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Abstract—In viticultural environments, trajectory planning for
a robotic arm is particularly challenging due to the complex
structure of grapevines. We propose a method for precise
engagement of a robotic manipulator’s shears with grapevine
canes during automated winter pruning. The approach utilizes
artificial potential fields to guide the robot toward the target,
while employing vortex fields to safely navigate the shears around
obstacles detected from a 3D point cloud. Experimental results
demonstrate that the method successfully guides the robot to the
desired cane while avoiding collisions between the blades and the
plant, enabling accurate and safe pruning operations in realistic
vineyard conditions.

Index Terms—Precision Agriculture, Robotic Arm, Obstacle
Avoidance Path Planning, Artificial Potential Fields, Vortex Fields

I. INTRODUCTION

Grapevine winter pruning represents a fundamental prac-
tice in viticulture, playing a decisive role in shaping plant
growth and ensuring consistent fruit production. During winter
pruning, portions of the growth from the previous season are
carefully removed from dormant vines. The key purpose of this
practice is to make precise cuts that retain specific canes and
nodes, controlling the future growth of the plant and directly
influencing the grape yield and quality [1].

This task can be divided into three challenging modules:
grapevine 3D reconstruction, pruning point detection, and cut
execution. In this paper, we will address the latter, while we
refer to [2]–[4] for further information on the grapevine 3D
reconstruction and how pruning points are selected.

The complex environment in which pruning is performed
presents critical challenges. In particular, the robotic arm must
navigate carefully around grapevine canes to determine the
pruning path, avoiding damage to both the plant and the
manipulator.

In this scenario, the robotic arm must combine reliable real-
time performance with effective obstacle-avoidance capabil-
ities, while being able to adapt its motion based on visual
feedback. The Artificial Potential Field (APF) method is a
well-established approach for trajectory planning, known for
its good real-time performance and low computational effort
[5], [6]. Unlike standard sampling-based methods [7], APF
deterministic and continuous nature ensures consistent and

repeatable behaviour, essential for safe online pruning. APF-
based strategies have been successfully applied in clustered
environments, such as agriculture [8] and medical applications
[9]. Nonetheless, the classical APF suffers from inherent
drawbacks, most notably the proneness to local minima. To
address this issue, the present work is formulated on the
principle of vortex fields [10], [11] as an alternative avoidance
strategy.

The main contribution of this paper is the application of
APF-based techniques in the context of grapevine winter
pruning, employing vortex fields for safe manoeuvring around
obstacles. In particular, a real-time obstacle avoidance was
implemented using camera-acquired inputs, and its perfor-
mance was validated through preliminary hardware experi-
ments (Fig. 1).

II. METHODS

A. Artificial Potential Fields

As already mentioned, APF is widely used for path planning
[5], [6]. The main idea of the APF algorithm is to create
virtual potential fields in Cartesian space, where the robot
moves under the influence of an attractive potential toward

Fig. 1. Picture of the experimental setup showing the end-effector final
approach and the simplified blade model. TCP is represented by the cross.



the goal and a repulsive potential away from obstacles. The
linear attractive potential Ua ∈ R3 is defined as

Ua(q) =
1

2
kaρ

2
g (1)

where q ∈ Rnq is the current joint position of the robot
arm, ka ∈ R+ is the attractive potential gain, and ρg ∈ R3

is the relative Cartesian distance between the Tool Centre
Point (TCP) of the robot arm and the target position. In this
work, the TCP is defined as the midpoint between the two
blades of the custom shear end-effector, denoted by an ‘x’ in
Fig. 1. Considering velocity control inputs, the gradient of (1)
represents the attractive Cartesian velocity applied to the TCP
[5], [9]. The function of the velocity can then be expressed
as:

νa = −∇Ua(q) = kaρg (2)

The angular velocity is processed in the same way as the linear
velocity; it can be calculated by:

ωa = ζa[α β γ]T (3)

where the Euler angles [α β γ]T ∈ R3 are calculated from the
quaternion representing the angular distance from the goal, and
ζa ∈ R+ is the coefficient of the attractive angular velocity.
The construction of the repulsive potential field is similar to
that of the attractive potential field. For every obstacle Oi, it
can be defined as:

Ur,i(q) =


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if ηi(q) ≤ η0,i

0 if ηi(q) > η0,i

(4)

where γ = 2, 3..., kr,i ∈ R+ is the repulsive gain, ηi(q) ∈ R
is the shortest distance to the obstacle and η0,i ∈ R+ is the
range of influence of the potential field. In this case, obstacles
are derived from the point cloud obtained during the 3D
reconstruction, as described in our previous work [4]. Each
point in the point cloud is treated as the centre of a spherical
object with radius r, resulting in a set of spherical obstacles
to be avoided.

In the artificial potential field framework, any point on the
robot can be influenced by the repulsive potential. The obstacle
avoidance problem for manipulators is commonly formulated
in terms of preventing collisions between the robot’s links,
each of which can be represented as a line segment defined
by two adjacent joints or points. Collision avoidance is then
achieved by continuously controlling the link’s closest point to
the obstacle [6]. The repulsive velocity of this point, referred
to as the Point Subjected to the Potential (PSP), is given by:

νpsp,i(q) = −∇Ur,i(q)

=

α(q)∇ηi(q) if ηi(q) ≤ η0,i,

0 if ηi(q) > η0,i.

(5)

With α(q) =
kr,i

η2
i (q)
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The distance ηi(q) is thus simply defined as the Cartesian
distance between the PSP and the object’s centre, taking the
radius into account.

In this work, considering the geometry of the blades, two
PSPs are defined at each iteration by introducing artificial
links. These links correspond to the outer distal halves of the
left and right blades, as shown in Fig. 1. Their influence ranges
are specifically tuned to prevent collisions between the blades
and the plant, while avoiding any interference with the TCP
located centrally between the two blades. The total potential
Ut(q) is obtained by superposition of the attractive and the
aggregate repulsive potential, resulting in the velocity:

νt(q) = −∇Ut(q) = νa(q) +
∑
i=1

νr,i(q) (6)

Where νr,i(q) denotes the repulsive velocity νpsp,i(q) ex-
pressed with respect to the TCP, for each PSP.

B. Joint Velocities: Damped Least-Squares approach

In order to control the robot, velocities in Cartesian space
need to be converted into joint space. The mapping rela-
tionship between the Cartesian space velocity and the joint
speed of the APF can be expressed, using the Jacobian matrix
J ∈ R6×nq , as follows [5]:

q̇ = J−1Vt(q) (7)

Here, Vt(q) ∈ R6 denotes the total velocity vector, defined as
Vt(q) = [νt ωa]

T , since there is no repulsive angular velocity.
A significant issue in Cartesian-space path planning is the

occurrence of singularities, where the robot loses one or
more degrees of freedom. To address this, the present work
employs a Damped Least-Squares (DLS) approach with a
dynamic damping factor [5], [12]. While this method may
slightly reduce the accuracy of the TCP trajectory, it prevents
singularities. The function of the damped least squares solution
is defined as:

q̇ = JT (λI + JJT )−1Vt(q) (8)

where I ∈ R6×6 denotes the identity matrix and λ ∈ R is the
dynamic damping factor, designed to be zero far from singular-
ities and to increase near singular configurations, where joint
velocities may become infeasible. Specifically, λ is adjusted
based on the manipulability measure ω =

√
det(JJT ) with a

threshold ωt ∈ R+: no damping is applied when ω > ωt, and it
progressively increases as ω decreases, reaching its maximum
value λ0 ∈ R+ at ω = 0.

λ =

λ0

(
1− ω

ωt

)2

if ω < ωt

0 if ω ≥ ωt

(9)

C. Vortex Fields

The main drawback of artificial potential fields is the
generation of local minima in the total field, which can cause
the planning algorithm to get stuck. Vortex fields address
this issue by guiding the robot to turn around obstacles [10].



Specifically, the direction of the repulsive velocity should be
perpendicular to the radial vector between the obstacle and
the point subjected to the potential, while the field intensity
remains unchanged. A possible solution is given as follows:

νv,i(q) = ±


∂Ur,i

∂y

−∂Ur,i

∂x
0

 (10)

A critical aspect is the choice of the vortex rotation di-
rection, since for articulated manipulators an inappropriate
selection may prevent algorithm convergence and even cause
the robot to collide with obstacles.

In the specific context of winter pruning, two scenarios must
be distinguished: some canes represent obstacles to be avoided
along the path to the goal, while others correspond to the prun-
ing point, i.e., the goal itself. Consequently, the rotation rule
is scenario-dependent. When navigating around an obstacle,
the end-effector should rotate away from it, counter-clockwise
if moving toward the TCP positive x direction, and clockwise
otherwise. When approaching a pruning point, the end-effector
should rotate toward the target, counter-clockwise if the PSP
lies on the TCP positive x side, and clockwise otherwise.

III. RESULTS

To evaluate the proposed method, experiments were con-
ducted using a Kinova Gen3 robotic arm equipped with custom
end-effector shears (Fig. 1) and an Intel D405 camera. The ve-
locity commands were transmitted through the joint trajectory
controller of the ros2 control framework [13]. Information re-
garding the robot over time, including the Jacobian matrix and
the TCP position, was obtained via the robotic manipulation
platform MoveIt 2 [14]. The point cloud is obtained with the
3D reconstruction approach introduced in [4].

The experiment was conducted with the robotic arm posi-
tioned in front of the grapevine plant, requiring the manipu-
lator to reach a pruning point located diagonally with respect
to the TCP. Upon examination of Fig. 2 and Fig. 3, it can be
observed that the target point is successfully reached without
the blades colliding with any obstacles.

In particular, Fig. 2 illustrates the trajectory of the TCP
projected onto the x–y plane. The grey line represents the path
of the TCP, while the discrete ‘x’ markers indicate sampled
positions at intervals of ≈ 0.70 seconds. For clarity, the
simplified blade model from Fig. 1 is also included, with its
distal links corresponding to those used in the repulsive force
analysis. Additionally, the relevant portion of the cane involved
in the motion is depicted by projecting the corresponding
points of the point cloud onto the x–y plane.

At the beginning of the motion, the TCP is driven solely
by the attractive velocity (Fig. 3). As the TCP approaches the
goal, this component gradually decreases, slowing down the
motion. This effect is also evident from the increasingly dense
distribution of the sampled TCP positions. Consequently, as
the blades approach the cane, the repulsive velocity alters the
trajectory of the arm. Specifically, the trajectory of the TCP
is modified once the obstacles enter the range of influence
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Fig. 2. TCP trajectory projected onto the x–y plane with simplified blade
model

of the repulsive potential field. This range is illustrated by
circles centred at the PSPs of the blades. As a result of the
choice of placing additional links on the distal outer portions
of the blades and selecting a suitable influence radius, these
circles cover the area effectively occupied by the blades while
preserving a clearance from the cane, particularly along the
outer edges, thereby ensuring collision avoidance. When the
circles intersect the red points representing the cane, the
obstacles enter the influence range of the repulsive field,
and the resulting repulsive velocity is applied to the TCP to
maintain a safe distance.

Indeed, by analysing the sampled TCP positions, it can be
noted that the direction of the trajectory remains unaltered
as long as the obstacles are outside the influence range (i.e.,
before the state shown in purple). In correspondence with
the purple state, the obstacles enter this range (the circle is
touching the obstacles), so the trajectory is deflected. As a
consequence, in the following black and teal states, the blade
(and the corresponding PSP) rotates around the obstacle due
to the repulsive velocity (Fig. 3).

The rotation direction is correctly defined to guarantee a
proper approach of the TCP to the pruning point. Finally, at the
end of the motion, the obstacles are no longer within the range
of influence of the repulsive force (green and pink states). As
a result, the motion is successfully completed: the Tool Centre
Point reaches the goal without any blade collisions, the final
attractive velocity becomes null, and the approach is executed
correctly (Fig. 1).

IV. CONCLUSION

This work demonstrates the successful application of APF-
based path planning for a robotic manipulator performing
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Fig. 3. Attractive and Repulsive Cartesian velocities of the Tool Centre Point
over time

automated grapevine winter pruning. By integrating vortex
fields for repulsive interactions, the proposed approach allows
the robot to effectively navigate around obstacles, overcoming
the classical limitations of APF associated with local minima.
Experimental results confirm that the method enables precise
engagement with the plant’s cane while avoiding collisions
between the blades and the plant, ensuring a safe and accurate
pruning process.
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