)

where J̄ i is the average evaluation of the child node, Ni

and ni are respectively the numbers that the parent node
and the current ithnode node has been simulated, and c is a
tunable constant value. This formulation has the advantage of
being easy to calculate while coupling the number of times
a node is visited and the confidence assigned to the node
value estimation. The first term of the expression in (1) is
the average evaluation of the node calculated through the
simulation of the node itself and its children. It represents the
current best estimate of the real node evaluation, indicating
the goodness of that expansion direction. The second term
represents the confidence in the estimate and is intrinsically

linked with the number of times the node has been simulated.
The more the considered node is simulated, the smaller the
second term of the subtraction results. This implies that
the resultant LCBinode

is closer to the average evaluation
J̄ inode

for nodes that are visited multiple times, while the
less simulated nodes’ cost is decreased and giving them
an advantage in the Selection process. The c value is
empirically defined to balance the two terms and to achieve
the desired performance.

B. SIMULATION POLICY

In this subsection, the simulation policy of the MCTS
is explained in detail. The simulation policy uses the same
optimization scheme of the MPC-based controllers utilized
for the motion stabilization of legged robots, e.g., [18]. The
optimal control inputs and the future system states are calcu-
lated at the same time by the MPC. This framework rapidly
simulates the behavior of the robot relative to the chosen
gait. The utilized formulation is derivated from [19], but the
state variable and control input are augmented to include the
future foothold optimization. When the assumption of light
leg holds, the 3-dimensional single rigid-body model is a
reasonable trade-off between the approximation accuracy and
the computational efficiency for the dynamics of the robot,
as proven by its extensive use in legged system control [1],
[18], [3], [20]. This assumption eliminates the legs dynamics
and their non-linearities from the equation of motion. The
rotation matrix representation is chosen to describe the body
orientation. While other local formulations like Euler angles
offer a more straightforward expression of the equation
of motion, they are subjected to singularity configuration
that can bring to fatal error in the system control when
encountered. A variation-based linearization scheme as in
[19] is used. This scheme assumes that the rotational error
expressed in the SO(3) manifold can be formulated consid-
ering the variation to the operating point. Utilizing the first-
order Taylor expansion of the matrix exponential, rotation
error represented in SO(3) is approximated to the rotation
variation in so(3) and further vectorized for optimization.
The correspondent state vector and control vector are defined
as:

x =
[
pCoM , ṗCoM , ξ,ω

B ,pf1 ,p
f
2 ,p

f
3 ,p

f
4

]
∈ R24,

u =
[
f1,f2,f3,f4,v

f
1 ,v

f
2 ,v

f
3 ,v

f
4

]
∈ R20, (2)

where pCoM ∈ R3 is the position of the CoM, ξ ∈ R3 is the
exponential coordinate for the rotation, ω ∈ R3 is the angular
velocity vector, pfileg ∈ R3 is the position vector of the ithleg
foot with ileg = 1, 2, 3, 4. The terms f ileg

∈ R3 and vfi ∈ R2

are respectively the GRF and the horizontal speed of the
ithleg foot in a world frame as Fig. 3. In order to complete
the formulation of the optimization problem, a cost function
needs to be implemented. While the constraints guarantee the
feasibility and physicality of the solution, the cost function
defines the level of expected performance. Following the
scheme utilized in the dynamics linearization, the cost is
defined as the weighted sum of the error, on the state and



control vector, with respect to the reference. Taking care of
the state definition from (2) the cost for the kth prediction
is formulated as:

J̃k =‖epCoM ,k‖QpCoM
+ ‖eṗCoM ,k‖QṗCoM

+ ‖eξ,k‖Qξ+

+ ‖eω,k‖Qω +

4∑
ileg=1

‖epf
ileg

,k‖Qpf
ileg

+

+

4∑
ileg=1

‖efileg,k‖Rf
+

4∑
ileg=1

‖evf
ileg

,k‖Rv ,

(3)
where ‖e‖X := eTXe and e(.,k) is the error with respect
to the reference at the kth prediction. The control input
references are defined as f ileg,k

= mg
Nleg

(Nleg = 4 is

the number of legs) and vfileg,k = [ẋCoM,k, ẏCoM,k]T to
minimize the control effort and relative limb velocity. The
optimization variables are defined by stacking all the stage
variables of each step k in one vector to exploit the state-of-
the-art Quadratic Programming solver :

y = [x1, u1, ... xNstep
, uNstep

]T , (4)

where Nstep is the time-horizon length and y ∈ R44·Nstep .
Based on the new state defined in (4), the linearized system
dynamics, the inequality constraints, and the cost function
can be manipulated to formulate the overall problem as:

min
y

1

2
yTWy + yTh.

s.t. Aeqy = beq,

Aineqy ≤ bineq,

(5)

where W ∈ R(44·Nstep)×(44·Nstep),h ∈ R44·Nstep come
from the cost function, Aeq ∈ R(neq·Nstep)×(44·Nstep),
beq ∈ Rneq·Nstep , are defined by the linearized system
dynamics and Aineq ∈ R(nineq·Nstep)×(44·Nstep) and bineq ∈
Rnineq·Nstep are the linearized friction cone constraint and
box constraint imposed to guarantee the feasibility of the
solution and to ensure the non-slipping condition (neq and
nineq indicates the number of equatity and inequality con-
traints per each step, respectively) further details on the
matrix construction are in [19]. qpSWIFT [21] is chosen
among other solvers to solve the optimization due to its
solution speed with the ability to exploit the sparse structure
of the problem. By utilizing qpSWIFT in the simulation
process of the MCTS gait generator, the system can perform
simulations up to 250 Hz without including any paralleliza-
tion techniques.

Now, with the solved optimal control inputs and states, the
performance of the gait is evaluated with the cost function
J̃k, defined in equation (3), with the addition of a new term
related to the contact sequence. The additional cost gives
more freedom to tune the solution to maximize the number
of legs in contact at each step. The final node episode cost
J is then defined as follows:

J =

Nstep∑
k=1

{J̃k +Rc · (Nleg −
Nleg∑
ileg=1

cileg,k)}, (6)

Fig. 3. The adopted robot model and coordinate system. f i and vf
i are

the control inputs for the ithleg leg, which are respectively the GRF and the
horizontal foot speed both expressed in the absolute frame {W}.

TABLE I
ROBOT AND FRAMEWORK PARAMETER

Parameter Value Parameter Value
m 19 kg µ 0.7
I diag(1e-2[9 60 67])Kgm2 c 1.5

QpCoM
diag(1e3[1 1 30]) nsim 9

QṗCoM
diag(1e1[10 1 1]) dttree 0.1 s

Qξ diag(1e3[2 2 3]) dtMPC 0.02 s
Qω diag(1e1[1 1 1]) TMPC 0.4 s

Qpileg
diag(1e3[1 1 0]) Body Length 0.6 m

Rf diag(1e-3[1 1 1]) Body Width 0.2 m
Rv diag(1e1[1 1]) Ttree 0.6 s

where Rc is the weight relative to the contact cost, and cileg,k
is the binary variable representing the contact state for the
ith leg in kth step. The new term in equation (6) minimize
the leg’s air-time, increasing the stability of the solution at
lower target speeds.

III. SIMULATION RESULT

In this section, the proposed algorithm is verified on
various simulation environments with a quadrupedal robot
using the Raisim [22] simulator, where the parameters of
the robot and the framework are summarized in Table I. The
joint torques values to actuate the robot are calculated as
follows by using GRFs, feet positions and velocities, which
are generated by the MPC:

τττ ileg = JT
ileg

[cileg,kf ileg
+ (1− cileg,k)kp(pfileg,est − p

f
ileg

)

+ (1− cileg,k)kd(ṗfileg,est − ṗ
f
ileg

)], (7)

where J ileg indicates the leg kinematic Jacobian, kp and
kd indicates the tunable Proportional and Differential (PD)
control gain, pfileg,est and ṗfileg,est is the estimated foot

position and velocity and ṗfileg = [vfileg
T
, żileg ]T where żileg

is the speed in the z direction as a 5th order polynomial.

A. MCTS COST ANALYSIS

Due to the intrinsic implementation of the contact as a
binary variable, it is natural to compare the proposed control
framework with a Mixed Integer Quadratic Programming
(MIQP) formulation. MIQP formulations have already been
successfully used in various works for the contact planning of
biped robots as in [23], and [24], as well as for quadrupeds
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in [8]. To obtain a fair comparison, the same constraints,
dynamics linearization, and cost function presented in section
II-B are applied. Also, the limitation of 0.2s minimum
swing time is introduced as in the MCTS. A state-of-
the-art optimization solver GUROBI, [25], is utilized to
solve the proposed optimization problem. Fig. 4. shows the
average cost of the MCTS and MIQP with the respective
standard deviations. The values are obtained by averaging
the cost calculated by the two algorithms on the same
robot conditions with the same reference and time horizon.
Multiple simulations are run with different target speed from
0m/s to 2.5m/s with random external forces applied with
an average magnitude of 30N . As reported in Fig. 4., the
average cost of the MCTS is only 10% bigger than the
one of the MIQP while having 2.72 times faster solution.
The comparison shows the consistency of the MCTS gait
sequence generator in terms of cost minimization and the
computational advantages of this formulation with respect to
the state-of-the-art solver.

B. GAIT GENERATION ANALYSIS

The advantages of having the possibility of gait adaptation
can be seen by analyzing the MPC cost at different speeds.
Fig. 5. shows the average cost calculated by the MPC
during the simulations. The gait generated from MCTS and
predefined gaits is compared with different target speeds
that varies from 1m/s to 2.5m/s. We could find out that
MCTS outperforms predefined gaits. The costs are recorded
for 3s to evaluate the reached limit cycle. The comparison
is performed with three different predefined gaits: Trot,
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Fig. 6. Example gait for quadruped robot generated at a target speed of
1.5m/s on graph (a). The example gait generated for the three leg robot at
a target speed of 0.5m/s on graph (b). RC stands for the Rear Center leg.
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Pace, and Bound. The MPC cost is chosen as a metric
for the evaluation since it is tuned to represent an optimal
overall performance for the robot at the given condition and
target input. As written in Table I, the MCTS works with
a time horizon of 0.6s and a frequency update of 10Hz.
Interestingly, for a target speed of 1.5m/s, if the optimal
contact sequence is recalculated at each framework’s cycle
by MCTS, the controller reaches a limit cycle as shown in
Fig. 6. One thing to consider is that the limit cycle period
length and the MCTS time horizon length are not linked and
the algorithm has proven to discover periodic cycles with
shorter or longer periods than the considered time horizon.

C. Robustness

One of the advantages of the non-gaited locomotion of
the system is the robustness of the robot against external
disturbances. This is tested in simulation by generating a
pattern of random external forces applied to the robot body.
The force is applied multiple times in randomized directions,
with an average of 90 deg difference from the direction of
the motion. The test is failed if the robot touches the ground
with a part that is not the foot. The simulations are performed
with a target speed of 0.5m/s and 1.5m/s. The system is
compared with the same fixed gait utilized in the previous
section to analyze the gait difference at various speeds. Fig.
7 reports the frequency of failure with respect to the force
magnitude on a sample of 250 simulations. The MCTS
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always achieves better performances than the fixed gait with
a decrease in the fraction of failure up to 13%. Another
advantage of the non-gaited locomotion of the system is the
robustness against an unknown environment. In a model-
based framework, various assumptions are taken to model
the contact with the ground. When these assumptions are
not satisfied, the system can irremediably fail. The proposed
framework based on the MPC controller and enhanced with
the MCTS gait generator can overcome these problems
without including any terrain information inside the model.
Adequate changes in the contact sequence can mitigate the
effect of unexpected terrain conditions and optimize the
efficiency of the consequent reaction. The robot is tested on
two treadmills, one per side, to set different speeds for each
part of the robot. As shown in Fig. 8. a target yaw rate, ψ̇,
is given as input while the green treadmill is moving with
a speed of vt = 0.2m/s and the red one is kept still. The
screenshot in Fig. 9. also shows the system’s performance
when one of the legs is on a slippery terrain. The generated
gait is compared with the performance achieved utilizing
a fixed gait controller that cannot stabilize the system and
maintain the base position. The MCTS does not have any
additional information about the environment, but the leg
position feedback is enough for the algorithm to generate a
gait that can stabilize the system.

D. MODIFIED LEGGED ROBOT

For a quadruped robot, the nature gives us a hint for
designing the contact sequences. However, it is not easy to
design a predefined gait sequence for a robot with an un-
natural number and configuration of legs. Tuning the stance
and swing time for this system is a tedious job and requires
intuition and much testing to find a gait that can perform
the desired task. Thankfully, the proposed framework’s only
necessary change is to specify the number of legs of the
desired system and the hip position to create a compatible
contact sequence. For example, a robot with two legs of the
front and only one on the rear is tested. As the right graph
of Fig. 6. shows, the framework has no problem in finding
a successful gait sequence for this leg configuration. The
example highlights a periodic gait discovered by the system
when the user imposes a target speed of 0.5m/s. It should be
noticed that the rear leg makes twice the contact with respect
to the front legs due to the nature of leg configuration.

IV. DISCUSSION

The presented work is implemented in MATLAB, and the
shown simulations are performed on a six-core mobile pro-
cessor, the Intel(R) i7-9750H. Due to current implementation
limitations, the MCTS is not able to run in real-time. In
the presented results, the average time for the solution to
converge is 0.37s while the MCTS performed, on average,
92 simulations to predict six time-steps. Considering the
property of the MCTS, the algorithm can be interrupted
before convergence while still getting feasible results for
an increase in speed up to 97%. Further details can be
seen in Fig. 10. where the costs and solving times at
different expansion cycles are reported. Furthermore, various
work as [26] and [27] showed the benefit of introducing
parallelization techniques in the MCTS framework to speed
up the computation. The algorithm can also speed up by
substituting the optimization-based simulation with a neural
network imitating the simulation in [28].

V. CONCLUSION

In this paper, a novel framework for non-gaited legged
locomotion control has been presented. The proposed method
exploits the formulation of the contact sequence generation
as a decision-making problem. The contact sequence opti-
mization is solved with a novel MCTS-based approach. The
gait generation is decoupled from the GRF and foothold opti-
mization carried by the MPC-based controller. The modified
MCTS uses the prediction capabilities of the MPC to explore
the vast search space of possible phases combination to give
output as the contact sequence over a fixed time horizon. The
shown comparison in simulation environments highlights
the potential of this framework against the state-of-the-art
MIQP solvers. The presented simulation result proves that
the proposed method can automatically discover periodic
gaits and adapt to external disturbances and unknown ter-
rain morphology and characteristics, increasing the system’s
robustness. Finally, the framework is easily adaptable to
various robot layouts.
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