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Abstract— Agile robot locomotion on rough terrain is highly
dependent on the ability to perceive the environment. In this
paper, we show how the interaction between a reactive control
framework and an online mapping system can significantly
improve the trotting performance on irregular terrain. In
particular, this new locomotion controller increases the stability
of the robot and reduces frontal leg and shin collisions with
obstacles by correcting in realtime the foothold locations. The
mapping system uses an RGB-D sensor and a motion capture
system to build a three dimensional map of the surroundings
of the robot. While the robot is trotting, the control frame-
work requests in advance a local heightmap around the next
nominal foothold position. Then, an optimized foot placement
location is estimated by applying visual pattern classification
on the acquired heightmaps, and the leg endpoint trajectory
is modified accordingly. The foothold correction is performed
independently for each leg. To show the effectiveness of our
approach the controller was tested both in simulation and ex-
perimentally with our 80kg hydraulic quadruped robot, HyQ.
The results show that visual based reaction through pattern
classification is a promising approach to increase locomotion
robustness over challenging terrain.

I. INTRODUCTION

Legged robots have the potential to navigate in more
challenging terrains than traditional wheeled robots. Unfortu-
nately, their control is more difficult because in addition to
the traditional mapping and path planning requirement, they
have to deal with more specific issues, such as balancing
or foothold planning. At this level, the perception of the
environment is crucial to enable the robot to navigate while
coping with irregular terrains and avoiding obstacles along
its path.

At the Istituto Italiano di Tecnologia (IIT), our fully torque-
controlled Hydraulic Quadruped robot (HyQ) [1] has been
designed to perform highly dynamic tasks on difficult terrains.
In recent years, the robot has demonstrated a variety of
locomotion capabilities, among these are walking, trotting
and jumping. More recently, we have started to integrate some
perception sensors and demonstrated: IMU based balancing
[2] which allows blind trotting on rough terrain; visually
assisted trotting [3], [4] where we use frame by frame stereo
data to increase the step height and reduce the robot velocity
to be able to overcome bigger obstacles; and a vision based
gait transition [5], where we evaluate the difficulty of the
terrain using a RGBD camera to switch from trotting to
crawling and avoid obstacles on the way. Finally, last year

*This work was supported by Istituto Italiano di Tecnologia (IIT)
1 Department of Advanced Robotics, Istituto Italiano di Tecnologia, Via

Morego 30, 16163 Genova, Italy.

we demonstrated fully planned obstacle crossing on a priori
known terrain [6] computing and executing a series of specific
footholds in order to avoid a gap or climb a step.

Contribution: in this paper, we introduce a novel reactive
locomotion behavior that uses the 3D map of the environment
to determine the foothold positions in order to overcome
obstacles while avoid leg/object collisions with both the front
and hind legs. By reactive we mean that no path planning is
performed: leg trajectories are modified on the fly, according
to the local heightmap extracted around each nominal foothold
position and processed by a low computational cost algorithm
based on machine learning.

The mapping is performed online using an RGB-D camera
and a motion capture system that provides the robot position
and orientation at a fast rate (250Hz). During the experiments
the robot was teleoperated by the user who was sending high
level commands (forward velocity, heading) along an arbitrary
path over terrain strewn with obstacles. In this paper, we
present results both for simulated and real indoor experiments
with the robot HyQ.

The paper is organized as follows: in the next section we
will discuss the related work and emphasize the novelty of
our approach. In Section 3 and 4 we will describe the robot
and detail the mapping framework. In Section 5 and 6 we
will explain how learning is used and how the motion control
works. Finally in Section 7 we will show experimental results
before concluding in Section 8.

II. RELATED WORK

Significant progress has been achieved during the last
few years in the field of robot perception abilities. But
more specifically in the context of quadruped and highly
dynamic robots, this problem has received less attention.
The perception of the environment is, however, crucial for
locomotion as soon as the terrain gets challenging. Nowadays,
quadruped robots are more commonly used to develop low-
level controllers, rather than high-level cognitive processes.
Furthermore, legged locomotion requires precise and failsafe
perception proficiency, even during dynamic motions, impacts,
or complex visibility conditions. However, there has been
limited research on the integration of vision sensors and the
subsequent demonstration of online use of perception in a
real system performing dynamic motions.

Kolter et al. [7] presented the most autonomous approach
by performing vision based SLAM with optimal planning.
In their control framework they register the point clouds
acquired with a stereo camera and use a texture synthesis



algorithm to fill occluded areas to perform motion planning
with their quadruped LittleDog [8]. The vision processing
and path planning were performed on an external computer.
Using the same robot, Kalakrishnan et al. [9] achieved
accurate foothold planning on given maps. A precise model
of the environment was previously acquired while an accurate
motion capture setup provided the complete state of the robot.
Also with LittleDog, Filitchkin and Byl [10] used a monocular
camera to perform terrain classification and select between
predetermined gaits to traverse terrain of varying difficulty.

Stelzer et al. [11] developed a complete stereo vision
based navigation framework for their hexapod robot. The
robot pose is estimated by fusing IMU data with relative
leg odometry and visual odometry measurements. A digital
terrain map and a traversability map are built using the images
and the computed pose. Then, paths are planned using a
D* lite planner and the robot determines the appropriate
path for the terrain it must traverse. In a similar way, [12],
[13] achieved navigation with obstacle avoidance but without
foothold planning. They also fused information from stereo
vision, leg odometry, and IMU to obtain the state estimation
of the quadruped robot BigDog. Then, they used a 2D cost
map and A* based path planning to perform navigation.

Bajracharya et al. [14] recently showed terrain mapping
and obstacles classification for vision-in-the-loop walking
on the LS3 robot. The vision system was used to map the
environment in the vicinity of the robot and inform the gait
generator about the changes in the surface over which the
robot is locomoting, then the gait’s step height was modified.
Finally, Shao et al. [15] also presented some path planning
with obstacle avoidance on their quadruped robot that uses a
stereo vision-based terrain modeling algorithm.

The main difference between the present work and those
highlighted above is that we are focusing on reactive behavior
while the robot is teleoperated. The robot follows the high
level commands sent by the user while adjusting the foothold
according to the terrain on the fly. Before moving, the
map is unknown as well as the robot trajectory. Compared
to our previous work on vision assisted reactive trotting
and vision based gait transition [3], [5] we added in this
paper a supervised learning method to improve the foothold
adjustment and we worked on the mapping robustness to
be able to avoid the obstacle also with the hind legs. The
object/legs collision were the main issue in our previous
approaches since we had a crude terrain model. Front foot
collisions might cause damage to the robot structure and
make the robot get stuck or fall, and shin collisions might
cause slippage and confuse the locomotion controllers since
all the forces measured by the joint load cells are assumed
to come from the ground/feet contact interactions.

It has to be noticed that in [16] a blind local reflex approach
for terrain negotiation was proposed to face leg collisions
problems. This approach is simpler but the main drawback is
that it requires high retraction torques and more leg workspace
as the robot velocity increases.

In this paper we take advantage of our mapping framework
to increase the locomotion robustness through vision-based

Fig. 1. The quadruped robot HyQ and its vision system: Left: the whole
robot, Right: View of the robot’s active head consisting of an RGB-D camera
and a stereo camera (here not used) mounted on a pan and tilt unit.

reactions. When traversing an uneven terrain, the visual
perception is used to better exploit the leg’s workspace while
selecting footholds to avoid frontal foot collisions and leg
shin collisions.

III. SYSTEM OVERVIEW

HyQ [1] is a versatile hydraulically actuated quadruped
robot that weighs 80 kg, is 1m long and 1m tall (Fig. 1).
The robot’s legs have three degrees of freedom each, two
joints in the sagittal plane (hip and knee flexion/extension)
and one joint for hip abduction/adduction.

A. Sensors

The robot is equipped with both proprioceptive and
exteroceptives sensors which include:

• high-resolution encoders and torque sensors for every
joint;

• a LORD Microstrain R© 3DM-GX3-25 IMU;
• an ASUS R© Xtion PRO LIVE RGB-D sensor.
The camera is mounted on a FLIR PTU-D46-17 Pan and

Tilt Unit (PTU), which has a pan range of ±159◦, and a tilt
range of −47◦/+31◦. This is mounted with an inclination
of 32◦ with respect to the robot’s horizontal frame and with
a tilt value set to 45◦ for the experimental setup described
in this paper. These values allow the robot to see between
20 cm and 80 cm ahead. The relative position and orientation
between the PTU and robot frame estimation is discussed in
the next Section.

B. Calibration of the system

For this kind of vision-based locomotion task, the camera
and the robot must be properly calibrated, to compute the
transformation matrix Tb c between the optical frame and the
robot base. In our situation the PTU support frame was fixed
by hand on the robot protection frame. As a consequence
its position and orientation were unknown and could not be
estimated manually with accuracy. To properly calibrate this
system we developed an automatic procedure based on the
visual tracking of the foot, inspired by the PR2 vision/arm
calibration [17]. The method presented in [18] consists in
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Fig. 2. Sketch of the hardware/software architecture. The robot has two
onboard computers; hyq-brain (blue field) executes our Reactive Control
Framework (RCF) [2] on the Real-Time environment SL [20] and also
handles the communication between SL and ROS; hyq-vision (green field)
executes the mapping modules, taking from the motion capture system the
robot poses. A separate computer, hyq-operator, is used to send high level
commands to the robot.

tracking with a camera a colored marker attached to a front
foot and estimating the transformation between the camera
frame and the base frame using a set of different positions.

As the PTU can move, the transformation matrix is
computed for a default position and then updated in real-time
with commodity methods provided by the Robot Operative
System (ROS) and the PTU software driver. A more detailed
description about the issues related to the estimation of Tb c

and an alternative calibration method are described in [19].

C. Software Architecture

The experimental setup involves the use of two onboard
computers: a PC-104 (“hyq-brain”) computes the foot place-
ment and controls the motions of the robot, while an
IntensePC (“hyq-vision”) is dedicated to mapping. Two
external computers are used to send user commands and
to localize the robot through a motion capture system. All
the computers share the same local network. The hard-
ware/software architecture is shown in Fig. 2.

Two software frameworks are used: the PC-104, which
runs real time linux, controls of the robot through SL [20],
a simulation and real-time control software package. All
other computers use ROS as the communication interface.
We developed a dedicated interface between SL and ROS
based on shared memory to share information (Fig. 2, grey
box). Message synchronization is guaranteed by a NTP
server (Network Time Protocol), together with the internal
synchronization features provided by ROS.

IV. MAPPING

The mapping system (Fig. 2, green box) generates two
distinct representations of the environment: the first one is a
dynamically built map that describes the most recently seen
local terrain; it is obtained by merging the point cloud while

the robot moves. When merging, all the points in the map that
overlap with the latest scan are discarded, to be consistent
with changes in the environment.

The second representation is composed of a collection of
four 2D heightmaps — one for each foothold — which are
computed by projecting the points of the point cloud onto
the horizontal frame (see Section IV-B).

Immediately after the touchdown of a foot, the Reactive
Controller Framework (RCF), presented in [2], collects the
heightmap around the next desired position of that foot
and applies the trajectory adjustment, according to the
displacement returned by the logistic regressor (see Section
V).

In the following sections we will describe the two nodes
that compute the representations and we will define the
horizontal frame.

A. Cloud Mapper

The update of the map is described in Alg. 1: when
a new cloud in the camera frame Cc is available, it is
transformed into base link frame b, together with the actual
map Mw (where Tb w is provided by the motion capture
system (MoCap)). Then, every point m ∈Mw that lies outside
the border of Cb = Tb cCc is added to it. The resulting sum
is cut around the robot using pre-defined margins and passed
through a voxel filter, to make it more compact. The result
is finally re-transformed into the fixed-world frame w.

As at each step the map is expressed inside the fixed-
world frame, the fusion of clouds is obtained by simple point
addition. In a context where no exteroceptive sensors are
availble, using such a frame would be impossible because of
accumulated drift. In fact, a locally defined frame as described
in [19] is suitable for the task described in this paper. Future
work will include the integration of proprioceptive localization
and local mapping of [19] with the work described herein.

The extent of the map and the voxel size are crucial
parameters for the system: small voxels (e.g., < 1 cm) would
make the cloud too dense to be processed in time (i.e., in less
than the sampling period), while a sparse cloud would produce
gaps in the heightmap. Similarly, a big map would reduce the
output frequency of the mapper. For our experimental setup
we used a voxel size of 2 cm, and a map 2m wide and 3.5m
long, with the robot center placed 0.25m in front of the map

Algorithm 1 Point Cloud Merging
1: Cb ← Tb cCc . Cloud into base link
2: Mb ← Tb wMw . Map into base link
3: for each m ∈Mb do
4: if mx < minx Cb or my < miny Cb or my >

maxy Cb then . m is outside the xy border of Cb

5: Cb ← Cb +m
6: end if
7: end for
8: Fb ← filter(Cb)
9: Mw ← Tw bFb



center. These parameters met the desired update frequency
of 30Hz, using the equipment described in Section III-A.

B. Horizontal Frame

The trajectories of the end effector through our framework,
are expressed in the so called Horizontal Frame (HF), defined
in [2]. The HF has the same origin as the base link, but its
Roll and Pitch values are always aligned with gravity. All the
desired foothold positions and the corresponding heightmaps
are referred to this frame, since using the base link would
result in wrong corrections (e.g., if the base link is inclined
with respect to the gravity, all the trajectories would be skewed
accordingly). The HF is computed by a separate node, which
is not shown on the architecture sketch of Fig. 2 for sake of
conciseness.

C. Heightmap Publisher

Given a desired foothold position f , the corresponding
heightmap is computed by projecting the Point Cloud Map
onto the horizontal frame and cutting a square of d2 · r2
around the xy-plane of f , where d and r are the number
of pixels per line and the width of each pixel in meters,
respectively. Each pixel value is the average of the z (height)
of all the points of the cloud within the area covered by
that pixel. When no points are available, the default z of the
desired position is sent. For our setup we used d = 15 and
r = 2 cm. It has to be noted that the system can deal with
dynamically changing values, as the desired foothold message
that is sent by the RCF contains also d and r. To reduce the
effect of the noise, a Gaussian Filter of size 3× 3 pixels is
also applied to the heightmap before being sent. Note that
since the heightmap is generated from an uncolored point
cloud, changes in light conditions or issues related to RGB
artifacts are not affecting the classification.

V. VISUAL PATTERN CLASSIFICATION

For each desired foothold position, finding the correspond-
ing trajectory adjustment to avoid the obstacle is treated as a
classification problem: the feature vector x = [1x1 · · · xn]

T ∈
R(n+1)×1 is given by the n pixel values of the heightmap
and the extra 1 coefficient to include the bias term, while
the class y ∈ Nm is an instance taken from a pool of m
possible corrections applicable to that foothold position (see
Fig. 3).
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Fig. 3. Left: example of point cloud in false colors. The cloud covers an
area of 30× 30 cm. The green ball indicates a desired foothold position.
Right: the corresponding heightmap in false colors (different from left) with
the 9 possible footholds adjustments and the displacements according to the
robot axis convention.

In the following sections we will describe how the training
set was generated and how the set of weights for the regressor
has been computed.

A. Training set generation

In this paper, we opted for a heightmap composed of
15× 15 pixels, and for an output set of 9 possible dis-
placements, one for each cardinal direction plus the “null”
displacement. Hence, x ∈ R226×1 and y ∈ N9.

For each leg, the corresponding training set was generated
as follows: first we defined 33 different patterns (see Fig. 4)
that fit a variety of possible obstacles, namely: stairs, bars,
logs or stones. For each pattern we acquired 100 samples
from the depth sensor, yielding a set of 3300 input examples.

Since the reaction to an input depends also on which leg is
involved, the set of examples was replicated and independently
labeled for each leg, according to the pattern it belongs to.

Fig. 4. Examples of pattern, taken from the training set. The images are
in false colors and rescaled between minimum (dark blue) and maximum
(dark red) values of the pattern. Each pixel represents the average height of
a 2 cm2 area of terrain, referred to the horizontal frame.

B. Logistic Regression for Foothold Decision

As a classifier we opted for a logistic regressor [21],
which had been demonstrated to be sufficiently robust ( 90%
success rate) and fast (as it involves only four 15×15 matrix
multiplications) during our preliminary tests with the patterns
shown in Fig. 4.

Since we have more than one class (in our case m = 9) we
opted for a One-vs-All multi-class classification by training
m binary classifiers hθi , i ∈ Nm where θi ∈ R(n+1)×1 is the
weight vector for the i-th class and:

hθi = hθi(x) =
1

1 + exp (−θT
i x)

(1)

Given a specific leg, a class c ∈ Nm and a training set of
k examples (x(i), ỹ(i)), with x(i) ∈ R(n+1)×1, i ∈ Nk, and
ỹ ∈ {0, 1} indicates whether y = c or not, we compute the
weight vector θc by minimizing the cost function:

J(θc) = +
1

k

k∑
i=1

C(hθc(x
(i)), ỹ(i)) + λ

n∑
j=1

(θjc)
2 (2)

where: C(hθc(x
(i)), ỹ(i))

= log (hθc(x
(i)) + (1− ỹ(i)) log (1− hθc(x

(i))) (3)

and λ = 0.001.
From the weight vectors we define the weight matrix

of a leg as Θleg = [θ1 θ2 θc ... θm]T ∈ R(n+1)×m and
hΘleg(x) = [hθ1 hθ2 · · · hθm ]T.



The predicted class y for a test example xt is then computed
as the index of:

max (hΘleg(xt)) (4)

We assigned to each class y a corresponding offset
(∆leg

Ox,∆
leg
Oy), as depicted in Fig. 3.

VI. REACTIVE MOTION CONTROL

A. Reactive Controller Framework and Step Adjustment

As the basis for locomotion control and generation, we use
our Reactive Controller Framework presented in [2]. In this
framework the kinematic references are generated by four
non-linear oscillators that trace an elliptical trajectory that
can be modulated according to the terrain.

The idea of a vision based reactive trot is to modulate
the step by moving the center of the foot elliptical trajectory
(origin) according to the terrain surface around its expected
foothold, trying to reach the touch-down position that avoids a
collision. We define these relative displacements of the origins
as ∆leg

O = [∆leg
Ox ∆leg

Oy ∆leg
Oz]

T, where leg = LF (left-front),
RF (right-front), LH (left-hind) and RH (right-hind).

Each ∆leg
O takes discrete values defined according to a

decision grid, composed by cells inside the local height map.
The value at the center of each decision grid cell represents
the average surface height inside its area, as illustrated in Fig.
3 for a decision grid composed of nine cells. The ∆leg

Ox and
the ∆leg

Oy components take discrete values that are determined
by the distance between the center cell (the nominal foothold
position) and the cell chosen to avoid undesired collisions.
The ∆leg

Oz component is the difference between the surface
height in the chosen cell and the expected height at touch-
down.

Important stages in the proposed approach are the predic-
tion and reaction phases. For each leg, the prediction and
reaction phases happen simultaneously during part of the
swing phase period. More precisely, both phases start at the
foot lift-off and end when the desired foot trajectory reaches
the maximum foot clearance.

B. Input grid sizing

In our first studies we found out that the grid sizing is
mainly determined by the step length, the body pose, the
workspace of each leg and the size of the obstacle to be
avoided (i.e., to not step on). The next paragraphs explain
the roles each of these factors plays on the grid sizing.

1) Avoiding blind spots: The first task when sizing the grid
is to identify the occurrence of blind spots, i.e., regions that are
not visually sampled between two consecutive steps and hence
where the robot will not react to the obstacles. The blind spots
appear from the relationship between grid size and step length,
as illustrated in Fig. 5 for the case of a gait duty factor Df =
0.5 (Df = stance phase duration/step cycle duration).

According to Fig. 5, the grid size Gs must be equal
or greater than 2Ls to avoid a blind spot between two
consecutive footholds. Since the robot is supposed to perform
omnidirectional locomotion this relationship is extended to
both grid length and width. At the critical limit, i.e., Gs =

Fig. 5. Perspective view of the foot swing trajectory and the occurrence of
blind spots according to the relationship between the grid size Gs and step
length Ls.

2Ls, any trunk disturbance might change the foot swing
trajectory creating a blind spot. This is one of the reasons why
we prefer overlapping (Gs > 2Ls) between to consecutive
grids.

2) Shin collisions and body pose: the body pose (i.e., roll,
pitch and trunk height) directly affects the chances of having
shin collision because it defines the angle between the lower
limb of the leg and the ground surface. Higher trunk heights
allow the robot to avoid higher obstacles, but reduce the
maximum horizontal workplane, thus reducing the maximum
grid size, while lower trunk heights cannot clear some
obstacles but have a larger workplane grid size (Fig. 6).

Fig. 6. Trunk pose dictates the maximum grid size and consequently the
range of objects the robot is able to detect and overcome.

3) Grid size and object avoidance: When a new heightmap
around the predicted foothold is created, the robot must decide
between keeping the nominal foothold or stepping around an
obstacle. However, how can one know that such an obstacle
is not a bar, a rock, or a stair? It is the size of the grid
that defines the objects size one is able to identify. A small
grid, even if defined with some overlap to avoid blind spots
(Section VI-B.1) might be too small to identify if the height
map variation inside the grid comes from the shape of a
bar/rock or from the beginning of a stair. In this case, the
user must define Gs so that the objects the robot must be
able to identify, and possibly deviate from, fit inside the grid.

C. Mapping, prediction and tracking: the three main issues

In this section we highlight three main issues that limit
the performance of our approach: the map provided by
the perception system, the prediction of the footholds and



the execution of the movements to match the desired foot
placement (position tracking errors).

1) Mapping: The perception system sends to the RCF a
height map, around a desired foothold. Such a mapping is
commonly prone to errors and might provide maps that have
drifted and contain noise because the robot localization in
the world is not accurate and the point is noisy. Ignoring the
noise is part of the learning process but drift on the map
might lead to a reaction that is not needed.

The second issue is the update rate of the mapping pipeline.
With our RGB-D camera and the localization with a motion
capture system we achieved mapping at approximately 25Hz.
Indeed computational cost is relatively low and we are only
limited by the camera frame rate, but with a stereo camera
and a registration algorithm this update rate could be smaller.
The map rate dictates how fast the robot is able to visually
react. For example, a 25Hz rate means a new map each
40ms. If the robot is running at 1m/s then it will be visually
insensitive to the last 4 cm walked. Mapping inaccuracies and
the update rate are the bottleneck of this approach drastically
reducing the accuracy of any subsequent robot action. These
problems will be addressed in Section VI-D.

2) Foothold prediction: The foothold prediction depends
on the swing phase trajectory of the foot and the trunk velocity.
The swing phase trajectory and period are considered well
known, since they are pre-defined and, by now, independent
from parameters related to motion control. On the other
hand, the trunk velocity estimation is challenging. Apart from
the systematic errors, the estimated velocity signal presents
peaks that come from touch-down impacts and an oscillatory
component due to some inherent trunk swinging. These signal
features affect directly and proportionally the prediction of
the next foothold location. Thus, feeding back the estimated
velocity directly into the predictor is risky. For example, if
at the end of the prediction phase the predictor receives the
estimated velocity resulting from a touch-down impact or from
the instant the trunk reaches its maximum swing velocity, the
robot will react according to a map that is centered far from
its true footfall. A low-pass filter applied to the estimated
velocity drastically reduces the miss-predictions due to peaks,
however, it does not cancel the trunk oscillatory component,
while decreasing the cut-off frequency would introduce too
much delay in the visual feedback loop.

To solve this problem a moving average filter was used,
tuned to the step frequency of the robot, making the filter
time window tw = 1/2fs. Figure 7 shows the estimated trunk
velocity and the filtering for the two different techniques.

From Fig. 7, we can see that the moving average filters the
signal peaks and the inherent oscillations. Thus, the filtered
velocity feed-back into the predictor becomes the average
velocity for the swing phase period, leading to a much more
accurate foothold prediction.

3) Position tracking errors: The position tracking error is
an issue related to the execution of the reactive motion. Since
the motion is reactive, tracking the desired joint positions
might be hard. Achieving small tracking errors is very
challenging if one seeks compliance and safety. Hence, the

Fig. 7. Estimated trunk forward velocity for three different methods. The
black line refers to the velocity given by the state estimation (raw velocity).
The red and blue lines are the results of applying a first order low-pass filter
and a moving average filter on the raw velocity, respectively.

robot may react correctly visually but still not execute properly.
With our robot we found out that the position tracking error
might vary from 0.5 cm to 4 cm, depending on the external
disturbance forces.

D. Decision Maker

The decision maker is the function block that incorporates
the learned inference and, according to the decision grid
internal distances, provides the discrete ∆leg

Ox, ∆leg
Oy and ∆leg

Oz

to the RCF described in [2].
In this paper we consider a grid size Gs = 0.3m that is

enough to detect objects of about 10 cm length while having
no blind spots for velocities of 0 to 0.5m/s.

Because our approach is implemented on a real robot, the
decision maker must take into account the three main issues
explained in Section VI-C. Regarding the mapping issue, only
the noise and the map update rate are considered. The drift
is supposed to be zero, as we use a VICON system to build
the map. The other two main issues remain as previously
detailed.

Due to the three main issues, an uncertainty region
is created around the ideal foothold location. Inside this
uncertainty region we can not ensure that the reaction will
overcome the obstacle or avoid a frontal or shin collision.
To address this problems we opted for a decision maker that
takes conservative action, as depicted in Fig. 8.

Fig. 8. Examples of conservative actions. The blue dots are foothold
locations and the translucent red box represents the uncertainty region around
the nominal foothold. The conservative actions take footholds far from the
uncertainty region to avoid an unexpected collision with the obstacle.

To avoid creating excessive joint torques, the discrete
decision values are filtered by a first order filter before being
sent to the RCF. The time constant of the filter is adjusted on
the fly according to the leg swing time. The response time
of the filter is chosen to be eight times faster then the swing
time.



VII. SIMULATED AND EXPERIMENTAL RESULTS

A. Vision based trotting in simulation

In this simulation, we show how locomotion robustness
can be substantially improved by using vision information to
execute foot placement in a reactive approach. To demonstrate
this, we created two distinct scenarios: in the first one the
robot had to cross a single pallet that is 10 cm high and
70 cm long; in the second instance, the robot had to cross
four bars, each 10 cm high, differently spaced from each
other (0.3m, 0.35m and 0.4m). Beside its simplicity, this
task clearly shows the effects of foot frontal collisions and
leg shin collisions. The simulated scenario is illustrated in
Fig. 9.

Fig. 9. Simulated scenarios: pallet crossing task (top) and multi-bars
crossing task (bottom).

In order to evaluate improvements, we considered two
cases: a) our standard reactive trotting, in which the kinematic
references can be adjusted to the terrain surface and b) our
standard reactive trotting with vision based reaction for foot
placement. In both cases, the robot trots without heading
control, with step heights of 0.12 cm, a duty factor equal to
0.5, a step frequency equal to 1.7Hz and desired forward
velocity of 0.5m/s (pallet case) and 0.25m/s (4-bars case).
We consider a 15 × 15 grid size with 2× 2 cm cells and
2 cm of perception noise when simulating the vision system.
Many trials were performed for both cases to have the robot
crossing the obstacles at different moments in the step cycle.
The robot velocity was considered for analysis since it is
easily affected by leg collisions. The results are shown in
Fig. 10.

These results show that the use of perception improve the
locomotion robustness. Indeed, the trunk velocity is more
stable and the heading disturbances are reduced when the
perception is used. In contrast, when the perception is not
used, the velocity drops to negative values, due to frontal
and shin collisions, and sometimes the robot gets stuck. Over
the whole simulations performed using perception, frontal
collisions were completely eliminated and the shin collisions
significantly reduced. It has to be mentioned that the study
on the grid sizing and cell dimensions are out-of-scope in
this paper and will be explored in a future work.

Fig. 10. Trunk velocity according to the distance walked for the two
crossing tasks: pallet (top) and 4-bars (bottom). The desired velocity is
0.5m/s for the pallet scenario and 0.25m/s for the 4-bars one.
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Fig. 11. Experimental results for a single bar crossing task with and without
visual reaction. The top plot shows the velocity performed by the robot for
both cases. The bottom plot show the robot reactions when the vision is
activated. Obs: the velocity droppings between 7-9 seconds are due to safety
pulls to protect the robot from a collision with the robot crane structure.

B. Experimental results

The experimental scenario is similar to the multi-bar
crossing task described in Section VII-A. The robot had
to traverse a single bar with desired velocity of 0.25m/s.
The decision maker was setup to take conservative actions,
as described in Section VI-D, for a 15× 15 pixels heightmap
and a 9× 9 decision grid.

For the experimental results we demonstrate the robot
reactions by showing the ∆Ox of each leg. Since the bar is
orthogonal to the robot longitudinal axes, there will not be
lateral reactions (i.e., ∆Oy = 0). The velocity tracking and
the robot reactions are shown in Fig. 11, where each reaction
is enumerated and detailed in Fig. 12 by means of frames
extracted from the video footage of the experiment.

From the top plot of Fig. 11 one can see that, when the
vision is activated, the robot reacts with its four legs and steps
over the obstacle, maintaining the forward velocity. Without
vision, the robot is not able to avoid the obstacles. In this
case there is a collision with both front legs that makes the
velocity drop to 0m/s (time plot between 4 s and 5 s).

Figure 12 shows snapshots of the following reactions: 1)
LF foot moved forward, performing a longer step to overcome
the bar; 2) RF foot moved forward to overcome the bar; 3) LH
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Fig. 12. Snapshots of the robot reactions when overcoming the bar (the
robot moves from left to right). The snapshots are identified according to
the enumeration from Fig. 11 (bottom plot). Snapshots from the experiment
without visual reaction are shown in the bottom row.

foot moved backward to avoid a collision; 4) LH foot moved
forward to overcome the bar and 5) RH foot moved forward
to overcome the bar. Both simulated and experimental results
showed that the proposed approach can substantially reduce
the motion disturbances due to foot frontal collisions and
legs shin collision.

VIII. CONCLUSION

In this paper we presented a novel reactive locomotion
behavior that uses the 3D map of the environment to estimate
the best foot placement inside the leg’s workspace to limit
undesired variations of the robot’s pace on uneven terrain. The
mapping framework uses an RGB-D camera and a motion
capture system for localization. A heightmap around each
future foothold is used in the controller to improve the
foothold by means of supervised learning. Results show that
the visual pattern classification significantly reduces both front
foot and shin collisions. As a consequence, the robot behavior
is smoother and more stable, while the control remains simple,
robust, and fully reactive (no path planning). Our future work
will focus on developing an accurate onboard SLAM with
our stereo camera and perform experiments outdoor on more
difficult terrain. Also, we planned to extend our gait adaptation
approach by increasing the resolution and the complexity of
the learned patterns.
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