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Abstract—Legged robots have the potential to navigate in
more challenging terrain than wheeled robots do. Unfortunately,
their control is more difficult because they have to deal with
the traditional mapping and path planning problems, as well
as foothold computation, leg trajectories and posture control in
order to achieve successful navigation. Many parameters need to
be adjusted in real time to keep the robot stable and safe while
it is moving. In this paper, we will present a new framework for
a quadruped robot, which performs goal-oriented navigation on
unknown rough terrain by using inertial measurement data and
stereo vision. This framework includes perception and control,
and allows the robot to navigate in a straight line forward to
a visual goal in a difficult environment. The developed rough
terrain locomotion system does not need any mapping or path
planning: the stereo camera is used to visually guide the robot
and evaluate the terrain roughness and an inertial measurement
unit (IMU) is used for posture control. This new framework is an
important step forward to achieve fully autonomous navigation
because in the case of problems in the SLAM mapping, a
reactive locomotion controller is always active. This ensures stable
locomotion in rough terrain, by combining direct visual feedback
and inertial measurements. By implementing this controller, an
autonomous navigation system has been developed, which is goal-
oriented and overcomes disturbances from the ground, the robot
weight, or external forces. Indoor and outdoor experiments with
our quadruped robot show the effectiveness and the robustness
of this framework.

Index Terms—Reactive walking, active compliance, goal ori-
ented navigation, visual servoing, quadruped robot.

I. INTRODUCTION

Legged locomotion is a complex task for robots, involving
different components ranging from low-level motor control
to high-level cognitive processes. To be autonomous, robots
need all these components to be reliable, well orchestrated
and capable of real-time execution. The Hydraulic Quadruped,
HyQ (Fig. 1) is a versatile robot with hydraulic and electric
actuation developed at the Department of Advanced Robotics
at the Italian Institute of Technology (IIT) [1]. HyQ is fast,
robust, actively compliant and built for dynamic locomotion.

Our previous work focused on dynamic locomotion, mainly
trotting, using active compliance and low-level feedback com-
ing directly from the on-board inertial measurement unit
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Fig. 1. Pictures of IIT’s quadruped robot HyQ. (a) outdoors, without stereo
camera; (b) indoors, with stereo camera, showing the definition of the camera
coordinate frame.

(IMU) for stabilization [2], [3]. Such low-level control can
reliably negotiate flat and rough terrain while following in-
tuitive high-level feedback, i.e. desired velocity and desired
heading, from an operator. This provides a solid foundation
for building up a set of higher-level controllers that deal with
the cognitive aspects of locomotion and navigation, and further
increase HyQ’s autonomy. Along this line, we added a stereo
vision sensor as a first step towards providing the robot with
higher-level feedback, which can, in turn, be used in a number
of ways, e.g. localization, mapping, path planning. We chose
to add a stereo camera because this sensor provides the richer
information on the environment and can be used at the time
for 3D mapping, recognition and tracking or state estimation.

In this paper we present an extension to the previously
presented reactive controller [2], that additionally uses visual
information to guide the low-level trotting controller towards
a goal and over rough terrain. Visual feedback is crucial in
such scenarios as open-loop approaches, e.g. dead-reckoning,
quickly accumulate errors due to foot slippage, a non-uniform
weight distribution, slopes, terrain irregularities or physical
disturbances.

The vision system feeds-back the target’s position and the
height and distance of the obstacles that are in front of the
robot. This in turn influences the step height of the feet of the



quadruped while it also regulates the robot’s forward velocity
according to the roughness of the terrain during locomotion.

In this work we focus on a trotting behaviour without
mapping or path planning. With the integration of a stereo-
camera-based vision system, we are able to autonomously trot
to a given target while traversing challenging terrain and also
in presence of strong external disturbances. By disturbances
we mean lateral push, foot slippage or foot-object frontal
impact over the terrain.Adding perception to the control
framework allows us to compensate for possible lateral drift
due to inaccurate calibration or transient loss of balance.
Furthermore, it allows us to make the behaviour safer by
detecting obstacles, slowing down when necessary, increasing
the duty factor or the step height of the trot and in case of an
obstacle that cannot be overcome, stop.

Contribution: A new reactive controller using position,
force and inertial measurements in combination with vision
data. This controller allows to perform a fully autonomous
reactive trot in an unknown terrain.

Contents: The structure of the paper is organized as fol-
lows. In Section II, we present a review of related work on
quadruped robot navigation, in Section III, we provide details
about our perception algorithms. Section IV describes the
controller of our robot. In Section V we present our quadruped
robot and the results of indoor and outdoor experiments.
Finally, in Section VI we conclude and discuss future work.

II. RELATED WORK

Quadruped locomotion is an active area of research. How-
ever, up to now few people have worked on the integration
of vision sensors on quadruped platforms. Such platforms are
commonly used to develop low-level controllers, rather than
high-level cognitive processes.

A number of studies in quadrupedal locomotion often
simplify the problem of perception using accurate a-priori
given maps and external robot state sensors, for example,
Kalakrishnan et al. used pre-scanned maps and a marker-
based tracking system on LittleDog [4]. On the other hand
the authors in [5] presented a framework for terrain modelling
and pose estimation without a-priori information on the en-
vironment, using a stereo camera. Filitchkin and Byl used a
monocular camera to do terrain classification and in turn influ-
ence the locomotion behaviour of their LittleDog quadruped
[6]. The authors of [7] performed position estimation and
terrain modelling using a stereo camera, while Shao et al.
[8] presented obstacle avoidance using a stereo vision-based
terrain modelling approach. Howard in [9] introduced a state
estimation approach that combines a number of different data
sets from stereo camera, IMU, odometry and GPS to aim at
long-term position accuracy.

III. ENVIRONMENT PERCEPTION

As mentioned in Section I, in our previous work we
developed motion control algorithms based on joint posi-
tions/velocities and the body state information given by the

IMU. The IMU was the first perception sensor we added to our
quadruped platform to provide relative information between
the robot and the world. However, the robot’s orientation
in the world frame alone is not enough to create cognitive
interaction, by making decisions about the robot inside a given
environment. To perceive the environment and improve the
locomotion robustness of the system we therefore added a
stereo camera to the robot.

Our camera is a Bumblebee2 firewire colour camera from
Point Grey. It provides a focal length of 2.5mm, a field of view
of 97 degrees, a maximum resolution of 1024 x 768 at 20 fps,
a 12cm baseline, and it is pre-calibrated against distortions and
misalignment. On our system, a point cloud with 640x480 3D
points with their associated RGB values can be computed at
5Hz.

A. Colour tracking and depth computation for heading and
distance control

For colour tracking we are using a modified CAMShift
algorithm [10]. Camshift (Continuously Adaptive Mean Shift)
combines the basic Mean Shift algorithm with an adaptive
region-sizing step. A review on Mean Shift methods used
for tracking can be found in [11]. In this method, the kernel
is a simple step function applied to a colour probability
map. The colour probability of each pixel is computed using
a method called histogram back projection. The algorithm
creates a confidence map in the new image based on the colour
histogram of the object in the previous image, and uses Mean
Shift to find the peak of a confidence map near the object’s
old position.

Colour is represented as Hue from the HSV colour model,
a colour space that is more consistent than the standard
RGB colour space under illumination changes. Since Hue
is unstable at low saturation, the colour histograms do not
include pixels with saturation below a threshold. Similarly,
the minimum and maximum intensity values were neglected
to skip pixels that are very bright or very dark.

A few processing methods have also been used to improve
the tracking under similar conditions to the ones presented
here. As a quadruped robot’s trunk is moving a lot during
locomotion, we increased the search region and we post-
processed the back projection image using morphological
filters to remove noise and keep the tracker on the target
object. In Fig. 2 we show the detection of a red object
indoors. The tracking was done using the left camera with
a 5Hz frame rate. The implemented tracking has been tried on
many different objects and under different conditions (indoor,
outdoor, artificial or natural light). For example, we were
usually manually selecting a random object present in the
scene as goal for the robot (different kinds of coloured box
with a colour different from the background and with a
minimum size of 10cm ).

As we explained previously we use a stereo camera to
obtain two different views of the scene. By comparing the
images, the relative depth information can be obtained in the



Fig. 2. Example of colour detection of an red box. This object is tracked
continuously and its 3D position (expressed in meters in the camera frame
defined in 3(c)) is displayed in blue in the top of the image.

(a) (b)
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Fig. 3. (a) (b) Left and right rectified images during an indoor experiment.
(c) Associated point cloud computed from the stereo pair. We show on this
point cloud display, the camera reference frame: x in red, y in green and z in
blue.

form of a disparity map, which is inversely proportional to
the differences in distance to the objects. The disparity map
refers to the difference in x coordinates of similar features
within two stereo rectified images.

To obtain this 3D information several steps are required
(Fig. 3):

• The images are first undistorted to ensure that the ob-
served images are purely projectional.

• The images are rectified to project them back to a
common plane to allow comparison of the image pairs,

• The disparity map is extracted by computing the displace-
ment of relative features in the left and right images,

• The disparity is then post-processed to fill holes by
interpolating missing values,

• The 3D information is extracted from each pixel by using
disparity information and the perspective model.

Given this 3D information, we can extract the object in the

Fig. 4. Depth map showing the tracked coloured object with a red oval in
the centre of the image.
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Fig. 5. Example of height map in the robot frame. (a) Without obstacles;
(b) With rocks and (c) With an obstacle that we cannot cross. The white and
red dots in the map represent the highest points. The computed height were
respectively 0.70, 0.63, 0.20. The last obstacle is too big to be crossed.

colour image (chosen as the barycentre of the tracking ellipse)
and we extract x and y position in the camera reference frame.
To be robust on the computation of z the affected value is
chosen as the median depth of all the pixel in the ellipse in
the depth map (Fig. 4 shows the depth map).

The computed 3D point is then compared to the previous
value to keep the consistency and remove outliers. In case of
outliers we send the previous position value to the controller
to keep the position update rate constant. Robustness of this
computation is discussed in Section V.

B. Visual obstacle detection for step height adjustment

Since we have computed the 3D point cloud of the en-
vironment we have a height map. We will use it to detect
obstacles and modify the forward velocity and the step height.
To do so, we look for the highest obstacle in a small area in
front of the robot. If the obstacle can be crossed (according
to robot leg maximum retraction capability this means to be
lower than 25cm) the step height is modified accordingly.
Otherwise we stop the robot. It is worth mentioning that this
robot could possibly overcome bigger obstacles if a different
locomotion strategy is considered (e.g. jumping or climbing),
but we consider only a trotting gate in this study. Fig. 5 shows
the computed height map. This height map is constrained to
be 2m large at a distance between 1m and 1.5m. The grey line
represents the 1.5m distance. The highest point is computed in
this 2m x 0.5m box. To avoid outliers the map is temporally
filtered over three images. The map accuracy is discussed in
Section V.

The computed maximum height of the obstacle and its
distance to the camera is sent to the controller and the step
height is modified with a function variable delay digital buffer,
which delays the modification of this parameter depending on
the distance of this obstacle and the robot speed. An additional



delay is considered for the hind legs to account for the fact
that they are located further from the obstacle than the front
legs (in the direction of motion). This increases robustness
and allows the robot to successfully trot over obstacles. When
a too-big obstacle is detected, the robot’s forward velocity is
set to 0. Indeed, because no mapping and path planning are
implemented. The implementation of those more sophisticated
obstacle avoidance strategies are part of future work.

C. Controller input

The vision system provides visual data with a frame rate of
5Hz to the robot controller. The visual data packet contains the
3D position vector of the tracked object and the height and the
distance to the highest obstacle in front of the robot. These
values are expressed in the camera reference frame and are
properly translated into the robot base frame via an appropriate
homogeneous transform. Values are temporally filtered before
being sent to the robot controller to smooth the robot behaviour
and filter small oscillations or outliers. The values of the height
after being processed through the variable delay digital buffer
are filtered again before they are used in the controller. The
accuracy of the obstacle height is about ±2cm and ±5cm for
the distance.

IV. LOCOMOTION CONTROL AND VISION

The robot is able to track targets due to a combination of
vision-based tracking with our Reactive Controller Framework
(RCF) [2]. The structure of the RCF consists of two main
blocks, named Motion Generation and Motion Control blocks
(see lower part of Fig. 6), that work in harmony to provide
suitable feet trajectory and to control the trunk motion and
posture.

The robot locomotion is obtained by using a motion gen-
eration algorithm based on Central Pattern Generators (CPG),
which are neural networks responsible for generating animals
gait patterns [12]. Our CPGs are emulated by four non-
linear oscillators, synchronized according to the desired gait,
that provide outputs as position references for each foot.
Each oscillator has parameters directly associated to the step
height, step length, forward velocity and duty factor, which
we consider as locomotion parameters that can be modulated
independently. This modulation allows to govern the robot by
using these parameters as control inputs that can be adjusted
according to terrain irregularities, obstacle heights and target
tracking errors.

The robot balance is controlled by the motion control block
that is composed mainly of a push recovery and a trunk
controller algorithm. The push recovery algorithm computes
suitable footholds that drive the robot naturally to the default
posture after an external disturbance. The trunk controller
algorithm computes the joint torque references of the stance
legs, to obtain a desired force and moment acting on the trunk.

In principle, the RCF is an approach designed to improve the
locomotion robustness on irregular and unknown terrains. In
this paper we fuse vision processing information with the RCF
to make decisions and provide a spatial reference to the robot.

The coupling between the RCF and the vision processing
algorithm is depicted in Fig. 6.
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Fig. 6. Coupling between the vision process information and the Reactive
Controller Framework (RCF). The Vision block, in blue, provides spatial
information to the motion generation and motion control blocks. The RCF
diagram is extracted from [2].

The vision process sends information to two main algo-
rithms: the CPG and the Trunk Controller. As in the CPG
algorithm each locomotion parameter can be independently
modulated, we introduce the idea of considering each locomo-
tion parameter as a control input and use the vision information
to generate control actions to modulate them, e.g.:

• Step height: directly proportional to the obstacles’ height,
• Forward velocity: inversely proportional to the degree of

terrain irregularity or directly proportional to the distance
error to the tracked target,

• Robot turning: directly proportional to the angular error
to the tracked target,

• Duty factor: directly proportional to the degree of terrain
irregularity.

In this paper’s approach, the vision process sends informa-
tion to the CPG block about terrain irregularity and relative
distance and robot heading deviation from a certain object.
The heading information is used to control the robot turning
and the distance information is used to control the robot’s
forward velocity. For simplicity we have implemented simple
proportional control actions, described as follows:

ψ̇d = −Kpψψh (1)
Vf = Kpv (P0 − Ptarget) (2)

where ψ̇d and Vf are the desired turning velocity and desired
forward velocity, respectively. The vision process provides
the heading angle ψh and the target distance Ptarget. The
parameters Kpψ and Kpv are controller gains. P0 is the desired
distance from the target.

The vision process contributes substantially to the locomo-
tion robustness by providing information about the terrain.
Such knowledge allows to adjust each step height to overcome
obstacles. A suitable step height is crucial to reduce the risk



of foot-object frontal impacts and also important to reduce
energy consumption during the leg swing phase.

To be coherent with the RCF concept, the vision process
also sends information to the trunk controller about the tracked
target distance and heading deviation. Both control laws de-
scribed in (1) and (2) are considered as references. Then, the
trunk controller computes joint torques to apply forces and
moments according to Vf and ψ̇d errors, i.e.:

FVf = Kf (Vf − ẋhb ) (3)

Mψ = Km(ψ̇d − ψ̇) (4)

where FVf and Mψ are, respectively, the force and the moment
applied to the trunk to reduce motion errors. The actual
forward velocity is denoted by ẋhb and the actual robot turning
by ψ̇. The parameters Kf and Km are controller gains.

V. EXPERIMENTS

As previously explained, those algorithms have been exper-
imentally tested indoors and outdoors on our quadruped robot.

A. Our platform: HyQ Robot

The experimental platform used in this study is the versatile
quadruped robot HyQ [1], [13], Fig. 1. It is a hydraulically and
electrically actuated machine that weighs 70kg, is 1m long and
has upper and lower leg segment lengths of 0.35m. The robot’s
legs have three degrees of freedom each, two hydraulic joints
in the sagittal plane (hip and knee flexion/extension) and one
electric joint for hip adduction/abduction. Each joint has 120◦

range of motion and is controllable in torque and position. The
maximum joint torque is 145Nm for the hydraulic and 152Nm
for the electric joints. Semini et al. [1] describe HyQ’s design
and specifications in detail. To demonstrate the performance
and robustness of our system we ran two kinds of experiments
with a static coloured object.

B. Indoor experiment on a treadmill

In the performed indoor experiments the robot is trotting
on a treadmill while tracking a coloured target and keeping
a desired distance from it. The robot velocity is modified to
keep the desired distance in spite of external disturbances.
If an external operator changes the treadmill velocity the
robot adapts its velocity accordingly to track the desired
distance. At the same time, the control of the heading corrects
autonomously any lateral drift in the locomotion direction and
helps to keep the robot in the middle of the treadmill. This
experiment shows the effectiveness of the static tracking to
keep the robot on the treadmill autonomously. Results are
shows in Fig. 7. As an extension for this experiment it is
possible to set a moving target instead of a static object. In this
case the robot will be able for example to follow a ”leader”.

Without the heading and distance control the robot occasion-
ally drifted to one side, for reasons such as unbalanced weight,
inaccuracies in the model, calibration errors or external forces.
Sometimes it was also turning while moving over big obstacles
placed on the treadmill or when someone was pushing it.
During those experiments an operator had to control the robot

Fig. 7. Results of indoor experiment. Top: actual (blue) and the desired (red)
distance to the object; Middle: relative heading angle; Bottom: actual (blue)
and desired (red) forward velocity of the robot.

with slings when it was getting close to the lateral limits of
the treadmill.

The addition of visual feedback to the controller made the
robot completely autonomous now: when the trot in place is
started and the tracked object is in sight, the system does
not need any further intervention from the user. HyQ keeps
the object in sight by turning right and left and keeping the
distance to the object constant for randomly changing treadmill
speeds between 0 and 0.3m/s.

Fig. 7 shows the correction of the relative heading angle and
the modification of the robot forward speed according to the
vision feedback. The top plot displays the actual (blue) and
the desired (red) (1.5m) distance to the object. The middle
plot shows the actual (blue) and desired (red) relative heading
angle. The bottom plot illustrates the forward velocity.

C. Outdoor experiments

These experiments demonstrate the robot’s capability to trot
towards a target object while overcoming the obstacles placed
in its way on a 10m track. In this particular case, the vision
is used for heading control and step height adjustment, the
distance control was disabled since this experiment’s goal was
to reach the target object lying on the ground at the end of
the track. The experiment was repeated for different situations
(flat terrain, flat terrain with pieces of wood, rough terrain with
rocks lower than 10cm), under different lightning conditions,
and with unavoidable obstacles (big rocks, people crossing).
The controller was in this case modifying the direction and
the step height according to the obstacles detected in front of
it.

Fig. 8 and 9 show respectively the step height modification
according to the obstacles detected and the heading control
without distance control. The obstacle used for this experiment
were pieces of wood piled up on the track. Average height was
around 6-7cm. As the obstacle is detected (at 1.5m from the
robot) a delay is introduced (proportional to the robot velocity)
before modifying the step height of the front legs. This allows



Fig. 8. Outdoor experiments, step height adaptation. Top: detected maximum
obstacle height; Bottom: controlled step height for the forward (red) and
backward (blue) legs.

Fig. 9. Outdoor experiments, heading control. Top: distance to the target;
Bottom: actual (blue) and desired (red) relative heading angle.

to obtain the the step height required to overcome the obstacle
only at the moment in which the robot is approaching it and
not before. A longer delay is present for the hind legs that are
negotiating the obstacle after the front legs.

D. Discussion on the results

Results shows the heading control, the distance control
and the step height adjustment. The heading control and the
distance control are robust since the tracking works correctly.
Despite noise in the signals sent by the vision process, the
robot behaviour is smooth. In the rare case that the tracker is
lost (e.g. during fast motions or occlusions), the robot stops.
This can be improved by fusing the colour information with
shape-based processing or adding a second tracked object for
example.

The noise in the step height adjustment can lead to errors,
as the robot can sometimes miss the obstacle crossing due
to an underestimation of the value or stop if the value is
overestimated.

It has to be mentioned that the rough terrain in this study
is achieved by randomly putting obstacles on the flat ground
(pieces of wood, rocks), as the robot is currently secured by
a harness connected to a rail to prevent it from falling.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our latest progress of the
HyQ project. The achieved result is a significant step to-
wards rendering HyQ autonomous, as we show that high-
level information from perception sensors are now available
into the locomotion controller. Results show that without any
mapping or planning we achieved autonomous trotting on
rough terrain. The robot is capable of navigating in a straight
line towards a visual goal and reach it while correcting for
drift or compensating for disturbances. Furthermore, the earlier
presented reactive locomotion framework is improved and
safer now, as obstacles can be detected and the robot can stop
by itself without any operator intervention.

In the future, we will extend this work by adding gait
transitions, for example by slowing down and walk instead
of trotting or changing from forward to backward motion. On
the vision side, we plan to perform state estimation and 3D
mapping for foothold planning.
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