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Abstract Legged robots have the potential to navigate

in challenging terrain, and thus to exceed the mobil-

ity of wheeled vehicles. However, their control is more

difficult as legged robots need to deal with foothold

computation, leg trajectories and posture control in or-

der to achieve successful navigation. In this paper, we

present a new framework for the Hydraulic Quadruped

robot HyQ, which performs goal-oriented navigation

on unknown rough terrain using inertial measurement

data and stereo vision. This work uses our previously

presented reactive controller framework with balancing

control and extends it with visual feedback to enable

closed-loop gait adjustment. On one hand, the cam-

era images are used to keep the robot walking towards

a visual target by correcting its heading angle if the

robot deviates from it. On the other hand, the stereo

camera is used to estimate the size of the obstacles

on the ground plane and thus the terrain roughness.

The locomotion controller then adjusts the step height

and the velocity according to the size of the obstacles.

This results in a robust and autonomous goal-oriented

navigation over difficult terrain while subject to distur-

bances from the ground irregularities or external forces.

Indoor and outdoor experiments with our quadruped

robot show the effectiveness of this framework.
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1 Introduction

Legged locomotion is a complex task for robots, involv-

ing different components ranging from low-level mo-

tor control to high-level cognitive processes. To be au-

tonomous, robots need all these components to be re-

liable, well orchestrated and capable of real-time ex-

ecution. The Hydraulic Quadruped, HyQ (Fig. 1) is a

versatile robot with hydraulic actuation developed at

the Department of Advanced Robotics at the Istituto

Italiano di Tecnologia (IIT) [22]. HyQ is fast, robust,

fully torque-controllable, actively compliant and built

for dynamic locomotion.

Our previous work focused on dynamic locomotion,

mainly trotting, using active impedance and low-level

feedback from the on-board inertial measurement unit

(IMU) for stabilization [3, 12, 24]. Such low-level con-

trol can reliably negotiate flat and moderately rough

terrain (obstacles lower than 10 cm) while following

manually selected high-level parameters, i.e. velocity,

heading, and step height. This provides a solid founda-

tion for building up a set of higher-level controllers that

deal with the cognitive aspects of locomotion and nav-

igation, to further increase HyQ’s autonomy. Following

this theme, we added a stereo vision system as a first

step towards providing the robot with higher-level feed-

back, which can in turn be used in a number of ways,

e.g. localization, mapping, path planning.

Visual feedback is crucial in the context of auton-

omy in real-world scenarios where open-loop approaches,

e.g. dead-reckoning, quickly accumulate errors due to



2 Stéphane Bazeille et al.

(a)

(b) (c)

Fig. 1 Pictures of IIT’s quadruped robot HyQ. (a) without
stereo camera (2012); (b) with the stereo camera fixed on the
protection frame (2012); (c) with the stereo camera mounted
on a pan and tilt unit (2013). The second picture shows the
definition of the camera coordinate frame.

foot slippage, non-uniform weight distribution, terrain

irregularities or external disturbances on the body.

This work is an extension of our previously pre-

sented reactive controller framework [3], now extended

with the addition of visual feedback. The vision system

sends to the controller a qualitative localization and in-

formation about the terrain to autonomously and con-

tinuously adapt the trotting parameters, i.e. heading,

forward velocity, step height, duty factor.

This visual feedback allows to guide the robot to-

wards a visual goal while traversing challenging terrain

in the presence of external disturbances. Such distur-

bances can be created by lateral pushes on the robot,

foot slippage or foot-object frontal impacts. Also, it

allows us to compensate for possible lateral drift due

to inaccurate calibration or transient loss of balance.

Furthermore, it makes the behaviour safer by detecting

obstacles, slowing down when necessary, increasing the

duty factor or the step height of the trot to overcome

obstacles and in the worst case stopping the robot in

front of an obstacle that cannot be avoided.

Contribution: A new reactive controller using po-

sition, force, inertial measurements and vision data for

closed-loop gait adjustment. The focus of this paper lies

on the controller that allows a highly dynamic quadrupedal

robot to perform a fully autonomous reactive trot in an

unknown irregular terrain.

Contents: The structure of the paper is organized as

follows. In Section 2, we present a review of related work

on quadruped robot navigation, and in Section 3, we

provide details about our perception algorithms. Sec-

tion 4 describes the locomotion controller with visual

feedback. In Section 5 we present our quadruped robot

and the results of indoor and outdoor experiments. Fi-

nally, Section 6 discusses the results and Section 7 con-

cludes the paper and mentions future work.

2 Related work

Quadrupedal locomotion has been an active area of

robotics research for several decades. However, up to

now few people have worked on the integration of vision

sensors on quadrupedal platforms. Such platforms are

commonly used to develop low-level controllers, rather

than high-level cognitive processes.

A number of studies in quadrupedal locomotion of-

ten simplify the problem of perception using accurate a-

priori given maps and external robot state sensors. For

example the standard test set up of the DARPA Learn-

ing Locomotion Program used pre-scanned maps and a

marker-based tracking system on LittleDog [20, 15].

Kolter et al. in [16] presented a more autonomous

approach by removing the dependence on given maps

and external state input. In their control framework

they use a stereo camera together with a well estab-

lished point-cloud matching technique to iteratively build

a map of the environment that is then used for navi-

gation. While the camera was on the robot, the vision

processing and path planning was calculated on an ex-

ternal computer.

Filitchkin and Byl used a monocular camera to per-

form terrain classification that in turn influences the

locomotion behaviour of their LittleDog quadruped [8].

Chilian and Hirschmuller in [7] performed position

estimation and terrain modelling using a stereo camera

on their hexapod robot, while Shao et al. [25] presented

an obstacle avoidance approach for their quadruped

robot that uses a stereo vision-based terrain modelling

algorithm.

Howard in [13] introduced a state estimation ap-

proach for BigDog that combines a number of different

sensor modalities, including stereo camera, IMU, odom-
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etry and GPS to achieve accurate long-term position-

ing.

Bajracharya et al. recently showed terrain mapping

for vision-in-the-loop walking on the LS3 robot from

Boston Dynamics [2]. The main contribution is the ro-

bustness of the mapping in difficult terrain (vegetation,

slopes) and difficult lightning condition (day or night).

The vision system is used to map the environment in

the vicinity of the robot and inform the gait genera-

tion process about possible changes in the surface where

the robot is locomoting. As with other legged robots of

Boston Dynamics, very few details on the controller,

hardware, and experimental data have been scientifi-

cally published so far. Therefore, the results of the ex-

periments shown in online videos are notoriously hard

to scientifically verify and compare.

Research in a similar direction was also performed

on the AIBO quadruped entertainment robot designed

and manufactured by Sony. AIBO was the first quadruped

robot with an on-board camera that was able to detect

a number of objects and to track a pink ball while nav-

igating [10].

Our work differs from the literature as we propose

a new reactive controller that closes the loop with vi-

sion feedback to continuously adjust gait parameters.

In other words, we present an approach without map-

ping or path planning, where all the computation is

done on-board. Typical methods for robots maintain a

local model of the terrain near the robot and localize

it within that estimated model. Unfortunately, those

methods rely on well orchestrated, complex high level

processes such as SLAM, state estimation and path

planning and require consistency and heavy computa-

tion with real-time processing. On HyQ, this is dif-

ficult to realize in terms of robustness and comput-

ing speed as the robot is subject to considerable mo-

tions (due to highly dynamic manoeuvres, impacts, vi-

brations, slippages) during locomotion. We therefore

proposed to give to the robot only perception feed-

back without mapping to keep the robot’s ability to re-

act quickly. Our visual process requires small computa-

tional effort, which allows an implementation of all com-

putation on-board. The process sends at 15 Hz a quali-

tative localization and information about the terrain to

the reactive controller, which then performs closed-loop

gait adjustment. The stereo vision system feeds-back

the position of the target the robot is approaching and

the distance to it. Furthermore, it extracts and trans-

mits the height of obstacles in front of the robot and the

distance to them. Thus, the visual feedback allows the

robot to estimate the terrain difficulty ahead of time

and therefore perform gait adjustment in advance, in-

stead of purely reacting to terrain changes.

3 Environment Perception

In our previous work we developed motion control algo-

rithms based on joint positions/velocities and the body

state information given by the IMU. The IMU was the

first perception sensor we added to our quadruped plat-

form to provide relative information between the robot

and the world. However, the robot’s orientation in the

world frame alone is not enough to create cognitive in-

teraction, information about the environment itself are

needed. To perceive the environment and to improve

the locomotion robustness we therefore added a stereo

camera to the robot. The HyQ stereo camera set up uses

a Bumblebee2 firewire colour camera from Point Grey.

It has a focal length of 2.5mm, a field of view of 97

degrees, a maximum resolution of 1024 x 768 at 20 fps,

a 12cm baseline, and it is pre-calibrated against distor-

tions and misalignment. On our system, a point cloud

with 640x480 3D points with their associated RGB val-

ues can be computed at 15Hz on a dedicated vision

computer equipped with a quad-core Intel processor at

2.50 GHz running Ubuntu.

Four parameters are extracted from the images and

sent to the motion planner: the position of the target

in the image frame, the distance to this target, and the

height of and the distance to the highest obstacle in

front of the robot. The first two corresponds to a quali-

tative localization the third and fourth are information

about the terrain.

3.1 Target tracking

For the tracking we decided to use the colour informa-

tion with the Mean Shift algorithm. It was the most

intuitive way as we followed a target for the heading

control. It does not necessitate any learning stage or

parametrization, and the target can be any objects se-

lected manually by the operator in the image before

starting the navigation. Our method has been success-

fully used indoors and outdoors (natural light) during

short experiments but for more robustness in outdoor

settings and long run navigation it has to be noted

that tracking SIFT features [17] will improve robust-

ness. The method proposed by Zhou et al. [26] also

based on Mean Shift would be well suited for our pur-

pose and would avoid any colour tracking problems.

We implemented a modified version of the CAMShift

algorithm [6]. Camshift (Continuously Adaptive Mean

Shift) combines the basic Mean Shift algorithm with
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(a)
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Fig. 2 (a) Right image and coloured disparity image; (b) As-
sociated point cloud (about 100 000 points) with the camera
reference frame: x in red, y in green and z in blue.

an adaptive region-sizing step. A review on Mean Shift

methods used for tracking can be found in [1]. In this

method, the kernel is a simple step function applied

to a colour probability map. The colour probability of

each pixel is computed using a histogram back projec-

tion. The algorithm creates a confidence map in the

new image based on the colour histogram of the object

in the previous image, and uses Mean Shift to find the

peak of a confidence map near the object’s old position.

Colour is represented as Hue from the HSV colour

model, a colour space that is really more consistent

than the standard RGB colour space under illumina-

tion changes. Since Hue is unstable at low saturation,

the colour histograms do not include pixels with satu-

ration below a threshold. We use a successively open-

ing and closing to filter the back projection image (see

Fig. 3(e)) to remove the outliers and to enhance the

object. The post filtering gives better segmented im-

ages in case of complex video sequences (e.g. changes

in illumination, appearance, scale or object movement).

Moreover, as the body of the quadruped robot trunk is

subject to considerable movements during locomotion,

we increased the search region for the Mean Shift to

make the tracking more robust under real trotting con-

ditions.

In Fig. 3 we show the detection of a red target in-

doors. The tracking was achieved using the left camera

with a 15Hz frame rate. The implemented tracking has

been tried on different objects with colours different

from the background and with a minimum size of 10cm

and under different conditions (indoors, outdoors, ar-

tificial or natural light). Practically, we were remotely

selecting in the images an object present in the scene

as goal for the robot. In the experiment shown in Fig.

2 we were tracking a yellow sign attached to the crane

in front of the robot, and in Fig. 13 and 14 we tracked

a red toolbox in outdoor conditions.

3.2 Depth map and height map from stereo images

We get images from a stereo camera to obtain two dif-

ferent views of the scene. By matching the images, the

relative depth information can be obtained as a dis-

parity map, which is inversely proportional to the dif-

ferences in distance to the objects. The disparity map

refers to the difference in x coordinates of similar fea-

tures within two stereo rectified images. The reader can

refers to Hartley and Zisserman book for more details

on getting depth from stereo vision [11].

As this camera is accurately pre-calibrated against

distortions and misalignment (the stereo pair are aligned

within 0.11 pixel RMS error), high quality rectified im-

ages are extracted by using Point Grey proprietary li-

brary Triclops. That results in accurate correspondence

computation between the two stereo images. The com-

putation of the correspondences is achieved using the

SAD method [18] on edge images. It allows the match-

ing on the changes in brightness rather than the abso-

lute values of the pixels in the images which is more

robust in environment where the lighting conditions

change. A good precision is obtained on the disparity

map as we use sub-pixel interpolation and a size of the

matching mask set to 21x21. When the disparity map

is processed we use surface validation [19] to remove

outliers. Also, we apply a 3x3 median filtering to fill

small holes. An example of the post-processed dispar-

ity map is shown in Fig. 2(a). The disparity is shown

with colours (hot and cold colour bar) to appreciate

its quality. It has to be noted that the quality of this

disparity is important for the depth image computa-

tion. Outliers and missing values are low as shown in

Fig. 2(a). Then for each valid disparity pixel we can

estimate the corresponding 3D position.

The depth of all those point gives the depth map

(Fig. 3(c)) and the height to which we subtract the

robot height computed from the legs position gives the

height map (Fig. 4).
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(a) (b)

(c)

(d)

(e)

Fig. 3 (a) (b) Left and right rectified images used to compute
the depth map; (c) Depth map showing the tracked coloured
object with a red oval in the centre of the image; (d) Example
of colour detection of a red box. This object is tracked contin-
uously and its 3D position (expressed in meters in the camera
frame defined in 1(b)) is displayed in blue in the top of the
image; (d) Back projection image before post-processing.

3.3 Controller input

The vision system provides visual data with a frame

rate of 15Hz to the robot controller. The visual data

packet contains the 3D position vector of the tracked

object and the height of and the distance to the highest

obstacle in front of the robot.

The 3D position vector of the tracked object is com-

posed of the x and y position of the barycentre of the

ellipse in the camera frame and the distance to the tar-

get. The distance to the target is computed by extract-

ing all the pixels of the depth map which belong to the

ellipse and looking for the median value.

The height of the highest obstacle and its distance

to the robot are computed by identifying the highest

point in a given area in the depth map. This area is

defined as 2m x 0.5m at 1 meter in front of the robot

see Fig. 5). Fig. 4 shows an example of height map. The

maximum height is computed as the distance between

the top of the obstacle from a horizontal plane spanned

by the centre points of the foot trajectories (cfg. Section

4). The accuracy of the obstacle height is about ±2cm

and ±5cm for the distance. In the case the obstacle can

be crossed (this is determined by the maximum retrac-

tion capability of the robot leg, in our case 25cm) the

step height is modified accordingly.

All these values expressed in the camera reference frame

and are translated into the robot base frame (via an

appropriate homogeneous transform) and are tempo-

rally filtered before being sent to the robot controller

to smooth the robot behaviour and filter small oscilla-

tions or outliers. It has to be noted that the values of

the height after being filtered are processed through the

variable delay digital buffer detailed in the next Section.

Special cases: In case of tracking problem, i.e. track-

ing lost for example, special value are sent and the robot

stop. The robustness of this computation is more dis-

cussed in Section 6.

In case the obstacle can be crossed because its height

is higher than maximum leg lift, the robot stops in

place. It is worth mentioning that this robot could pos-

sibly overcome bigger obstacles if a different locomotion

strategy is considered (e.g. jumping or climbing), but

we consider only a trotting gait in this study.

3.4 Obstacle buffer

When the computed maximum height of the obstacle

and its distance to the robot are sent to the locomo-

tion controller, it has to modify the leg lift accordingly

to make the robot able to overcome it. However, when
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(a)

(b)

(c)

Fig. 4 Example of height map in the robot frame. Darks
colours mean 0 height and white colours stands for the robot’s
height (a) Without obstacles (corresponding to the stereo pair
Fig. 3(a), 3(b)); (b) With rocks and (c) With an obstacle that
we cannot cross. The white and red dots in the map represent
the highest points. The computed height were respectively
0.70m, 0.63m, 0.20m (y axis). The grey line represents the
1.5m distance limit (z axis) from the robot as shown in Fig.
5.

Fig. 5 Definition of HyQ reference frames. The height map
area is shown in light red colour. The red dot indicates the
highest obstacle, while the blue dot represent the centre of
the area. The distance Px from the robot and this point in
the horizontal direction is Px = 1.25m.

the robot approaches the obstacle, this goes out of the

vision field of the camera and the estimation of the dis-

tance from visual information alone becomes impossi-

ble. Therefore the robot keeps a ”memory” of the height

map which is stored in a buffer. In particular a delay

is introduced in order to modify the step height at the

moment in which the robot is approaching a certain

obstacle. This delay between detection and application

of the height modification is dependent on the forward

velocity Vf of the robot which is estimated by using the

leg odometry.

A variable delay digital buffer is implemented to

take this fact into account (see Fig. 6). As soon the

height data (h(t)) is coming from the vision (for our

experiments at a 15 Hz rate) it is stored in a buffer

(Fig. 7). An appropriate saturation function limits the

values of h(t) to avoid commanding motions to the feet

which are out of the workspace. The first element of the

buffer is the actual sample coming from the vision with

no delay. The size of the buffer Nbuf is computed from

the vision rate Fs = 15Hz and the minimum forward

velocity Vfmin = 0.1m/s. As soon as the index of the

buffer increases we find the maximum height values that

have been stored in the past. The idea is to apply to the

front legs the step height which was stored DF seconds

before. DF is the time interval (delay) in which the

robot covers the horizontal distance Px = 1.25m from

the camera to the centre of the height map area while

trotting at velocity Vf (Fig. 5). This value is changed in

real-time if Vf is changing (e.g. if the robot slows down

the DF will increase). The delay DH applied to the

hind legs is higher to account for the fact that these

legs are located further (by an additional distance of

dFH) from the obstacle compared to the front legs, ac-

cording to the robot’s direction of motion (see Fig. 8).

DF =
Px

Vf + δ
, DH =

Px + dFH
Vf + δ

(1)

where δ is a small constant to prevent division by

zero issues. After the variable delays Di are computed

(at each control cycle), the indexes Ii associated to

them are obtained as follows:

Ii = floor(FsDi) i = F,H (2)

Then the values of the modifications to the step heights

hF and hH for the front and hind legs respectively, are

extracted from the buffer (see Fig. 7) to be added to

the nominal step height. A first order digital filter is

implemented to smooth the step-wise discontinuities in

hi(t) signals since the vision rate (15Hz) is lower than

the control rate (1kHz).

The velocity can also be changed according to the

difficulty of the obstacle. For instance, when facing higher

obstacles the robot slows down and it speeds up when

crossing lower obstacles. It is important to note that,

to have a proper estimate of the distance covered by

the robot, it is preferable to keep the velocity constant

while overcoming the obstacle.



Quadruped Robot Trotting over Irregular Terrain Assisted by Stereo-Vision 7

Fig. 6 Schematic of the variable delay buffer approach. The
modification of the step height is delayed depending on the
distance and the robot speed Vf .

Fig. 7 Schematic of the indexing of the buffer. Indexes can
move forward or backward according to the robot speed Vf .

Fig. 8 A sketch of how the recorded height history (upper
plot) is shifted in time before being applied to front (middle
plot) and hind legs (lower plot).

The proposed feature increases robustness and al-

lows the robot to successfully trot over obstacles. When

an obstacle above a certain threshold is detected, the

robot’s commanded forward velocity is set to 0. Map-

ping and path/foothold planning approaches can be

used to overcome such difficulties. The implementations

of those more sophisticated obstacle avoidance/climbing

strategies are part of future work.

4 Locomotion Control and Vision

We showed in the previous part that the visual system

can send to the reactive controller framework (RCF)[3]

a qualitative localization and information about the ter-

rain to adapt autonomously and continuously the trot-

ting parameters. It this part we will explain how the

RCF is using the visual feedback to perform closed-loop

gait adjustment. The structure of the RCF consists of

two main blocks, named Motion Generation and Mo-

tion Control blocks (see lower part of Fig. 9), that work

in harmony to provide suitable feet trajectory and to

control the trunk motion and posture.

Fig. 9 Coupling between the vision process information and
the Reactive Controller Framework (RCF). The Vision block,
in blue, provides spatial information to the motion generation
and motion control blocks.

The robot locomotion is obtained by using a motion

generation algorithm based on Central Pattern Gener-

ators (CPG), which are neural networks responsible for

generating gait patterns [14]. Our CPGs are emulated

by four non-linear oscillators, synchronized according

to the desired gait, that provide outputs as position

references for each foot. Each oscillator has parameters

directly associated to the step height Hs, step length

Ls, step frequency fs, forward velocity Vf and duty

factor Df , which we consider as locomotion parameters

that can be modified independently. This modulation

allows to govern the robot by using these parameters

as control inputs that can be adjusted according to ter-

rain irregularities, obstacle heights and target tracking

errors.

The oscillator’s output is a primitive that has an

elliptical shape determined by the step length and step

height, as depicted in Fig. 10 on the left. The prim-

itive is modulated by a non-linear filter according to

a relative distance named step depth ztd ∈ [−Hs, Hs]

that is acquired at the foot touchdown (Fig. 10 right).

The non-linear filter modulation increases the locomo-

tion robustness by adapting the primitive to irregular

surfaces.
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Fig. 10 The foot trajectory generated by the CPG oscillator
(on the left) and the trajectory modulated by the non-linear
filter (on the right), expressed in the robot’s base frame. zp
and xp are the reference coordinates of the primitive’s tra-
jectory, while zf and xf are the filtered references sent to
the joint controller. The primitive has variable angular fre-
quency ws modulated according to fs and Df . ztd is the
filter parameter which determines where the original elliptic
trajectory has to be interrupted.

During the stance phase of the legs, the non-linear

filters impose feet references to achieve robot omnidirec-

tional locomotion with motion constraint satisfaction.

These references are relative motions between the feet

and the torso computed according to the desired linear

and angular velocities for the torso. In this paper, the

robot locomotion is determined by means of the desired

forward velocity Vf and a desired angular yaw velocity

ψ̇d for the torso.

The robot balance is controlled by the motion con-

trol block that is composed mainly of a push recovery

and a trunk controller algorithm. The push recovery

algorithm computes suitable footholds that drive the

robot naturally to the default posture after an external

disturbance. The trunk controller algorithm computes

the joint torque references of the stance legs, to obtain

a desired force and moment acting on the trunk.

In principle, the RCF is an approach designed to

improve the locomotion robustness on irregular and un-

known terrains. In this paper we fuse vision processing

information with the RCF to make decisions and pro-

vide a spatial reference to the robot. The coupling be-

tween the RCF and the vision processing algorithm is

depicted in Fig. 9.

The vision process sends information to two main

algorithms: the CPG and the Trunk Controller. As in

the CPG algorithm each locomotion parameter can be

independently modulated, we introduce the idea of con-

sidering each locomotion parameter as a control input

and use the vision information to generate control ac-

tions to modulate them, e.g.:

– Step height: directly proportional to the obstacles’

height,

– Forward velocity: inversely proportional to the ”de-

gree of terrain irregularity” or directly proportional

to the distance error to the tracked target,

– Robot turning: directly proportional to the angular

error to the tracked target,

– Duty factor: directly proportional to the ”degree of

terrain irregularity”.

The ”degree of terrain irregularity” has been sim-

ply defined as the variance of the height obstacles val-

ues buffered. The visual data sent to the CPG block

are the highest obstacle height and its relative distance

and robot heading deviation from the target object.

The heading information is used to control the robot

turning and the distance information is used to con-

trol the robot’s forward velocity. We have implemented

proportional control actions, described as follows:

ψ̇d = −Kpψψh (3)

Vf = Kpv (P0 − Ptarget) (4)

where ψ̇d and Vf are the desired turning velocity and

desired forward velocity, respectively. The vision pro-

cess provides the heading angle ψh and the target dis-

tance Ptarget. The parameters Kpψ and Kpv are con-

troller gains. P0 is the desired distance from the target.

This visual feedback contributes substantially to the

locomotion robustness by providing a qualitative local-

ization and informations about the terrain. Such knowl-

edge allows the robot to adjust each step height to over-

come obstacles. A suitable step height is crucial to re-

duce the risk of foot-object frontal impacts and also

important to reduce energy consumption during the leg

swing phase.

To be coherent with the RCF concept, the vision

process also sends information to the trunk controller

about the tracked target distance and heading devia-

tion. Both control laws described in (3) and (4) are con-

sidered as references. Then, the trunk controller com-

putes joint torques to apply forces and moments ac-

cording to Vf and ψ̇d errors, i.e.:

FVf = Kf (Vf − ẋhb ) (5)

Mψ = Km(ψ̇d − ψ̇) (6)

where FVf and Mψ are, respectively, the force and the

moment applied to the trunk to reduce motion errors.

The actual forward velocity is denoted by ẋhb and the

actual robot turning by ψ̇. The parameters Kf and Km

are controller gains.

5 Experiments

Those algorithms have been experimentally tested in-

doors and outdoors on our quadruped robot. To demon-

strate the performance and robustness of our system we

ran two kinds of experiments that are explained after a

short description of our research platform.
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5.1 Our platform: HyQ Robot

The experimental platform used in this study is the

quadruped robot HyQ [22, 21], (see Fig. 1). It is a hy-

draulically actuated machine that weighs 85kg, is 1m

long and has upper and lower leg segment lengths of

0.35m. The robot’s legs have three degrees of freedom

each, two hydraulic joints in the sagittal plane (hip

and knee flexion/extension) and another for hip abduc-

tion/adduction. Each joint has 120◦ range of motion

and is controllable in torque and position. The maxi-

mum joint torque is 145Nm for the hydraulic. Semini

et al. [22] describe HyQ’s design and specifications in

detail.

Since 2011, HyQ has demonstrated a wide range of

static and dynamic motions such as a crawl gait, walk-

ing trot over flat, inclined and rough terrain (indoors

and outdoors), flying trot, squat jumps, rearing, bal-

ancing under disturbances and step reflexes [22, 23, 5,

3, 9, 24].

5.2 Indoor experiment on a treadmill

In the performed indoor experiments the robot is trot-

ting on a treadmill while tracking a coloured target

(mounted on the crane in front of the robot). The robot

velocity is modified to keep the desired distance even

in presence of external disturbances. If an external op-

erator changes the treadmill velocity the robot adapts

its velocity accordingly to keep the desired distance.

At the same time, the control of the heading corrects

autonomously any lateral drift in the locomotion direc-

tion and helps to keep the robot in the middle of the

treadmill. This experiment shows the effectiveness of

the static tracking to keep the robot on the treadmill

autonomously.

Fig. 11 shows the correction of the relative heading

angle and the modification of the robot forward speed

according to the vision feedback. The top plot displays

the actual (blue) and the desired (red) (1.5m) distance

to the object. The middle plot shows the actual (blue)

and desired (red) relative heading angle. The bottom

plot illustrates the forward velocity.

As an extension for this experiment it is possible to

set a moving target instead of a static object. In this

case the robot is able for example to follow a ”leader”

(at a desired distance) that is walking in front of the

robot.

Without the heading and distance control the robot

occasionally drifted to one side, for reasons such as un-

balanced weight, inaccuracies in the model, calibration

errors or external forces. Sometimes it was also turning

Fig. 11 Results of indoor experiment. Top: actual (blue) and
the desired (red) distance to the object; Middle: relative head-
ing angle; Bottom: actual (blue) and desired (red) forward
velocity of the robot.

while moving over big obstacles placed on the treadmill

or when someone was pushing it. During those exper-

iments an operator had to pull the robot back to the

centre of the treadmill with slings when it was getting

too close to the lateral limits of the treadmill.

The addition of visual feedback to the controller al-

lows the robot to keep its position on the moving tread-

mill autonomously: when the trot in place is started and

the tracked object is in sight, the system does not need

any further intervention from the user. HyQ keeps the

object in sight by turning right and left and keeping the

distance to the object constant for randomly changing

treadmill speeds between 0 and 0.3m/s.

5.3 Outdoor experiments

Outdoor experiments demonstrate the robot’s capabil-

ity to trot towards a target object while overcoming

obstacles placed in its way on a 10m track, see Fig. 12,

Fig. 13 and Fig. 14. In this particular case, the vision is

used for heading control (targeting an object lying on

the ground at the end of the track) and for obstacle de-

tection but the distance control was disabled. In these

experiments we want to show how vision can enhance

locomotion by adapting the CPG step height to differ-

ent terrain asperities by making use of the variable delay

digital buffer presented in Section 3.4. The experiment

was repeated for different situations (flat terrain, flat

terrain with pieces of wood, rough terrain with rocks

lower than 10cm), under different lighting conditions

(artificial light, natural light day/evening), and with

unavoidable obstacles (big rocks, people crossing). The



10 Stéphane Bazeille et al.

(a) (b)

Fig. 12 Outdoor experiments. (a) At 1m distance to the ob-
stacle with the default step height: 7cm (b) At 50cm distance
to the obstacle the step height has been increased to 11cm.
The obstacle height is 4 cm. Feet in the blue dashed circles
are in stance while the red dashed circles highlight the feet
that are swinging.

Fig. 13 First outdoor experiment to test the step height
modification and heading control while passing over a step of
7.5 cm.

controller was in this case modifying the direction and

the step height according to the obstacles detected in

front of it.

Fig.15 and Fig.16 show respectively the step height

modification according to the obstacles detected and

the heading control without distance control. Fig.12

shows the obstacle used for this experiment, which were

pieces of wood piled up on the track. The average height

of the obstacles was around 10-12cm. As the obstacles

are detected (at 1.5m from the robot) a delay is intro-

duced (proportional to the robot velocity) before mod-

ifying the step height of the front legs. This allows to

obtain the step height required to overcome the obsta-

cle only at the moment in which the robot is passing

over it and not earlier, as described in Section 3.4.

Fig. 14 Second outdoor experiment to test the step height
modification and heading control on rough terrain. During
this experiment the step height was set to the highest one
(20cm), the obstacle height is around 9.5 cm. Note that the
robot was swaying to the left and right during this experi-
ment, but it was correcting the heading by tracking the red
box in front of it.

Fig. 15 Outdoor experiments, step height adaptation. Top:
detected maximum obstacle height; Bottom: controlled step
height for the front (red) and hind (blue) legs.

Fig. 16 Outdoor experiments, heading control. Top: dis-
tance to the target; Bottom: actual (blue) and desired (red)
relative heading angle.
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6 Discussion

The results of this paper showed the heading control,

the distance control and the step height adjustment.

The heading control and the distance control are robust

since the tracking works robustly. Despite of noise in the

signals sent by the vision process, the robot behaviour

is smooth. In the rare case that the tracker is lost (e.g.

during fast motions or occlusions), the robot stops at

its current position and a new target has to be select

by the operator. It has to be noted that the occurrence

of a lost tracker can be reduced by fusing the colour

information with shape-based processing.

Also, the noise in the obstacle height estimation can

lead to undesired behaviour. The robot can sometimes

miss the obstacle in front of it, due to an underesti-

mation of the obstacle height, or stop if the value is

overestimated due to noise.

It has to be mentioned that the rough terrain in

this study is achieved by randomly putting obstacles on

the flat ground (pieces of wood, rocks), while the robot

is secured by a harness connected to a rail to prevent

damage to the robot in case it stumbles or falls. The

rope that connects the harness to the rail is hanging

loosely while the robot is trotting.

A first limitation of the approach can come from the

fact that the method has been developed for straight

line locomotion and will need modifications to allow

curved trajectories. To solve this, a solution is to mount

the camera on a pan and tilt unit to allow to have a look

to the terrain before turning and overwrite the obstacles

height buffer with the new values obtained.

Another limitation of our approach is that in certain

cases a strong foot-object frontal impact can occur, that

prevents the robot from overcoming the obstacle even if

the step height was sufficient. To solve this, we plan in

the future to combine our method with the step reflex

behaviour that we have recently published in [9].

7 Conclusion and future work

In this paper, we presented a new reactive controller

using position, force, inertial measurements and vision

data for closed-loop gait adjustment. The achieved re-

sult is a significant step towards rendering HyQ more

autonomous. We show that high-level information from

perception sensors is now available to perform closed-

loop gait adjustment. Results show that without any

mapping or planning we achieved autonomous trotting

on rough terrain. The robot is capable of navigating in

a straight line towards a visual goal and reach it while

correcting for drift or compensating for disturbances.

Furthermore, the earlier presented reactive locomotion

framework has been improved, as obstacles can now be

detected and the robot can autonomously slow down

and stop without requiring swift intervention by a hu-

man operator.

In future work we aim to extend this work by adding

gait transitions. For example when the terrain becomes

very rough the robot can slow down and locomote with

a static gait instead of trotting. On the vision side, we

plan to perform state estimation and 3D mapping that

can be used for foothold planning in such very rough

terrains.
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