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Abstract—Litter nowadays presents a significant threat to the
equilibrium of many ecosystems. An example is the sea, where
litter coming from coasts and cities via gutters, streets, and
waterways, releases toxic chemicals and microplastics during its
decomposition. Litter removal is often carried out manually by
humans, which inherently lowers the amount of waste that can
be effectively collected from the environment. In this paper, we
present a novel quadruped robot prototype that, thanks to its
natural mobility, is able to collect cigarette butts autonomously,
the second most common undisposed waste worldwide, in terrains
that are hard to reach for wheeled and tracked robots. The
core of our approach is a convolutional neural network for litter
detection, followed by a time-optimal planner for reducing the
time needed to collect all the target objects. Precise litter removal
is then performed by a visual servoing procedure which drives
the nozzle of a vacuum cleaner that is attached to one of the
robot legs on top of the detected cigarette butt. As a result of
this particular position of the nozzle, we are able to perform the
collection task without even stopping the robot’s motion, thus
greatly increasing the time-efficiency of the entire procedure.
Extensive tests were conducted in six different outdoor scenarios
to show the performance of our prototype and method. To the
best knowledge of the authors, this is the first time that such a
design and method was presented and successfully tested on a
legged robot.
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I. INTRODUCTION

Litter is an economic, biological and health-related prob-
lem (UNEP, 2006), and along with climate change, loss of bio-
diversity, ocean acidification, and overpopulation, it is widely
recognized as one of the five main challenges that we are
facing as humanity nowadays (Rangel-Buitrago et al., 2022).
The increase in urbanization and consumerism are driving
factors in the rise of trash worldwide (Song et al., 2015), and a
considerable percentage of the produced waste is not properly
disposed of every year. This behavior contaminates soil and
water, increasing the risk for our planet and its inhabitants.
Litter can easily reach marine environments by ending up
in gutters, streets, and waterways (Novotny et al., 2009).
When it breaks down, it can release toxic chemicals, metals,
and microplastic, causing changes in the fauna gene and
protein expression, inflammation, and disruption of feeding
behavior (Bhuyan, 2022), finally altering the equilibrium of
our ecosystem.
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Fig. 1. A snapshot of our quadrupedal robot prototype walking at the beach
of Vernazzola, Genova, Italy.

Among all the different types of waste, Cigarette Butts
(CBs) or cigarette filters are the second most common undis-
posed waste worldwide (Rangel-Buitrago et al., 2022). More
than 5 trillion cigarettes were consumed in 2016, two-thirds
of which were supposedly not thrown away correctly (Araújo
and Costa, 2019), causing, therefore, a vast environmental
problem. In fact, CBs are usually composed of a cellulose-
acetate-based material which does not biodegrade and can
remain in the environment for more than ten years (Belzagui
et al., 2020), freeing up in the marine environments mi-
croplastic and more than 700 toxic chemicals (Slaughter et al.,
2010), (Micevska et al., 2006), e.g., nicotine, 70 of which are
known to cause cancer in humans and animals (Belzagui et al.,
2020).

Given the dreadful impact on the environment caused by
the incorrect disposal of CBs (World Health Organization,
2022), many awareness campaigns have been promoted by
governments over the years to mitigate the problem. Never-
theless, a waste collection procedure performed directly in-
loco, such as in cities, beaches, and other coastal areas, is
still necessary, as demonstrated in the Ocean Conservation
Cleanup reports (Ocean Conservancy, 2023). Unfortunately,
the collection procedure faces many challenges that make an
effective scale-up impossible. While CBs on streets can be
efficiently removed with dedicated vehicles, the majority of
other areas require labor-intensive, manual collection. This is



mainly due to the difficulties given by the CBs’ different sizes,
shapes, and materials, as well as the uneven terrain present in
the different environments they are dispersed into.

Many projects have been developed, in both industry
and academia, trying to automate the aforementioned pro-
cedure. Most of these works have been designed with a
specific target environment in mind. For example, the robots
Angsa (Angsa Robotics, 2024) and Pixies (Pixies Urban Lab,
2024) are small-sized wheeled systems that aim for a more
conventional scenario, such as grass and urban environ-
ments, whereas BeachBot (Project Beach Bot, 2024) and Be-
bot (4Ocean, 2024) have been developed to be operated
on sandy beaches. For this reason, they utilized tracks and
specially designed wheels to move. The developed machines
also differ in the approach chosen for the collection. In Zapata-
Impata et al. (2018), Bai et al. (2018) and Liu et al. (2021),
the authors utilized an arm to selectively collect litter, and
while this method allows for the precise selection of the object
to collect, it requires a more sophisticated vision and control
pipeline that slows down considerably the collection speed.
On the other hand, other projects like 4Ocean (2024) opt for
a more conventional mechanism that collects everything on
the ground without the possibility of differentiating between
trash, plants, or animals. Even though all these approaches
have brought progress towards autonomous litter removal, their
traversability capability is ultimately limited by their design.
In fact, in the case of small obstacles on their path or uneven
terrain, which is a common situation in coasts and cities,
wheeled robots have clear limitations that reduce the amount
of litter that can be collected.

Recently, quadrupedal robots have shown astonishing results
in traversing challenging terrain. In Lee et al. (2020), the
authors proposed a learning-based controller able to cope
with unknown disturbances and uneven terrains. Their outdoor
experiments clearly show the great stability and versatility
achievable by a quadruped robot. Furthermore, safety can be
explicitly considered during locomotion by adopting vision-
based correction for precise footstep planning to avoid having
a foot stuck (Villarreal Magaña et al., 2019), (Jenelten et al.,
2022); in this way, a long-term autonomous operation of
these systems can be achieved. The achievable safety and the
great agility that distinguishes quadruped robots from wheeled
robots show great potential in adopting these systems for litter
removal, especially in human-designed, uneven, and complex
scenarios. Yet, to the best of the author’s knowledge, no
legged robot prototypes have been developed specifically for
this application. We present the autonomous litter removal
prototype VERO that builds upon a state-of-the-art control
framework for legged locomotion. Based on the quadrupedal
robot Aliengo of Unitree1, our design is able to autonomously
collect undisposed CBs while traversing a variety of complex
scenarios that are mostly inaccessible to wheeled robots. We
equipped our prototype with a vacuum cleaner attached to
its trunk and a custom-made nozzle connected to one of its
legs, enabling the possibility of performing collection just
by stepping with the attached nozzle over the detected CBs

1https://www.unitree.com/products/aliengo/

(Fig. 1). From a software point of view, we obtain a precise
collection via a multilevel framework that comprehends image
recognition via neural networks, planning for time-optimal
collection paths, and visual servoing for precise positioning
of the robot’s foot.

A. Contribution

The main contributions of this work are:
• the design and integration of a novel platform for litter

collection based on a legged robot, a vacuum cleaner, and
an innovative foot nozzle design;

• the development of a perception, estimation and control
pipeline that identifies the litter, filters out duplicated
detections, and plans the optimal collection path;

• an extensive real-world validation of the overall system
performance, with numerical and qualitative analysis of
the platform advantages and limitations, in scenarios
where CBs are commonly dispersed into.

• finally, we want to point out that this work represents,
to the best of the author’s knowledge, the first instance
of utilizing a legged quadruped robot where its legs per-
forms an additional task during locomotion, eliminating
the need for extra limbs to accomplish the designated
function.

B. Outline

The paper is organized as follows: Sec. II gives an overview
of our litter collection prototype, whereas Sec. III describes the
proposed approach delving into the developed CBs detection
module, along with a state estimation and planning procedure
for precise and time-optimized waste collection. In Sec. IV, we
detail our locomotion controller, while in Section V we report
on the application of the proposed prototype, showing both
indoor and outdoor experimental results. Finally, a discussion
and some general conclusions about the approach are drawn
respectively in Sec. VI and Sec. VII.

II. VACUUM CLEANER HARDWARE

For this work, the commercial quadruped robot Aliengo has
been adapted by adding a 2 kg commercial vacuum cleaner on
top of its trunk, while a custom-designed nozzle was attached
to its left-front foot (Fig. 2). As will be explained later, our
design can be easily modified to connect the vacuum cleaner
to two or all the available feet, increasing the overall system
efficiency, described here as the time needed to perform the
collection procedure and adaptability. We designed and 3D-
printed a custom-made nozzle to maximize the area around
the foot of the robot where the CBs can be collected without
sacrificing the suction ability of the vacuum cleaner and the
locomotion capability of the robot. In fact, a wider suction
area would have required either a more powerful vacuum
cleaner or a smaller gap between the nozzle and the terrain.
The last point has been observed to be the most critical in
our experiments since the need to have the nozzle close to
the terrain increased the collisions with the ground. All the
impacts that do not happen with the foot disturb the stability
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Fig. 2. Prototype hardware: Image of the presented autonomous litter removal prototype with labels for the key components. The system comprises a quadruped
robot with built-in sensors and computation, a vacuum cleaner with custom-designed nozzle, additional sensors, computers, electronic boards, and a LiPo
battery.

of the motion and the accuracy of the stepping. In Fig. 2,
the reader can clearly observe the adopted solution. Even if
our framework enables precise footstep placement on top of
the detected CBs, a few centimeter mismatches can result in
a non-successful collection procedure. With a bigger nozzle
area, this tolerance is increased.

The vacuum cleaner mounted on top of the platform is a
modified commercial machine. We changed the power supply
to allow external control with a microcontroller board and a
relay, as shown in Fig. 2. In particular, an Arduino UNO board
is connected to an onboard MiniPC and is powered with 5V.
A 24V Lipo battery and a DC-DC converter 24V-12V power
the relay. Commanded by the microcontroller, the relay is only
closed when the vacuum cleaner must be turned on in order
to optimize battery life and avoid collecting undesired objects
during walking.

III. THE LITTER COLLECTION PROCEDURE

In this section, we describe the main components of our
collection approach. At its core, there are three main modules,
namely: Litter Detection Module (LDM), Litter Estimation
Module (LEM), and Litter Collection Module (LCM). All
modules run continuously during robot motion.

During the deployment of the quadruped robot, the operator
chooses a desired area to clean, and subsequently, the robot
calculates an exploration path to fully cover the space. For this,
we divide the chosen area into parallel lanes with a width that
is relative to the field of view of the robot’s frontal camera.
Alternatively, the quadruped can be controlled via dedicated
joystick commands by the operator. During locomotion, the

LDM is responsible for the CBs detection via the onboard
cameras, while the LCM generates a time-optimal collection
path between the target objects. The same object can appear
in more than one camera frame during locomotion, and in
this case, multiple detections of the same item can happen.
Therefore, a data association routine, together with a filtering
procedure, is performed in the LEM to avoid unnecessary
robot motions. Finally, once the quadruped reaches the desired
CB, a visual servoing routine that leverages a secondary
camera pointing down in the direction of the robot’s front
feet is activated for precise step placement.

A block diagram of the proposed approach is shown in
Fig. 3.

A. Litter Detection Module

The LDM is characterized by a CB detection neural network
that is used for a first identification of the object to collect
utilizing the images from the forward-facing camera. This
information is then passed to the LCM for planning an
optimal path and for performing a visual servoing procedure
for a precise footstep placement using the downward-facing
camera. The latter is necessary for coping with inevitable state
estimation drifts.

The network utilized in this work is the broadly adopted
Yolo-V4-tiny (Bochkovskiy et al., 2020), a Convolutional
Neural Network renowned for its computational speed and
accuracy. We used the tiny version of the network, which has
a reduced number of parameters, to ensure online computation
on the onboard PC, an Nvidia Jetson TX2. Yolo builds a
bounding box around an object in the image and returns the
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Fig. 3. Block scheme of the proposed collection procedure. Starting from the left, first, an area to clean is selected by an operator via a user interface, or
alternatively, the robot is directly commanded using a joystick. The robot starts to detect the CBs while moving and creates a map of the collectable objects,
and an optimal path planner is computed after each detection. Finally, the locomotion controller drives the robot to the collection area while a visual servoing
procedure precisely commands the robot’s footsteps on top of the CBs. In the locomotion controller block, the current support polygon is highlighted in
green, while the Ground Reaction Forces are in red. In the last snapshot on the right, the future nominal support polygon is highlighted in blue, while the one
defined by the new stepping location is in orange. Finally, the corresponding swings for the two stepping locations are shown, respectively, in red and green.

probability that it contains a CB. To avoid false positives,
we consider a CB detection only if its probability is higher
than 90%. The network was retrained on the target objects
exploiting the combination of two different datasets available
online (Proença and Simões, 2020), (Immersive Limit, 2024).
The number of images was increased by a further manual
annotation of other one hundred images and by different
data-augmentation techniques, such as image rotation, crop,
background, and luminance modification (Shorten and Khosh-
goftaar, 2019) generating two thousand more images. The
network achieves a final overall accuracy of 91% on the
validation data.

Starting from the LDM, the outputs of the detection pro-
cedure are bounding boxes surrounding the CBs present in
the video feed. The network is employed two times in our
collection procedure. First, it is fed with 720p RGB images
coming from an Intel RealSense D435 mounted on the front
of the robot (forward-facing camera). The CBs’ detections in
this case are used for planning purposes. Second, it is queried
by feeding the images from an Intel RealSense D405, mounted
on the bottom of the robot’s trunk (downward-facing camera).

Both cameras configuration is shown in Fig. 2. This second
pipeline is used for the visual-servoing procedure to drive
precisely the foot of the robot (see Sec. III-C), therefore,
considering the camera positioning, we opt for the D405
given its shorter-range detection capability. In fact, putting
the camera above the trunk (Fig. 2) could produce more
occlusions in the detection when the CB is located directly
below the robot, and given the normal walking height of the
system (around 30cm), a camera with a short-range detection
capability is needed. On the other hand, the D435 is used for
a first detection of the CBs from a distance. These cameras
also provide a depth map, aligned with the color image, that
gives information on the distance of each pixel. This data is
used to calculate the relative position of the detected CB with
respect to the camera frame as

CxCB =
xbb − cx

Fx

CyCB =
ybb − cy

Fy
(1)

CzCB = depth(xbb, ybb) (2)

where CxCB , CyCB , and CzCB are the coordinates of the
selected pixel expressed in the camera frame C and xbb and



ybb are the pixel coordinates of the center of the bounding box.
Furthermore, Fx, Fy , cx, and cy are the intrinsic parameters
of the camera, while depth(·, ·) is the depth map information
of the desired coordinates. The litter position in the camera
frame is then converted into the world frame to perform the
planning procedure in the LCM.
Remark: the superscript at the left of a variable indicates in
which frame it is expressed (C camera frame, H horizontal
frame, B base frame). If the superscript is omitted, the quantity
is expressed in the world frame.

B. Litter Estimation Module

During the robot motion, the detected CBs are used to
generate a map of waypoints, used by the LCM to compute
a time-optimal path for the collection process. To avoid
unnecessary motions in the presence of duplicate detection,
a correct data-association routine is needed. For this, we
implemented a Right-Invariant Extended Kalman Filter (Right-
IEKF) to reduce the amount of noise and errors due to the
state estimation drift. As demonstrated in Hartley et al. (2019),
this filter has shown promising performance thanks to the log-
linear error dynamics.

Given the robot state and the CB positions in the world
frame, the filter updates these values each time a new CB is
detected. At a generic time instant t, we express the Right-
IEKF state representation as

Xt =



Rθ
b,t vc,t pc,t pCB1,t · · · pCBN ,t

01,3 1 0 0
... 0

01,3 0 1 0
... 0

01,3 0 0 1
... 0

...
...

...
...

. . .
...

01,3 0 0 0
... 1


(3)

where Xt ∈ SEN+2(3) is an extension of the SE(3) Lie
Group (see (Hartley et al., 2019)) for the case of N different
objects saved in the map; Rθ

b , vc,t, pc,t are respectively, the
estimated yaw of the robot’s base, the velocity, and the position
of the robot’s Center of Mass (CoM); finally, pCBi,t is the
world position of the ith CB.

The described filter fuses the drifting state, coming from the
onboard odometry-based state estimator, with the measured
position of the collectable CB, used as a fixed landmark. The
right invariant observation model for the ith CB measurement
is written as

hi = Rc

[CxCB,i
CyCB,i

CzCB,i

]T
Ht =

[
hi 0 1 0N−i,1 −1 0i−1,1

]T
s =

[
03,1 0 1 0N−i,1 −1 0i−1,1

]T
Yt = X−1

t s

(4)

where CxCB,t, CyCB,t, CzCB,t are the measurement at time
t from Eq. (1), and Rc the rotation matrix from the camera
frame to world frame. The IEKF update is then written as

S = HPtH
T +Nt

K = PtH
TS−1

Z = XtYt − s

X̃t = exp(KΠZ)Xt

P̃t = (I−KH)Pt(I−KH)T +KNtK
T

(5)

where Π and H are selection matrices, K is the Kalman
gain and Nt is the measurement covariance matrix. X̃t and
P̃t are respectively the updated state and covariance matrix
and exp(·) is the exponential map of the state Lie Group.

In order to properly exploit the filter, data association be-
tween the mapped objects and the new incoming measurement
at each iteration is crucial. We periodically verify if the same
CBs have been added twice to the map due to outliers in the
measurement.

For this, we decided to utilize a threshold on the Maha-
lanobis distance between each CB, paired with a minimum
distance threshold for checking the possibility of unresolved
duplicate detection. The selection of this threshold is crucial
when dealing with densely distributed CBs. If the threshold
is chosen too conservatively, it may lead to the inadvertent
exclusion of CBs that are located close to each other. In our
experimental results (see Sec. V), we opt for a minimum
threshold of 2cm.

To avoid the filter becoming too computationally expensive,
we erase all the previously collected objects from the filter
state.

C. Litter Collection Module

We mounted a custom-designed suction nozzle to the left-
front leg of our robot prototype. Therefore, planning a path is
needed to allow the quadruped to place its foot/feet close to
the side of each detected CB. One of the main challenges of
this approach is that we still need to guarantee the stability of
the robot when changing the footstep location. It is important
to recall that the robot needs to constantly actively balance on
its legs, and the foot placement represents one of the variables
for the feasibility of the planned motion. To account for this
problem, we decided to decouple planning and safety in a
hierarchical manner. We split the LCM into two submodules,
one that uses the data from the LEM to plan a first path for the
CoM of the robot, and a second module that directly modifies
the footstep placement to ensure the precision and safety of
the collection procedure.

For the planning problem, given that multiple CBs can
be detected during motion, and hence multiple collection
sequences can be performed, we apply the Dijkstra search
algorithm (Dijkstra, 1959), which returns both the optimal col-
lection order and the optimal poses that the robot should have
when placing the nozzle on top of the CBs. The computational
time will depend on the complexity of the scenario, i.e., the
number of CBs on the ground. Here we only consider the X-
Y positions and yaw angle of the robot’s base, leaving to the



locomotion controller the optimization of the robot’s roll and
pitch base angles (see Sec. IV-A). Additionally, we simplify
the problem by disregarding the robot’s height. We assume
that the CBs are located in regions accessible by the robot
directly from any other position. In other words, we consider
a scenario wherein the robot has a perfect traversability, i.e. the
CBs can be reached by our system starting from any starting
position. In reality, this assumption could not hold, and can
lead to unfeasibility of the collection order. We leave the lifting
of this assumption for future works.

Starting from an initial robot configuration, expressed as x0
c ,

y0c and θ0c , defining respectively the X-Y positions and yaw
orientation of the CoM of the robot, Dijkstra expands all the
detected objects sequentially. For each of them, we compute
the desired hip configuration that the robot should have to
perform the collection. Defining for clarity

ex = xCB − x0
c ey = yCB − y0c eθ = θCB − θ0c (6)

for a generic pCB,k , the optimal hip configuration of the
robot can be derived in closed form by solving the following
problem

min
y

1

2
yTQy

s.t. R2×2
Bp̄bh,i +

[
xCB yCB

]T
= TpCB,k

ζ =
(ey) cos(eθ)− (ex) sin(eθ)

(ey) sin(eθ) + (ex) cos(eθ)

y =
[
ex ey eθ ζ

]
(7)

where p̄bh,i represents the X-Y components of the vector
connecting the base to the hip of the ith leg used for collection,
while T =

[
I2 02,1

]
∈ R3×2 extracts the X-Y coordinates

of pCB,k. The matrix Q is a diagonal weight matrix defining
the importance of each cost term. R2×2 ∈ R2×2 maps the
X-Y coordinates of the base frame into the world frame. We
collect all the expanded CBs in an ordered priority list, from
which we can expand the configuration with the minimum
cost. This will be used as the new initial robot position for
the next Dijkstra step.

Once the quadruped is close enough to one of the CBs, the
robot moves to the optimal posture, and the second submodule
computes the footstep necessary to perform the collection. This
is done by modifying the nominal footholds via a continuous
visual servoing procedure, which utilizes the LDM fed by
the images coming from the downward-facing camera. The
position of the detected CB is then extrapolated by the output
of Yolo, converted into the base frame of the robot, and used as
the next touch-down position of the robot’s foot. More details
about the locomotion controller can be found in Sec. IV-A.
Furthermore, this submodule performs a continuous safety
check to guarantee the robot’s stability. For this, we check if
the robot’s CoM position projection is still inside the support
polygon when a nominal footstep is modified. If the safety
check fails, the nominal foothold is restored, preventing the
robot from falling.

Fig. 4 shows some snapshots of the collection procedure
performed by the real robotic platform. Furthermore, we
summarize the litter collection procedure in Algorithm 1,

Algorithm 1 Litter collection procedure
while robot moving do

[CBs]←− LDM(front facing camera)
if [CBs] not empty then

map←− LEM([CBs])
end if
if map not empty then

collection pose←− LCM(map)
end if
if collection pose then

desired speed←− goTo(collection pose)
else

desired speed←− UserInput()
end if
LocomotionController(desired speed) (Sec. IV)
if collection pose == robot pose then

CB←− LDM(down facing camera)
if isSafe(CB) then

doCollection()
end if

end if
end while

function LDM(camera image)
bbox←− Yolo(camera image)
measurement←−get3dMeasurement(bbox) (Eq. 1,2)
return measurement

end function

function LEM(measurement)
checkDataAssosiation(measurement)
map←−IEKF(measurement) (Eq. 5)
return map

end function

function LCM(map)
collection poses←−DijkstraSearch(map) (Eq. 7)
return collection poses[0]

end function

where the goTo() function refers to a simple PD controller
that drives the robot to the desired goal commanding a desired
speed to the LocomotionController() (Sec. IV). On the other
hand, the UserInput() function returns a desired speed read
from a joystick, or from a speed profile computed to track
a predefined path. Finally, the isSafe() function corresponds
to the stability check described above, while doCollection()
activates the vacuum cleaner and changes the target step
location.

IV. LOCOMOTION CONTROLLER

Our locomotion control framework is composed of pro-
prioceptive and exteroceptive elements. To obtain a robust
locomotion controller, we focus on a robust proprioceptive and
reactive layer able to deal with irregular surfaces and uncer-
tainties from the exteroceptive feedback (visual information).
To do so, we implement a structure based on our Reactive



Fig. 4. Snapshots and illustrations detailing the collection procedure. From left to right: the system first detects the cigarette butt (CB) using the front-facing
camera, and afterward, the planner defines a new optimal pose for collection (highlighted in the first snapshot by the coordinate frame centered on the hip
of the robot’s leg associated with the collection mechanism) deviating from the predefined path shown in red. Once the robot reaches the collection area, it
utilizes the down-facing camera to refine the previous estimate of the CB’s location. Finally, the robot proceeds to perform the collection by stepping on the
target and activating the suction.

Controller Framework (RCF) (Barasuol et al., 2013), which is
composed of Motion Generation and Motion Control blocks.
Both blocks, illustrated in Fig. 5, are explained in detail in the
following sections.

A. Motion Generation

As depicted in Fig. 5, the motion generation block computes
the desired robot base and leg motions. The RCF’s motion
generation can provide various gait patterns, like trotting and
crawling gaits. For the sake of space, we concentrate only on
the description of the crawl gait used for the litter collection.

The crawl gait represents a sequence for the motion of the
legs that allows achieving static stability during locomotion.
Static stability is achieved when the vertical projection of
the robot’s CoM position lies inside the convex hull (so-
called support polygon) formed by the contact foot loca-
tions (McGhee and Frank, 1968). A robot that executes such
a gait operates in slow velocities but very robustly, being
able to have long stance periods on various postures and to
deal with very irregular surfaces. Two crawling gait sequences
are implemented: leg sequence left-front⇒right-front⇒right-
hind⇒left-hind when moving forward, and leg sequence left-
front⇒left-hind⇒right-front⇒right-hind when moving back-
wards. The different sequences are used to prevent support
polygon shrinkage in one of the speed directions, and thus the
reduction of the static stability margin and maximum velocity
the robot can achieve. The desired touch-down location of
each foot is computed in a robot-centric approach (Rathod
et al., 2021), and depends on high-level trajectory references
(high-level commands provided by the user or by the collec-
tion path planner) and also proprioceptive and exteroceptive
information. All the leg motion planning is performed in the
Horizontal Frame (located at the robot’s base frame with
Z coordinates aligned with the gravity vector and the X
coordinate aligned with the robot’s base longitudinal axis
projected in the world X-Y plane) (Barasuol et al., 2013).

The velocity references are provided without considering the
terrain irregularities and are treated as the tentative body
motion path for an effective litter collection. From the ref-
erence velocities, the nominal foot touch-down position and
corresponding leg swing motion are computed. The timing
for the desired leg stance and swing phases is provided by
the Gait Generator (based on desired step frequency and duty
factor). It is important to highlight that the periodicity of the
crawl gait, in our controller, is stability-dependent. In other
words, even with pre-defined step frequency and duty factor
for each leg (de Santos et al., 2012), a leg lift-off event is only
executed if 1) the robot is under a static stability condition
defined by a given stability margin value, and 2) the robot is
in full-stance condition (all legs in contact with the ground).
These conditions confer extra robustness to the locomotion
when compared to approaches that consider a strictly periodic
crawling gait (e.g., in situations that may lead to surface
collapses, contact losses, leg slippage, or inaccuracies in the
terrain map or visual feedback). The desired foot references are
provided by the Foot Trajectory Generator and are computed
based on the actual foot lift-off position, the desired foot touch-
down position, and the desired step clearance (the so-called
step height). The nominal foothold position of a leg i is defined
as pn,i = [pnx,i pny,i pnz,i]

T . The desired planar coordinates
X-Y of the ith nominal foot touch-down position are computed
as:

pn,xy = p0,xy +
Hṗc,xy

Ts

2
+ [Hω × ph,xy]|x,y (8)

where p0 is the foot home position, Ts is the desired stance
period, Hω = [0 0 Hϕ̇c]

T is the desired body angular
velocity, and ph is the hip position. The operator |x,y selects
the planar coordinates from the vector product. We removed
the dependency from leg i for the sake of clarity in the
notation. The corresponding component pn,z depends on the Z
component of the lift-off position plo, the pair (pn,x, pn,y), and
the average terrain inclination estimated by the Proprioceptive
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Fig. 5. Block diagram illustrating the dataflow of the motion generation and control blocks of the locomotion framework.

Terrain Estimator (PTE). The PTE approximates the terrain
surface with an average plane whose normal is described in the
robot horizontal frame and inclination represented by a terrain
roll angle ϕT and pitch angle θT . Thus, pn,z is computed as:

pn,z = plo + [Rh(ϕT , θT )pn]|z (9)

where Rh is the terrain rotation matrix, with zero yaw angle.
The operator |z selects the scalar value corresponding to the
Z coordinate.

During the litter collection, the nominal foothold can be
modified by the visual feedback from the Visual Foothold
Adaptation (VFA) (Villarreal Magaña et al., 2019), or by the
LDM. The VFA modifies the nominal foothold to a safe loca-
tion on the terrain surface if the nominal location brings a risk
to the locomotion. The LDM, instead, modifies the nominal
foothold for collection in case a litter is detected inside the
local collection region underneath the corresponding hip, at
the moment just before the leg lift-off. If a detected litter is
located in an unsafe region classified by the VFA, the modified
foothold is not used for support and the collection is executed
when the foot is still in the air. The CoM motion planning
is also robot-centric and designed in the horizontal frame,
whose target location is continuously computed according to
the support polygon formed by the current location of the
contact feet. The target can be tuned to prioritize the stability
margin or the robot speed. The desired body height and
orientations depend on the quality of the visual information. If
the terrain map acquired around the robot (with exteroceptive
sensors like depth cameras) is accurate, the desired body height
and roll/pitch orientations are provided by our Visual Pose
Adaptation (VPA) (Fahmi et al., 2023). In case of unreliable
terrain mapping, a desired relative body height is set and the
body orientation follows the one estimated by the PTE. This
selection is represented by the switch between VPA and PTE
illustrated in Fig. 5. The target location inside the support
polygon is tuned for requirements regarding maximum loco-
motion speed and robustness. The motion generation provides
the motion control block with desired body CoM positions,
trunk orientation, and desired joint trajectories. The desired

joint trajectories are obtained by transforming the desired foot
trajectories from the horizontal frame into the robot base frame
and applying inverse kinematics (see (Barasuol et al., 2013)
for further details).
The next section describes the control actions to track the
desired references from the motion generation block.

B. Motion Control

The robot’s motion control block is composed of a Model-
Predictive Controller (MPC) (Amatucci et al., 2022) in series
with a Whole-body Controller (WBC) (Fahmi et al., 2019), and
a joint proportional-derivative controller. The MPC controller
computes ground reaction forces to track the desired CoM ref-
erences from the motion generation block. It runs at 150Hz and
considers the Single-rigid Body Model (SRBM) (Orin et al.,
2013) as a simplified robot model used for state predictions
(Grandia et al., 2019; Bledt and Kim, 2019; Wu and Sreenath,
2015). The WBC runs at 250Hz and computes the joint
torques to track the equivalent CoM wrench (obtained from
the MPC ground reactions forces), considering the influence
of leg inertial effects and the physical constraints given by
the robot and environment. Completing the control action, a
joint proportional-derivative controller contributes with joint
torques to cope with model uncertainties and to better track
the leg swing motion. The SRBM used for the MPC state
predictions has shown to be representative even though the
inertia of the robot legs are neglected. Using this model
approximation, the system dynamics can be written as follows:

p̈c =
1

m

nleg∑
fi + g (10)

Ṙ = RBω̂ R ∈ SO(3) (11)

BIBω̇ = RT (

nleg∑
rif̂i)− Bω̂BIBω (12)

where p̈c is the CoM acceleration, fi is the GRF acting on
the ith leg, R and Ṙ are the rotation matrix representing
the rotation between the world and the robot base and its
derivative, while ω and ω̇ are the angular velocity and its



derivative. The variable ri is the vector connection the CoM
and foot positions, the operator (̂·) maps the vector in a screw-
symmetric matrix. Finally, I and m are the inertia matrix
and mass of the robot body, and g is the gravity vector.
Equation (12) is non-linear in the angular part, therefore
we use the variation-based linearization scheme presented
in (Ding et al., 2021). We express the rotational error in
SO(3), considering the variation to the operating point to be
free from singularities in the representation.

We then perform a first-order Taylor expansion of the matrix
exponential to then vectorize the error expressed in SO(3) as
ξ ∈ R3 such that ξ̂ = δR. The linearized dynamics is finally
discretized using the forward Euler scheme. The system state
is defined as x =

[
pc, ṗc, ξ,

Bω
]
∈ R12 and the control input

as u = [f1,f2,f3,f4] ∈ R12. Given the simplified model,
the system state, and control input, we can define the Optimal
Control Problem (OCP) as:

min
x,u

LT (x(N)) +

N−1∑
k=0

L(xk,uk)

s.t. xk+1 = Dkxk +Bkuk + ck

uk ∈ Uk

k = 0, 1, ..., N − 1

xk=0 = xop

(13)

where L(x(·)) is a convex quadratic cost over the user
commanded velocities and body posture. Dk,Bk, ck are the
linearized dynamics and Uk is the set of feasible ground re-
action forces constrained by the outer pyramid approximation
of the friction cone to guarantee non-slipping conditions. xop

is the state variable at the operating point. To solve the OCP
we used a specialized QP solver (Pandala et al., 2019), that
exploits the sparse structure of the problem. Finally, the GRFs
obtained by solving the optimization problem (13) are then
converted into the desired CoM wrench wu∗ sent to the WBC,
as:

wu∗ = fw(u
∗)

where fw(·) is the function that maps the optimal ground
reactions forces from the MPC controller into forces and
moments around the robot CoM.

To realize wu∗ , taking into account the robot full-dynamics,
limitations, and environment constraints, the WBC solves a
QP problem with a cost functional that penalizes the wrench
tracking errors and the deviations from u∗, i.e.:

min
γ=[q̈T

b ,q̈T
l ,fT

g ,ϵ]T
||Mbq̈b −wu∗ ||2Qw

+ ||fg − u∗||2Qf

s.t. Aγ = b

d < Cγ < d̄

(14)

where the decision variables are the base accelerations q̈b,
the leg accelerations q̈l, the ground reaction forces fg , and
the slack variables ϵ for constraint relaxation. The equality
constraints take into consideration dynamic consistency, leg
inertial effects, joint kinematic and torque limitations, and
friction constraints. All constraints are stacked and described
through the matrices A and C and boundaries d and d̄.
Finally, the values optimized by Eq. (14) are mapped into joint

Fig. 6. The estimated CB positions during a collection test in our laboratory,
with (blue) and without (green) employing the IEKF. In red, we highlight the
errors in data association due to unfiltered outliers, which will cause the robot
to perform additional collection attempts.

torques using the whole-body dynamics equation. For further
details on the description of the constraints and the mapping
into joint torques, see (Risiglione et al., 2022).

The readers can observe in the accompanying video the
behavior of our locomotion controller in challenging scenarios,
such as the one with gravel or the one with stairs.

V. RESULTS

This section presents the results obtained with our prototype
in both indoor and outdoor scenarios. The indoor scenario,
represented by our laboratory, was chosen to validate the IEKF
described in Sec. III-B in a controlled environment, where
multiple CBs are placed on the floor. The test result is shown in
Fig. 6. Due to the drifts in the estimator, the raw CBs positions
(green dots) vary significantly in the map with respect to the
estimation coming from the filter (blue dots) during robot
motion. It can be observed that without the filtering procedure,
the data association process can fail without the possibility of
recovery (red dots), meaning that the same object is added
more than once to the list of the CBs to collect. In this case, the
robot tries to collect the same object multiple times, drastically
affecting the speed and collection time of the overall collection
process.

Fig. 7 shows six real-world scenarios in which we success-
fully tested our solution: beach (A), urban (B), industrial (C),
natural (D), non-flat (E) and park (F). During our experiments,
we repeatedly found CBs dispersed into these environments,
showing that the chosen scenarios are representative of the
tackled problem. We chose six different scenarios, instead of
a single one, to test the unique challenges that each of them
contains that can hinder a reliable CBs collection. Specifically,
Scenario A is characterized by the presence of small pebbles
that can get sucked in by the nozzle of the vacuum cleaner
and deformable terrain, which represents a challenge for the
locomotion controller of a quadruped. Scenario B is a common
city street, where sidewalks and the presence of cars limit
the traversability capabilities of many robotic systems. Similar
limitations can be found in an industrial setting, such as



Fig. 7. The prototype has been tested successfully in six different scenarios. Starting from the top left corner, we show the robot, controlled with a joystick for
safety reason, traversing environments named beach (A), urban (B), industrial (C), natural (D), non-flat (E) and park (F). All these scenarios are characterized
by unique challenges both from the locomotion point of view, such as stairs and slopes (scenarios A, D, E, and F), and from the detection point of view due
to the presence of similar objects in size and color (e.g. small leaves in scenarios D and F).

the one in Scenario C, and in a small alley (Scenario E),
where the presence of stairs limits the usage of wheeled
robots. Scenario D represents a trail outside Genova, where
the detection of CBs can be problematic given the presence of
flora with similar sizes and colors. The same reasoning applies
to Scenario F.

We observed difficulties in the detection of the CBs in the
scenario depicted in Fig. 7D given the presence of similar
objects, in color and shape, in the local flora. This issue has
been mitigated by collecting additional images in that sce-
nario and performing a successive fine-tuning of the detection
model. This result shows that still, many misclassifications
can still happen in a real environment, and additional data-
synthesis techniques, such as using realistic simulators for data
gathering, should be adopted to enhance the precision of the
LCM.

In our final tests, our prototype successfully recognized and
collected all the undisposed CBs. To give an intuition of the

performance of the LCM, in Fig. 8 we plot the trajectory of the
left-front foot in the X-Y-Z plane. The task is to collect three
different CBs. The circles represent the touch-down points,
and the dashed lines the swing trajectories. The blue color
indicates that the visual servoing module did not change the
desired foothold locations, hence the robot has stepped in the
nominal location computed by Eq. (8). The LCM is activated
when the foot is close to a CB (red cross), causing the robot
to perform a touch-down event in the vicinity of the CB
(the red circle) instead of on the discarded nominal location
(white circle with the blue border). In this experiment, the
robot was controlled with a joystick and commanded with
a user-defined non-constant forward velocity. Since the step
frequency remains fixed in our locomotion controller (Sec. IV),
the nominal footholds are not distributed uniformly in the
images. Here the reader can observe that, since the nominal
footholds are coherent with the reference velocity, in order to
suck the CBs the robot needed to step toward the left. In our



Fig. 8. Trajectory of the left-front foot (where the nozzle of the vacuum
cleaner is attached) during a collection procedure in Scenario A. On the Top,
the dot-lines represent the swing trajectory, while the circles represents the
footholds. A circle is blue when the touch-down coincides with the nominal
foothold, computed by Eq. (8). The red circles represent the touch-down points
corrected by the LCM. The corresponding nominal foothold is depicted by
the white circles with blue borders. On the bottom, we plot the top-down view
of the same foothold locations

pipeline the hip is positioned on top of the CB during the
sucking, so after performing the collection, the robot keeps
going straight forward from the reached position till the next
CB.

The readers can refer to the accompanying video for the
highlights of our results.

VI. DISCUSSION

Our prototype is endowed with a vacuum cleaner and a
nozzle connected to the left-front leg. We want to point out
that our design can easily be modified to connect the vacuum
cleaner to all the available feet. In this way, the number of
maneuvers required to collect the CBs can be reduced if a
different foot can be exploited more easily from the current
robot position. For this, only the Dijkstra algorithm in the
LCM (Sec. III-C) needs to be updated to consider multiple
hip positions in the planning problem, hence computing the
optimal robot’s pose and selecting which leg to use to collect
each CB. No changes are required in the visual servoing of
the LCM.

To highlight this concept, we compare the performance in
simulation of the same pipeline having the nozzle attached to
one leg only (Fig. 9 top) and on all four legs (Fig. 9 bottom). In
simulation, we defined an S-shaped path with 90-degree angles
placing some CBs to be collected (the red disks in Fig. 9). The
lines’ colors indicate the velocity deviation with respect to the
”ideal” one obtained with the robot walking on the desired

Fig. 9. Comparison of the robot CoM position during a collection procedure
when the nozzle is attached to only one leg (top) and when the vacuum cleaner
is connected to all four legs (bottom). The red disks represent the CBs. The
line color indicates the ratio between the constant velocity obtained by the
robot simply following the path and the actual velocity during collection.
In both cases, the robot shows a sway motion due to the crawl gait, but as
expected, more maneuvers are needed when only one leg is used to collect
the CBs.

path without performing any collection. By comparing the top
and the bottom plot, the readers can see the advantages of
having multiple nozzles (higher velocity). This is explained
by considering that if, for example, a CB is on the right side
of the robot, the robot needs to perform a rotation to bring the
left-front foot close to the CB. Even though we have not tested
the vacuum cleaner with four nozzles, we have demonstrated
that the software is general and can be adapted to a different
configuration of the hardware prototype.

To deal with the problem of the sucking of the small pebbles
in Scenario A, we experimentally adapted the distance of the
nozzle with respect to the base of the foot. Given the usually
lighter weight of the CBs, we were able to tune this parameter
and obtain successful collections with only few pebbles sucked
in by the machine. Nevertheless, we needed to empty the
vacuum cleaner from time to time during the experiment.
In future works, we plan to integrate a simple mechanical
separation system tailored to deal with this specific problem
into our prototype. We will also assess in more detail the effect
of nozzle design and position from the foot base, taking also
into consideration a variable sucking power. We plan in this
way to enable a higher level of autonomy in all scenarios.

To evaluate the performance of the overall pipeline, we



Fig. 10. Configuration of the test course used to assess the framework under
controlled conditions. The robot’s predefined path is marked with a translucent
gray arrow, and multiple cigarette butts (CBs) are randomly distributed on the
ground. Additionally, a wooden obstacle 12cm high is placed in the center of
the scenario.

designed a test course in our laboratory, as shown in Fig. 10,
where the robot is commanded to explore repeatedly a prede-
fined area, and a wooden obstacle is placed in the center to
challenge the litter collection procedure. In this area, during
each pass of the robot, we randomly spread a different number
of CBs (4, 5, or 6) to evaluate the efficiency of the entire
litter removal pipeline and its critical points. During 8 trials,
the robot collected 29 out of 37 CBs. which corresponds to a
success rate of 78,37% for the overall system. Further analysis
of the failures (uncollected CBs) revealed that in 4 cases the
CB was not detected: in two cases the CBs never entered the
field of view of the robot’s cameras during the entire lap,
while in the other two cases, the network in the LDM did not
identify the CBs with sufficient certainty. Considering both
cases, the overall detection accuracy was 89% (33 detected out
of 37). Considering only the CBs which have been seen (35)
the accuracy of the network is 94,28%. The remaining 4 misses
were caused by the LCM. In three instances, the robot’s nozzle
edge made contact with the CBs, rendering them impossible
to be sucked. This failure indicates the importance of stepping
precision. In the last cases, the CBs never entered the down-
facing camera’s field of view due to misalignment with the
collection pose. Consequently, the robot was unable to perform
the visual servoing correction and relied solely on the mapped
position of the CBs. However, due to some drift, the position
in the map had degraded to the extent that proper collection
performance was compromised, resulting in the robot missing
the CBs. Nevertheless, our collection procedure, considering
how many of the detected CBs have been collected, showed a
success rate of 87,87% (29 out of a total of 33). A summary
of this statistic can be found in Table I where we report the
achieved results, while the execution of this experiment can
be observed in the accompanying video of the paper.

VII. CONCLUSION

In this work, we have presented both the hardware and
the software of a quadruped robot able to autonomously and
efficiently collect small litter during locomotion. The presented

TABLE I
STATISTICAL ANALYSIS

Description Success Maximum Rate

Overall pipeline: collected/total CBs 29 37 78,37
Detection: detected/total CBs 33 37 89,18
Neural Network: detected/seen CBs 33 35 94,28
Collection: collected/detected CBs 29 33 87,87

approach takes advantage of a currently poorly exploited
feature of legged robots: the ability and freedom to select
footholds not only for a stable locomotion, but also for specific
applications. To the best of the authors’ knowledge, this is
the first time that the legs of a legged robot are concurrently
utilized for locomotion and for a different task. Differently
from arms mounted onto mobile robots, which add weight,
complexity, cost, and energy demand, exploiting legs for
purpose-oriented interactions with the ground is an elegant and
minimalist solution. On one hand, it is time-efficient because
the feet need to touch the ground anyway for locomotion, so no
additional whole-body arm control is needed that is generally
slower when contact with the environment is required. On the
other hand, it is potentially more precise since the kinematic
chain of a leg is usually shorter compared to the one of a
mobile base with an onboard arm.

This minimalist approach can be exploited for many other
applications that are different from the presented use-case of
litter removal, including for example:

• in agriculture and forestry: for the selective spraying of
weed in crop fields (e.g. salads), punctual measurements
of soil properties (e.g. humidity), or for the injection of
seeds into the ground (e.g. reforestation).

• in infrastructure inspection: for surface sensing where
contact with the surface is required (e.g. crack detection).

• construction: placement of nails and rivets (e.g. construc-
tion of large wooden structures or steel vessels).

In future works, we want to analyze the possible gain in
power-efficiency that our prototype can enable compared to the
one achievable by using an additional arm on top of the robot
to perform the litter collection. Furthermore, we aim to build
and test the necessary hardware for enabling our prototype to
use all the available feet for litter collection. Besides increased
collection speed, equipping multiple feet with nozzles can
easily be used for separate collection of different types of
waste. In fact, our detection module (Sec. III-A) can be easily
generalized for multiple objects, and each foot can take care
of a specific type of waste.
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