
A Reactive Controller Framework for Quadrupedal
Locomotion on Challenging Terrain

Victor Barasuol∗, Jonas Buchli†‡, Claudio Semini‡, Marco Frigerio‡, Edson R. De Pieri∗, Darwin G. Caldwell‡

∗PPGEAS - Dept. of Automation and Systems,
Federal University of Santa Catarina (UFSC),

Florianpolis, SC, Brazil 88040-970
victor@das.ufsc.br

†Agile & Dexterous Robotics Lab,
ETH Zurich,

Tannenstr. 3, 8092 Zürich
buchlij@ethz.ch

‡ Dept. of Advanced Robotics,
Istituto Italiano di Tecnologia (IIT),

via Morego, 30, 16163 Genova
<first name>.<last name>@iit.it

Abstract—We propose a reactive controller framework for
robust quadrupedal locomotion, designed to cope with terrain
irregularities, trajectory tracking errors and poor state esti-
mation. The framework comprises two main modules: One
related to the generation of elliptic trajectories for the feet
and the other for control of the stability of the whole robot.
We propose a task space CPG–based trajectory generation that
can be modulated according to terrain irregularities and the
posture of the robot trunk. To improve the robot’s stability, we
implemented a null space based attitude control for the trunk
and a push recovery algorithm based on the concept of capture
points. Simulations and experimental results on the hydraulically
actuated quadruped robot HyQ will be presented to demonstrate
the effectiveness of our framework.

I. INTRODUCTION

Agile locomotion of legged robots over rough terrain re-
quires all elements - from trajectory planning to control - to
work in a well orchestrated manner. The different elements,
e.g. planning and control should not interfere with each other.
For example, a kinematic plan for the legs should never
make the legs try to penetrate the ground. If ground contact
occurs unexpectedly the kinematic plans have to be adjusted
immediately. At the same time, the kinematic locomotion
pattern should, as much as possible, not be disturbed by the
controller responsible to keep the robot’s trunk upright.

While there is a lot of work addressing single aspects of
the overall locomotion gait planning and control problem,
solutions that take all these elements together in a systematic
and coherent fashion are rare.

In this contribution we present a reactive gait generation and
control framework for a quadruped robot that has the following
main goals:

• Creation of stable omni-directional periodic gait
• Robustness against disturbances from uneven ground and

external forces on the trunk
• Foot slip avoidance
• Reduction of impact forces at the feet

To achieve these goals we make extensive use of kinematic and
dynamic models of our hydraulic quadruped robot HyQ [1]
and exploit the high performance torque-control available at
all the joints [2] [3]. The resulting control framework exhibits
the following features:

1 Avoid trajectories that would penetrate the ground (avoid
high ground reaction forces – GRF);

2 Avoid weak contact or loss of contact (avoid slippage);
3 Avoid undesired leg internal forces (avoid slippage and

waste of energy);
4 Reduce disturbances between joint position and trunk

attitude controllers;
5 Reduce disturbances at the trunk due to poor state esti-

mation (avoid excessive GRF);
6 Increase the locomotion robustness with respect to unex-

pected terrain irregularities (avoid excessive GRF);
Our main contributions include: a simple, yet reactive gait

pattern generation; the introduction of the so-called horizontal
frame to derive the equations of the control blocks, which
allows to effectively decouple the foot trajectory planning from
the trunk attitude control; the extension of the capture point
approach on a quadruped robot addressing not only linear but
also rotational disturbances (about the yaw axis).

We present simulations and experimental results demon-
strating the performance of our controller framework on the
HyQ robot, Fig. 1. A detailed description of the robot hardware
can be found in [1]. All the experiments are executed on the
robot performing a dynamic gait on rough terrain, namely
a walking trot, and undergoing severe external perturbations
(e.g. strong pushes on the trunk).

Fig. 1. IIT’s hydraulic quadruped robot HyQ on rough terrain. Left: Robot
model in simulation environment (SL [4]); Right: Picture of robot during a
test run.

Related work
Extensive research has been conducted in the field of

floating base kinematics [5] and dynamics [6], [7], [8] and



our approach partially builds on this work. However, in our
work, we specifically address the reactive generation of the
locomotion pattern rather than the underlying whole body and
floating base control problems.

Boston Dynamics’ quadruped robots BigDog [9] and LS3
have shown impressive locomotion performance in several
online videos in the past years. However, no details on the
hardware design and control methods have been published to
date. The performances of the underlying control algorithms
are therefore hard to verify and compare to other approaches.

Autonomous Locomotion through rough terrain has recently
been the focus of the DARPA Learning Locomotion Challenge
(cf. IJRR special issue [10]). In [11] a rigid body model based
controller has been shown to allow to lower the error feedback
controller gains improving the robustness for walking over
rough terrain. However, the therein presented approaches make
use of a high precision terrain map, extensive foothold search
and kinematic motion planning and mostly focus on statically
stable locomotion, while we focus on reactive footstep plan-
ning in absence of a terrain map.

In this paper, we propose a push recovery algorithm based
on the concept of N-step capturability, described in [12]. This
concept has been used by some authors for push recovery
and generation of trajectories in bipeds, by modeling the
robots with simple linear models. For example, the 3D Linear
Inverted Pendulum [13], the Linear Inverted Pendulum plus
Flywheel [14], the Linear Inverted Pendulum with finite-size
foot and reactive mass [15]. However, all these models do
not consider the effect of rotational motion, which is relevant
for the long trunk of a quadruped. Moreover, an analysis for
balance recovery in quadrupeds based on N-step capturability
is still missing in the literature.

Central pattern generators observed in animals have been a
major source of inspiration for trajectory generation in legged
robots [16], [17]. In robotics, the majority of CPG-inspired
methods for trajectory generation is applied in joint space [18].
However, feet trajectories mapped into joint space are complex
signals that cannot be modeled well by few harmonics. In ad-
dition, the relationship between the parameters of the generator
in joint space and the gait features (e.g. step height and length)
are very non-intuitive. To overcome such drawbacks of CPG-
inspired methods in joint space, some authors proposed to use
a Cartesian space CPG [19]. In that work the authors used a
neural network model in which the parameters are still non-
intuitive, have no independent effect on the feet trajectory and
require a mapping analysis to be tuned.
Our contribution is a CPG-inspired foot task space trajectory
generator with a very simple structure where all the parameters
have intuitive meaning and can be adjusted with independent
effect on the feet trajectories.

II. REACTIVE CONTROLLER FRAMEWORK

The Reactive Controller Framework (RCF) presented in this
work consists of two main parts: the Motion Generation and
the Motion Control. Both of them comprise three functional

blocks which will be detailed in Section III and IV, respec-
tively. Fig. 2 illustrates the layout of the various control blocks
along with the main information flows between such blocks
and the robot/environment.

Robot
+

Environment

CPG
Feet trajectory

Kinematic 
Adjustment

PD Controller
+

Inv. Dynamics

+

Push
Recovery

State
Estimation

Trunk
Controller

RCF

Fig. 2. Overview diagram of the Reactive Controller Framework (RCF),
highlighting the main functional blocks and the information flows. The small
block with k−1 represents the inverse kinematics routine. All the other
variables and the blocks are explained in Section III and IV.

An important element of our framework is the horizontal
frame, which we will use throughout the whole paper. A
horizontal frame is a reference frame whose xy plane is always
horizontal (i.e. orthogonal to the gravity vector ~g), such that
the projection of its x axis on the horizontal plane is parallel
to the same projection of the x axis of the robot (that is, the
horizontal frame has the same yaw angle as the robot, with
respect to the world frame). A horizontal frame can be attached
to the robot (it is then said to be floating), or fixed somewhere
in the environment, as illustrated in Fig. 3.

x y

z

x y

z

x y

z

x

y

z

Fig. 3. Horizontal reference frames (in green) and the robot frame (in blue
– the parallelepiped represents the robot trunk; see also Fig. 5); horizontal
frames share the same yaw angle with respect to the world reference frame
(in black).

Choosing such a horizontal frame as the coordinate frame
for motion generation and control provides several advantages.
In general, it makes the trajectory generation of the CPG block
independent from the trunk attitude, therefore the influence of
the trunk attitude controller on the feet trajectories is mini-
mized. This feature is very important for improved locomotion
stability and for push recovery, as we will show in Section V.



III. MOTION GENERATION

The purpose of this part of the framework is to generate
stereotypic and reactive motions for the feet. The most im-
portant sub-modules are: a CPG-inspired trajectory generator
that provides elliptical trajectories for the feet (the primitives),
which dynamically adapt to the terrain profile; a kinematic
adjustment function that corrects the feet trajectory according
to the actual trunk attitude; a joint space controller which
tracks the desired trajectories. These modules are detailed in
the following subsections.

A. CPG-inspired trajectory generation

Our approach for the generation of the reference trajectories
for the feet is loosely inspired by the CPGs of animals.
Ellipse-shaped trajectories are generated by a network of four
non-linear oscillators, whose state represents the Cartesian
coordinates of each foot [20].

We extend our previous work by adding non-linear filters
coupled to the output of the network of oscillators. During
each leg’s swing phase the filter output tracks the output of its
corresponding oscillator. The filters also receive information
about the foot contact on the ground, allowing them to adapt
the trajectories according to the actual terrain profile. This
is achieved by cutting the ellipses, as explained later in this
section. The shape of the adapted trajectories are illustrated in
Fig. 4 on the right.

Swing phase
behavior

Stance phase
behavior

Swing phase
behavior

CPG Oscillator - primitive Filtered trajectory

Fig. 4. The foot trajectory generated by the CPG oscillator (on the left) and
the trajectory modulated by the non linear filter (on the right). Ls and Hs

are respectively the length and the height of a single step; ztd is the filter
parameter which determines where the original elliptic trajectory has to be
interrupted (to start the stance phase). The h on the axes labels stands for
horizontal frame.

The equations governing the network of oscillator inspired
by the CPG are the following:

ẋhpi
= α

(
1− 4x̄2

i

Ls
2 −

z̄2
i

H2
si

)
x̄i +

wsiLs

2Hsi

z̄i (1)

ẏhpi
= β (ȳi + ∆yci) (2)

żhpi
= γ

(
1− 4x̄2

i

Ls
2 −

z̄2
i

H2
si

)
z̄i −

wsi2Hsi

Ls
x̄i +

∑
Cij

Hsi

Hsj

z̄j

(3)

wsi = π
Vf
Ls

(
Df

1−Df
σp1i(z̄i) + σp2i(z̄i)

)
(4)

σp1i
(z̄pi

) = (e−bpz̄pi + 1)−1 (5)

σp2i
(z̄pi

) = (ebpz̄pi + 1)−1 (6)

where xhpi
, yhpi

and zhpi
are the i-th oscillator outputs that

compose the position reference vector Xh
pi

= [xhpi
yhpi

zhpi
]T

of the i-th leg expressed in the horizontal frame. Each ellipse
is positioned in the horizontal frame by using the variables
x̄i = xhpi

− xhp0i
, ȳi = yhpi

− yhp0i
and z̄i = zhpi

− zhp0i
,

where (xhp0i
, yhp0i

, zhp0i
) are the coordinates of the i-th ellipse

origin. The four main parameters that can be set by the
user (or a higher level controller) are the following: the step
length Ls, the step height Hs, the step duty factor Df and
forward velocity Vf . The angular frequency ws is calculated
as ws = πVf/Ls. The angular velocity of the limit cycle,
during stance and swing phases, is changed according to the
functions σp1i

(z̄pi
), σp2i

(z̄pi
) and the duty factor. The constant

bp changes the transition rate of σp1i(z̄pi) and σp2i(z̄pi). α, β
and γ affect the convergence rate to the limit cycle.

The last term in (3) is the coupling term that allows
independent modulation of each step height without disturbing
the synchronization. The gait pattern is selected according to
the coupling matrix C (see [21] for trot, walk, bound and pace
gaits). All simulations and experiments presented in this paper
are based on a trot.

The output filter is written as

Ẋh
fi = (Ẋh

pi
+Kc(X

h
pi
−Xh

fi))σf1i(z̄pi)− Viσf2i(z̄pi) (7)

σf1i(z̄pi) = (e−bf (z̄pi−ztdi ) + 1)−1 (8)

σf2i(z̄pi
) = (ebf (z̄pi−ztdi ) + 1)−1 (9)

The functions σf1i(z̄i) and σf2i(z̄i) are responsible for
switching the behaviour of the limit cycle between swing and
stance phases according to the touchdown position. During
stance phase, the filter output becomes Ẋh

fi
= −V , where V

is computed to provide omni-directional motion. The higher
the value of the constants bp and bf , the faster the transitions
between swing and stance phase behaviours. The idea of using
exponential functions to achieve smooth transitions was first
introduced by [21], [22].

The step depth parameter ztd affects the reshaping of the
trajectory by determining at which height the ellipse has to be
interrupted, as depicted in Fig. 4 on the right.
If a terrain map is available the swing to stance transition
can be planned in advance, reducing the impact forces. In
absence of a map (i.e. the robot is walking blindly), the feet
trajectories can be dynamically adjusted as soon as touchdown
is detected; this feature makes the locomotion more robust also
with respect to poor state estimation.
During the execution of the trajectory, the foot touchdown
event is recognized (e.g. by force sensors, simple binary switch
sensors, or more complex estimators fusing different data). ztd
is consequently adjusted to match the actual step height/depth
(for bumps or holes, respectively) and the filter changes the
shape of the trajectory.

B. Kinematic adjustment

The kinematic adjustment has fundamental importance
within the whole RCF. This algorithm transforms the generated
desired foot trajectory from the horizontal frame (Xh

f ,Ẋh
f ,Ẍh

f )



to the robot base frame (Xb
f ,Ẋb

f ,Ẍb
f ), using the information

about the actual attitude of the trunk (i.e. the robot base), Φ
and Φ̇.
Having a dedicated, specific module for this purpose allows
the CPG module to be independent of Φ and Φ̇, effectively
decoupling the corresponding controllers that therefore do not
conflict or fight each other. Such a separation reflects the
different nature of the two problems (generation of periodic
trajectories and taking care of the attitude) and is also effective
from the software implementation point of view.

This block changes the trajectories according to the body
inclination so that each origin of the CPG ellipse lies close to
the ground. This reduces the risk of a weak or missed contact.

C. PD controller and inverse dynamics

The actual joint space controllers used on the robot to track
the desired trajectories are regular PD position and torque con-
trollers plus a floating–base inverse dynamics routine provid-
ing feed–forward commands [6]. The inverse dynamics block
allows to lower the gains of the PD joint position controller
resulting in a low virtual joint stiffness (beneficial to reduce
disturbances between trunk and feet) without compromising
the tracking performance. Both components are implemented
in our simulation and real–time control software, SL [4]. A
detailed description of this block would go beyond the focus
of this paper.

IV. MOTION CONTROL

The purpose of the motion control block is to induce actions
that allow better control of the trunk motion and reject external
disturbances created by unexpected terrain irregularities and
external forces applied to the trunk.

This section presents the three algorithms of the motion
control block: the trunk controller that affects the trunk attitude
and motion during the stance phase; the push recovery that
estimates footholds for the swing legs which will lead to a
corrective reaction during stance; the state/velocity estimation
that computes the translational velocities of the trunk, which
are used by the other two algorithms.

A. Trunk controller

The purpose of this control block is to provide joint com-
mands that result in the application of a certain force to the
trunk of the robot, for example to correct its attitude. The
foundation of the algorithm lies in the computation of the
Jacobian matrix that gives the velocities of the feet according
to the velocities of the joints and of the floating base [23].
This Jacobian is obtained by the derivation of the forward
kinematics expressed in a fixed horizontal frame (see Section
II).
This formulation uses the following definitions:

• qri ∈ Rn×1: vector of joint positions for leg i (n is the
number of joints per leg);

• Φb ∈ R3×1: vector of orientation angles of the base (roll,
pitch and yaw), with respect to the horizontal frame (yaw
is always 0);

• Rh
b (Φb): rotation matrix from the base frame to horizontal

frame;
• Xb

fi
∈ R3×1: vector of foot coordinates in the base frame

(which we can write as k(qri), where k is the forward
kinematics function);

• Xh
fi
∈ R3×1: foot coordinates in the fixed horizontal

frame;
• Xh

b ∈ R3×1: base coordinates in the fixed horizontal
frame.

• Jb(qri) ∈ R3×n: Jacobian that relates the foot velocity
to the joint velocities of leg i in the base frame. For
simplicity, Jb(qri) will be written as Jbi ;

• M(Φb, qri) ∈ R3×3: matrix that relates the foot velocity
of leg i to the body angular velocities in the horizontal
frame.

For each foot i of the robot we can write:

Xh
fi = Xh

b +Rh
bX

b
fi (10)

Differentiating (10) with respect to time, yields:

Ẋh
fi = Ẋh

b + Ṙh
bX

b
fi +Rh

b Ẋ
b
fi (11)

Ẋh
fi = Ẋh

b +
∂Rh

b

∂Φb
Φ̇bk(qri) +Rh

b Jbi q̇ri (12)

Ẋh
fi = [Rh

b Jbi I M(Φb, qri)][q̇
T
ri (Ẋh

b )T Φ̇T
b ]T (13)

Ẋh
fi = Jhi(Φb, qri) [q̇Tri

hẊT
b Φ̇T

b ]T (14)

The actual Jacobian used for trunk control (JH(Φb, qr), or
simply JH ) is built by stacking only the Jhi

associated with
the stance legs, therefore the number of rows changes. For
instance, for a quadruped robot with all the legs in stance
phase we have JH ∈ R[12×4n+6]. The structure of JH is such
that we can write:

[ẊT
f1 ... Ẋ

T
fj ]T︸ ︷︷ ︸

Ẋh
f

= JH(Φb, qr) [q̇Tr1 ... q̇
T
rj

hẊT
b Φ̇T

b ]T︸ ︷︷ ︸
q̇h

(15)

where j is the number of stance legs.
The user or a high level locomotion controller chooses a

vector of desired forces Υhdes
∈ R(jn+6)×1; a typical example

are the forces to be applied to the trunk to compensate for a
tilted attitude.
The idea is to then map this generalized forces into torque
commands τtc ∈ Rn×1 for the joints, trying not to move the
feet positions in the horizontal frame. Therefore such torques
are extracted from the projection of the desired force vector
Υhdes

into the null space of JT
H [7]:

τtc = S(I − JT
HJ

+T
H )Υhdes

(16)

where S ∈ R(nj)×(nj+6) is the selection matrix that preserves
only the torques associated to the actuated joints.

The matrix J+
H in (16) is the right generalized inverse of

JH :
J+
H = W−1JT

H(JHW
−1JT

H)−1 (17)

In our approach we select a weighting matrix W (∈
R(jn+6)×(jn+6)) which results in the minimization of the



floating-base forces and therefore in a more effective use of
the actuated joints.

B. Push recovery based on capture points

The purpose of the push recovery algorithm is to dampen
out disturbances that cause undesirable lateral and rotational
motion of the trunk. The idea is to find proper footholds which
naturally counteract the disturbances and make the robot stop.
We based our analysis on the concept of N-step capturability,
described in [12]; it considers the states and actions that allow
a legged system to eventually come to a stop and it provides
a metric about the probability of the robot to fall. In our case
we are interested in the instantaneous capture points, which
allow the robot to stop with a single step.

Our contribution consists of a linear model that considers
two stance legs and allows to calculate instantaneous capture
points according to the yaw motion and the lateral velocity.
The proposed model, illustrated in Fig. 5, is a quadruped
model described in the horizontal frame and simplified by
considering massless legs and no roll and pitch motion.

fl4

zh

yh

xh

fl1
z1

z4

y1

y4

Fig. 5. Simplified quadruped model with massless legs, showing the robot
frame attached to the geometric center of the trunk. The red arrows represent
the linear forces exerted on the trunk by the stance legs.

The resulting equations of motion for this simplified model
are given by:

mbÿb = −fl1
∆y1

l1
− fl4

∆y4

l4
(18)

mbz̈b = −fl1
z1

l1
− fl4

z4

l4
−mbg (19)

Ibzψ̈b = −rfl1
∆y1

l1
+ rfl4

∆y4

l4
(20)

Iby θ̈b = −rfl1
z1

l1
+ rfl4

z4

l4
(21)

where mb is the robot mass and Iby and Ibz are the rotational
inertias around yh and zh axes, respectively. The variable zj is
the foot position along the zh axis, ∆yj is a relative position
along the yh axis between hip j and foot j. The distance
between each hip j and the relative contact point is defined
as lj , g is the gravitational acceleration constant and flj is the
linear actuation force on leg j.

Assuming that each hip height is kept constant during the
stance phase, which implies θ̇b = żb = 0, we get a linear

system of equations:

ÿb =
g

2

(
∆y1

z01
+

∆y4

z04

)
(22)

Ibz
mbr

ψ̈b =
g

2

(
∆y1

z01
− ∆y4

z04

)
(23)

Adding and subtracting equation (22) from equation (23)
yields:

ÿb +
Ibz
mbr

ψ̈b = g
∆yc1
z01

(24)

ÿb −
Ibz
mbr

ψ̈b = g
∆yc4
z04

(25)

From equations (24) and (25) we can then independently de-
rive a conserved quantity, called Orbital Energy [24], relative
to the motion of each hip associated to the leg j:

Ehipj =
1

2
(ẏb +

Ibz
mbr

ψ̇b)
2 +

1

2

g∆y2
cj

z0j
for j = 1, 2 (26)

Ehipj =
1

2
(ẏb −

Ibz
mbr

ψ̇b)
2 +

1

2

g∆y2
cj

z0j
for j = 3, 4 (27)

If Ehipj
= 0, then the hip j will come to rest over the foot

j. Solving the equations (26) and (27) for zero orbital energy
results in the ∆yc quantities that match the instantaneous
capture points for each foot j:

∆ycj =

√
−z0j

g
(ẏb +

Ibz
mbr

ψ̇b) for j = 1, 2 (28)

∆ycj =

√
−z0j

g
(ẏb −

Ibz
mbr

ψ̇b) for j = 3, 4 (29)

C. Trunk state estimation for translational velocities

The performance of the motion control techniques described
above heavily depends on the quality of the estimation of the
base state. Quantities like the lateral velocities, required by the
push recovery module, are the most critical ones since we do
not have a direct measurement of them (as opposed to angular
velocities that are directly measured by the gyro-sensor of the
Inertia Measurement Unit (IMU)).
Since both the push recovery and the trunk control work
with coordinates in the horizontal frame, it is sensible to use
the same frame for the state estimation. Our IMU provides
estimates of the angular velocities and the orientation of the
robot’s trunk already in the horizontal frame (e.g. roll and
pitch angles express how tilted a body is with respect to a
horizontal reference).

To estimate the trunk lateral velocities we use the general
expression (12) assuming that the feet are naturally constrained
by the friction forces during the stance phase, i.e. Ẋh

fi
= 0.

This procedure is analogous to what was adopted in [25] and
provides the estimation of the trunk translational velocities in
the horizontal frame:

ˆ̇Xh
b = JHest(Φb, qri)[q̇

T
r1 ... q̇

T
rj Φ̇T

b ]T (30)

where JHest ∈ Rjn×jn+3 is the Jacobian for state estimation.



V. SIMULATION AND EXPERIMENTAL RESULTS

In this section we present a series of results to show
the robot balance improvement achieved by the proposed
RCF. More specifically, these results show the balance and
locomotion performance by fusing a push recovery algorithm,
an adaptive trajectory generation and a horizontal frame kine-
matic adjustment.

Both simulation and experimental results were performed on
our torque-controlled quadruped robot platform (named HyQ
[1]). It stands 1 m tall, weighs around 70 Kg and is currently
tethered to an external power supply. Each of the 12 actuated
revolute joints feature a range of motion of 120o. While the
hip abduction/adduction joints are actuated by DC brushless
electric motors, the hip and knee flexion/extension joints are
driven by fast and strong hydraulic cylinders. Information
about angular position and velocity of the trunk are provided
by an embedded IMU (MicroStrain 3DM-GX3-25). Currently
our robot detects the foot touchdown by monitoring the foot
forces estimated by the foot Jacobian and the joint torques.

A. Simulation results

The balance improvement due to the push recovery algo-
rithm is evaluated by subjecting the robot’s trunk to different
rotational and lateral disturbances. Rotational (yaw) distur-
bances were created by applying different constant torque
values to the robot trunk creating positive moments around
the zh axes. Lateral disturbances are applied perpendicularly
to the center of the trunk’s side. Each push is applied as a step
input of one second duration.

The robot receives the disturbances during a trot gait and
always at the beginning of the swing phase of the same pair of
diagonal legs. The gait features a step frequency of 1.65 Hz,
a duty factor of 0.55 and a step height of 8 cm. The desired
torques Υhdes

used in the trunk controller (see Section IV-A)
are computed according to a PD action on the robot roll and
pitch angular errors. The desired roll and pitch angles are zero.
The response for rotational and lateral disturbances are shown
separately.

First, to analyse the yaw disturbance rejection three different
constant torques were applied to the robot’s trunk. The total
robot yaw displacements due to each applied torque, with and
without push recovery, are shown in Table I.

TABLE I
PUSH RECOVERY RESULTS SHOWING YAW DISPLACEMENT ANGLES AFTER

ROTATIONAL DISTURBANCE

Mode\Torque 100 Nm 200 Nm 300 Nm
Push R. ON 23.5o 47.0o 60.7o

Push R. OFF 31.5o 60.2o 85.4o

The results in Table I show that the push recovery algorithm
is able to reduce the yaw displacement up to 29%. These
results indicate that the push recovery cannot stop all the yaw
motion, which was expected since the push recovery has no
effect during the swing phase (and thus at the beginning of
the applied disturbance of one second).

Next, to analyze the lateral push recovery performance we
show the robot’s ability to keep balance by turning on/off
blocks in the RCF. We change the simulation sets by: turning
on/off the push recovery algorithm (PR) to show its con-
tribution for lateral balancing; turning on/off the kinematic
adjustment (KA) to show its benefits to the push recovery; and
turning on/off both algorithms. Many disturbance trials were
simulated by pushing the robot laterally with constant force
during one second. Three pushing force values were applied
(400 N , 500 N and 600 N ) for each one of the above cases,
as shown in the three plots of Fig. 6.

0

0.2

0.4

0.6

R
ob
ot
he
ig
ht
[m
]

Robot Height X Lateral Displacement

PR+KA
PR
Open Loop

0

0.2

0.4

0.6

R
ob
ot
he
ig
ht
[m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

Lateral displacement [m]

R
ob
ot
he
ig
ht
[m
]

400N Push

500N Push

600N Push

Fig. 6. Simulation results illustrating the push recovery response for three
different trunk push forces. The arrows represent the z axis of the robot base
frame illustrating the sequence of the trunk’s motion (lateral displacement,
robot height and roll angle) after the lateral force disturbance. The three
simulated cases are: Push recovery + Kinematic adjustment (red), Push
recovery only (blue) and neither (black). Arrow sequences that reach zero
robot height show a falling robot and therefore lost balance.

This figure also shows that the robot falls down for all
three pushing forces when the PR is off. Actually, a robot
in a narrow stance (left and right legs almost parallel) is very
sensitive to lateral disturbances. In simulation, the robot in
narrow stance can only hold lateral pushes up to 120 N if the
PR is disabled. With the PR turned on, all disturbances can
successfully be coped with, showing a substantial increase in
motion robustness. In theory, with push recovery based on cap-
ture points, a robot starts falling only when the instantaneous
capture points are out of the robot’s workspace or if the joint
position controllers are not able to track the desired trajectory.

Up to a 500 N push, the robot with PR or PR+KA
presents similar stabilization. However, around 600 N , the
PR is not sufficient to keep the balance and at that point the
benefits of the KA (and thus the horizontal frame) become
noticeable. A hard lateral push excites the roll motion due
to the azimuthal lever arm between the foot position and
the point where the force was applied. If the trajectories
were generated in the robot base frame, instead of using the



horizontal frame approach, the roll motion would drive the
generated trajectories to penetrate the ground. In this case, the
foot reaches the ground in a foothold that is earlier than the
predicted instantaneous capture point. As a consequence, the
robot becomes incapable of cancelling the lateral motion and
the roll motion continues, leading to a fall.

B. Experimental results

In the experiments we assessed the improvements in robot
balance during push recovery tests and trotting on irregular
terrain.

For the push recovery test we use a force sensor ATI Mini45
to measure the level of disturbance forces applied to the
robot. The sensor is mounted on a bar laterally fixed to the
robot’s trunk. With the robot IMU we acquire the roll angular
position as the output signal of our experiment. The results
are presented in Fig. 7.

0 0.5 1 1.5 2 2.5 3

−400

−200

0

Time [s]

Fo
rc

e
[N

]

0 0.5 1 1.5 2 2.5 3
−0.2

−0.15

−0.1

−0.05

0

0.05

Time [s]

R
ol

lA
ng

le
[o ]

PR Enabled
PR Disable

[r
ad

]

Fig. 7. Experimental results of the lateral push tests: Lateral external
disturbance forces (top) and roll angle of the trunk (bottom) shown for
push recovery (PR) enabled (blue) and disabled (red). Much larger absolute
disturbance forces (at around t = 0.5s) can be tolerated when the PR
controller is on, compared to a smaller force (at around t = 1.6s) that leads
to a growing absolute roll angle (the robot starts to fall) if the PR is off. Note
that from around t = 2.5s the safety harness pulls the robot to prevent it
from falling.

As predicted in the simulated results, the robot without the
push recovery skills is very sensitive to lateral pushes and is
not able to keep the balance even for low level of push forces.

To evaluate the effectiveness of the adaptive trajectories,
the robot’s navigation skills are tested on a challenging terrain
made with battens, pieces of foam and stones. The obstacles
are up to 10cm high, which represents around 25% of the
maximum leg extension range. The robot trot features step
height Hs = 12cm, step length Ls = 12cm, duty factor Df =
0.55 and desired forward velocity Vf = 0.35m/s (resulting in
a step frequency of 1.65Hz). It is important to mention that
there is no yaw heading control on the robot.

We qualitatively evaluated the trotting robustness with and
without the step depth variables (ztdi

) that adapts the feet tra-
jectories. The non-adaptive trotting experiments are performed
by fixing the step depth value equal to zero (ztdi

= 0), cor-
responding to the assumption of a flat terrain. The evaluation

assesses the trajectory of the robot while crossing the terrain.
To have a measurement of the robot trajectory we integrate
the estimated translational velocities of the robot (see Section
IV-C). The results are presented in Fig. 8.

0 5 10 15 20
0

1

2

3

4

Estimated x position

Time [s]

P
os
iti
on

[m
]

0 5 10 15 20
−1

−0.5

0

0.5

1
Estimated y position

Time [s]

P
os
iti
on

[m
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1
Estimated robot trajectory

x position [m]

y
po
si
tio
n
[m
]

Non−adaptive
Adaptive

Non−adaptive
Adaptive

Non−adaptive
Adaptive

Fig. 8. Experimental results of the rough terrain tests: The three plots show
trials with the foot trajectory adaptation enabled (blue, 2 trials) and disabled
(red). The top and center plot show the estimated world frame x and y position
versus time. The bottom plot shows a bird’s-eye view of the trials, illustrating
that during the non-adaptive trial the robot was not able to advance beyond
x = 1m.

The red line in Fig. 8 shows that the robot is not able to
cross the terrain without adaptive trajectory generation. When
the feet trajectories are not adapted, the reaction forces appear
proportionally to the height of the obstacles. For a trot without
trajectory adaptation, the ground reaction forces opposing the
direction of forward velocity are so strong that the robot cannot
move forward.

On the other hand, the blue line in Fig. 8 illustrates that the
robot is able to cross the terrain with the adaptive generation
turned on. By enabling this adaptation, each ztdi is not fixed as
ztdi

= 0 anymore, but is set at each foot touchdown moment
instead (as described in Section III-A). The adaptive action
tries to adjust the trajectories during stance phase according to
the terrain surface. This action leads to a substantial reduction
in the generated ground reaction forces that point in the
opposite direction of the robot’s desired motion (consequently
reducing the disturbances transmitted to the trunk). Therefore,
the generation of adaptive trajectories allows to substantially
improve the robot’s capability to cross irregular terrains.

VI. DISCUSSION AND CONCLUSION

In this paper we proposed a Reactive Controller Framework
for quadrupedal locomotion, comprising algorithms for both
the generation of periodic yet reactive feet trajectories and for
the stabilization of the whole robot.
We introduced the horizontal reference frame for deriving
the algebra of our controllers, since it allows to effectively



decouple the generation of the feet trajectories and the control
of the trunk motion (with focus on the attitude).

The contributions of this work include: a CPG-inspired
trajectory generator for the feet. This CPG works in the task
space of the feet and its parameters reflect intuitively some of
the main gait parameters (such as the step height and length).
The CPG is capable of smoothly adapting to unexpected
terrains. We applied the concept of N-point capturability to a
real quadruped robot, extending it to cope also with rotational
disturbances to the trunk, about the yaw axis. Furthermore, we
implemented a trunk motion control based on the null space
of the Jacobian that relates the feet velocities and the robot
velocities at the joints and at the trunk.

A wide set of experimental results, both in simulation and
with a real hydraulic quadruped robot, have demonstrated
the capabilities of our control framework in terms of the
robustness for locomotion. This includes the capability of
traversing challenging terrain even without any terrain maps.

Future works include further developments in the captura-
bility analysis, to be able to include also disturbances for the
roll and the pitch angles.
A challenging and interesting development will be to integrate
our approach with other frameworks addressing different is-
sues, like higher level planning and vision-based state estima-
tion, into a sound and coherent architecture.

APPENDIX – VIDEO CONTENTS

The video shows experimental (EXP) and a few simulation (SIM) re-
sults: introduction scenes (EXP), the horizontal frame (EXP), rough terrain
(EXP+SIM) and push recovery trials (EXP+SIM).

ACKNOWLEDGMENT
This research has been funded by the Fondazione Istituto Italiano di

Tecnologia. J.B. is supported by a Swiss National Science Foundation
professorship.

The authors would like to thank CAPES for the scholarship granted to
V. Barasuol (Grant Procs. 6463-11-8). The authors would like to thank also
the colleagues that collaborated for the success of this project: Hamza Khan,
Jake Goldsmith, Thiago Boaventura, Michele Focchi, Ioannis Havoutis and
our team of technicians.

REFERENCES

[1] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ - a hydraulically and electrically
actuated quadruped robot,” Journal of Systems and Control Engineering,
vol. 225, no. 6, pp. 831–849, 2011.

[2] T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, and D. G.
Caldwell, “Dynamic torque control of a hydraulic quadruped robot,” in
IEEE International Conference in Robotics and Automation, 2012.

[3] M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, and D. G.
Caldwell, “Torque-control based compliant actuation of a quadruped
robot,” in 12th IEEE International Workshop on Advanced Motion
Control (AMC), 2012.

[4] S. Schaal, “The SL simulation and real-time control software package,”
CLMC lab, University of Southern California, Tech. Rep., 2009.

[5] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot con-
trol,” in 8th IEEE-RAS International Conference on Humanoid Robots,
December 2008, pp. 22–27.

[6] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating
base systems using orthogonal decomposition.” in ICRA. IEEE, 2010,
pp. 3406–3412.

[7] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, no. 4, pp. 505–518, 2005.

[8] M. Hutter, M. Hoepflinger, C. Gehring, M. Bloesch, C. D. Remy, and
R. Siegwart, “Hybrid operational space control for compliant legged
systems,” in Proceedings of Robotics: Science and Systems, Sydney,
Australia, July 2012.

[9] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and the Big-
Dog Team, “Bigdog, the rough-terrain quadruped robot,” in Proceedings
of the 17th World Congress The International Federation of Automatic
Control (IFAC), 2008.

[10] J. Buchli, J. Pratt, and N. Roy, “Editorial – special issue on legged
locomotion,” Int. J. Robotics Research, vol. 30, no. 2, 2011.

[11] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Compli-
ant quadruped locomotion over rough terrain,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), october 2009, pp.
814–820.

[12] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, 2012.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,” in Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, vol. 1, 2001,
pp. 239 –246.

[14] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Humanoid Robots, 2006 6th
IEEE-RAS International Conference on, dec. 2006, pp. 200 –207.

[15] J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson,
and P. Neuhaus, “Capturability-based analysis and control of legged
locomotion, part 2: Application to m2v2, a lower-body humanoid,” Int.
J. Rob. Res., vol. 31, no. 10, pp. 1117–1133, 2012.

[16] A. Ijspeert, “Central pattern generators for locomotion control in animals
and robots: A review,” Neural Networks, vol. 21, no. 4, pp. 642–653,
May 2008.

[17] Q. Wu, C. Liu, J. Zhang, and Q. Chen, “Survey of locomotion control of
legged robots inspired by biological concept,” Science in China Series
F: Inf. Sciences, vol. 52, 2009.

[18] J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng, “A biologically
inspired biped locomotion strategy for humanoid robots: Modulation
of sinusoidal patterns by a coupled oscillator model,” Robotics, IEEE
Transactions on, vol. 24, no. 1, pp. 185 –191, feb. 2008.

[19] C. J. Liu, Q. J. Chen, and D. W. Wang, “CPG-inspired workspace
trajectory generation and adaptive locomotion control for quadruped
robots,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions, 2011.

[20] V. Barasuol, V. J. D. Negri, and E. R. D. Pieri, “Wcpg: A central
pattern generator for legged robots based on workspace intentions,”
ASME Conference Proceedings, vol. 2011, no. 54761, pp. 111–114,
2011.

[21] L. Righetti and A. Ijspeert, “Pattern generators with sensory feedback
for the control of quadruped locomotion,” in Robotics and Automation,
2008. ICRA 2008., May 2008.

[22] S. Rutishauser, A. Sprowitz, L. Righetti, and A. Ijspeert, “Passive com-
pliant quadruped robot using central pattern generators for locomotion
control,” in Biomedical Robotics and Biomechatronics, 2008, Oct. 2008.

[23] A. Shkolnik and R. Tedrake, “Inverse kinematics for a point-foot
quadruped robot with dynamic redundancy resolution,” in Robotics and
Automation, 2007 IEEE International Conference on, april 2007, pp.
4331 –4336.

[24] S. Kajita, K. Tani, and A. Kobayashi, “Dynamic walk control of a biped
robot along the potential energy conserving orbit,” in Intelligent Robots
and Systems ’90. ’Towards a New Frontier of Applications’, Proceedings.
IROS ’90. IEEE International Workshop on, jul 1990, pp. 789 –794
vol.2.

[25] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot control,”
in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS Interna-
tional Conference on, dec. 2008, pp. 22 –27.


