1010

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 11, NO. 1, JANUARY 2026

Primal-Dual iLQR for GPU-Accelerated Learning
and Control in Legged Robots

Lorenzo Amatucci”, Joao Sousa-Pinto

and Claudio Semini

Abstract—This letter introduces a novel Model Predictive Con-
trol (MPC) implementation for legged robot locomotion that
leverages GPU parallelization. Our approach enables both tem-
poral and state-space parallelization by incorporating a par-
allel associative scan to solve the primal-dual Karush-Kuhn-
Tucker (KKT) system. In this way, the optimal control problem
is solved in O(log?(n)log N + log?(m)) complexity, instead
of O(N(n + m)3?), where n, m, and IN are the dimension of
the system state, control vector, and the length of the prediction
horizon. We demonstrate the advantages of this implementation
over two state-of-the-art solvers (acados and crocoddyl), achieving
up to a 60% improvement in runtime for Whole Body Dynamics
(WB)-MPC and a 700% improvement for Single Rigid Body Dy-
namics (SRBD)-MPC when varying the prediction horizon length.
The presented formulation scales efficiently with the problem state
dimensions as well, enabling the definition of a centralized con-
troller for up to 16 legged robots that can be computed in less than
25 ms. Furthermore, thanks to the JAX implementation, the solver
supports large-scale parallelization across multiple environments,
allowing the possibility of performing learning with the MPC in the
loop directly in GPU.

Index Terms—Optimization and optimal control, legged robots,
multi-contact whole-body motion planning and control.

I. INTRODUCTION

MONG the many well-known control approaches avail-
able, Model Predictive Control (MPC) has proven to be
highly effective in generating and controlling complex dynamic
behaviors in robotic systems, especially legged robots, as shown
by [1] and [2]. Atthe core of an MPC is the transcription of a task
we want the robot to perform into an Optimal Control Problem
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Fig. 1. Top left: The quadruped robot Aliengo performing a barrel roll. Top
right: The humanoid robot Talos walking blindly on uneven terrain. Bottom left:
An example of the massive parallelization achievable with our JAX formula-
tion. Bottom right: Aliengo robot walking blindly on uneven terrain in a lab
experiment.

(OCP) and the ability to solve it fast enough to be used in a
closed-loop controller.

One of the most widely used methods in robotics for solv-
ing such OCP is Differential Dynamic Programming (DDP),
which gained renewed attention through the work of Todorov
et al. [3], who introduced a variant known as Iterative Linear
Quadratic Regulator iILQR). iLQR discards the second-order
terms of the dynamics in the Hessian, sacrificing the local
quadratic convergence of DDP in favor of faster update rates.
However, a key limitation of this method is its single-shooting
nature, which requires a feasible initial guess as a starting point
and often exhibits critical numerical issues. [4] overcame such
limitation presenting a multiple shooting variant of the iLQR
algorithm. More recently, [5] proposed a feasibility-driven mul-
tiple shooting approach to DDP with notable results also on real
hardware [6]. Another common approach to the solution of the
OCP is Sequential quadratic Programming (SQP). Compared to
DDP-like algorithms, SQP has been more extensively developed
for general-purpose solvers due to its flexibility in handling
a broader range of constraints and objectives, as well as its
robustness in dealing with infeasible iterations. Solvers like
OCS2 [7] and acados [8] also showed relevant results on real
hardware as demonstrated in [9] and [10], thanks to the tailoring
of the solver to the structure of OCP. Recent work like [11]
highlights the connection between SQP and DDP, describing
how the sparsity structure of the OCP can be exploited not only
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in DDP-like solvers but also in other solver types, such as SQP
or interior point-based solvers.

While the above methods have been shown to exploit the struc-
ture of the OCP, they have struggled to exploit new hardware
accelerators like GPUs. Compared to CPUs, graphics cards can
massively parallelize computation and are specifically designed
for high-throughput linear algebra operations. Jeon et al. [12]
tried to bridge the gap by developing Cusadi, a tool to convert
expressions written in the well-known framework CasADI [13]
to GPU. Cusadi only translates closed-form expressions into
GPU-compatible code, lacking the branching and looping ca-
pabilities necessary for most solvers. Bishop et al., [14] intro-
duced a GPU accelerated Quadratic Programming (QP) solver,
Relu-QP, leveraging the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm, achieving performance superior to
state-of-the-art CPU-based solutions. However, its applicability
to Nonlinear Programming (NLP) is constrained by the need
to pre-compute offline part of the algorithm. Lee et al. [15]
implements an iLQR controller on GPU but only partially lever-
ages its capabilities, limiting parallelization to the line search
and gradient computation. In contrast, [16] focuses only on
batching, solving multiple OCPs in parallel without exploiting
state or temporal parallelism. [17] extends the approach of [15]
by incorporating the temporal parallelization strategy introduced
in [1]. However, [1] requires introducing approximations in the
backward pass and performing a consensus sweep to maintain
consistency. Frasch et al. [18], proposed a method to iteratively
solve linear quadratic control exploiting parallel computation,
while Wright et al. [19] showed how to partition dynamic
programming for parallel computation. However, none of the
mentioned methods achieved at the same time logarithmic time
complexity and an exact formulation. On the other hand, Sarkka
et al. [20] showed how parallel associative scan operations
can be utilized to improve the computational complexity of
DDP. When parallelized on GPU, associative scans can com-
pute the optimal control policy in O(log?(n) log N + log?(m))
instead of the O(N(n +m)?) of the classical Riccati Recur-
sion found in DDP, where n and m are the dimensions of the
system state and control input, and NV is the prediction horizon
length.

In this work, we designed an SQP method that uses an asso-
ciative scan-based LQR solver to solve the primal-dual Karush-
Kuhn-Tucker (KKT) system efficiently. The solver avoids the
offline precalculation necessary for Relu-QP [14]. Our method
benefits from a multiple shooting implementation, instead of
the single shooting approach presented in [20]. Our algorithm
fully exploits the parallelization capabilities of GPUs both in
the temporal and the state space dimensions, while maintaining,
in contrast to [17], an exact backward pass. We tailored the
formulation for the deployment as a receding horizon controller
for legged robot locomotion and analyzed its impact on learning
and control.

Control: At first, the reduction in the computational com-
plexity of the solver may appear to have limited significance in
a practical application. Some of the already described methods,
like OCS2 [7] and crocoddyl [5], have been successfully used for
whole-body MPC even for experiments, as shown in [21] and [2].
To ensure that such an MPC formulation can run online on real
hardware, the prediction horizon length and the number of robots
that can be controlled simultaneously are constrained by the
time complexity of the underlying algorithm. In particular, for
solvers like OCS2, acados, and crocoddyl, the complexity scales
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linearly with the horizon length and cubically with the state
dimension. In contrast, our approach scales with the square-log
of the horizon length and linearly with the state dimension.
This improved scaling enables the use of more nodes at the
same update rate, allowing for finer integration steps for a better
approximation of the robot dynamic or, more critically, the
inclusion of a Moving Horizon Estimator (MHE), such as those
presented by [22] or [23], within the same optimization loop,
opening the pace for “end-to-end” MPCs capable of adapting
and reacting to system changes directly using the sensor data.
The reduction in complexity with respect to the state dimension
enables better scalability across different robot morphologies.
While other methods, such as the one presented by [24], use
an approximate approach in the form of consensus ADMM to
parallelize over the system state, our implementation leverages
the inherent parallelism of matrix operations provided by the
GPU. State space scaling becomes crucial when a centralized
controller for collaborative tasks is considered. As demonstrated
by [25] and [26], centralized controllers can handle complex
tasks involving multiple collaborating agents. However, while
these approaches achieve notable performances, the complexity
of the task and the number of agents involved are constrained
by their capability to solve the increasingly large OCPs at a
reasonable control frequency. Our framework overcomes such
barriers, as shown in Section IV-C.

Learning: In recent years, Reinforcement Learning (RL) has
demonstrated remarkable performance, enhancing the robust-
ness and capabilities of legged robots. RL controllers have sur-
passed model-based controllers in robustness against model mis-
matches and sensor noise. Cheng et al. [27] also demonstrated
agile movements involving jumps on unstructured terrains with
a real robot. However, RL policies have shown limitations in
scenarios that involve crossing gaps and stepping stones, since
the learning process efficiency is significantly affected due to the
sparse reward signals typical of such tasks. Giftthaler et al. [28]
proposed a solution to bridge the gap between learning-based
and model-based controllers by incorporating MPC as a bias for
the RL-policy. In contrast, works such as [29] and [30] integrated
learned behaviors directly into the optimization process. Despite
the noticeable results, all of the aforementioned methods that
mix model-based controllers and RL suffered from a slower
training process due to the dependency on CPU-based solvers. In
contrast, our implementation is entirely developed in JAX [31],
and it can be coupled with GPU-based simulators such as Isaa-
cLab [32] or Mujoco XLA [33] to achieve a significant speed-up
in simulation throughput.

A. Contribution

To summarize, the major contributions of this work are:

® a novel GPU-accelerated MPC for legged robots that
achieves logarithmic scaling in computation complexity on
the horizon length, squared-logarithm scaling in the state
space and control vector dimensions, and can easily be
parallelized for use with data-driven approaches.

® a detailed analysis of the performance benefits and limi-
tations of the proposed algorithm with respect to state-of-
the-art solvers.

® anopen-source code repository for the rapid prototyping of
MPC for legged robots and loco-manipulation. Written in
JAX, the code provides tools for controlling legged robots
and also supports large-scale parallelization.
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B. Outline

This letter is organized as follows. Section II describes the
details of the proposed solver. Section III presents the dynamical
models used in our formulation. Section I'V shows the benefits of
our approach on comparative simulations against state-of-the-art
solutions. Finally, Section V draws the final conclusions.

II. PRIMAL-DUAL LQR

A. Optimal Control Problem

We start describing the OCP at the base of the MPC formu-
lation we are presenting. In a OCP, we transcribe not only the
task we want to be performed but also the physical limits the
system needs to respect. In this letter, we consider the OCP of
the following form:

N
r;ulrf Inii(Tngr) + Zli<wi; u;) (la)
i=0
st. @iy1 = hi(x;, uw;) (1b)

u; € U; (1c)
x; € X; (1d)
Ty = Ty (1e)

where «; is the system state and u; is the control input. I (x;, u;)
is the stage cost made of a quadratic tracking and regularization
terms, while I(xp) is the terminal cost, and h(x;,u;) is the
system dynamics. Finally, X; and U; are, respectively, the set
of feasible system states and control inputs. The remainder
of this section will describe the methods we use to solve the
optimization problem posed by the OCP formulation presented
in (1). By leveraging both the knowledge of the problem structure
and exploiting modern hardware accelerators, we are able to
obtain logarithmic time complexity in horizon length N as
well as square-log for the state x and input w dimensions.
For simplicity, in this section, we avoid treating the inequality
constraint in (1d) and (1c). These details will be treated sep-
arately in Section II-F. We now focus on the solution of the
equality-constrained optimization problem, which only presents
the initial condition (le) and dynamics (1b) as constraints. In
particular, we are going to derive a multiple-shooting approach,
which, in contrast to the single-shooting one, keeps both the state
and control as optimization variables. We first derive an efficient
SQP algorithm that exploits the Riccati recursion to solve the
equality constrained QP Section II-C, and then we focus on the
temporal parallelization of the solver through the use of parallel
associative scan, Section II-D.

B. Sequential Quadratic Programming

We start defining the Lagrangian relative to the problem in
(1) as:

N

L(m,u,)) = Iv i (@n1) + 4§ (@0 — o) + > L@, w,)
=0

+ Xigp1 L (hi(mi, w;) — @i41) 2

where A; for 2 =1 ... N + 1 are the Lagrangian multipliers
associated with the dynamics constraints. In an SQP method,
we iteratively solve the QP derived from the quadratic approxi-
mation of the Lagrangian and the linearization of the constraints
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at the current guess, x®, u*, where k represents the last iterate.

The QP is then written as:
AN PR RNF | L[ow "1Qi ST [6xs
=1 T 5u,‘ 2 6ui S,‘ Ri 5u,‘

1
+p}r\/+15$N+1 + §6w—](]+1PN+15$N+1

min
dx,0u

oxyg =0

6x;11 = A;jdx; + B;du; +b; for i=0,...,N
where the search directions dx and du are defined as:

dx; = —xF  for i=0,...,N+1

KL _wF  for i=0,..., N. 3)

ou; = u; i

The linearized dynamics is defined as:

oh; oh;
Aj=—,B;=—,b=h; —zF
8:117; auZ wH_l
The linear terms in the objective function are defined as:
q; = sz»ca T, = vui‘cv PN+1 = va+1£'
Finally, the Quadratic terms are defined as:
Q. S/ 2
Py =V2Lya, | = V2L
N+1 N+1 { S. R,

where we removed the dependency of =¥ and u} from the
dynamics h and the cost function I.

C. Primal & Dual Problem Solution

As shown by [34], such QPs can be efficiently solved by
exploiting the problem structure. By applying the Riccati Re-
cursion, starting from the last node (i.e. with index N) in the
horizon and going backward in time we obtain:

G:=R,; +B/P;,,B;,
H;=B/Pi1A; + 8,

gi = B/ (piy1 + Pip1bi) + 74,

K;,=-G;'H;,

ki=—G; g,

P,=Q;+A/P 1A+ K/ H,,

pi =q; + Al (pit1+ Piy1b) + K/ g;. 4)

where K; and k; are, respectively the feedback and feed-
forward term of the optimal control policy. We can now retrieve
the control and state vector by applying recursively the forward
pass starting from the initial condition as follows:

ou;, = K;0x; + k; 0x;y1 = A;0x; + Bou; +b; (5)

Once retrieved the values of P; and p; for i =0,..., N +1
we can compute the update of the Lagrangian multiplier JA in
parallel. This is achieved by applying, at each node, the following
update:

or; = P;dx; + p; (6)
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D. Parallel Associative Scan

In this section, we will briefly recap how parallel associative
scans can be used to solve the primal problem as shown for the
first time by [20]. Given a sequence of elements aq, . .., ax and
an associative operator ® defined on them, a parallel associative
scan can be used to evaluate the values sq, ..., sy as:

, 01 ®ay®--Qan)

)

in O(log N) as shown by [35]. This is possible since ® is an
associative operation, allowing the computation to be reorga-
nized into smaller interdependent subproblems. To make use
of this property, we first define the Conditional Value Function
(CVF) Vi, j(2;, z;) as the minimal cost related to the optimal
trajectory that goes from state x; at node 7 in the horizon to state
xj atnode j, with¢ < j. Given the connection between the value
function of (3) and its CVF, V;(x;) = Vi, n11(2;,0), we will
use the scan to evaluate V;(x;) for i = 0,... N + 1. We begin
by initializing the elements a; with the CVF V;_,;;; defined
between two adjacent states x; and x;, ;. Next, we define the
operator ® for dynamic programming as:

(s1, $2y ..., sny) = (a1, a1 ®aqg, ...

Viok @ Vissj = Hal:ikn{v;%k + Vit ®)

where xj, is a third intermediate state between ¢ and j. Note that
this operator is associative since the min operator is associative.
We can now perform an associative scan on the CVF to obtain
Vi n41 in a single pass, thus V;(a;) for all ¢ in the horizon.
To derive the combination rule for (8), we start by noting that
the CVF of (3) is also a quadratic program with affine equality
constraint (1b), which can be represented in its dual form [36]
by introducing the Lagrangian multiplier 7:

1 N 1 ~
Vinj(xi, ;) = mf,lx 5Ti P”wi —Q—pzjwi — inTCm—n—l—
-n' (% — A, jw; — Bi,j) )

where the tilde ~ is used to distinguish the values related to the
conditional value function from the one in (4), while the sub-
scripts are used to specify the initial and final state considered.
Canbe proved that given V;_,, and V},_, ; that are in the same form
of (9), V;_,; will still be in the form of (9) and is characterized
by such combination rule:

P~i1j:A;7kT(I+P~kj ) ij zk+P7,k7

~ ~ T _
Dij = Ak,j (I+Pm ) (pkj Py b, >+pi,k7

A;,j = A;,j (I + C;)kp; 7) Z k;

Gy = Ay (T+CuPy)  Cinis” +Ci,

by = Avy (T+CuPL)) (bis— Clamng) + by

(10)

We now initialize the values a; of a reverse associative scan,
using the conditional value function V;_,; 1, characterized by

A1 =A;—B;R;'S;, P.i.1=Q;— SRS,
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Ciit1 = BiR;'B], Piii1=4qi—S;R;'r;
bii1 = bi — BiR; ', (1n
while Vi n1 by
Pyni1=Qnt1, Anni1 =0, byni1=0
DN.N+1 = dN+1 Cnni1=0 (12)

From the solution of the parallel associative scan using the
combination rule in (10), we obtain V;_ny1(x;,0) for i =
0,..., N + 1. Finally, recalling that V;_, y 11 (2;,0) is equal to
the value function V;(x;) of the problem in (3) and that the value
function is also in the same form of (9) we get that P; = P; n11
and p; = p; nv+1. This means that we obtained all P; and p; for
1 =20, ...,N +1 that can then be used in (II-C) to calculate
K and k in on pass in parallel. Thanks to a GPU-accelerated
scan implementation, we can obtain the control policy over
the entire horizon with an overall computational complexity
of O(log?(n)log N + log?(m)). This follows from the fact
that both computing and initializing the scan involve a matrix
inversion, which can be performed in parallel with complexity
O(log?(n)) [37]. The parallel associative scan can also be used
to retrieve the optimal trajectory in O(log nlog N + log m). We
start plugging into the linearized dynamics the optimal control
law we evaluated, obtaining:

dxii1 = Aidx; + b; (13)
where: A, = A, + B,K; and b, = B,k; + b; We can define
the conditional optimal trajectory as follows:

FLi*}j (&E“ (SCEJ) = AZ](SCCZ + Bi,j (14)

[20] showed that from the combination of two conditional op-
timal trajectory h;_,; and hj_,; we obtain h,_,; that can be
written in the same form as (14) with:

Ai,j = Ai,kAk,j Ei,j = Ak,jl_)i,k + Bk,j

We can initialize the element of parallel scan a; = h;;11(x;)
as:

15)

Aiii=A; bii1=b; (16)
fori=1,..., N while for i = 0 we set Ao =0 and 1_30,1 =
Apdxg + bg. From the parallel scan, we obtained the updated
optimal state as:

0, =ap®a; @+ D a1 o))

E. Parallel Line Search

Once we update the optimal directions dx, du, and d), we can
perform a backtracking line search to calculate the step length
« to finally get the new guess as:

" = 2F 4 adx AT =2F + adr

k+1

u =u” + adu (18)

The SQP linear rollout allows for the computation to be easily
performed in parallel for the horizon. To evaluate «, we imple-
mented a filter line search similar to the one implemented in [38].
The filter line search ensures that the step taken in the iteration
reduces the constraint violation or the cost. Such a method has
already been successfully deployed for legged robot control
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in [2]. We measure the satisfaction of the dynamics constraints
as:

N+1

0= Z l@iv1 — hi(zi, wi)l2 (19)
i=0

As for [2], when the constraint violation 6 is higher than a
threshold, we reject the step if it further increases 6. If the
violation is below the threshold and the current step is a descent
direction, then we apply an Armijo condition [39]. On the other
hand, if the current iterate is not in a descent direction, we require
that at least the cost or 6 is decreased to accept the step. To
leverage GPU parallelism, we evaluate the line-search in parallel
(atafixed grid of ten step sizes,i.e.v € {2°,...,279})and select
the largest « that satisfies one of the line-search conditions.

F. Practical Implementation

As itis commonly done in practice, we also perform a Gauss-
Newton approximation, ignoring the second-order term of the
dynamics in (3). We can further consider that in our case, the
cost for the MPC can be expressed as a non-linear least squares
problem in the form 1 Zf-vzo lle(z, w)||w, where W is a weight
matrix. The Hessian approximation reduces to:

T T
QN1 = Veen | WrhiiVeen S = Ve, WiVye;

Qi = V€] W;V,¢€; R; = V€] W;V,e€

(20)

Such an approximation also guarantees that 3 is convex. As
described in Section II-A, the inequality constraints in (Ic)
and (1d) were not explicitly included in the solver formulation.
However, these constraints are critical for MPC as they represent
the physical limitations of the system, such as friction cones or
joint limits. To account for these limitations in the optimization,
we incorporated them as a relaxed barrier function:

—pln(€), ifg =0,
B&.n) | (<§§25)2 - 1) — uln(s), ifE <4,

where {(z,u) < 0 is the considered constraint, and x and J are
parameters tuned for each constraint. Following the example
of [2], to maintain the convexity of 3 the hessian approximation
of the constraints is constructed as

2

Qni1=Voen W1 Voen 11+ Vo€ VeeBni1 Vi€
Qi = Vel WiVi€i + Vi€ VeeBiV,;
Si = Va.€, WiVs€; + Vo£] Ve BV, &,

R, = V,e] WiVi,e + V& Vee BiV.LE (22)

As a common practice, while using the MPC in closed-loop
with the robot, we perform one iteration only of the algorithm
described in Section II-A per control loop. To increase the
robustness of the method, we warm-start each call of the solver
with the previous prediction just shifted by one time-step as
shown by [40].

Finally, to guarantee the differentiability of the solver through
JAX-based automatic differentiation, we avoided the use of
while loop in the code. Especially in line-search, we evaluate a
fixed number of alpha values in parallel.
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III. MODEL PREDICTIVE CONTROL

In this section, we describe briefly the dynamics model
h(x;,u;) presented in (1b), introducing two different models
used for the formulation of the OCP presented in the result
Section IV. The efficacy of the control input obtained from a
MPC strategy is directly related to the rate at which such a
control strategy can be re-planned and to the accuracy of its
predictions, as shown by [41]. Therefore, we consider two main
formulations from the literature: one based on the Single Rigid
Body Dynamics (SRBD) model and one based on the Whole
Body (WB) model. The first approximates the system as a single
body with constant inertia, discarding the limb joint positions
and the inertial variation from different limb configurations. This
model is particularly effective in quadruped robots, where the
limb mass is, in most cases, designed to be less than 10% of
the total mass [42]. On the other hand, the latter completely
captures the dynamics of the robot, enabling the maximum
exploitation of the system’s capabilities. This benefit comes at
the cost of handling a larger state space and highly non-convex
models, thus affecting the maximum frequency at which the
optimization problem can be solved. Moreover, the SRBD-MPC
state is limited to the center of mass linear and angular positions
and velocities. This means that, when representing the robot’s
orientation using quaternions, the state lies in R7. For such
model, the control input consists only of the Ground Reaction
Forces (GRF), and thus lies in R3"¢, where n,. is the number
of contact points, meaning that, for the evaluations with the
quadruped, in Section IV n is in R'2 and m in R12.

In contrast, the WB-MPC also includes joint positions and
velocities in the state, and joint torques in the control input.
This increases the state dimensionality to R'327ein and the
control input dimensionality to R37<F"%in | that translate for the
quadruped model in Section IV in 7 in R37 and m in R?4.

Beyond the difference in dimensionality, the WB model also
introduces greater complexity. While the SRBD model features
bilinear terms only in the angular dynamics, the WB model has
highly nonlinear dependencies on the joint configuration. As a
result, the overall OCP becomes significantly harder to solve.

IV. RESULT

In this section, we present the results of various analyses that
highlight the strength of the proposed approach. We evaluate the
performance of our algorithm using the two models introduced in
Section III (the SRBD and WB models). To benchmark our im-
plementation against state-of-the-art solvers, we used acados [8]
(SQP) for comparisons on the SRBD model and crocoddyl [5]
(DDP) for the WB model. We used acados for the SRBD
comparison, as it could be easily adapted for the evaluations
with multiple robots, shown in Figs. 6 and 7. On the other hand,
we used crocoddyl for the horizon length comparison with the
WB model, as it showed significantly better performance than
acados with the more complex model as shown in Fig. 4.

Our analysis includes investigating how the average solv-
ing time scales with the horizon length across all models and
solvers. Additionally, we assess the solver’s performance as the
system state dimension increases, as well as the vectorization
capabilities of our approach. All the solving time comparisons
consider a single iteration for each algorithm. The tests were
conducted on a desktop computer equipped with an Intel Core
17-13700KF and an NVIDIA RTX 3080. We used Mujoco XLA,
to evaluate the WB dynamics. In all the presented benchmarks,
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Fig. 2. Comparison of the MPC optimal cost, evaluated from the same initial
condition with acados [8] (in blue) and with our implementation (in orange).
Both solvers are evaluated at each call of the MPC and the costs are recorded.

if not stated differently, we used the 15 kg Unitree Go2 robot,
a torque-controlled quadruped platform, with a horizon length
N of 50 nodes. As Fig. 1 and the accompanying video show,
our WB-MPC can also be implemented for real-time control of
other robot morphologies, like humanoids.

A. Performance Evaluation

First, we evaluate the ability of our solver to generate complex
dynamic maneuvers. In this scenario, we are generating a barrel
roll motion with the Aliengo robot, as shown in Fig. 1. Thanks
to its multiple shooting formulation, we can initialize the solver
with an infeasible initial guess, and the solver converges in just
27 iterations to a solution that completes the task. We also assess
the performance of the proposed solver in terms of solution
optimality. In Fig. 2, we compared the values of the cost from the
optimal solution given by our implementation against the one
given by acados, which is chosen for this comparison because it
allows using the same cost function as the one in our formulation.
In this scenario, we are using the whole-body model and are
controlling the robot in simulation at 50 Hz. The robot is tasked
to trot with a forward speed of 0.3 m/s while being randomly
pushed by an external disturbance of 50 N for 0.25 s. At every
control loop, we record the value of the cost functional from
both solvers, comparing solutions that start from the same initial
condition. Fig. 2 reports the values recorded during a 2.5 s time
span. Although the two solutions are comparably similar, our
implementation results in a 20% reduction in the average cost
along the trajectory.

To finally validate the MPC, we also performed experiments
on the real hardware, as shown in Fig. 1 and in the accompanying
video. For the real experiments, the solver runs on an Nvidia
RTX 4050 laptop GPU. Fig. 1 shows snapshots of the robot
walking blindly up the steps and through uneven terrain using
only proprioceptive data for state estimation [43]. We also eval-
uated the proposed approach when used to control two different
robots at the same time in a centralized control implementation
in simulation. In this example, the two robots are controlled by
the same MPC that evaluates the control input for both systems at
50 Hz. The MPC also includes a collision avoidance constraint,
in the form of a quadratic penalty term. In the tested scenario,
the two robots are tasked to track two perpendicular trajectories
that cross each other and would lead to a collision. Fig. 3 shows
the resulting path of the two robots, where the dashed grey
lines represent the distance between the two robots. As shown,
both robots deviate from their desired paths to avoid collisions,
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Fig. 3. Path of the two robots tracking their desired trajectories that will lead

to a collision. We visualize the distance between the two robots with dashed
gray lines of different shades, the darker the smaller distance.
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Fig.4. Breakdown of the solving times for our implementation, acados (SQP)

and crocoddyl (FDDP).

demonstrating coordinated behavior. While being just a simple
example, this result highlights the potential of our MPC in solv-
ing collaborative tasks. Further implementation in more complex
scenarios, such as collaborative carrying is left for future work.
Fig. 4 presents the average solving time breakdown for the three
solvers in the quadruped trotting scenario with a horizon of N =
100. It highlights the sequential backward pass in crocoddyl, the
QP solver call in acados, and the parallel scan in our method for
evaluating the search direction. A minor computational overhead
of approximately 1ms arises from GPU communication, as
only the initial state is sent and the commanded torques, joint
positions, and velocities are retrieved.

B. Temporal Parallelization

In this subsection, we show the benefit of our implementation
against the state-of-the-art solvers acados [8] and crocoddyl [5],
in terms of average solving time for increasing horizon length.
For this assessment, we initialized the robot in a feasible ran-
dom pose and joint configuration and tasked the controller to
perform a forward trot at a speed of 0.5 m/s. Acados uses the
same cost and dynamics formulation as in our controller, while
for the comparison with crocoddyl we adapted our reference
generator and cost to match the reference used in the example
provided with crocoddyl’s libraries. As reported in Fig. 5, our
implementation shows faster update rates than both solvers in
almost all tested scenarios. For the assesment against acados,
with the SRBD model, our implementation is always faster. For
the case of the WB formulation, crocoddyl is able to outperform
our formulation with a prediction horizon smaller than 80 nodes.
This last outcome is primarily attributed to overhead involved
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Fig. 5. Average solving times when varying the horizon length (number of

nodes) for the SRBD model (top) and WB model (bottom). In blue and green,
we plot the solution time of two different state-of-the-art solvers (respectively
acados [8] and crocoddyl [5]), while in orange, we plot the one of our imple-
mentation.
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Fig. 6. Our implementation can control multiple robots in the same optimiza-
tion, a typical scenario found in centralized controllers. In green, we depict
the solution time of acados, while in orange, ours, considering the SRBD
model. Furthermore, in dashed orange, we report the result obtained by our
implementation using the WB model.

in transferring data to and from the GPU, which, for smaller
problems, can be detrimental. Noticeably, our formulation can
achieve an update rate of 50 Hz for a horizon length of 200
nodes.

C. State Parallelization

In this subsection, we discuss the benefits of our implemen-
tation in the context of centralized controllers. In our tests, we
evaluated the average solving times for the MPC while pro-
gressively increasing the number of robots included in the same
optimization. This approach simulated a centralized controller
managing n different robots. For the SRBD model, we compared
our implementation against acados. For the WB model compar-
ison, crocoddyl was excluded since its model interface does not
allow for a customization that is needed for a fair evaluation. As
Fig. 6 shows, our implementation outperformed acados when
considering the SRBD model, achieving a computational time
of 25 ms in the presence of 16 robots, enough for the real-time
control of the systems. When using the WB model, instead,
computation becomes significantly more demanding for the
implementation with acados and we could not record data for
the comparison. As shown in Fig. 6, our algorithm successfully
controls up to four robots (WB model case) at 20Hz. To the best
of the authors’ knowledge, this level of performance has never
been achieved before.

D. Model-Based Learning

In this subsection, we highlight the vectorization capabilities
of our controller. Thanks to its full implementation in JAX, we

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 11, NO. 1, JANUARY 2026
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Fig. 7. Comparison of the solving time achieved by our implementation

against the batch-parallelized solver feature of acados, when varying the number
of environments being simulated in parallel. In this example, each environment
has a dedicated MPC.

TABLE I
PERFORMANCE METRIC

Nenv Control Frequency  Real-Time Factor
SRBD-MPC 4096 50Hz 370 %
SRBD-MPC 4096 25Hz 570
WB-MPC 4096 50Hz 35%
WB-MPC 4096 25Hz 75%

can easily vectorize the computation of the MPC. Such ability
is critical in the training scenario as shown in [28] or at runtime
as shown in [44]. In Fig. 7, we compare our approach to the
batched version of acados, which uses OpenMP to parallelize
the computation of independent MPC instances on the CPU.
As the plot shows, acados is competitive with the proposed
MPC only for small batch sizes. This limitation comes from
the reduced number of cores available on a CPU compared to
the parallelization capabilities of modern GPUs.

Finally, Table I summarizes the performance of our MPC
when batched across multiple environments with Mujoco XLA
as the simulator. In this setup, we generate 4096 environments,
each one running its own MPC. For the SRBD model, we control
the robot at an update rate of 50 Hz and we achieve a value of
570 seconds of simulated time per second. Meanwhile, for the
WB model, closing the loop at 25 Hz, we achieve a real-time
factor of 75x.

V. CONCLUSION

This work presents a novel GPU-accelerated MPC frame-
work implemented for legged robot locomotion. By leveraging
the parallel processing capabilities of GPUs and implementing
a Primal-Dual iLQR solver in JAX, we achieve logarithmic
scaling in horizon length and square-log scaling with state
and control dimensions. Our approach demonstrates significant
improvements over state-of-the-art solvers, achieving higher
computational efficiency and scalability. This allows for the
optimization of centralized controllers for multiple robots and
the integration of large-scale parallel environments, enhancing
learning-based control frameworks. Future works will include
the exploitation of the presented MPC as a bias in the learning
process of a locomotion policy. Furthermore, we would like
to include a more sophisticated methodology for dealing with
inequality constraints.
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