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Abstract— Robots are frequently modeled as rigid body
systems, having torques as input to their dynamics. A high-
performance low-level torque source allows us to control the
robot/environment interaction and to straightforwardly take
advantage of many model-based control techniques. In this
paper, we define a general 1-DOF framework, using basic
physical principles, to show that there exists an intrinsic velocity
feedback in the generalized force dynamics, independently
of the actuation technology. We illustrate this phenomena
using three different systems: a generic spring-mass system,
a hydraulic actuator, and an electric motor. This analogy helps
to clarify important common aspects regarding torque/force
control that can be useful when designing and controlling a
robot. We demonstrate, using simulations and experimental
data, that it is possible to compensate for the load motion
influence and to increase the torque tracking capabilities.

I. INTRODUCTION

Since the very early days of the development of articulated

robots, torque control was of fundamental interest [1]. Torque

control allows various forms of impedance control, control

of contact forces, rigid body dynamics model-based control,

virtual model control [2], operational space control [3], etc.

Having these control capabilities is not only desirable but

mandatory for robust performance of robots in unstructured

and partially unknown environments [4]. Torque control also

allows the development of versatile and robust articulated

robots that can be used in a wide variety of applications,

e.g. disaster recovery, construction, service robots, etc [5].

Research on robot torque/force control began in the 1950s

with remote manipulators, but stability issues emerged imme-

diately [1]. For position-controlled systems, stiff mechanical

interfaces between the actuator and its load raise the system

bandwidth without compromising stability [6]. For force-

controlled systems, however, this stiff transmission is the

main reason for stability problems. A way to overcome such

issues has been found in reducing the transmission stiffness,

and consequently the overall system bandwidth. Initially, it

was done by using flexible sensors, and more recently by

introducing springs in series with the actuator [7].

However, softness isn’t everything. Advanced control ap-

proaches, such as model-based control, can be successfully

applied in the low-level force control to reach a good tracking

performance without having to give up on the bandwidth.

Since the force is always transmitted from the actuator to the

load through a transmission with finite stiffness (e.g. gearbox,

hydraulic oil, spring), there exist an intrinsic load velocity

feedback in the force dynamics, which does not depend on

the actuator. An important model-based control consists in

compensating for this physical load motion feedback.

The load motion compensation was initially discussed for

hydraulic actuators in [8], where it is shown that closed-loop

control with force feedback is ineffective without velocity

feedforward, or full state feedback. The influence of the

load motion is shown for a hydraulic actuator in [9]. The

authors called this concept natural velocity feedback. In [10],

a solution to negate the natural velocity feedback of the

actuator was proposed.

Previous works addressed the compensation of the load

motion for electrical drives as well. Hori et al [11] imple-

mented disturbance observers to compensate for the effect

of the load torque by feeding back the motor velocity

signal. Dhaouadi et al [12] designed a speed controller based

on a torque observer to increase the phase margin at the

resonant frequency and to reduce the limit cycles resulting

from the gear backlash. Kaneko et al [13] attained similar

results designing an acceleration controller and using positive

feedbacks from torque and load position. This suppressed the

effects of both load torque and motor friction, setting a single

inertia behavior to the system.

Even if the load motion compensation has been inves-

tigated in previous works, a general framework for this

problem is currently missing in the literature. In this work,

we summarize the generalized force control problem, for

one degree of freedom (DOF), into a common framework

with only three elements: a velocity source, a transmission,

and a load. We draw a parallel between a generic me-

chanical case, and the two different actuators employed in

the quadruped robot HyQ [14]: electric and hydraulic. This

analogy emphasizes that the feedback of the load velocity

exists independently on the actuation system and also helps

clarifying important robot design aspects that can be useful

when building a robot. We identify crucial concepts in force

control which can help, for instance, robot designers choose

the actuation type and the transmission stiffness that best fit

the robot application requirements. Another contribution of

this work is to show simulation and experimental results that

verify the significant improvement in the torque/force closed-

loop control bandwidth due to the load motion compensation.

The paper is structured as follows: in Sec. II, we show the

intrinsic load motion feedback in the force dynamics for a

generic mechanical case, and then for hydraulic and electric

actuators. Sec. III presents how to compensate for this load

velocity influence and Sec. IV describes the simulation and

experimental results for the proposed compensation. Relevant

force control issues are discussed in Sec. V before finishing

the paper with conclusions and future work in Sec. VI.
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II. LOAD MOTION IN THE FORCE DYNAMICS

Force is always controlled over a transmission element that

is deformable or compressible. The force is transmitted from

the actuator to the load through this compliant transmission

element, where the force is normally measured. The force

sensor is usually much stiffer than the transmission, and

within this paper we will not consider its compliance. In

Fig. 1, we show a basic mechanical system composed of an

ideal velocity source vs, a transmission with stiffness Kt, a

generic load, and the force F transmitted to the load.

Fig. 1. Generic spring-mass system representing a velocity source, that
drives a load through a compliant transmission.

Since springs are impedances, they have velocity as input

to their dynamics and force as output. On the other hand,

masses are admittances and have forces as input and velocity

as output to their dynamics [15]. In Fig. 1, the velocity source

vs is a mass, accelerated by an external actuator, and has

an instantaneous velocity ẋvs, which is transmitted to the

transmission spring. The spring output force F acts on the

load mass, which is accelerated and has an instantaneous

velocity ẋl. The load force dynamics Ḟ can be written as:

Ḟ = Kt (ẋvs − ẋl) (1)

The presence of ẋl in (1) underlines that the dynamics

of the force that is transmitted to the load depends also on

the load itself, and not only on the actuator. The actuator

dynamics defines how quickly the velocity ẋvs can be

changed. On the other hand, the load dynamics determines

how fast the load velocity ẋl changes given an input force.

This interaction between force and load dynamics is

intrinsic to the physics, no matter the actuation and load

characteristics, and it can be mathematically seen as a load

velocity feedback. Based on the block diagram of Fig. 2,

given that Ml is the mass and Bl is the damping of the load,

we can calculate the following transfer function:

F (s)

ẋvs(s)
=

Kt (Mls+Bl)

s (Mls+Bl) +Kt

(2)

Looking at Fig. 2, we can notice that the pole of the

load dynamics appears also as a zero of the force transfer

function in (2). This result occurs regardless of how fast the

actuation dynamics is [9]. Thus, in a force closed-loop, both

the controller gain and the performance of the system are

limited by the frequency of this zero.

�

�

Fig. 2. Block diagram for a generic velocity source, acting on a load
through a transmission stiffness. The load velocity ẋl is clearly being fed
back into the load force dynamics.

Next, we will go into the details of the two different

actuation systems present on the HyQ platform: electric and

hydraulic. We will show that their models fit well into the

generic mechanical case we considered in this section.

A. Hydraulic actuation

In hydraulics, the velocity source is the pump and valve

together. The pump pressurizes the fluid and the valve con-

trols the fluid flow that is going into the hydraulic cylinder.

An accumulator is usually placed upstream of the valve to

compensate for the pump dynamics and eventual pressure

drops so that we can consider the supply line as a perfect

pressure source. Therefore, the velocity source dynamics is

determined only by the valve and flow dynamics. The trans-

mission is characterized by the fluid, and the transmission

stiffness by the fluid compressibility and volume.

Since the cylinder rod is usually rigidly attached to the

load, it can be considered part of it. In this work, we consider

the cylinder friction as part of the load dynamics. Thus, for

an asymmetric hydraulic cylinder, and neglecting cylinder

leakage, the hydraulic force dynamics Ḟh can be calculated

by doing a balance between the forces created in the cylinder

chambers a and b [16]:

Ḟh =
Apβ

Va

(Qa −Apẋl)−
αApβ

Vb

(−Qb + αApẋl) (3)

where Ap is the piston area; α is the piston/annulus-area ratio

(i.e., Aa = Ap and Ab = αAp); β is the oil’s bulk modulus;

Va and Vb are the variable chamber volumes, which are a

function of the cylinder position xl, and include the pipe

volumes; Qa is the valve flow that is going into the chamber

a, and Qb the flow going out of chamber b.

As we can notice, (3) is composed of two different forces,

each one in the same generic form described in (1), that is:

a controllable input velocity, represented by a flow; the link

velocity, in this case multiplied by a gain that is equal to the

respective chamber area; and a transmission stiffness, which

depends on the bulk modulus and on the chamber area and

volume.

To obtain a block diagram similar to the one shown in Fig.

2, we can model the two different hydraulic transmission

stiffnesses, created by the two cylinder chambers, as parallel

springs [17]. Then, we can define a resultant hydraulic

stiffness Kth and rewrite the hydraulic force dynamics as:

Ḟh = Kth (Qe −Aeẋl) (4)

where Qe is an equivalent flow, and Ae an equivalent area.

Kth, Qe, and Ae are defined in the Appendix.

The hydraulic flow that passes across the valve depends

on the valve flow gain, on the valve spool opening, and

also on the square root of the pressure difference between

the valve ports. To fully understand the influence of the

load motion velocity in hydraulics, we will linearize the

nonlinear pressure-flow characteristics present in Qe. Thus,

the following transfer function can be written [18]:

Fh(s)

Vv(s)
=

Kqe

Kpe
(Mls+Bl)

(Mls+Bl)
(

−1 + 1
KthKpe

s
)

+ Ae

Kpe

(5)
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Fig. 3. Block diagram for a hydraulic actuator. The load velocity is
multiplied by the equivalent area Ae and is transformed in a flow. This
flow is then fed back into the force dynamics.

where Kqe and Kpe are equivalent weighted versions of the

flow and flow-pressure gains, respectively [16] (see their

algebraic definition in the Appendix). Vv is the voltage

applied to the valve. The equivalent hydraulic block diagram

for the linearized system is depicted in Fig. 3.

In (5), we are neglecting the valve spool dynamics shown

in Fig. 3. For the valves used in HyQ [19], the dynamics

for the spool displacement xs can be approximated by a

second order system with natural frequency around ωv =
1600 rad/s and damping Dv = 0.5, which is several times

faster than the pressure and load motion dynamics.

B. Electric actuation

An electric motor has its rotor as velocity source for the

transmission, which in most of the cases in robotics consists

of a gear box. The gear box introduces an elasticity between

the rotor and the load. This elasticity defines the rotational

transmission stiffness Kte for the electric actuation. HyQ

uses a harmonic drive with ratio 1:100 and stiffness Kte =
2.7 · 104 Nm/rad [20]. The dynamics of the torque Tl

transmitted to the load is the rotational version of the linear

dynamics shown in (1), that is:

Ṫl = Kte

(

θ̇m
N

− θ̇l

)

(6)

where θ̇m and θ̇l are the angular velocities of the rotor and

load, respectively, and N is the gear ratio.

The motor dynamics can be modeled as a second order

system, with inertia Jm and damping coefficient Bm, which

includes both rotor and gear box viscous frictions. Consid-

ering a load with inertia Jl and damping Bl, the following

transfer function from the input voltage to the load torque

can be obtained (see the Appendix for model equations):

Tl(s)
Vm(s) =

KiKte(Jls+Bl)N
ΨN2(R(Jms+Bm)+KiKω)+RKte(Jls+Bl)

(7)

where Ψ =
(

Jls
2 +Bls+Kte

)

, Vm is the input voltage, Ki

and Kω are the torque-current and back-emf motor constants,

respectively, and R is the motor coil resistance. The electrical

voltage-to-current dynamics is neglected. As for the previous

cases, the torque transfer function has a zero due to the load

dynamics. All the poles (one real and two complex) depend

on both load and motor parameters. The corresponding block

diagram is shown in Fig. 4.

III. LOAD MOTION COMPENSATION

As described in the previous sections, the dynamics of

the force/torque that is transmitted from the actuator to the

load depends not only on the actuator dynamics but also on

�

�

�

�

�

�

Fig. 4. Block diagram for an electric motor: once again, the load angular
velocity feedback is clearly present in the dynamics.

the load dynamics. However, if we want to control this load

force, it is desirable that its dynamics only depends on the

variable we can directly actuate, which is, for the generic

mechanical case, the velocity ẋvs.

An intuitive way for compensating this load motion influ-

ence is to measure the load velocity ẋl and to continuously

apply, with our ideal velocity source, an extra velocity ẋex =
ẋl. In this case, the load force dynamics is given by:

Ḟ = Kt [(ẋvs + ẋex)− ẋl] = Ktẋvs (8)

Taking (8) into account , we can write the transfer function

for the velocity-compensated system as:

F (s)

ẋvs(s)
=

Kt

s
(9)

The mathematical effect of the load velocity compensation

is to algebraically eliminate the term Kt from the denom-

inator of (2). This is equivalent to open the natural loop

created by the load velocity feedback. By eliminating this

term, a perfect zero/pole cancellation becomes possible and

the same velocity-compensated dynamics (9) is obtained. To

cancel out the influence of the zero on the force dynamics

is the main consequence of the load motion compensation.

With this zero/pole cancellation, we are then able to increase

the gains without making the system unstable, taking the

dominant closed-loop pole to higher frequencies.

Considering a more realistic scenario, where we do not

have an ideal velocity source, this extra velocity ẋex has

to be created by the actuator, which has its own dynamics.

If this actuator dynamics influences significantly the force

dynamics, we also need to take it into account when com-

pensating for the load motion.

In the next sections, we show how to perform this load

motion compensation for both actuation types of HyQ. We

demonstrate that the zero/pole cancellation happens indepen-

dently of the actuation system.

A. Hydraulic Actuation

Considering a hydraulic actuator, the extra velocity ẋex,

represents an extra flow Qex that has to be supplied by the

valve. This extra flow must be Qex = Aeẋl in order to

perfectly compensate for the load motion influence.

To supply this extra flow Qex, we have to consider the

flow dynamics, but as mentioned before we will neglect the

valve spool dynamics. We assume that a valve input voltage

Vv is instantaneously converted into valve spool opening xs.

Thus, feeding back the load velocity ẋl, the valve input Vvvc

that compensates for the velocity feedback is:

Vvvc
=

Aeẋl

Kqe

(10)
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In terms of block diagram, to supply this extra flow Qex is

equivalent to opening the velocity loop, or making Ae = 0 in

Fig. 3. By looking at (5), we can notice that, by algebraically

eliminating the term Ae/Kpe, we have the same zero/pole

cancellation as discussed before.

B. Electric Actuation

For an electric motor, the velocity compensation is not as

intuitive as for the hydraulic case. By inserting the motor

dynamics (first equation of (17) in the Appendix) into (6),

we can work out the expression of the motor voltage Vmvc

that compensates for load motion:

Vmvc
=

NR

Ki

(

Jms+
KiKω

R
+Bm

)

θ̇l (11)

In terms of transfer function, the effect of the compen-

sation is the algebraic elimination of the term Kte in the

variable we abbreviated as Ψ. This allows to cancel the pole

(Jls+Bl) with its respective zero. The compensated system

becomes a second order system and the poles depend only

on motor parameters Bm, Jm, Ki, Kw and on transmission

stiffness Kte, and no longer on load dynamics (Bl and Jl).

IV. RESULTS

As previously discussed, the main consequence of the load

motion compensation into the force dynamics is a zero/pole

cancellation. In this section, we demonstrate, through sim-

ulations and experiments on both actuation systems of the

HyQ robot, a significant improvement on the force/torque

tracking capabilities by compensating for the load velocity.

A. Simulation Results

In this section we present the results we obtained simu-

lating the models we showed in the previous sections. We

compare, for both actuators, the force tracking performance

with and without the proposed velocity compensation.

A PID controller has been tuned differently for the com-

pensated and non-compensated system. In all cases, the gains

were chosen to obtain the fastest non-oscillatory closed-loop

response possible (margin phase of at least 60 deg).

In Fig. 5, we used parameters based on the hydraulic

system of HyQ to simulate the linear force dynamics for

a hydraulic cylinder driving a load with mass Ml = 50 kg
and damping Bl = 700 Ns/m. We can see that the velocity-

compensated system has a much smaller settling time than

0 0.1 0.3 0.5
0

50

100

F
h
[N

]

Time [s]

ZOOM VIEW

Fig. 5. Force step response for a hydraulic cylinder. The solid red
line shows the force reference, the dashed black the non-compensated
response, and the dot-dashed blue line the response when the load motion
is compensated for. The zoom view, around 0.1 s, clearly shows the force
drop due to the load motion influence.

0 0.5 1 1.5
0

5

10

T
l
[N

m
]

Time [s]

Fig. 6. Torque step response for a electric motor. The solid red line shows
the torque reference, the dashed black the non-compensated response, and
the dot-dashed blue line the load velocity-compensated response.

the non-compensated one. Furthermore, the influence of

the load motion is clearly seen in the non-compensated

response. It raises as quickly as the compensated one, but

after a short period the force magnitude drops drastically.

This drop happens exactly when the load starts to move,

“uncompressing” the transmission spring, reducing the oil

pressure inside the chamber, and consequently the force.

For the electric motor, we applied a torque step to a load

with inertia Jl = 1 Kgm2 and damping Bl = 1 Nms/rad.

In Fig. 6, we can see that the behavior of both responses

are very similar to the hydraulic case. It demonstrates that,

independently of the actuator, to compensate for the load

motion increases significantly the force/torque bandwidth

and tracking capabilities.

B. Experimental

HyQ is a quadruped robot that weighs about 70 kg, is 1
m long, and 1 m tall with fully stretched legs [14]. HyQ’s

legs have 3 degrees of freedom (DOF) each, being the hip

and knee flexion/extension (HFE and KFE, respectively) hy-

draulically actuated, and the hip abduction/adduction (HAA),

electrically actuated. The maximum joint torque for both

actuators is about 140 Nm. The hydraulic force is measured

by a load cell placed at the end of the cylinder rod and

the torque created by the electric motor by a custom torque

sensor based on strain gages.

To demonstrate the influence of the velocity compensation

on a real system, we implemented a torque step of 10 Nm,

which is applied at the same time for both the HFE and

HAA joints. We fixed a 5 kg weight to the leg end-effector

to create an artificial load and permit a reasonable torque

step magnitude. We compare in Fig. 7 the system response

with and without velocity compensation for both actuators.

The hydraulic response followed the simulation results

presented in the previous section. We can notice, for the

non-compensated case, that the force has a longer settling

time because of a force drop due to the load motion. For the

electric motor, differently from the simulation, oscillations

at 12 Hz are present in the compensated-response. This is

a side effect of velocity compensation, which introduces a

resonance peak at that frequency. It does not show up in

the simulation results because of a modeling simplification,

which does not consider the leg flexibility. The effect of this

high torque frequency is significantly filtered by leg inertia

and does not affect the leg motion.
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Fig. 7. Response to a step torque reference for the hydraulic hip joint HFE
(upper plot) and the electric hip joint HAA (lower plot); in dashed black the
non-compensated response, and in dot-dashed blue the compensated one.

V. DISCUSSION

If no velocity compensation is used, the force closed-

loop performance is limited by the zero due to the load

dynamics. Considering a PI controller, this load zero attracts

the pole of the controller integrator and prevents it from

going to higher frequencies. For a non-oscillatory response,

this low-frequency pole will be the dominant one and it will

limit system velocity in closed-loop. As we can see in (2),

the higher the friction Bl, the higher the frequency of the

zero, and consequently the faster the force dynamics can be.

In hydraulics, the piston is part of the load and it has a

significant friction due to its tight sealing with the cylinder

body. On the other hand, electric motors use bearings and

the friction is much smaller. Therefore, even without velocity

compensation, hydraulic actuators tend to have better force

closed-loop performance than electric motors.

As we demonstrated in Sec. III, the velocity compensation

cancels the zero presented in the force dynamics. This can-

cellation allows us to increase the controller gains and put the

dominant pole at high frequencies without making the system

unstable. However, the velocity compensation is a model-

based compensation and is therefore susceptible to parameter

uncertainties. Then, a perfect zero/pole cancellation is as

challenging as creating a perfect model. In practice, the

velocity will be either under or over compensated.

In the zero-pole map of Fig. 8, we show the dominant

open-loop poles for different levels of under and over com-

pensations. An under compensation places both dominant

open-loop poles at the left side of the zero, and an over

compensation places one at its left and one at its right. We

can demonstrate that, by closing a loop with a PI controller,

the dominant closed-loop pole of the under-compensated

system is still limited by the frequency of the zero. For the

over-compensated case, the dominant pole can go beyond the

zero frequency, increasing the system bandwidth. However,

a slight over-compensation can make the system unstable for

certain controller gains, reducing the robustness.

Another possible practical issue for the electric actuation is

that the velocity compensation also includes the acceleration,
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x
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Fig. 8. Root locus of the open-loop poles for the electric actuation: On
the left plot we show the under-compensation case, and on the right side
we show the over-compensation case. The color bar illustrates different
percentages of under/over compensations.

which is usually quite jerky due to the double numerical

differentiation. However, simulation and empirical results

showed that the influence of the term Jmsθ̇l in (11) is not

significant in the range of frequencies of interest and that

it can be neglected. Furthermore, aggressive digital filtering

can introduce significant time delays, making the system

unstable.

Force control is always done through a compliant trans-

mission element. In series elastic actuators (SEA), the spring

works also as a low-pass filter, lowering the transmission

stiffness. This reduced overall stiffness matches the available

actuator bandwidth, reducing the difficulty of the torque

control issue. However, in this approach the achievable load

force bandwidth is limited by the stiffness of the spring: the

softer the spring, the slower the load force dynamics will

be. The most appropriate spring stiffness is certainly a very

difficult parameter to select and this choice can seriously

limit the robot’s dynamic performance and versatility.

The very small fluid compressibility makes the hydraulic

transmission intrinsically stiff. Some design aspects, such as

the flexibility of the pipes, can reduce this high hydraulic

stiffness. All these aspects define the bulk modulus of the

hydraulic system. However, as we can see in the defini-

tion of Kth in (12), the hydraulic transmission stiffness

depends also on the chamber volumes. Differently from real

springs, that transform a certain displacement in force, the

hydraulic stiffness transforms a certain piston displacement

into pressure. To obtain a stiffness in N/m, which has a more

intuitive meaning for us, we must multiply the stiffness Kth

by the equivalent area Ae. The result of this multiplication,

considering HyQ’s parameters, is plotted in Fig. 9.

Since the stiffness is higher at the minimum and maximum

positions, the system will be more reactive at these positions,

0 0.04 0.08
0

0.9

2

4.8x 10
7

Rod position xl [m]

K
th

·A
e
[N

/
m
]

Fig. 9. Hydraulic stiffness of the assymetric cylinder of HyQ: it depends
on the fluid properties, on the cylinder areas, on the pipe length, and on the
cylinder rod position.
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and the force control more challenging. At these extreme

positions, the stiffness magnitude depends directly on the

pipe line volume that connects the valve to the cylinder

chamber. When the pipe volume tends to zero, the stiffness

tends to infinity. Thus, the pipe volume plays an important

role in the robot design and it must be taken into account

when matching the transmission stiffness to the actuator

bandwidth, which is defined by the valve dynamics. HyQ

uses valves with a bandwidth of 250 Hz. These fast valves

are able to cope with the high stiffness plotted in Fig. 9,

which has a minimum value of 0.9 · 107 N/m.

VI. CONCLUSIONS AND FUTURE WORK

Independently of the actuator and load characteristics,

there will always exist an intrinsic interaction between the

actuator and its load, that limits the torque (or generalized

force) closed-loop performance. This interaction happens as

a velocity feedback in the force dynamics.

We have designed model-based control laws that com-

pensate for this velocity feedback in two different actuation

systems: hydraulic and electric. We have shown simulations

and experiments that verify that this compensation increases

notably the force tracking capabilities.

Future work includes the definition of a simple set of

rules to find the required actuator bandwidth to perform

high-performance force control over a known transmission

stiffness. The passivity with velocity compensation will also

be investigated when closing an external impedance loop and

for a system with more DOFs. A more refined model for the

electric actuation, which captures the resonant effect of the

velocity compensation by considering the sensor inertia and

the load flexibility, is work in progress.

The work we presented in this paper aimed to highlight

the importance of torque control on robotics and to give a

valuable tool to improve its tracking performance. The closer

we are to a perfect torque source, the faster we can move

towards truly versatile robots.

APPENDIX

The hydraulic stiffness Kth can be defined by summing the two
stiffnesses in (3):

Kth = Apβ

(

1

Va

+
α

Vb

) [

Pa

m

]

(12)

Then, through basic algebraic manipulation, it is possible to find an
equivalent flow and area, which are defined as:

Qe =
VbQa + αVaQb

Vb + αV a

[

m3

s

]

(13)

Ae = Ap

(

Vb + α2Va

Vb + αVa

)

[

m2
]

(14)

The linearized flow dynamics can be described using the flow gains Kqa

and Kqb, and the flow-pressure gains Kpa and Kpb [16]. To match the
equivalent force dynamics proposed by (4), these gains have to be redefined.
The equivalent flow gain Kqe and the equivalent flow-pressure gain Kpe

can be defines as:

Kqe =
VbKqa + αVaKqb

Vb + αVa

[

m3

sV

]

(15)

Kpe =
1

Ap (1 + α3)

(

VbKpa − α3VaKpb

Vb + αVa

)

[ m

sPa

]

(16)

The equations that describe the load and electrical motor dynamics are
the following [13]:

Jmθ̈m +Bmθ̇m + Kte

N
( θm

N
− θl) = KiI

Jlθ̈l +Blθ̇l −Kte(θm/N − θl) = 0

I = V −Kw θ̇m
R

Tl = Kte

(

θm
N

− θl

)

(17)

where I is the motor current. The electrical dynamics is neglected. There-
fore, the current is obtained by an algebraic equation.
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