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Abstract

Quadruped robots demonstrated extensive capabilities of traversing complex and unstructured
environments. Optimization-based techniques gave a relevant impulse to the research on legged
locomotion. Indeed, by designing the cost function and the constraints, we can guarantee the
feasibility of a motion and impose high-level locomotion tasks, e.g., tracking of a reference
velocity. This allows one to have a generic planning approach without the need to tailor a
specific motion for each terrain, as in the heuristic case. In this context, Model Predictive
Control (MPC) can compensate for model inaccuracies and external disturbances, thanks to
the high-frequency replanning.

The main objective of this dissertation is to develop a Nonlinear MPC (NMPC)-based
locomotion framework for quadruped robots. The aim is to obtain an algorithm which can
be extended to different robots and gaits; in addition, I sought to remove some assumptions
generally done in the literature, e.g., heuristic reference generator and user-defined gait
sequence.

The starting point of my work is the definition of the Optimal Control Problem to generate
feasible trajectories for the Center of Mass. It is descriptive enough to capture the linear and
angular dynamics of the robot as a whole. A simplified model (Single Rigid Body Dynamics
model) is used for the system dynamics, while a novel cost term maximizes leg mobility
to improve robustness in the presence of nonflat terrain. In addition, to test the approach
on the real robot, I dedicated particular effort to implementing both a heuristic reference
generator and an interface for the controller, and integrating them into the controller framework
developed previously by other team members.

As a second contribution of my work, I extended the locomotion framework to deal with a
trot gait. In particular, I generalized the reference generator to be based on optimization.
Exploiting the Linear Inverted Pendulum model, this new module can deal with the under-
actuation of the trot when only two legs are in contact with the ground, endowing the NMPC
with physically informed reference trajectories to be tracked. In addition, the reference
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velocities are used to correct the heuristic footholds, obtaining contact locations coherent with
the motion of the base, even though they are not directly optimized.

The model used by the NMPC receives as input the gait sequence, thus with the last part
of my work I developed an online multi-contact planner and integrated it into the MPC
framework. Using a machine learning approach, the planner computes the best feasible option,
even in complex environments, in a few milliseconds, by ranking online a set of discrete options
for footholds, i.e., which leg to move and where to step. To train the network, I designed
a novel function, evaluated offline, which considers the value of the cost of the NMPC and
robustness/stability metrics for each option.

These methods have been validated with simulations and experiments over the three years. I
tested the NMPC on the Hydraulically actuated Quadruped robot (HyQ) of the IIT’s Dynamic
Legged Systems lab, performing omni-directional motions on flat terrain and stepping on
a pallet (both static and relocated during the motion) with a crawl gait. The trajectory
replanning is performed at high-frequency, and visual information of the terrain is included to
traverse uneven terrain. A Unitree Aliengo quadruped robot is used to execute experiments
with the trot gait. The optimization-based reference generator allows the robot to reach a
fixed goal and recover from external pushes without modifying the structure of the NMPC.
Finally, simulations with the Solo robot are performed to validate the neural network-based
contact planning. The robot successfully traverses complex scenarios, e.g., stepping stones,
with both walk and trot gaits, choosing the footholds online.

The achieved results improved the robustness and the performance of the quadruped locomotion.
High-frequency replanning, dealing with a fixed goal, recovering after a push, and the automatic
selection of footholds could help the robots to accomplish important tasks for the humans,
for example, providing support in a disaster response scenario or inspecting an unknown
environment.

In the future, the contact planning will be transferred to the real hardware. Possible devel-
opments foresee the optimization of the gait timings, i.e., stance and swing duration, and a
framework which allows the automatic transition between gaits.

Keywords : Legged Robots, Optimization, Trajectory Generation, Model Predictive Control,
Neural Network.
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Chapter 1

Introduction

1.1 Motivation

Quadruped robots are versatile machines that use their sensors to navigate in complex scenarios
by moving the trunk and applying forces on the ground. The developments in the hardware
design and control algorithms allow the robots to obtain agile and stable motions even in
complex environments. Thanks to these advancements, quadruped robots are increasingly
being tested in real-world scenarios. In other words, they are moved out of our research
laboratories.

The challenge of legged locomotion is represented by the generation of stable and robust
trajectories to be followed. Optimization-based techniques gave a relevant impulse to the
research on legged locomotion since we can guarantee the feasibility of a motion and impose
high-level locomotion tasks, e.g., tracking of a reference velocity. Researchers aim to design
generic approaches, not tailored to a specific motion for each terrain, but that can react to
external disturbances and changes in the environment. Among the different techniques, Model
Predictive Control (MPC) is gaining momentum since they compute new trajectories online
while the robot is moving.

Dealing with these concepts, the goal of this dissertation is to develop a Nonlinear MPC
(NMPC)-based locomotion framework for quadruped robots for different prototypes and gaits.
The developed methods focus at the same time on the computational efficiency to achieve
high replanning frequency and on the accuracy of the approach to obtain reliable motions.
In addition, this thesis sought to remove some assumptions generally done in the literature,
e.g., heuristic reference generator and user-defined gait sequence.
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2 Introduction

1.2 Contributions

The main novel contributions of this thesis are the following:

1. a 25 Hz NMPC framework which generates an omni-directional walk and rough terrain
locomotion for the DLS lab’s quadruped robot HyQ, taking into account the robot’s
mobility and the visual feedback from the environment.
This contribution is validated both in simulations and experiments.

2. an optimization-based reference generator that provides the NMPC with physically-
informed reference trajectories computed online. This module optimizes feasible paths
for the CoM and coherent Ground Reaction Forces (GRFs) in the presence of the under-
actuation of statically unstable gaits as the trot.
Experiments and simulations are shown with the presented locomotion pipeline.

3. a machine learning-based contact planner which uses a neural network to rank a dis-
cretized set of possible actions and outputs the best feasible footholds, i.e., which leg to
move and where to step. Results are obtained in simulation.

Contribution 1 has been published in IEEE Access journal [Rathod et al., 2021].
Contribution 2 has been accepted for publication in the special issue Legged Robots into the
Real World of Robotics journal [Bratta et al., 2022].
Contribution 3 is currently under review for IROS 2023.

1.3 Outline

The rest of the dissertation is organized as follows:

• Chapter 2 summarizes the most relevant works on legged locomotion approaches, contact
planners, and numerical optimization techniques.

• Chapter 3 introduces the locomotion framework and the NMPC.

• Chapter 4 presents the optimization-based reference generator.

• Chapter 5 describes the multi-contact online planner.

• Chapter 6 provides the final discussion and insight into future works.
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Chapter 2

Related works

2.1 Legged Locomotion

In order to move, a robot needs to choose a trajectory for its base, and decide a feasible contact
sequence for its feet. In addition, its control poses complex problems related to the hybrid
nature of the forces required to generate motion since the robot establishes and interrupts the
contact between its feet and the ground.

In this section, I introduce the relevant works in the literature for heuristics and optimization-
based legged locomotion.

2.1.1 Heuristic Approaches

The term heuristic refers to a method of solving problems by finding practical ways of dealing
with them. Heuristic approaches are not based on a mathematical formulation with formal
proofs but rather on experience, intuition and practice. For example, [Raibert, 1986] devised
an algorithm to control a 3D one-legged hopping machine. Raibert defined the neutral point,
i.e., the point about which the hopper has a symmetric motion of the body. The neutral point
is computed as:

pn = h + vc,(x,y)
Tst
2 + k(vc,(x,y) − vd) (2.1)

where:

• pn ∈ R2 is the position of the neutral point on an horizontal plane

• h ∈ R2 is the projection of the hip on the ground
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• vc,(x,y) ∈ R2 is the X-Y component of CoM velocity

• Tst ∈ R is the duration of the stance phase

• k ∈ R is a gain

• vd ∈ R2 is the desired CoM velocity

Stepping on this point, the robot is able to keep walking at the forward velocity vd ∈ R2

without losing balance. Generalizing, an algorithm can use the neutral point to choose the
footholds for multi-legged robots which move one leg at a time.

To extend this idea to other gaits, [Raibert et al., 1986] designed a control system based on
the concept of virtual leg [Sutherland and Ullner, 1984]: a pair of legs that lift and touch the
ground in unison can be seen as a unique leg. In this way, a quadruped robot doing gaits such
as trot, pace, or bound is equivalent to a biped robot. The control scheme is composed of
three operations: 1) choosing the footholds of the feet that place the virtual feet in the desired
location, 2) synchronizing the moment of the lift-off and touchdown of the members of the
pair, and 3) computing the GRFs such that each leg delivers the same axial thrust to the
ground.

Among the other examples of heuristic approaches, it is worth mentioning [Pratt et al.,
1997] that presented the virtual model control, i.e., a motion control which emulates virtual
mechanical components to create the forces that are applied to the robot. This gives the
possibility to tune the accuracy of the model, e.g., using a simple spring or damper element in
the task space [Khatib, 1987] or a more complex nonlinear element. The authors tested this
approach successfully on Spring Turkey and Spring Flamingo [Pratt et al., 2001]. Simulations
were also performed with a hexapod robot.

Important studies developed heuristic criteria to ensure the stability during the motion. The
first one was proposed by McGhee and Frank and it refers to the support polygon [McGhee and
Frank, 1968]: the robot is statically stable, i.e., it does not fall, if the projection of the CoM
on the ground is inside the convex hull of the robot’s feet. An example of support polygon is
depicted in Figure 2.1. The relevance of the support polygon is indisputable. For example,
the algorithm of the static crawl [Focchi et al., 2016, 2020] moves its base in the following
support polygon (a triangle) before lifting a leg. The algorithm is thus a state-machine with
four phases: move CoM, unload leg, swing leg, and load leg. The static crawl allows our HyQ
to walk on flat terrain, but also inside a 50◦ inclined groove, as shown in Figure 2.1.

An extension of the support polygon led to the development of the Zero-Moment Point
(ZMP)[Vukobratovic and Juricic, 1969], i.e., the point on the ground where the total moment
produced by the inertial and gravitational forces is equal to zero. Examples of works based
on the ZMP are the simulation of bipedal walking on a spiral stairs achieved by a preview1

1The theory of the Preview Control was proposed by [Sheridan, 1966].
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Figure 2.1: Picture of HyQ robot during a statically stable crawl locomotion inside a 50◦ inclined
groove. The rectangle represents the support polygon, i.e., the convex hull of the robot’s feet.
The black-and-white circle is the CoM. The robot is stable since the vertical projection of the
CoM is inside the support polygon.

tracking servo controller [Kajita et al., 2003] and the multicontact motion in a scenario with
inclined platforms and wall with the humanoid HRP4 [Caron et al., 2017].

Heuristic approaches have proved their practical effectiveness by increasing locomotion auton-
omy, and they are still widely used in recent works but present some drawbacks:

• they are tailored for specific gaits;

• they cannot be easily generalized to any terrain and motion;

• they generally are reactive approaches, e.g., [Focchi et al., 2013], so they do not foresee
what will happen in the future but only react to what was happening in the past;

These reasons, combined with the improvements in mathematical theory and the computational
power of computers, have motivated the research towards new optimization-based predictive
locomotion planning. Nevertheless, heuristic terms are still exploited in the optimization
approaches, e.g., in the definition of the references for the cost function.
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2.1.2 Optimization-Based Planning Approaches

Optimization-based techniques aim at finding the variables of interest as the solution of an
Optimal Control Problem (OCP)

min
x(t),u(t)

∫ tf

t0
l (x(t),u(t)) dt+ lf (x(tf))

s.t. Initial Condition(x(t0))

Dynamics Model(x(t),u(t))

Equality/Inequality Constraints(x(t),u(t))

(2.2)

By defining the cost function l (x(t),u(t)) and the constraints one can represent all range of
movements and tasks. Methods based on the partial differential equation Hamilton-Jacobi-
Bellman (HJB) equation have been developed to solve the continuous time problem of Eq. (2.2),
but they are not suited for problems with many Degrees of Freedom (DoFs).

More often, the problem must be rewritten into a Nonlinear Program (NLP) which can be
solved numerically. See Section 2.2.2 for details on how to transcribe an OCP and Section 2.2.3
for an overview on solution methods.

min
xp,up

N−1∑
k=0

` (xk,uk,ak) + `T (xN ) (2.3a)

s.t. x0 = x̂0, (2.3b)

xk+1 = f (xk,uk,ak) , k ∈ IN−1
0 , (2.3c)

h (xk,uk,ak) ≤ 0, k ∈ IN−1
0 , (2.3d)

The variable x ∈ Rnx indicates the states of the system, u ∈ Rnu the control input, and
a ∈ Rna the parameters. The symbol N ∈ R indicates the number of nodes in which the
horizon is discretized. Equation (2.3a) is composed of a running term ` (xk,uk,ak), and a
terminal cost `T (xN ) and it is used to represent the high-level locomotion task, e.g., tracking
desired velocities, minimizing the accelerations. Equation (2.3b) imposes the initial condition
x̂0 for the state; the latter is generally measured from the robot or estimated. Equation (2.3d)
is the so-called path constraints, i.e., the constraints which are imposed at every node of the
horizon N . An example of path constraint is imposing that the GRFs are inside the friction
cone in order to prevent the foot from slipping.

Feasibility problems are particular OCPs in which a cost function is not included, i.e., is zero
by construction. They neglect the additional features encoded in the cost functions and simply
compute the values that satisfy all the given hard constraints.

The choice of the dynamics model of Eq. (2.3a) is crucial to obtain high-performance planners.
The following section presents an overview of the most common models for optimization-based
planning.
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Dynamic models

The dynamic models are the equations used to describe how the states changes over time.
They are based on the laws of physics and on some modeling assumptions/intuitions; in the
locomotion field, their goal is to describe analytically the coupled interactions between the
robot and the environment, which generate the motion.

Different models have been proposed to find the best trade-off between accuracy and complexity.
Indeed, the more complex the chosen model system, the higher the effort (i.e., computational
time, hardware power) required to handle it. On the other hand, a detailed dynamics model
can take into account all the characteristics of the robot platform, e.g., joint limits, coupling
terms in the inertia matrices, etc.

Being inspired by the motion of insects, [Full and Koditschek, 1999] proposed the idea that
the movement can be split and described using a model with the least number of variables
that shows a target behaviour. Similar models are called templates and can be grouped to
define an anchor model. The impact of the work done by Full and Koditschek is evident in
the model presented by [Kajita et al., 2001]. Indeed, under the assumption that there are no
vertical and angular dynamics and infinite friction, the motion of a robot supported by a leg
can be templated with a Linear Inverted Pendulum (LIP). The model connects the ZMP with
the CoM position as follows:

pc,(x,y) = p̈c,(x,y)
pc,z
g

+ z (2.4)

where:

• pc,(x,y) ∈ R2 is the CoM position in the plane perpendicular to the gravity vector

• p̈c,(x,y) ∈ R2 is the CoM acceleration in the plane perpendicular to the gravity vector

• pc,z ∈ R is the CoM position in a plane parallel to the gravity, i.e., the robot height

• g ∈ R = 9.81m/s2

• z ∈ R2 is the location of the ZMP

In this case, the ZMP coincides with the contact point between the pendulum and the ground;
if instead the contact surface is modeled with a foot, the ZMP is free to be any point inside
that area (cart-table model [Kajita et al., 2003]). The Z component of the GRF balances
gravity force relative to the mass m of the pendulum, while the horizontal forces fx,y is modeled
through a repulsive spring with stiffness equal to mω2, with ω =

√
g/pc,z the natural frequency

of the linear pendulum.
f(x,y) = mω2(pc,(x,y) − z) (2.5)
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Over the years, the LIP model has been used as a base for deploying new models.
The Spring Loaded Inverted Pendulum (SLIP) [Schwind, 1998; Poulakakis and Grizzle, 2009]
considers the pendulum as a massless axially sprung leg attached to an extended body of mass
m and moment of inertia I at a hip joint. Furthermore, the displacement between the CoM
and the hip joint is considered. Thus the system is expressed as a function of the pitch angle
and the CoM position. In addition, the conversion to polar coordinates allows one to compute
the compressed spring length. The relevant contribution of this model is that it can describe
a complete gait cycle [Holmes et al., 2006]; during the stance phase, the spring is compressed,
and the body moves forward, i.e., the angle formed by the line connecting foothold-CoM and
the gravity increases. When the spring unloads at the nominal length, the force drops to zero,
the leg loses contact with the ground, and the flight phase begins. When it is in the air, the
body follows a ballistic trajectory due to the gravity, and finally, a new stance occurs when
the uncompressed leg touches the ground.

The seminal work of [Orin et al., 2013] introduced the simplified model called Centroidal
Dynamics. The robot is seen as a unique single rigid body whose force due to gravity is applied
in its CoM. Orin et al. introduced the Centroidal Angular Momentum Matrix A ∈ R3×(6+nj),
with nj number of joints of the robot to compute the centroidal angular momentum k as a
function of the robot posture (i.e., CoM position pc , orientation Φ, and joint position qj),
and the posture velocity (i.e., linear velocity vc, angular rate ω, and joint velocity q̇j).

k = A(pc,Φ,qj)


vc

ω

q̇j

 (2.6)

In other words, Eq. (2.6) maps the momentum of each link into the resultant one applied to
the CoM. Even though position and orientation of the robot depend on the motion of each
robot’s link, we can represent the six DoFs that describe the position and orientation of the
robot using the well-known linear and angular momentum equilibrium at its CoM.

mp̈c = mg +
∑
i∈C

fi

k̇ =
∑
i∈C

pfc,i × fi + τi
(2.7)

where:

• C is the set of the indices of the feet in contact with the ground

• fi ∈ R3 is the GRF of the leg i

• g ∈ R3 is the gravity vector

• pfc,i ∈ R3 is the vector connecting the foot i and the CoM
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• τi ∈ R3 is the contact torque at the foot i

A widely used model obtained from the Centroidal Dynamics is the Single Rigid Body Dynamics
(SRBD). In this case, the centroidal inertia matrix I ∈ R3 is assumed to be independent of the
joint positions and generally equal to its value in a nominal configuration. The consequence of
this assumption is that the model neglects the swing dynamics, e.g., the re-orientation of the
robot in the air during a jump or the motion of the arms for a humanoid robot. This is a fair
assumption either for quasi-static motions or for robots where the weight and the inertia of
the trunk are higher than the ones of the limbs, as it generally happens for the quadrupeds;
this limitation can be overcome by adding an external wrench, as explained in [Villarreal et al.,
2020].

It is important to recall that the already mentioned models can be considered as reduced ones
since their aim is to describe only the dominant dynamics. The opposite approach, instead, is
to consider a legged robot as a floating-base kinematic tree of rigid bodies [Featherstone, 2007].
Differently from the Centroidal Dynamics introduced before, this model derives equations
describing the dynamics of both CoM and joint quantities. In particular, we consider the
robot as a fixed-base robot with nj DoFs (one per each joint) and six additional virtual DoFs
corresponding to CoM position and orientation with respect to the inertial (world) frame.
For the sake of clarity, I recall that I use the variable qb ∈ R3 × SO(3) to describe the six
DoFs related to the base (the unactuated part)2 and the variable qj ∈ Rnj for the DoFs related
to the joints (the actuated part). The symbol q is stack of qb and qj and represents a point in
the robot’s configuration manifold. Similarly, q̇ ∈ R6+nj is the generalized joint space velocity
vector, q̇ = [q̇>b , q̇>j ]>. With this notation the Eq. (2.6) is simply k = A(q)q̇.

The Whole-Body Model (also known as Full Dynamics Model) is obtained computing the
Lagrangian L of the system [Siciliano, 2007].

L(q, q̇) = T (q, q̇)− U(q) (2.8)

where T (q, q̇) is the kinetic energy and U(q) is the potential energy.
The total kinetic energy is the sum of the kinetic energy of each link and corresponds
to [Mansard, 2015]:

T =
nj∑

i=1
Ti = 1

2 q̇>Mq̇ (2.9)

with M ∈ R(6+nj)×(6+nj) named Joint-space Inertia Matrix.
In the same way, potential energy U is the sum of the potential energy of the several links:

U =
nj∑

i=1
Ui =

nj∑
i=1

mighq,i (2.10)

2The dimension of the vector qb depends on the chosen parametrization of the orientation, e.g., Euler
Angles (6 variables) or quaternions (7 variables)
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where mi is the mass of the link and hq,i the projection of the link height with respect to the
gravity vector.
Solving the Lagrange Equation and considering the contact forces f ∈ Rm we obtain the
dynamics of the Whole-Body model (I refer the readers to [Mansard, 2015] for all the details):

M(q)q̈ + C(q, q̇)q̇ + g(q) = Sτ + Jc(q)>f (2.11)

The matrix C(q, q̇) ∈ R6+nj is the Coriolis matrix and g(q) ∈ R6+nj is the vector of gravity
torques. They can be grouped in a unique vector h(q, q̇) = C(q, q̇)q̇ + g(q). The Jacobian
matrix Jc ∈ Rm×(6+nj) maps the GRFs into torques applied at the feet into the generalized
coordinates, while S ∈ R(6+nj)×nj = [06×nj ,1nj×nj ]> is a selection matrix to model the under-
actuation. Highlighting the unactuated and the actuated (joint) dynamics Eq. (2.11) can be
rewritten as: [

Mb(q) Mbj(q)
Mjb(q) Mj(q)

] [
q̈b

q̈j

]
+
[
hb(q, q̇)
hj(q, q̇)

]
=
[
06

τ

]
+
[
Jcb(q)>

Jcj(q)>

]
f (2.12)

Analyzing Eq. (2.12), it is evident that the floating base quantities (first row) are coupled
with the part related to the kinematic tree (joints). For example, the joint accelerations q̈j

generate a torque acting on the trunk of the robot. If this contribution is neglected, as it
happens for the Centroidal Dynamics and the SRBD model, the system is affected by external
disturbances. On the other hand, the nonlinearity of the terms involved in Eq. (2.12) and
the higher number of DoFs (6 + nj) increase the computational effort required to use those
equations. In addition, the dimension of the model, i.e., the number of constraints, depends
on the number of contact points (and so the m elements in the vector f).

The same model can be used to represent all kinds of robots, i.e., monopeds, quadrupeds,
hexapods, etc., but in all the cases, the value m changes during the motion.

Table 2.1 summarizes and compares the main dynamics models most frequently used in
optimization-based planning.

Table 2.1: Types of dynamics models mostly used in optimization-based planning

Model States Non-flat ter. Ang. Dynamics Friction constr. Torque constr.

LIP (walking) 2 × × × ×
LIP + Flywheel 3 × X × ×
SLIP (Running) 3 X × × ×
SRBD 6 X X X ×
Centroidal Dyn. 6 X X X ×
Whole-Body 6+nj X X X X
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Figure 2.2: Representation of a planar leg with 2 DoFs in three different configurations. For each
configuration the corresponding force polytope is shown (image taken from [Bratta et al., 2020])

State-of-the-art approaches

Several different OCPs and locomotion frameworks have been proposed. For example, [Winkler
et al., 2018] introduced TOWR (Trajectory Optimization for Walking Robots), a feasibility
problem that computes optimal values of CoM quantities, orientation, GRFs, and foot position.
Due to the large number of variables involved, the SRBD is used as a dynamics model. The
path constraints impose that the feet are inside the workspace of the robot, that the GRFs are
inside the friction cone, and the coherence between feet position and the terrain. Simulations
with different legged robots and hardware experiments successfully validated the approach,
but they also showed that a long computational time is required to obtain the solution.

TOWR must be considered as the starting point of this dissertation since, in my first
work [Bratta et al., 2020], I modified its original formulation with two additional constraints.
The first one finds an approximate relationship between contact forces and joint-torque limits,
exploiting the theory of the polytopes [Chiacchio et al., 1997]. Figure 2.2 shows the force
polytope of the leg in three different configurations. The second constraint, instead, overcomes
the assumption of point feet done by the SRBD model. It introduces a simplified kinematic
model of the leg.
Another extension of TOWR [Melon et al., 2020] added a learning-based scheme to initialize
the nonlinear problem.

Alternatively, Sequential Linear Quadratic (SLQ) [Sideris and Bobrow, 2005] algorithm
demonstrated their efficiency in Trajectory Optimization (TO) frameworks [Farshidian et al.,
2017b]. Dealing with nonlinear dynamics, SLQ consists in rolling out the dynamics and then
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performing a linearization around the obtained trajectory. Approximating the cost with a
quadratic function, the result is a Linear-Quadratic Optimal Control problem, which can be
solved in closed form with Riccati-like equations. In [Neunert et al., 2016], the authors were
able to plan dynamic motions through contact changes on a whole-body 3D model without
the need of pre-defining contact switches and contact points. They validated this approach in
different cases, e.g., trot, gallop, squat jumps.

Finally, TO benefits from the improvements in the control theory since they give the researchers
new instruments to solve more complex problems. An atypical example is represented by the
Differential Dynamic Programming (DDP) [Mayne, 1966]. Even though it was introduced back
in the ’60s, DDP is gaining popularity nowadays. It is based on Bellman’s principle [Bellman,
1954]3 and recursively solves the problem Eq. (2.3) and computes the control sequence executing
a forward pass and a backward pass. Given a nominal control sequence, the forward pass
integrates the dynamics to obtain a nominal trajectory. The backward pass is then executed
to generate a policy that updates the control sequence; In particular, the control inputs
are expressed as locally-linear feedback policy of the state. The limitation of DDP is that
the original formulation cannot handle other constraints than the dynamics. Examples of
DDP-based approach are the hybrid system for bounding quadrupeds presented in [Li and
Wensing, 2020], the hierarchical optimization of several tasks in the cost function [Geisert
et al., 2017], and the integration of box inequality constraints on the controls [Tassa et al.,
2014].

The common element among these TO algorithms is that they couple gait sequence, CoM
trajectories, and GRFs, optimizing them at the same time. The advantage is that those
methods guarantee both kinematic and dynamic feasibility. On the other hand, they suffer
from the same limitations: large combinatorial space and high computational cost. The
alternative is represented by the decoupled approaches [Escande et al., 2008; Bretl, 2006;
Shkolnik et al., 2011; Dai et al., 2014]; they split the optimization into two sub-problems, one
to choose the footholds (contact planners) and the following one for the centroidal quantities.

The work of [Tonneau et al., 2018] presented an algorithm which computes a CoM path inside
the contact reachable space (an approximation of the space where the static equilibrium
feasibility is satisfied). A second problem extends the trajectory into a discrete sequence of
contact configurations. The drawback of decoupled approaches is that they cannot guarantee
that the selected footholds yield to a dynamically feasible trajectory for the robot’s base. To
handle this limitation, the Continuous Convex Resolution of Centroidal Dynamic Trajectories
(C-CROC) [Fernbach et al., 2020] evaluates the footholds according to a transition feasibility
criterion. In other words, considering two states separated by at most one contact creation
and one contact break, C-CROC tests if there exists a dynamically and kinematically valid

3“An optimal policy has the property that whatever the initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decisions”.
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motion that connects the two states.

Finally, another example of decoupled approach is [Budhiraja et al., 2018]: a Centroidal
Dynamics-based optimization is used to compute gait sequence and CoM trajectory, while the
DDP algorithm finds the Whole-Body trajectories to follow the centroidal pattern.

Decoupled approaches and the research on fast optimization algorithms paved the way for
online replanning, and MPC approaches.

2.1.3 Model Predictive Control

MPC is a control methodology applied to a wide range of different applications [Ruchika,
2013]. It was initially developed to control the transients of dynamic chemical systems with
hundreds of inputs and outputs, subject to constraints [Qin and Badgwell, 2003] and is broadly
used in robot locomotion since it guarantees feasibility and allows the computation of updated
trajectories while the robot is moving.

To the best of my knowledge, the first paper to present the application of an MPC to a
humanoid robot is [Wieber, 2006]. The author demonstrates that his approach is able to
compensate for strong perturbations and improves the already mentioned ZMP Preview
Control. Several researchers have extended their TO algorithm to perform online replanning,
e.g., [Li et al., 2022] as development of [Li and Wensing, 2020].

The MPC is based on the receding horizon principle: the problem of Eq. (2.3) is solved, and
N control samples are computed, but only the first one is applied. After that, the initial
conditions and the information coming from the environment are updated, and a new trajectory
is computed. In this way, the MPC can react to changes in the environment and external
disturbances and compensate for model inaccuracies.

The chosen model and constraints are strictly related to the replanning frequency: the faster
the control is updated, the simpler the OCP of Eq. (2.3) can be. For example, in [Di Carlo
et al., 2018], the model neglects the effect of nutation and precession, i.e., the term ω × Iω,
in the Centroidal Dynamics model of Eq. (2.7). In addition, only the yaw angle with respect
to the inertial frame is considered for computing the orientation of the robot . Roll and pitch
measurements are neglected since they are generally small values for flat terrain locomotion.
Considering a short prediction horizon of 0.5 s, the problem is solved in 1 ms, and a frequency
of 20-30 Hz is achieved. Thanks to the high frequency, despite using a simplified model, the
approach is capable of obtaining robust locomotion at various speeds with the Cheetah 3
robot [Bledt et al., 2018].

In another work [Arena et al., 2021], a linear MPC is integrated with a Central Pattern
Generator to control the steering of a quadruped robot. The authors presented an interesting
analysis between the MPC framework and a PID approach; they showed the equivalence of
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both approaches in some conditions, but in other cases, the PID loses the reference tracking
signal for some time windows.

Another example of simplified model-based MPC is [Villarreal et al., 2020], where SRBD is
used to compute dynamic trajectories for a simulation of HyQReal [Semini et al., 2019] to resist
a wide range of disturbances and act preemptively to obstacles based on visual information.

Finally, the SRBD model is also used in [Ding et al., 2019]. The authors presented a formulation
which linearizes rotation matrices, avoiding parameterizations like Euler angles and quaternions;
in this way it prevents the issues of singularity and unwinding the phenomenon. Transcribing
the problem into a Quadratic Program (QP), a replanning frequency of 160 Hz were achieved
and trot and bound gaits were executed on a 5.5 kg electrical quadruped robot. Moreover,
this work showed a back-flip maneuver in simulation. To deal with the singularity in the Euler
angles, [Hong et al., 2020] reparameterized the robot orientation (on SO(3)) into orientation
error in the tangent space of that manifold.

A ZMP-based MPC, which decides the footstep placement of a human robot is presented
by [Herdt et al., 2010]. This important approach showed that footholds play a key role in the
agility of the robot since their coherence with the CoM can improve the stability of the robot.

The so called kinodynamics models have been proposed to consider leg kinematics. For
example, [Cebe et al., 2021] includes feet velocity in the controls, and [Grandia et al., 2019a]
which considers the joints velocity as an input. In addition, the latter takes into account
the limitations of the actuation bandwidth through frequency-dependent cost functions. The
limitation of [Cebe et al., 2021], instead, is that a new trajectory is computed only at every
step.

As already said for the TO algorithms, the computational efficiency of the DDP has been
exploited by the MPCs. In [Koenemann et al., 2015], the authors described the first application
of real-time whole-body MPC on a full humanoid robot, HRP-2. The DDP is implemented
in MuJoCo [Todorov et al., 2012], and it is able to compute a 500 ms trajectory in 50 ms
on a standard desktop computer. Another example of DDP-based method is [Grandia et al.,
2019b] in which feedback MPC achieves stable locomotion under a low update rate (15 Hz).
Indeed, a feedback policy obtained by the DDP compensates for the lack of fast update of the
trajectory. In addition, this approach does not require a motion controller anymore.

The pioneering work of [Koenemann et al., 2015] showed that it is possible to use also the
full model into MPC approaches. [Neunert et al., 2018] presented a whole-body MPC which
also includes explicit contact dynamics to obtain trot and jump on both HyQ and ANYmal
on flat terrain. Therefore, contact locations, sequences and timings are not prespecified but
optimized by the solver. Exploiting Auto-Differentiation [Giftthaler et al., 2017] and code
generation [Frigerio et al., 2012] the algorithm is executed at a replanning frequency of 190
Hz; to the best of the authors’ knowledge and mine, the achieved frequency outperformed
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the state of the art of that time by at least one order of magnitude. On the other hand, the
experimental results they presented are of very basic motions that do not really exploit the
capabilities of the approach.

Most recent works

[Mastalli et al., 2022] proposed a hybrid predictive controller which combines feedback policies
and tactile information. A feasibility-driven technique is used to reduce the computational
cost. Such full-dynamics MPC can handle nonholonomy in the kinetic momenta, torque limits
and friction-cone constraints.

A Whole-Body NMPC which integrates motion planner and perceptive information has been
recently presented in [Grandia et al., 2022]. The terrain is encoded through a series of geometric
primitives, i.e., convex regions, and optimal footholds are chosen within those regions. Previous
works of the same authors are the MPC with Control Lyapunov Functions [Minniti et al.,
2022] and the Terrain-Aware Motion Optimization for Legged Systems (TAMOLS) [Jenelten
et al., 2022].

Meduri et al. [Meduri et al., 2023] presented a biconvex dynamics solver and a kinematic
formulation for a 20 Hz NMPC. BiConMP computes trajectories for both a quadruped (Solo12,
in experiments) and a humanoid robot (Talos, in simulation) robot. In one of the hardware
experiments, Solo12 gives a high-five to a person in front of it by first raising both its front
legs at a height above its base and then reaching one of its leg out forward.

A bridge between TO and MPC is presented in [Bjelonic et al., 2022]: offline optimizations
create motion libraries which are used as cost function of the MPC. The result is a complex,
long-time horizon plan with reactive, short-time horizon solutions.

Finally, very recently, a complete review on optimization-based control for legged locomotion
has been uploaded to arXiv [Wensing et al., 2022].

2.1.4 Contact Planner

A particular class of legged locomotion approaches is represented by the Contact planners.
First, this section presents an overview of the algorithms which do not assume a predefined leg
sequence but automatically discover it and choose the foothold configurations. In the second
part, I mention some works that deal only with foothold optimization, given the leg which
must swing.

Graph-based approaches demonstrated to be suitable for contact planning since they can
cope with problems where the number of decision variables is unknown [Griffin et al., 2019].
However, these techniques present some limitations. For example, [Chestnutt et al., 2007]
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focused on an A* search algorithm which adapts the actions to the local terrain during the
navigation. Indeed, since the possible discrete actions are fixed throughout the planning
process, the planner cannot find a solution if the required action is not present in the action
sampling. With this method, the quadruped robot LittleDog was able to crawl over rough
terrain. Even though the adaptive A* algorithm reduced the computation time with respect
to standard A*, it is far from being executed in an MPC fashion since 92 s are required, on
average, to compute a solution for rough environments.

Already introduced in Section 2.1.2, the TO presented in [Winkler et al., 2018] can be considered
as a contact planner since the stance phase duration of each leg is an optimization variable
which the solver can change. An additional constraint imposes that the sum of the phases
coincides with the total duration of the motion. In [Posa et al., 2014], contact variables are
avoided and substituted by the Linear Complementarity Constraint. It guarantees that either
a force is applied or the end effector moves. In both cases, all variables are continuous.

A completely different approach is the one based on Mixed-Integer Programming (MIP). The
MIP is an OCP in which one (or more than one) optimization variable is constrained to be an
integer value.
The seminal work of [Deits and Tedrake, 2014b] devised a MIP which handles obstacle
avoidance, kinematic reachability, and rotation of footstep placements. The environment
is decomposed into a set of convex regions where the foot can be safely placed using IRIS
algorithm [Deits and Tedrake, 2014a]. A linear constraint ensures that if a footstep is chosen
in a region, it lies on the fitting plane of the local terrain. A quadratic constraint imposes
that each footstep is reachable from the previous step and step rotations are dealt with a
piecewise linear approximation of sine and cosine. The proposed Mixed-Integer Quadratically
Constrained Quadratic Program prevents from the need of nonconvex constraints, allowing
the authors to solve the planning problem for a short horizon in less than 1 second.

The approach of [Aceituno-Cabezas et al., 2018] extended this idea to a Mixed-Integer Convex
Optimization Problem (MICP) that simultaneously plans contacts and CoM motions. They
introduced the binary transition matrix T. The value of the element Tij is 1 if the robot moves
to i-th contact location at time j otherwise, it is 0, see Figure 2.3. Using this matrix, it is
possible to write constraints on the GRFs, i.e., no force when the foot is in the air, and on
the foot motion, i.e., stationary leg when the leg is on the ground. Experiments with HyQ
demonstrate that trajectories computed with this TO framework can deal with challenging
nonflat terrains without requiring any pre-defined gait sequence.

The limitation of the MIP approaches is the high computation cost, which is mainly due to
the branch-and-bound techniques [Clausen, 2003] to handle the combinatorial aspect of the
problem, i.e., the issue of selecting contact surfaces, as described in [Tonneau et al., 2020].
[Ponton et al., 2021] solved a MIP to find dynamically consistent contact sequences, combined
with a kinodynamic optimization method to generate full-body movements. The authors

Angelo Bratta Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion



2.1 Legged Locomotion 17

Figure 2.3: Example of transition matrix and gait phase. R, L, H and F represent right, left, hind
and front legs (image taken from [Aceituno-Cabezas et al., 2018]).

of [Tonneau et al., 2020], instead, overcome the limitation of the computational cost using
a convex relaxation of the problem thanks to an L1-norm minimization formulation. Given
a set of surfaces, the MIP needs to find a point that belongs to exactly one surface. The
authors showed how to reformulate this problem with a Linear Program (LP), substituting,
thus, the branch-and-bound search. Simulations with HRP-2 and Talos demonstrated that
this approach is 50 to 100 times faster than a normal MIP.

The Contact-Invariant Optimization [Mordatch et al., 2012], instead, incentivizes interaction
with the environment to generate the desired behaviour. In fact, the formulation is endowed
with scalar variables that indicate if a potential contact should be active in a given phase;
they affect both the cost function and the dynamics (by enabling and disabling contact forces).
The drawback of a larger combinatorial space is mitigated by the fact that it becomes better
behaved and continuous.

Finally, another sub-class of problems uses the Monte Carlo Tree Search (MCTS). The MCTS
decision process is represented by a tree where each node represents a state, i.e., one of the
possible choices for the contact configuration. A simulation policy is used to assign a reward to
a node, while a tree policy decides which is the next node to expand. The goal of the MCTS
is to choose the nodes’ sequences that maximize the reward. Among the MCTS-based work,
I highlight [Labbe et al., 2020] and [Amatucci et al., 2022]. The former demonstrated the
efficiency of the MCTS in a pick-and-place task with a robotic arm; the latter applied it to an
MPC framework for legged locomotion (in simulation). In particular, [Amatucci et al., 2022]
obtained recently a high-frequency MPC which automatically discovers periodic gaits and
adapts to external disturbance. A comparison with an implementation of the MIP presented
in [Aceituno-Cabezas et al., 2018] demonstrates, on average, that the MCTS of [Amatucci
et al., 2022] is 2.72 times faster.
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Foothold Selection

As explained in Section 2.1.2 and 2.1.3, decoupled approaches find footholds and then CoM
quantities separately. In this section, I explain some foothold selection techniques.

The seminal work of [Kolter et al., 2008] is one of the first applications of terrain awareness
foothold selection. The authors rely on a trained Hierarchical Apprenticeship Learning
algorithm. In order to select the best footholds in terms of robustness to deviations and
slippage, the network is trained with collision probability maps and heightmaps collected a
priori.

Discretizing a local heightmap into templates [Kalakrishnan et al., 2009], the work introduced
in [Kalakrishnan et al., 2011] uses a learning regression method to rank the footholdsfootholds,
allowing the LittleDog robot to traverse rough terrains. A similar work has been proposed
by [Barasuol et al., 2015].

These works are based on expert user demonstration. In [Villarreal et al., 2019], the authors
improved their previous work [Barasuol et al., 2013] using a heuristic algorithm that generates
the ground truth of a self-supervised algorithm. In this way, a Convolutional Neural Network
(CNN), named Visual Foothold Adaptation (VFA), is trained, and optimal corrections to
nominal footholds are provided considering kinematics limits, terrain roughness, and collisions
(both frontal and leg collision). Using CNNs demonstrated to be effective also for compliant
feet that can mechanically adapt to the terrain profile [Bednarek et al., 2020].

As a general comment, machine learning approaches are more popular since they are more
suitable for online evaluations. An example of pure optimization-based foothold selection
algorithm is [Fankhauser et al., 2018]. In this work, a sequence of nominal footholds is
computed heuristically based on the default step length and the initial condition of the robot.
Considering a binary validity score taken from the evaluation of a 2.5D elevation map,4 each
foothold is discarded if it corresponds to an unfeasible foothold; the closest feasible foothold
is selected as a candidate. In addition, it is checked for its reachability by running the pose
optimizer with the current and the candidate foothold as input. A drawback is that a new
foothold is computed only at every step, while algorithms as [Villarreal et al., 2019] are able
to change the touchdown point also at any time during the swing phase.

2.2 Numerical Optimization Techniques

In the previous section, I presented an overview of optimization-based frameworks, i.e., ap-
proaches in which the required variables (CoM trajectories, GRFs, footholds, etc...) are the

4The readers are encouraged to refer to the previous work of the same authors [Fankhauser et al., 2014] for
more details on the elevation map.
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solution of an OCP. In this section, I focus on how the OCP can be classified and which are
the main techniques to write and solve them. Additional details can be found in [Diehl and
Gros, 2017; Zanon, 2021].

2.2.1 Classification

The goal of an OCP is to find the value of some quantities, named optimization variables which
minimize a scalar cost function which depends on the optimization variables and references
values, see Eq. (2.3). The values of the optimization variables should satisfy the relationship
represented by the dynamic model and the path constraints, both equality and inequality.

Depending on the properties of the cost and the path constraints, the OCP can be divided
into sub-families. The main classification is between convex and nonconvex OCP. In convex
OCPs, both the cost and the constraints are convex.5

Recall: a function f : Rn → R is convex in its domain D if:

f(λx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x, y ∈ D, α ∈ [0; 1]

Examples of convex functions are the affine transformation and the exponential, thus convex
OCPs are the LPs, the QPs; depending on the constraints sometimes also NLPs are convex
problems.

The main advantage of convex OCPs is that, if it exists, the optimal solution is unique [Boyd
and Vandeberghe, 2004]. The most straightforward problem to be solved is the QP with linear
constraints. A quadratic cost function L(w) with w optimization variables corresponds to:

L(w) = 1
2w>Qw + c>w + d

with the necessary condition that the matrix Q is positive definite, i.e., symmetric matrix
with all eigenvalues greater than zero. The solution of a QP with linear equality constraints
can be found analytically. In the other cases, i.e., QPs with inequality constraints or LP, the
solution is not found in closed form, but numerically and it is still guaranteed to be a global
minimum. As discussed in Section 2.1, convex approaches demonstrated good performance for
locomotion applications and, in particular, low computation cost in MPC approaches.

A particular family of OCP is represented by the MIPs: some of the optimization variables are
restricted to be integer quantities. In particular, in the Mixed-Binary-Integer Programming
(MBIP), the value must be either 0 or 1. For example, in legged locomotion, a MBIP is
obtained when a variable is used to encode whether a leg is in contact with the ground or not.

5In case of a maximization problem, the cost function must be concave.
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Figure 2.4: Direct (left) and multiple (right) shooting methods. The former simulates the state
trajectory for the entire horizon. The latter divides the horizon into segments and integrates the
states independently. Continuity constraints prevent from discontinuities at the beginning of each
segment.

2.2.2 Transcription Methods

Equation (2.3) represents a finite-size problem which can be solved with numerical solvers.
In reality, it is the result of a conversion (named transcription) of a continuous time OCP,
Eq. (2.2), into a discrete one. The choice of the transcription method affects both accuracy
and numerical stability of the result. In this section, I introduce the two main transcription
methods used in robotics [Nocedal and Wright, 2006]: direct shooting and collocation. Readers
are encouraged to refer to [Betts, 2010] for further details on this topic.

In direct single shooting approaches, only the control input u are decision variables. Given the
initial state condition, the values of the states are obtained by simulating the model along the
entire horizon. This approach is suitable either for short horizons or simple dynamics. Indeed,
the integrator functions used to simulate the dynamics tend to become highly nonlinear
for long horizons. In particular, for unstable systems the states tend to diverge and the
problem becomes badly scaled. A more accurate transcription method is the direct multiple
shooting [Bock and Plitt, 1984], where the horizon is divided into smaller intervals, and the
integration is performed independently for each segment; in other words, the transcription
problem becomes a series of Initial Value Problem [Diehl et al., 2005]. A continuity constraint
is imposed to nullify the defect (or gaps), i.e., the difference between the last point of an
integrated trajectory and the first value (shooting node) of the following interval. Even though
the number of decision variables increases (control input and state at the shooting node),
multiple shooting is widely used in robotics to prevent state diverging due to the complex
robot dynamics. An example of direct and multiple shooting is represented in Figure 2.4.

In the collocation method, instead, both control and states are optimization variables. Similarly
to the multiple shooting, the horizon is divided into segments and continuity is guaranteed
by the constraint on the defect at the end points. The difference is that the state evolution
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is approximated by polynomials. The dynamics is imposed enforcing that it matches with
the slope of the chosen polynomials in a discrete number of intermediate (collocation) points.
The number of collocation points is a key design choice, since it affects the accuracy of the
method [Hager et al., 2019].

2.2.3 Solution Methods

Legged locomotion benefits from the developments of the solvers needed to compute the
optimal solution. Indeed, the choice of the solver is a key element of the design. In this section,
I provide an overview of the most common solution methods and commercial solvers used in
robotics at the time of writing this dissertation.

Let’s consider the OCP for the variable w, with L(w) as cost function, g(w) as equality
constraints and h(w) as inequality constraints.

min
w

L(w)

s.t. g(w) = 0

h(w) ≤ 0

(2.13)

A general assumption is that L(w), g(w), and h(w) are continuously differentiable.

The solution of Eq. (2.13) coincides with a systems of equations, named KKT Condi-
tion [Karush, 1939; Kuhn and Tucker, 1951].6

∇wL(w,λ,µ) = ∇L(w) + λ∇g(w) + µ∇h(w) = 0 (2.14a)

g(w) = 0 h(w) ≤ 0 (2.14b)

µ ≥ 0 (2.14c)

µihi(w) = 0 ∀i ∈ dim(h(w)) (2.14d)

The function L(w,λ,µ) is called Lagrangian, with λ,µ lagrangian multipliers; thus, Eq. (2.14a)
corresponds to find its critical point, i.e., the point where its gradient vanishes. Equation
(2.14b) is referred to as primal feasibility, while Eq. (2.14c) is the dual feasibility. Finally,
Eq. (2.14d) is the complementarity slackness. It impose that either the inequality or the
multiplier µ must be 0.

Newton’s Algorithm

For OCP without inequality constraints, the simplest solution method is Newton’s algorithm.
It is an iterative approach based on the following equation[

∇2
w,wL(w,λ) ∇g(w)
∇g(w)> 0

] [
∆w
λ+

]
= −

[
∇L(w)
g(w)

]
(2.15)

6KKT stands for the name of the researchers who developed them: Karush, Kuhn, and Tucker

Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion Angelo Bratta



22 Related works

The optimization variables and the lagrangian multiplier can be updated by λ+ = λ+ = ∆λ+λ,
and w+ = w + ∆w.

In other words, Eq. (2.15) computes the directions along which the cost function reduces. The
linesearch strategy computes the step size for w+ along that direction.

w+ = w + α∆w

λ+ = (1− α)λ+ αλ+
(2.16)

with α ∈ [0, 1]. Two approaches exist to perform a linesearch. The first one is the exact
linesearch which solves a second problem to find explicitly the optimal value α+ which
minimizes L(w + α∆w).
The alternative is the so called backtracing linesearch in which α is set equal to 1 and reduced
until the Armijo’s condition is satisfied [Armijo, 1966].

L(w + α∆w) < L(w) + γα∇L(w)∆w

The variable γ is a design parameter.

Newton’s algorithm consist of iteratively solving Eq. (2.15) and evaluating Eq. (2.16) till λ+

and w+ satisfy lagrangian and primal feasibility constraints of Eq. (2.14).

Solving Eq. (2.15) requires the hessian to be invertible. For this reason, a regularization of
the matrix ∇2

w,wL(w,λ) must be performed to modify the eigenvalues such that the matrix is
positive definite and thus invertible.

In addition, the computation of the hessian (and of its inverse matrix) is time-consuming, so
modified Newton’s methods are obtaining by approximating that term, e.g., Steepest Descent
(the hessian is the identity matrix), Gauss-Newton ( ∇2

w,wL(w,λ) = ∇wL(w,λ)∇wL(w,λ)>),
and BFGS7 (iterative process to update at each repetition the approximation).

Even though Newton’s methods are the most popular solution techniques, they have two main
drawbacks:

• they cannot handle the complementarity slackness, and thus the inequalities

• the convergence depends on the starting point of the iterative process. Indeed, in the
case of an initial guess far from the optimal values, the solver could not be able to find a
solution or converge to a local sub-optimal one.

Interior Point Methods

Interior Point (IP) methods were initially developed for LP [Karmarkar, 1984], but have been
later extended to NLPs and nonconvex optimization [Wright, 2004]. Several different versions

7named after Broyden, Fletcher, Goldfarb and Shanno Fletcher [1987]
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Figure 2.5: Representation of the logarithmic approximation of the inequality constraints for two
different values of τ in a Barrier IP, (image taken from [Zanon, 2021].

exist [Potra and Wright, 2000], I describe the two main ones: Barrier IP and the Primal-Dual
IP.

Barrier IPs get rid of the complementarity slackness, modifying the cost function. The idea is
that we add the characteristics function, i.e., the function which is equal to 0 if the inequality
constraint is satisfied and ∞ if it is violated.

L̃(w) = L(w) + c(w)

with c(w) =

0 if hi(w) ≤ 0

∞ if hi(w) > 0

Common choice for c(w) is the logarithmic function

c(w) = −τ
dim(h(w))∑

i=0
log(−hi(w))

In other words, we heavily penalize a solution in which the inequality constraint is not satisfied.
The accuracy of the approximation of the characteristic function with a logarithmic term
increases for τ → 0, see Figure 2.5. The KKT conditions corresponding to IP Barrier Methods
are:

∇wL(w,λ) = ∇L(w)− τ
dim(h(w))∑

i=0
h−1

i (w)∇hi(w) + λ∇g(w) = 0

g(w) = 0

h(w) ≤ 0

(2.17)

Eq. (2.17) can be solved with Newton’s method with linesearch, reducing iteratively τ towards
zero. The drawback of this approach is represented by the term h−1

i (w) which becomes h−2
i (w)
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in the hessian of Eq. (2.15). For hi(w) close to zero the value of h−2
i (w) becomes high creating

numerical issues when multiplied by a small value as τ . The Primal-Dual IP is obtained
introducing a new variable ν and rewriting Eq. (2.17) in the following way

∇wL(w,ν,µ) = ∇L(w) + ν∇h(w) = 0

g(w) = 0 h(w) ≤ 0

ν ≥ 0

νihi(w) = −τ ∀i ∈ dim(h(w))

(2.18)

Primal-Dual IPs demonstrate high accuracy and computational speed and are the basis for
commonly used solvers in robotics, e.g., IPOPT [Wächter and Biegler, 2006] and HPIPM [Frison
and Diehl, 2020].

Active-set methods

Active set methods [Wong, 2011], instead, split the inequality constraints into active, i.e., hA(w) =
0, and inactive, hĀ(w) = 0. The corresponding KKT conditions can be written as:

∇wL(w,λ,µA) = ∇L(w) + λ∇g(w) + µA∇hA(w) = 0

g(w) = 0

hA(w) = 0

µA > 0 hĀ(w) < 0

(2.19)

Active-set methods solvers guess which are the active constraints, solve the first three rows
of Eq. (2.19), and then check if the conditions in the last row are satisfied. In particular, if
hĀ(w) = 0 the corresponding index is added to the active set, while an index is removed
from A if the value of its µA is negative. The process is iteratively repeated till the optimal
solution is found. The active-set method is the base of the very famous Dantzig’s Simplex
Algorithm [Dantzig, 1963].

Sequential Quadratic Program

Sequential Quadratic Program (SQP) is a bridge between the original OCP of Eq. (2.13) and
IP / active-set methods. Indeed, the approach consists in writing a quadratic approximation
of the non linear problem whose solution corresponds to the Newton direction of the original
non linear problem of Eq. (2.13):
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min
∆w

1
2∆w>∇2

w,wL(w,λ,µ)∆w +∇f(w)>∆w

s.t. g(w) +∇g(w)>∆w = 0

h(w) +∇h(w)>∆w ≤ 0

(2.20)

Once solved, Eq. (2.20) returns the direction ∆w and two new multipliers λQP and µQP.

The SQP algorithms perform iteratively the following operations:

1. write and solve Eq. (2.20)

2. update primal variable w← w + ∆w

3. update dual variable λ← λQP, µ← µQP

4. check if (w,λ,µ) is a solution of Eq. (2.13)

2.3 Summary and Discussion

In this chapter, I have presented the relevant works in the history of legged locomotion, starting
from the pioneering heuristic algorithm [Raibert, 1986] till the MPCs developed nowadays. A
subsection is dedicated to the contact planners, i.e., approaches that simultaneously compute
the gait sequence and the footstep locations, since they have room for exciting developments.
Section 2.2 provides additional details on the OCP and on the state-of-the-art tools to
solve them. Even though it is not evident at first sight, the transcription method and the
characteristic of the solver are crucial design elements of an optimization framework. Indeed,
they affect stability and computational cost.

The literature analysis shows that the research on legged locomotion is quickly reaching a
mature state. As already mentioned, the challenge is represented by finding the trade-off
between complexity and high replanning frequency. For example, [Winkler et al., 2018;
Tonneau et al., 2020] need to be performed offline, and the MPCs such as the one in [Cebe
et al., 2021] updates the trajectory only at every foot touchdown. In addition, the reference
trajectories for the MPC still require heuristic terms and tedious tuning procedures. Finally,
MIP and MCTS are able to tackle the problem of contact planning, e.g., [Amatucci et al.,
2022; Ponton et al., 2021], but so far they have only been shown with high computational
costs or in simple environments (i.e., flat terrain) [Neunert et al., 2018].

The goal of this dissertation is to design an NMPC which demonstrates stability and robustness
in nonflat terrains, reacting to the changes of the environment.
In particular, this work enriches the literature on online replanning methods by presenting
a locomotion framework that removes the assumptions of heuristic reference generation and
user-defined gait sequence.
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Chapter 3

Nonlinear Model Predictive Control
for Legged Locomotion

3.1 Introduction

Legged locomotion is a challenging task due to the under-actuation of the base and the
interaction of the robot with the ground. Indeed the GRFs have a hybrid nature and the feet
must establish and break the contact with the ground. MPC approaches compute feasible
trajectories for a horizon of motion and update them, based on the new state measurement to
close the loop, while the robot is moving. In particular, NMPC formulations have the ability
to handle both the nonlinear system dynamics and the constraints, explicitly. The replanning
frequency allows the algorithm to compensate for model inaccuracies, external disturbances
and changes in the environment.

This chapter presents a high-frequency NMPC planning approach applied to the HyQ robot.
The significance of this work is that it demonstrates how a suitably formulated NMPC can
tackle rough terrain locomotion, and provide the optimal base orientation, while being real-time
feasible. Differently from previous works of our lab (e.g., [Mastalli et al., 2020; Fahmi et al.,
2019]), online optimizations are performed.

Leg mobility is the capability of the robot leg to arbitrarily change its foot position. Optimizing
for leg mobility allows the NMPC to devise a robot base orientation and height that improves
locomotion on rough terrain (in contrast with the motions on flat terrain shown in [Neunert
et al., 2018]). To the best of my knowledge, it is the first time that an MPC approach considers
leg mobility during the locomotion. This is particularly useful to achieve the environment
adaptation.
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The method presented in this chapter has been obtained by collaborating with the PhD
student Niraj Rathod and Prof. Mario Zanon and Prof. Alberto Bemporad from IMT School
for Advanced Studies in Lucca. It resulted in a joint publication [Rathod et al., 2021]. Niraj
and his professors focused on defining the OCP in Python exploiting acados [Verschueren
et al., 2019] library features, e.g., choice of the solver, integrator scheme, sampling time, etc.
for the definition of the NMPC. In addition, Niraj performed the offline analysis to compute
the mobility factor (Section 3.4.1).

Outline

This chapter is organized as follows: Section 3.2 gives an overview of the entire planning
pipeline whereas Section 3.3 describes the NMPC setup. The leg mobility and the other novel
features introduced in this work are explained in Section 3.4, while the reference generator
and the Whole-Body Controller (WBC) ([Fahmi et al., 2019]) are detailed in Sections 3.5 and
3.6 respectively. For the sake of completeness, the description of the solver and the state-of
the-art scheme (Real Time Iteration (RTI) [Diehl et al., 2005]) to solve the NMPC is provided
in Section 3.7. Further, Section 3.8 illustrates simulation and experimental results with the
HyQ robot. Finally, Section 3.9 presents the conclusion and the discussion regarding the
contents of this chapter.

3.2 Locomotion Framework

Figure 3.1 illustrates the planning pipeline of the entire locomotion framework. In this
dissertation, I mainly focus on Reference Generator, NMPC, and WBC.
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Figure 3.1: Block diagram of the planning pipeline with the NMPC in our locomotion framework.
The reference generator provides the references (xref , uref) to NMPC after receiving the user
inputs. Then, the NMPC passes optimal state xp and control xp trajectories to the Whole-Body
Controller. The torque τd is given as reference to the low-level joint torque controller τj. The
state estimator provides the state estimation x̂ to the required blocks. Finally, the heightmap is
generated by Grid Map and given to the reference generator.
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The reference generator, as discussed in Section 3.5, takes the user input (longitudinal, lateral
and angular velocity), leg sequence (e.g., Left Front (LF), Right Front (RF), Left Hind (LH),
Right Hind (RH)) gait timing, the initial state of the robot, and a map of the terrain to
generate reference trajectories for the state xref (CoM position, orientation, linear and angular
velocity) and control input uref (GRFs) required by the NMPC. While the quantities related
to the gait are fixed, the user-defined velocities can be changed online while the robot moves.
The reference generator also provides a vector of parameters a to the NMPC, that includes
foot locations and sequences of contact status.
It is a heuristic module; in Chapter 4 I will present a more sophisticated version of this block,
called optimization-based reference generator.

The NMPC runs at 25 Hz and delivers the optimal trajectories of the state xp and control
input up, as detailed in Section 3.3. Reference generator and NMPC optimization are executed
at the same frequency, such that updated references are provided at every execution of the
optimization.

All the components of the Whole-Body controller (highlighted with the yellow box in Figure 3.1)
are discussed in Section 3.6. A WBC interface is needed to connect the NMPC with the
already existing WBC [Fahmi et al., 2019]. The interface interpolates the optimal state xp at
a rate of 250 Hz to generate a desired signal xd for a Cartesian virtual impedance controller
[Focchi et al., 2016]. The WBC interface also computes the feedforward wrench Wd

ff that
is added to a feedback wrench Wd

fb that renders the Cartesian impedance. Moreover, the
WBC interface provides the reference joint positions qd and velocities q̇d to a Joint Space
PD controller running at 1 kHz in parallel to the WBC. After acquiring the feedback and
feedforward wrenches, the WBC solves a QP optimization and computes the vector of desired
GRFs fd accounting for the friction cone constraints and penalizing the difference between fd

and up coming from the NMPC solution. Then, fd is mapped to the torque vector τ ∗ that is
added to the Joint Space PD torques τfb resulting in the total desired torque τd. Ultimately,
τd is passed to a low-level joint torque controller as reference [Boaventura et al., 2015].

An online state estimator [Nobili et al., 2017] runs at 500 Hz and provides the estimation of
the robot state x̂ to all the components inside our locomotion framework that require it.
A dedicated on-board computer takes inputs from an RGB-D camera (RealSense) mounted in
front of the robot and generates a 2.5D heightmap, i.e., a two-dimensional discrete represen-
tation of the terrain where each pixel describes the height of a specific area. The Grid Map
library [Fankhauser and Hutter, 2016] computes a new heightmap at a frequency of 30 Hz
which is finally sent to the reference generator.
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3.3 Nonlinear MPC Formulation

Let us define the decision variables as the predicted state and control input with xp =
{x0, . . . ,xN} and up = {u0, . . . ,uN−1}, respectively, such that a NLP formulation can be
stated as:

min
xp,up

N−1∑
k=0

` (xk,uk,ak) + `T (xN ) (3.1a)

s.t. x0 = x̂, (3.1b)

xk+1 = f (xk,uk,ak) , k ∈ IN−1
0 , (3.1c)

h (xk,uk,ak) ≤ 0, k ∈ IN−1
0 , (3.1d)

where, ` : Rnx × Rnu × Rnp → R is the stage cost function; `T : Rnx → R is the terminal
cost function. The initial condition of Eq. (3.1b) is expressed by setting x0 equal to the
state estimate x̂ received from the state estimator. The vector of model parameters ak is
not optimized but it is computed externally by the reference generator and provided to the
optimization problem formulation. The nonlinear system dynamics are introduced by the
equality constraints of Eq. (3.1c). Finally, the path constraints are included using Eq. (3.1d)
which, for example, can be bounds on the decision variables. The NLP (3.1) is defined for a
prediction horizon T that is divided into N discrete time control intervals of lengths Ts = T

N .
Hereafter, we will refer to Ts as the sampling time.

3.3.1 Cost Function

The cost function is designed in order to impose high-level locomotion tasks.
The running term in Eq. (3.1a) is composed of three terms:

` (xk,uk,ak) = `t + `m + `r, (3.2a)

`t = ‖ xk − xref
k ‖2Q + ‖ uk − uref

k ‖2R, (3.2b)

`m = ‖ Cphfk
− Cpref

hfk
‖2M, (3.2c)

`r = ‖ Kuk ‖2P (3.2d)

• The tracking cost in Eq. (3.2b) is associated to state and control input and the reference
trajectories xref

k ,uref
k are provided by the reference generator for each sampling instance k

(refer to Section 3.5). For example, it guarantees that the robot follows the user-defined
velocities.

• The mobility cost (3.2c) is a novel term which is introduced in this chapter. It accounts
for improving the leg mobility by penalizing the difference between the hip-to-foot
distance Cphf and the reference value Cpref

hf of maximum mobility. This cost allows the
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NMPC to optimize the robot base orientation (e.g., align it automatically to the terrain
shape) in order to increase the leg mobility which has as a desirable effect of having
joint quantities far from kinematic limits during locomotion. The derivation of Cpref

hf is
detailed separately in Section 3.4.1.

• In some locomotion scenarios [Focchi et al., 2016], to cope with uncertainties in the
contact normal estimation and to increase robustness to external disturbances, it is
desirable to have the GRFs fi as close as possible to the center of the friction cone. This
can be achieved by penalizing X-Y components of u in a frame K (see Figure 3.2) that
is aligned to the normal of the contact and it is included in our cost function by a control
input regularization term (3.2d), refer to Section 3.4.3 for the details.

The positive definite weight matrices Q ∈ Snx
+ ,R ∈ Snu

+ , M ∈ Sne
+ , P ∈ Snu

+ act as important
tuning parameters in the NMPC formulation, since they determine the priority among the
three different terms. Finally, we define the terminal cost `T =‖ xN − xref

N ‖QN and use the
weight matrix QN = Q for this cost.

3.3.2 Robot Model

The NMPC exploits three reference frames: the world frame W, the CoM frame C, and
the already mentioned contact frame K; Figure 3.2 shows a schematic of the robot and
location/orientation of the reference frames. While W is a fixed inertial frame, the CoM frame
is aligned with the base of the robot and its origin is located always at the CoM. A variable
with left subscript denotes its frame of reference. For example Cω represents the angular
velocity of the robot base expressed in the CoM frame C. Note that, unless explicitly specified,
all the relevant quantities are defined in the inertial frame W.

Figure 3.2: HyQ schematic showing the inertial frame (W), the CoM frame (C) attached to
the CoM of the robot, and the contact frame (K). The robot legs are shown in the default
configuration.
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As explained in Section 2.1.2, the choice of the model is a key element. In order to find the
trade-off between accuracy and fast replanning, the dynamics is expressed by a simplified
reduced-order SRBD model. Defined in a 6D space, it describes the translational and angular
dynamics of the robot while neglecting the dynamics of its swinging legs. This is a valid
approximation for the HyQ robot because most of its mass is concentrated in the base, as
mentioned in [Semini, 2010] (the mass of the base is 66.7 kg and the mass of each leg is 5.08 kg).
The robot is approximated as a rigid body with the inertia computed considering the robot in
a default leg configuration as shown in Figure 3.2.

To mitigate the effect of the approximations, the SRBD model is written in the CoM frame
(specifically the angular dynamics); this choice yields a constant inertia tensor. Thus, the
angular dynamic equations are much simpler i.e., less nonlinear because the inertia tensor is
not time-varying. In the SRBD model, GRFs are applied as inputs to control the position and
orientation of the robot base. Recalling Eq. (2.7), the SRBD model is:

mv̇c = mg +
4∑
i=1

δifi (3.3a)

CIc Cω̇ + Cω × CIcCω =
4∑
i=1

δiCpcf,i × Cfi (3.3b)

where m is the robot mass, v̇c ∈ R3 is the CoM acceleration, g is the gravitational acceleration,
fi ∈ R3 is the ground reaction force at foot i, CIc ∈ R3×3 is the inertia tensor computed at the
CoM frame origin, Cω̇ ∈ R3 is the angular acceleration of the robot’s base, pcf,i ∈ R3 is the
distance between the CoM position pc ∈ R3 and the position pf,i ∈ R3 of foot i. The binary
parameter δi = {0, 1} (contact status) defines whether the foot i is in contact with the ground
and can therefore generate contact forces. The robot dynamics governed by Eq. (3.3) can be
expressed as the continuous-time state-space model:

ṗc

v̇c

Φ̇
Cω̇

 =


vc

1/m
∑4
i=1 δifi + g

E′−1(Φ)Cω
−CI−1

c (Cω × CIcCω) +
∑4
i=1 δiCI−1

c Cpcf,i × Cfi

 (3.4)

The robot base orientation is represented by the sequence of Z-Y -X Euler angles1 [Diebel,
2006] Φ = (φ, θ, ψ) i.e., roll (φ), pitch (θ) and yaw (ψ), respectively. The relation between
the Euler Angles rates Φ̇ and angular velocity Cω is well-known and discussed in Appendix A
for the sake of completeness.

1Note that Euler angles can suffer from singularities that occur in certain configurations [Younes et al.,
2012]. Because in this work we do not consider motions that involve such configurations, using Euler angles
does not pose any issue. A singularity-free implementation is out of the scope of this work and is left for future
research.
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The state x is the stack of CoM position, linear velocity, orientation and angular velocity
x ∈ Rnx = (pc, vc, Φ, Cω) with nx = 12. The control input is represented by the GRFs
u ∈ Rnu = (f1, . . . , f4) with nu = 12. Equation (3.4) can be concisely written as:

ẋ(t) = g(x(t),u(t),a(t)), (3.5)

where a ∈ Rnp = (pf , δ) with np = 16 is a vector of parameters that includes the feet
positions pf ∈ Rne , with ne = 12 and the contact status δ ∈ R4.

The rigid-body dynamics in Eq. (3.5) is discretized using different numerical integration
techniques [Quirynen, 2017; Butcher, 2003; Hairer et al., 1993, 1996] to obtain the discrete-
time model:

xk+1 = f (xk,uk,ak) , (3.6)

which defines equality constraints (3.1c) imposed at every stage k to ensure that the state
trajectory satisfies the system dynamics for the given control inputs.

One specific feature of legged robots is the need to ensure that the values of the GRFs are equal
to zero for a swinging leg. This is typically done by introducing complementarity constraints
[Posa et al., 2014], e.g., [Cebe et al., 2021; Villarreal et al., 2020]. These constraints, however,
pose several difficulties in solving the optimization problem, since the vast majority of the
NLP algorithms cannot handle them and tailored solvers are required. Ultimately, this results
in a significant increase in computation time. An alternative to complementarity constraints
commonly adopted in the robotic community consists in removing the hybrid nature of the
dynamics by providing the sequence of contact status δ as input parameters in the state space
model (3.5). In this manner, a contact mode δi is multiplied with the terms involving force
fi in Eq. (3.4) and the effect of that force in the linear and angular dynamics is nullified
during the swing phase of the corresponding leg i. Hence, there is no more need to include
complementarity constraints separately in Eq. (3.1), which results in fewer constraints and,
consequently, in a relatively smaller NMPC formulation.

3.3.3 Friction cone and unilateral constraints

Path constraints guarantee feasibility and robustness of the optimized trajectories. In particular,
by imposing that the GRFs are inside the friction cone, it is ensured that the feet in stance do
not slip. Friction cone constraints are encoded with their square pyramid approximation:

−µifz,i ≤ fx,i ≤ µifz,i (3.7a)

−µifz,i ≤ fy,i ≤ µifz,i (3.7b)

f z ≤ fz,i ≤ f z (3.7c)
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where, f z and f z are upper and lower bounds on GRFs Z component, respectively, and µi is the
friction coefficient of the contact surface. Choosing f z greater than or equal to zero enforces
unilateral constraints on the normal forces fz. The friction cone and unilateral constraint are
represented by h (xk,uk,ak) ≤ 0 in the NMPC formulation, in Eq. (3.1d).

3.4 Locomotion-Enhancing Features

This section discusses the main distinctive features of the presented approach, focusing on the
relevant contributions to improve the locomotion ability of our quadruped robot.
These features are mobility, force robustness, and ZMP margin.

3.4.1 Mobility and Mobility Factor

Terrain adaptability is vital when it comes to the locomotion of the legged robots. Adjusting
the posture of the robot depending on the environment is important for safe locomotion. A
way to enable the NMPC to choose robot orientation adaptively to any terrain is to employ
the concept of mobility [Focchi et al., 2017]. It is defined in words as the attitude/capability of
a manipulator (leg) to change end-effector position/orientation [Sciavicco and Siciliano, 2000]
arbitrarily.

In order to penalize low-leg mobility in the cost function of Eq. (3.2c) the reference value of hip-
to-foot distance Cpref

hfk
must be provided. The goal of this section is to define a convenient metric

to represent mobility and compute Cpref
hfk

corresponding to the maximum value of such a metric.
Among several ways to compute mobility, the velocity transformation ratio [Yoshikawa, 1984]
allows one to evaluate mobility in a particular direction. However, the velocity transformation
ratio cannot be used in this setting because it requires prior knowledge of the evolution
of the relative foot position with respect to CoM. While foot position is known before the
optimization, since it is computed by the reference generator, CoM position is an output of
the CoM. Thus the velocity transformation cannot be evaluated in advance.

As an alternative approach, the volume of the manipulability ellipsoid is considered as a metric
to evaluate mobility [Sciavicco and Siciliano, 2000].

v(J(q)J(q)>)−1v = 1

A change in the volume of the manipulability ellipsoid with different leg configurations is
visualized in Figure 3.3 (left). By inspecting Figure 3.3 (top right), it can be seen that the
maximum volume V is in the vicinity of the most extended leg configuration because the
mobility becomes very big in the X and Y directions, even if it is still very limited in the
Z direction. However, because it is desirable to achieve good mobility in all the directions
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Figure 3.3: Manipulability ellipsoid changing with leg configuration (left) of the right front leg.
Volume of the ellipsoid (top right) and Eccentricity of the ellipsoid (bottom right).

of the leg configuration, a better metric is the one that also accounts for the isotropy of
the manipulability ellipsoid. A measure of the isotropy of an ellipsoid can be expressed as
the inverse of its eccentricity E. Hence, a new manipulability index named mobility factor
Eq. (3.8) can be defined in terms of both the eccentricity and the volume of the manipulability
ellipsoid.

Again from Figure 3.3, it can be visualized that to keep a good mobility (left plot) in all
directions, the volume (top right plot) should be maximized while the eccentricity (bottom
right plot) should be as small as possible. Defining a foot Jacobian J(q) ∈ R3×3 computed at
a particular joint configuration q, the volume V of a manipulability ellipsoid is evaluated as a
product of the eigenvalues of

(
J(q)J(q)>

)−1
while the eccentricity is the ratio between its

maximum and minimum eigenvalue [Focchi et al., 2017]. First, the volume and eccentricity of
manipulability ellipsoid are normalized by their ranges V̄ and Ē. Then the mobility factor is:

mf = β
V

V̄
− γE

Ē
(3.8)

The minus sign in Eq. (3.8) represents conflicting contributions of the V and E in the definition
of the mobility factor (i.e., the goal is to achieve high volume and low eccentricity). Parameters
β and γ are introduced to find the best trade-off between volume and eccentricity.

The mobility factor is a convex nonlinear function mf : R3 → R that can be numerically
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Figure 3.4: Slices of the mobility factor function for the RF leg: the left figure plots it against
the X-Y components keeping Z constant. The red dot in the left plot represents the maxima.
The right figure plots it against the Z component for a constant X-Y foot position.

evaluated inside the workspace of each leg. By selecting β = 1 and γ = 4, and after conducting
a numerical analysis for all the feet positions in the workspace of a leg of the HyQ robot we
found that an hip-to-foot vector of Cphf = (0, 0,−0.55) m maximizes mf . Figure 3.4 (left)
shows a slice of the scalar function mf in the X-Y plane for Cphf,z = −0.55 m obtained for
the RF leg. Instead, in Figure 3.4 (right) I plot mf against the change of foot position in
the Z direction considering the hip under the foot (X=0, Y=0) which clearly highlights
Cphf,z = −0.55 m corresponding to the maximum value of the mobility factor mf (i.e., around
0.41). The output of this analysis is the reference for the hip-to-foot term Cpref

hf in the mobility
cost Eq. (3.2c) for all the legs. The obtained numbers are specific for HyQ, but the same
methodologies can be applied to any kind of robots.

In the mobility cost of Eq. (3.2c), the contact status δi multiplies the term corresponding
to the ith leg. Thus, the mobility cost solely accounts for stance legs because the robot can
only use them to control its base orientation. The advantage of a mobility cot is that it
enables NMPC to provide the optimal base orientation for a particular locomotion that retains
mobility, there is no need to separately specify tracking cost for roll and pitch in the NMPC.
This relieves a user from the burden of implementing a customized heuristic (e.g., to align
the robot base to the terrain), as was necessary in, e.g., [Focchi et al., 2020; Gehring et al.,
2015; Villarreal et al., 2020]. The relative tracking task for the CoM Z position is no longer
required either, because maximizing the mobility in the Z direction automatically takes care
of keeping an average distance of hips from the terrain to Cphf,z, consequently keeping the
robot base at a certain height.
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Moreover, the yaw motion results by penalizing the mobility cost along the X-Y directions.
This has the effect of driving the hips of the robot base over the feet, naturally aligning the
base to the feet, similar to what was done in [Raiola et al., 2020]. However, a tracking cost on
yaw was still necessary in the NMPC to track the heading velocity ωusr

z commanded by the
user and to avoid oscillations.

Remark: The concept of mobility is model-independent hence, it can also be used with other
models, such as full body dynamics in the MPC setting.

3.4.2 ZMP Margin

In legged locomotion, the robot is often operated close to unstable configurations which require
a controller to continuously compensate for model inaccuracies and external disturbances while
maintaining locomotion stability. However, in a configuration in which the ZMP [Wieber,
2006] is close to the boundary of the support polygon [Bretl and Lall, 2008] there is a higher
chance that the robot can fall as a consequence of small perturbations.

The reference generator computes references for the GRFs by dividing the robot mass by
the number of legs as explained in Section 3.5. Penalizing GRFs Z component heavily in
the tracking cost of Eq. (3.2b) ensures that they stay close to the reference, consequently
maintaining a higher loading on the diagonally opposite leg to the swinging one, and therefore
maintaining some margin for the locomotion stability. Properly tuning the weights of Eq. (3.2)
reduces the complexity of the formulation, since it relieves from the need to impose an
additional constraint, e.g., ZMP inside the support polygon.

To evaluate the locomotion stability, the ZMP margin is computed as the minimum of the
distance of the ZMP from each support polygon edge, i.e.,

mc = min(d) (3.9)

where d is a vector of the distances of ZMP projection (on a horizontal plane) from the support
polygon edges.

3.4.3 Force Robustness

Similar to the considerations on mobility, in order to effectively compensate for disturbances
acting on the system, robustness in the GRFs is required. The closer the GRF is to the friction
cone boundary, the less lateral force the robot is able to withstand (due to perturbations)
without suffering from slippage. This behaviour enhances the importance of an algorithm
endowed with visual feedback from the environment.

An approach penalizing GRFs that are in the vicinity of the cone boundaries has been proposed
in [Focchi et al., 2016; Fahmi et al., 2020] inside the WBC. These WBC based approaches
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instantaneously generate GRFs that are as close as possible to the normals of the cones while
yielding the prescribed resultant wrench on the robot base. However, WBC does not account
for the future state of the robot and hence, it leaves some room for the NMPC to compensate
for the contact normal estimation error and recover from external disturbances. Introducing
these margins on GRFs from the cone boundaries is especially important in some scenarios,
such as the V-shaped chimney reported in simulation in Section 3.8.3.

In this approach, a similar idea to [Focchi et al., 2016; Fahmi et al., 2020] is adopted providing
the cost function with an additional term of Eq. (3.2d) in the NMPC, which penalizes
the tangential components of GRFs in the contact frame K (see Figure 3.2). Having X-Y
components smaller than Z component in K of GRFs determines that the resultant GRFs are
as close as possible to the contact normals. The Grid Map module is responsible for extracting
the normal of the terrains from the pointcloud of the images taken by the camera. The weight
matrix P used in this cost is defined in Table 3.2 (Section 3.8).

3.5 Reference Generator

The NMPC requires a reference trajectory of the state and control input along with the model
parameters i.e., foot positions and contact status. This reference trajectory also serves as an
initial guess for the first run of the NMPC. The references are generated for the length of
control intervals N , and the reference generator is called before every iteration of the NMPC
in order to obtain prompt adaptation to terrain changes and user set-point. The reference
generator is based on heuristics and takes as input:

• the user commanded longitudinal and lateral CoM velocity Hvusr
c ∈ R2 in the horizontal

frame H,2

• user commanded heading velocity ωusr
z ∈ R,

• current pose of the robot (pc,Φ),

• current feet positions pf ∈ R12,

• heightmap of the terrain

The output of the reference generator are:

• the references for the NMPC cost: states xref ∈ Rnx×(N+1), control uref ∈ Rnu×N ,

2The horizontal frame is placed like the CoM frame but with the Z-axis aligned with the gravity. In other
words, it corresponds to C having zero pitch and roll.
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• parameters a of the model: sequence of the contact status δ (∈ R4×N ) and sequence of
the foot locations pf (∈ R12×N ),

• normals n (∈ R12×N ) of the terrain at the foothold locations, which are provided as
inputs to the NMPC for the cone constraints and to define the contact frame C.

First the X-Y components of the total velocity vref
c ∈ R3 is computed; they depend on both

vusr
c ∈ R2 and the X-Y components of the tangential velocity due to the heading velocity
ωusr = (0, 0, ωusr

z ).
vref

c,(x,y) = vusr
c + (ωusr × pref

c )(x,y) (3.10)

The X-Y CoM position pref
c,(x,y) is obtained by integrating the vref

c,(x,y) (rotated in the world
frame) with the explicit Euler scheme. The references for CoM Z, roll and pitch are set to 0
because we do not track them in the NMPC cost of Eq. (3.2b). Instead, the reference for the
yaw ψ is obtained by integrating the user-defined yaw rate ψ̇usr with Φ̇usr = E−1(Φref)ωusr

(see Appendix A for the transformation between angular velocity and Euler rates). The
reference for angular velocity, instead, coincides with ωusr.

The references for GRFs uref are calculated by simply dividing the total mass of the robot
by the number of legs in stance. Dividing the forces equally onto the legs is correct only if
the robot is static. Still, in the case of dynamic conditions, it is a better approximation than
passing no references to the NMPC. This general limitation of the reference generators will be
discussed and addressed in the following Chapter.

The sequence of contact status δ and of footholds are computed by the gait scheduler and
robocentric stepping strategy, respectively. It is important to mention that the reference
generator does not compute the swing trajectories and they are obtained from the WBC
interface discussed in Section 3.6.1.

3.5.1 Gait scheduler

The gait scheduler is logically decoupled from the reference trajectory generation and determines
if a leg is either in swing or stance (δi) at each time instance for the entire gait cycle as shown
in Figure 3.5.

The leg duty factor Di and offsets oi can be used to encode different gaits such as crawl, trot,
and pace. The offset represents the moment in which the leg i begins a swing motion; the
duty factor indicates the time in which the leg i is in stance. Figure 3.5 shows the values for a
walk motion, i.e., one leg moves at a time. For example, the trot gait is obtained by choosing
the same values of oi for the two diagonal legs (LF-RH and RF-LH).

The gait scheduler implements a time parametrization s ∈ [0, 1] (stride phase) which is
normalized about the cycle time duration Tc such that the leg duty factor Di and offsets oi
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Figure 3.5: Gait schedule for a walk. Offsets o = [0.05, 0.3, 0.55, 0.8], duty-factors D =
[0.85, 0.85, 0.85, 0.85]. The red arrows represent the trigger ltr

i for a swing leg i. The values of
offsets and duty-factors can be used to encode all the gaits.

are independent of the cycle time. Each trigger ltri (red arrow in Figure 3.5) corresponds to a
new lift-off event. We can express the value of δ for leg i as:

δi =

1, s < oi ∨ s > ((oi + (1−Di)) mod 1)

0, otherwise
(3.11)

Every time the reference generator is called, it extracts N points from the gait schedule
starting from an index called gait counter. It keeps the memory of the index of the gait
schedule achieved by the previous call of the reference generator.

The synchronization between the first point of a contact sequence δik computed by the reference
generator and the actual contact state of the robot is an important challenge, since it prevents
the reference generator from computing a zero reference force while the leg is in stance and
vice-versa. In case of premature or delayed touchdown events, the synchronization is lost and
the gait counter is shifted backwards or forward to re-conciliate the planned touchdown with
the actual touchdown as shown in Figure 3.6. This is a crucial feature when dealing with
rough terrains. In particular, for the late touchdown, the gait counter is moved such that the
touchdown happens at the second node of the horizon. This guarantees that at least the first
value of the force (which is the only control input applied to the robot) is nonzero.
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Figure 3.6: Fast-forwarding (top) and re-winding (bottom) of the gait counter to recover the
synchronization between actual (haptic) and planned touchdown.

3.5.2 Robocentric stepping

The choice of the footholds is a key element in locomotion, since it deals with the kinematic
limits of the robot. Inspired by [Raibert, 1986], I use a heuristic approach that continuously
computes footholds consistent with the current position of the robot. To compute a foothold
for a swinging leg i, we consider its hip position hi instead of using the foot position at the
moment of the lift-off. In this way a disturbance acting on the robot or a tracking error that
occurred during a swing can be recovered in the following swing. In this section, I drop the
index i to simplify the notation. The lift-off trigger is a variable which is set to 1 at the first
node of the swing phase:

ltrk , δk ∧ δk+1

The foot position pfk+1 is computed as:

pfk+1 =

ptd
fk ltrk = 1

pfk ltrk = 0
(3.12)

Notice that at the lift-off condition ltr = 1 at instance k, pf is set equal to the touchdown
point ptd

f and it is kept constant until the next lift-off event occurs. As already explained,
pf has no effects during the swing on the dynamics of Eq. (3.3a) and Eq. (3.3b) since it is
multiplied by δ = 0. The X-Y component of the touchdown point is given by:

ptd
fk,(x,y) = hk + αT d

sw(vusr
c + (ωusr × pbh)(x,y)) (3.13)

The second term in Eq. (3.13) represents the step length (red arrow in Figure 3.7) which
is computed with respect to the hip instead of the previous foot location. Parameter α is
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Figure 3.7: Representation of the robocentric stepping strategy and of the Swing Frame, located
at the lift-off point. The red arrow shows the distance between the touchdown point ptd

f and the
hip h. The blue vector Lsw connects lift-off and touchdown point.

an empirically chosen scaling factor. Parameter T d
sw is the default swing duration computed

starting from user-defined offsets o and duty-factors Df . The distance between the hip and
the center of the base is denoted by pbh ∈ R3. A 2.5D heightmap of the terrain is evaluated
in correspondence of the touchdown point ptd

fk,(x,y) to obtain ptd
fk,z that does not penetrate the

terrain.

If ptd
f is located near to an edge or leads to collisions (e.g., of the foot or the shin) during the

step cycle, this can be harmful to the robot’s balance. To prevent this from happening, the
robot acquires a local heightmap in the vicinity of the touchdown point ptd

f and adjusts the
foot landing location using the VFA module presented in [Villarreal et al., 2019]. Even though
the footholds are not directly optimized, the VFA improves the heuristics of the reference
generator, providing the optimal value close to the nominal.

3.6 Whole-Body Controller

An overview of the WBC presented in [Fahmi et al., 2019] is provided in this section. The
goal of this module is to track the planned trajectories xp and up provided by the NMPC.
The WBC first computes feedforward Wd

ff and feedback Wd
fb wrenches from the planned

trajectories and then the sum of these wrenches are mapped into GRFs through the QP
optimization of Eq. (3.17). The WBC also maps the GRFs into the joint torques τ ∗. This joint
torque along with low-impedance feedback torque τfb results in the total torque τd required
by the low-level joint torque control block. Refer to Figure 3.1 for the block representation of
WBC inside the locomotion framework.
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3.6.1 WBC interface

As already mentioned, this module allows us to integrate the NMPC into the already existing
WBC.

The NMPC runs at replanning frequency of 25 Hz whereas the WBC requires state and control
inputs at 250 Hz (the WBC frequency). Hence, the WBC interface block re-samples the state
and the control inputs at the WBC frequency. In particular, in order to obtain the desired
ud, I use a zero-order hold filter of up. The planned states xp from the NMPC, instead, are
re-sampled with a linear interpolation to obtain xd.

The rigorous approach is to use the model of Eq. (3.3) to predict the evolution of the system in
the Ts time interval, considering the up coming from the NMPC, but for the motions considered
in this work the result is very similar, so a linear interpolation is a fair approximation.

Finally, a feedforward wrench Wff ∈ R6 is computed from the desired GRFs ud as:

Wd
ff =

[ ∑4
i=1 ud

i∑4
i=1 pd

cf,i × ud
i

]
(3.14)

3.6.2 Feedback wrench

The work of [Focchi et al., 2016] presented the implementation of a Cartesian impedance
which is reported here for the sake of completeness:

Wd
fb = K

[
pd

c − pc

e(wR>b wRd)

]
+ D

[
vd

c − vc

ωd
b − ωb

]
(3.15)

where wRb and wRd ∈ R3×3 are the rotation matrices representing the actual and desired
orientation of the base with respect to the inertial frame, respectively, e(·) : R3×3 → R3 is a
mapping from a rotation matrix to the associated rotation vector. Matrices K and D are
diagonal matrices containing the proportional and derivative gains and they can be interpreted
as impedances.

Remark: At each replanning instance of NMPC, the state reference is computed from the
current state of the robot x̂0. Thus, at each replanning instance, the feedback term is nullified.

3.6.3 Projection of the GRFs

While the feedforward wrenches Wd
ff provided by MPC satisfy the friction cone and unilateral

constraints by construction, this guarantee is lost with the addition of the feedback term Wd
fb

to the wrenches. Therefore, one needs to project the total wrenches Wd
ff + Wd

fb onto the set
of wrenches that satisfy the constraints.
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Let us define with c the number of stance feet, and let us write the matrix representation

[
I . . . I

[pcf,1×] . . . [pcf,c×]

]
︸ ︷︷ ︸

A


f1
...
fc


︸ ︷︷ ︸

f

= Wd
ff + Wd

fb︸ ︷︷ ︸
b

(3.16)

Equation (3.16) is derived from a simplified SRBD model and allows us to map the desired
wrenches into GRFs. The system (3.16) has 6 equations and 3c unknowns, so for a crawl
motion, it has infinite solutions. Thanks to this redundancy, it is possible to solve the following
QP to compute the desired GRFs fd:

fd = argmin
f

‖ Af − b ‖2S + ‖ f − ud ‖2T (3.17a)

s.t. d ≤ Cf ≤ d (3.17b)

The term ‖ f − ud ‖2T Eq. (3.17) allows the tracking of the desired forces ud received from
the NMPC. Matrices S ∈ S6

+ and T ∈ S12
+ are positive-definite weight matrices. Inequality

(3.17b) encodes the friction cone and unilateral constraints similar to Eq. (3.7). Using the
approximation with square pyramids, Eq. (3.17b) is equivalent to:

C ,


C0 . . . 0
... . . .

...
0 . . .Cc

 d ,


d0
...

dc

 d ,


d0
...

dc


with:

Ci =



(−µini + t1)>

(−µini + t2)>

(µini + t1)>

(µini + t1)>

n>i


di =



−∞
−∞

0
0

fmin


d =



0
0
∞
∞

fmax


where ni ∈ R3 is the direction normal to the terrain, t1, t2 ∈ R3 are the tangential components
and fmin, fmax ∈ R are the bounds for the normal force.

It is important to note that gravity compensation is already incorporated in the NMPC
formulation through the SRBD model and thus considered in Wd

ff .

3.6.4 Mapping GRFs to Joint Torques

The GRFs fd must be mapped into joint torques τ ∗. by exploiting the joint dynamics, see
Eq. (2.11):

τ ∗ = −J(q)>fd + h(q, q̇) (3.20)
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where J(q) ∈ Rnu×n is the contact Jacobian and h(q, q̇) the vector of gravity/Coriolis terms
in the leg joint dynamics. The number of joints is denoted by n.
In this case, the joint acceleration contribution M(q)q̈, is neglected because it is minimal
with respect to the other terms.

3.6.5 Joint-Space PD

A 1 kHz Joint-Space Proportional Derivative (PD) controller is put in cascade with the WBC
before sending torques to the low-level controller. It is fundamental to track the desired
trajectories of the swinging legs and to increase the robustness in case a foot loses contact
with the ground.

The WBC interface provides the joint trajectories qd and q̇d required by the Joint-Space PD.
To compute them, inverse kinematics is evaluated which in turn needs the swing trajectory
psw

f .

The swing trajectory generation takes advantage of the swing frame S [Raiola et al., 2020].
A drawing of this reference frame is provided in Figure 3.7. The X-axis is aligned with the
vector that links lift-off and touchdown point (Lsw), Y -axis is perpendicular to the X-axis of
the swing frame and to the Z-axis of the world frame. Finally the Z-axis is such that S is
a counter-clockwise coordinate system. The origin of the swing frame S coincides with the
lift-off point. In this way the swing trajectory lies on the X-Z plane and it is shaped as a
semi-ellipse with Lsw and Hsw as lengths of the axes:

Spsw
f =


Lsw

2 (1− cos(πfswtsw))
0

Hswsin(πfswtsw)

 (3.21)

where tsw is the time elapsed from the beginning of a swing and fs = 1/T d
sw is the swing

frequency. The mapping of Spsw
f and its derivative in the inertial frameW allows one to obtain

psw
f and ṗsw

f , respectively. Finally, after evaluating the relative foot position with respect to
the center of the trunk of the robot and similarly the relative velocity, the inverse kinematics
can obtain qd and q̇d

Remark: The variable pc is the CoM of the robot. While in the X-Y directions the robot is
symmetric and so pc,(x,y) is very close to the center of the trunk, the Z coordinate is shifted
downwards due to the effect of the legs. More in general, the mapping of CoM quantities into
base ones, i.e., related to the center of the trunk, depends on the values of q, q̇.
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3.7 Real-time iteration for NMPC

One of the main drawbacks of NMPC is its computational burden, thus efficient tailored
algorithms are necessary in order to achieve fast sampling rates for complex systems with fast
dynamics.

In this work, I exploit the RTI technique, i.e., a direct multiple shooting method derived from
SQP that has been specifically developed for real-time NMPC [Diehl et al., 2005].

In multiple shooting methods both state x and control input u are decision variables unlike
in single shooting where the decision vector only includes the control input. This does not
increase the computational complexity with respect to single shooting (where computations are
moved from linear algebra to the evaluation of derivatives). Furthermore, multiple-shooting
allows one to provide an initial guess also for the state trajectory, which is typically beneficial
for unstable systems in an NMPC context [Diehl et al., 2005].

SQP is a popular algorithm which solves an NLP by iteratively solving local quadratic
approximations (QPs) of the problem [Gros et al., 2020]. At each SQP iteration, the solution
from the previous step is recycled to define an initial guess (xL

k ,uL
k ), which is then used to

construct a QP approximation of the NLP (3.1), given by

min
∆x,∆u

N−1∑
k=0

1
2

[
∆xk
∆uk

]>
Hk

[
∆xk
∆uk

]
+ J>k

[
∆xk
∆uk

]
(3.22a)

s.t. ∆x0 = x̂0 − xL
0 , (3.22b)

∆xk+1 = Ak∆xk + Bk∆uk + rk, (3.22c)

Ck∆xk + Dk∆uk + hk ≥ 0, (3.22d)

where, ∆xk = xk − xL
k ,∆uk = uk − uL

k , x̂0 is the current system state, and

Ak = ∂f(x,u,ak)
∂x

∣∣∣∣
xL

k
,uL

k

, Bk = ∂f(x,u,ak)
∂u

∣∣∣∣
xL

k
,uL

k

,

Ck = ∂h(x,u,ak)
∂x

∣∣∣∣
xL

k
,uL

k

, Dk = ∂h(x,u,ak)
∂u

∣∣∣∣
xL

k
,uL

k

,

rk = g
(
xL
k ,uL

k ,ak
)
− xL

k+1, hk = h
(
xL
k ,uL

k ,ak
)

Jk = Wk

[
xL
k − xref

k

uL
k − uref

k

]
(3.23)
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Matrix Hk is the diagonal blocks of a suitable approximation of the Lagrangian Hessian.
Since our problem relies on a least-squares cost, we adopt the popular Gauss-Newton Hessian
approximation [Gros et al., 2020] that gives Hk = Wk.

While in SQP one solves several QPs until convergence is reached, the RTI scheme consists in
solving a single QP per sampling time. This is motivated by the observation that in NMPC
two subsequent problems have very similar solutions. Therefore, by reusing the solution of
the previous NMPC problem, one obtains a very good initial guess for the next problem,
which essentially only needs to correct for external perturbations and model mismatch. For
all details on the RTI scheme, I refer to [Diehl et al., 2005; Gros et al., 2020] and references
therein.

An interesting discussion arises from that the guess (xL
k ,uL

k ) is known before the next state
measurement is available; this means that one can already evaluate the functions and their
derivatives (3.23) before the initial state x̂0 is available. Consequently, the QP can be
constructed and prepared beforehand; note that this also includes the first factorization of the
QP Hessian. Once x̂0 is available, one only has to finish solving the QP. Therefore, while the
overall sampling time must still be long enough to prepare the next QP, the latency between
the time at which x̂0 is available and the time at which the control input can be applied to
the system is very small.

In the RTI scheme proposed above, the functions and their derivatives (3.23) are evaluated
along a guess obtained from the previous solution, rather than along the reference trajectory.
In this way a better approximation of the original problem is obtained.

Another important aspect to highlight is that there exist several approaches to compute Eq. (3.23).
One choice consists of first linearizing the continuous-time system dynamics and then using
the matrix exponential to obtain a discrete-time linear system. This approach presents some
advantages, but can be computationally demanding. For the time-varying and infeasible
references, however, it is preferred to first discretize and then linearize [Gros et al., 2020].
In this work, due to the presence of time-varying and infeasible references, the usage first
discretize and then linearize approach is preferable. An advantage of this approach is that
after numerically approximating the discrete-time dynamics, the linearization can be obtained
at a desired accuracy.

A very popular way to obtain discrete-time dynamics is with the explicit Euler integrator,
which is computationally inexpensive, but can be inaccurate and unstable. Therefore, it is
usually more efficient to resort to higher-order integration schemes, such as,e.g., the popular
Runge-Kutta methods. Finally, there also exist implicit integration schemes, which require
more computations per step, but they are typically much more stable and accurate than explicit
schemes for some classes of systems. Unfortunately, the selection of the least computationally
demanding integrator which delivers sufficient accuracy depends on the problem setting and
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cannot be known a priori. Typically it requires some trial-and error approach, which can be
educated using some guidelines based on the theoretical properties of each integrator [Quirynen,
2017; Butcher, 2003; Hairer et al., 1993, 1996; Quirynen et al., 2014].

This work relies on the RTI implementation provided by acados [Verschueren et al., 2019],
which consists of tailored efficient implementations of QP solvers, numerical integration
schemes, and all other components of the RTI scheme.

3.8 Results

This section discusses the implementation details and results obtained from the simulations
and experiments with the NMPC scheme proposed in Section 3.3.

The videos of both simulation and experiments can be found at the following link:
https://youtu.be/r0-KIiw0eWM.

3.8.1 HyQ

Presented in 2011, HyQ is the first quadruped produced by IIT’s DLS3 during its twelve-years
history. The robot weighs 87 kg and operates connected to a hydraulic pump and an external
power supply. An IMU-based State Estimator [Nobili et al., 2017] is used instead of a motion
capture system allowing one to perform experiments in outdoor spaces.

Each leg has three DoFs: Hip Adduction-Abduction (HAA), Hip Flexion-Extension (HFE),
Knee Flexion-Extension (KFE). The HAAs are composed of hydraulic rotary motors equipped
with torque sensors. The HFEs and the KFEs, instead, use hydraulic linear cylinders; the
torques are estimated by measuring the linear forces at the cylinder. Joint positions are
measured by the encoders, while joint velocities are obtained through differentiation of the
position signals; the GRFs are estimated from the joint quantities. Please refer to [Semini,
2010] for additional details on the hardware design of HyQ.

3.8.2 Implementation details

To check the efficiency of the RTI-based NMPC algorithm with the proposed features mentioned
in Section 3.4, several simulations and experiments are proposed in challenging scenarios. The
simulation and experiments were performed on the HyQ robot of mass m = 87 kg. The CoM
is computed considering the mass of the individual link of the robot and the actual position
of the links’ CoM. The position of the links’ CoM in their local frame is obtained from their

3Website: https://dls.iit.it/
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CAD models. That information is also used to find the relationship between CoM and the
center of the trunk for the swing generation (Section 3.6.5).

The feedback gains used in the WBC are K = diag(1500, 1500, 1500, 100, 100, 100) and D =
diag(1000, 1000, 1000, 50, 50, 50). The weights for the QP (Eq. (3.17)) S = diag(5, 5, 10, 10, 10,
10) and T = diag(1000, · · · , 1000).

The parameters and weights used by the NMPC are reported in Table 3.1 and 3.2, respectively.
In all of the simulations and experiments, there are no any weights on the CoM position
(pc), roll (φ) and pitch (θ) tasks because the NMPC is able to sort out these CoM quantities
autonomously, e.g., with the mobility term.

Table 3.1: NMPC parameters

Parameter Symbol Value Unit

Number of state nx 12 -
Number of control inputs nu 12 -
Number of model parameters np 16 -
Prediction horizon T 2 s
Sampling time Ts 0.04 s
Number of control intervals N 50 -
Friction coefficient µ 0.7 -
GRFs lower bound f z 0 N
GRFs upper bound f z 500 N
Hip-to-foot distance reference Cpref

hf,i (0.0, 0.0,−0.55) m

Discretization

For the discretization of the dynamic constraints of Eq. (3.5), I mainly investigated two
integration schemes, i.e., a single step of the explicit Euler of order 1 and implicit midpoint
method due to their low computational complexity that favors the real-time implementation
needs.

The explicit Euler of order 1 is the most basic explicit methods and it is based on the truncated
Taylor expansion:

xn+1 = xn + (tn+1 − tn)f
(
xn, tn

)
The implicit midpoint method is a second order Range-Kutta discretization method and its
formulation is:

xn+1 = xn + f
(xn + xn+1

2 , tn + tn+1 − tn
2

)
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Table 3.2: Weights used in the NMPC

Cost Weight Value

State

Qpc diag(0, 0, 0)
Qv diag(100, 100, 100)
QΦ diag(0, 0, 100)
Qω diag(100, 100, 1000)

Force
Rx 1× 10−3

Ry 1× 10−3

Rz 8× 10−4

Mobility
Mx 1× 10−4

My 2× 10−3

Mz 1000

Force
robustness

Px 100
Py 100
Pz 1

Among the two, the midpoint demonstrated better performance because of its stability
and accuracy properties. The achieved accuracy did not require more complex schemes,
e.g., Range-Kutta of order 4.

The sampling time Ts = 40 ms was chosen and it was sufficient to conduct NMPC computation
online along with the other necessary computations for the replanning.

NMPC software

The RTI scheme described in Section 3.7 is implemented in the acados software package.
Since acados comes with a Python interface allowing rapid prototyping, we first tuned the
algorithm in simulation and then used the generated C-code to perform real experiments.
The problem is solved with the QP solver High-Performance Interior Point Method (HPIPM)
[Frison and Diehl, 2020], which exploits the sparsity structure of the MPC QP sub-problem
(3.22), and supports inequality constraints. Details on Interior Point have been described in
Section 2.2.3.

The computation time required by the NMPC was in the range of 5-7 ms with the prediction
horizon of 2 s and control intervals N equal to 50 on the on-board computer (a Quad Core Intel
Pentium PC104 @ 1GHz) of HyQ for all the experiments. This computation time corresponds
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to the feedback phase of the RTI scheme where the QP of Eq. (3.22) is solved after receiving
the current state of the robot. The preparation phase of the RTI takes about 2-3 ms which
is a fraction of the sampling time we chose. Refer to Section 3.7 for more details on these
phases of the RTI scheme. Even though the computation time of NMPC is mostly consistent,
some outliers happened. Hence a conservative approach to run the NMPC at 25 Hz guarantees
that the computation time stays always less than 40 ms. Besides the computation time of the
NMPC, the replanning frequency of 25 Hz also accounts for the time required by other blocks
such as reference generator so that the total computation time does not exceed 40 ms.

Integration with the locomotion framework

The NMPC is integrated in a ROS node that publishes xp and up at a frequency of 25 Hz.
The on-board computer along with our locomotion framework (WBC Interface, WBC, etc.,
illustrated in Fig. 3.1) runs a real-time node that subscribes to the topic of the NMPC
ROS node. ROS is not a real-time operating system, so it can introduce quite a significant
and unpredictable communication delay if the NMPC is run on an external (e.g., more
powerful) computer. These delays are difficult to compensate for and they can cause a loss of
synchronization between the NMPC ROS node and the WBC interface. Therefore, the NMPC
node is launched natively on the on-board computer to avoid communication delays between
two different computers.

Even though a more powerful dedicated off-board computer for the NMPC ROS node could
be exploited, better performance in the overall implementation is obtained by avoiding the
communication delays of ROS.

3.8.3 Simulations

Simulations in Gazebo [Koenig and Howard, 2004] shows the NMPC planner in action on
challenging terrain.

Gazebo is a 3D simulator designed to reproduce the dynamic environments a robot may
encounter. The simulated environment is populated by model with mass, velocity, friction,
and numerous other attributes that allow them to behave realistically when pushed, pulled,
knocked over, or carried. In particular, robots are dynamic structures composed of rigid bodies
connected via joints. Forces, both angular and linear, can be applied to surfaces and joints to
generate locomotion and interaction with an environment.

The main simulations are pallet crossing, walking over unstructured rough terrain and walking
into a V-shaped Chimney.
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Pallet crossing

In this simulation, HyQ traverses pallets of different heights, placed at varying distances from
each other.

This simulation highlights the importance of including mobility in the NMPC formulation
(3.2c). In particular, the simulation scenario includes a set of pallets, each one of 1 m length,
with variable heights between 0.13 and 0.17 m and placed at unequal gap lengths ranging
from 0.2 and 0.7 m. Multiple trials are performed commanding the robot to move forward
at different velocities i.e., 0.05 m/s and 0.1 m/s to show the repeatability of our approach.
To avoid stepping on undesired locations such as pallet edges and to prevent foot or shin
collisions, the nominal footholds are adjusted by using the VFA (refer to Section 3.5.2).

Figure 3.8 shows the results of five different trials for each of the commanded velocities. The
top plot shows the pitch angle θ of the robot as it traverses the scenario. Since the robot
is only commanded to move along its X direction with a constant forward velocity and the
foot locations are provided as known quantities to the NMPC, the adjustment in pitch is the
result of minimizing the deviation from the hip-to-foot distance configuration corresponding
to high mobility for all four legs. Without this feature, the robot would maintain a constant
horizontal orientation (see Fig. 3.9) eventually reaching low mobility in some legs.
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-0.05
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Figure 3.8: Simulation of pallet crossing scenario for five different trials commanding the robot
to cross at 0.1 m/s (blue) and 0.05 m/s (red). The top graph shows the pitch angle and the
dashed vertical lines indicate the edges of the pallets for that specific location in the plot. The
bottom graph shows the CoM Z position for all the trials and the feet trajectories for one of the
trials performed at 0.1 m/s. The color of the swings are related to the different legs.
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Figure 3.9: Comparison of the robot pitch θ in simulation with and without mobility cost in the
NMPC. The red and green lines represent the planned pitch values delivered by the NMPC. The
blue and black dashed lines are the actual pitch of the robot. Without mobility cost, the robot
maintains a horizontal orientation, whereas the robot pitches to improve leg mobility when it is
included.

In addition, the robot is able to walk on randomly generated rough terrain (using terrain
generation tool by [Abbyasov et al., 2020], see Figure 3.10) with the forward velocity of 0.3 m/s
further stressing the advantages of mobility cost mentioned earlier. Figure 3.10 (bottom)
shows the heightmap built by the robot during the motion. Different colors (e.g., light blue
and pink) represent points with different heights. The red disks indicate the nominal footholds
in the prediction horizon computed by Eq. (3.13). The green disks refer to the foot location
corrected by the VFA to avoid holes and be coherent with the terrain.

Walk into a V-shaped chimney

In this simulation, HyQ walks at 0.03 m/s commanded velocity in the X direction into a
V-shaped chimney with friction coefficient µ = 0.7 and walls inclined at 35◦ to the ground.
This simulation exploits the cone constraints and force robustness cost defined inside the
NMPC formulation that is vital for the success of this task. The robot receives an online
update of the map of the environment through an on-board camera to get information about
the normals at the location of the contact. These normals are used to formulate the force
robustness cost of Eq. (3.2d) in the contact frame K. With this cost, the NMPC provides
optimal GRFs to stay close to the normals of the friction cones at the contacts. An image of
this scenario is reported in Figure 3.11.

Without the cone constraints, the robot slips while climbing the chimney and ultimately falls.
When the force robustness cost is enabled, the forces are regularized to stay in the middle of
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Figure 3.10: Simulation: HyQ traverses a randomly generated rough terrain thanks to the mobility
feature. Red disks show nominal footholds, which are then corrected by the VFA (green disks).

the cones, thanks to the robustness feature described in Section 3.4.3. In this case, the robot
walks successfully into the chimney.

In Figure 3.12, it can be seen that the longitudinal and lateral components of the GRFs at
the LF foot stay within the bound µfz (in red) imposed by the cone constraints. Moreover,
Figure 3.13 plots the normal versus the tangential force of the GRF together with the cone
bound µfz (red line). The picture shows that the GRFs stays well within the bound without
any violation. Therefore, including the force regularization term enables the NMPC to account
for the estimation error in the orientation of contact normals and increase robustness to the
external disturbances.

Apart from the simulation mentioned above, the video4 shows two additional simulations: a
first regarding the ZMP margin (refer to Section 3.4.2) and a second that demonstrates the
importance of a replanning at a higher rate.

For the ZMP margin simulation, the robot is pushed with 200 N of lateral force for 1 s both in
case of sufficient (higher weight on GRFs Z) and no (lower weight on GRFs Z) ZMP margin.
The ZMP margin plots for this simulation can be seen in Figure 3.14 where the ZMP margin
is improved in case of the red line compared to the blue one because the GRFs Z components
are penalized relatively more (100 times) for the red line. Because of the improved margin the

4https://youtu.be/r0-KIiw0eWM
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Figure 3.11: Comparison of the robot walking into a V-shaped chimney with and without force
robustness (Eq. (3.2d)) cost in the NMPC. The red, green and blue lines arrows represent planned
fp, the WBC fd and the measured forces respectively. The image on the top refers to the case
without the force robustness. The RF GRFs are aligned with the border of the friction, providing
no robustness. The force robustness instead (bottom) drives the solution towards the center of
the cone
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Figure 3.12: Walk into a V-shaped chimney simulation: GRFs of LF leg for a single gait cycle with
cone constraints and regularization cost. Both the longitudinal fx and lateral fy lie conservatively
within the bound µfz imposed by cone constraints.

robot walks stably, whereas it falls while walking when there is no margin.

In the second simulation, the robot is commanded with a constant CoM X velocity and
heading velocity simultaneously. In the case of replanning at a lower rate of 0.8 Hz, the robot
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Figure 3.13: Walk into a V-shaped chimney simulation: Normal force fz versus tangential force√
f2

x + f2
y of the LF leg for a single gait cycle expressed in the contact frame. The red line is the

cone bound µfz.

becomes unstable and falls due to the increasing in model uncertainties and tracking errors.
When the replanning is done at a lower frequency than 25 Hz, the robot is in open-loop for
the time interval between two consecutive replanning instances, hence, it is no more NMPC
but an online open-loop trajectory optimization. On the other hand, at a higher replanning
frequency of 25 Hz the robot walks successfully because the NMPC compensates for the model
uncertainties and tracking errors.

3.8.4 Experiments

This section reported three different experiments which have been performed to demonstrate
the real-time implementation of the NMPC running on the on-board computer of the robot.
The video can be seen at the same link: https://youtu.be/r0-KIiw0eWM

Omni-directional walk

In this experiment, HyQ executes an omni-directional walk performed with the NMPC on a
flat terrain. It validates that the NMPC computes feasible trajectories after receiving different
velocity commands from the user while walking. Indeed, the robot is commanded with a
longitudinal velocity Hvusr

c,x by the user to walk forward/backward and then a lateral velocity
Hvusr

c,y . Finally, a heading velocity ωusr
z is commanded to turn in the left/right direction.

Figure 3.16 shows the CoM X-Y position and yaw angle of the robot base and it can be
noticed that the actual values track very closely the planned trajectories provided by the
NMPC.

Angelo Bratta Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion

https://youtu.be/r0-KIiw0eWM


3.8 Results 57

0 1 2 3 4 5 6
0

0.1

0.2

0.3

Figure 3.14: Plot of the ZMP margin mc used to measure locomotion stability. The robot is
pushed immediately after 2 s with lateral force of 200 N while walking on a flat terrain at 0.1 m/s
CoM X velocity. The discontinuities are due to the switching between 3/4 stance legs in a crawl
gait.

Figure 3.17 depicts the deviation of the actual velocities from the reference values while
following the planned trajectories form NMPC. It can be seen in Fig. 3.18 that the GRFs
generated by the WBC are compliant with the planned values up and again the actual values
of GRFs track closely the planned values.

From these plots, it can be observed that the continuous replanning with NMPC plays an
important role to achieve good tracking of the planned trajectory.

Traversing a static pallet

The purpose of this experiment is to demonstrate that the mobility cost (3.2c) incorporated
in the NMPC formulation provides the necessary body pitch for the robot to traverse over a
static pallet while maintaining good leg mobility. The pallet used in this experiment is 0.13 m
in height and 0.8 m in length.

Figure 3.19 shows that the robot pitches up while climbing up the pallet and pitches down
consequently while climbing down from the pallet. As shown in the previously mentioned video,
in the simulation, the NMPC maintains the horizontal base orientation when the mobility
cost is deactivated. This causes a reduced hip-to-foot distance while stepping up/down on
the pallet ultimately resulting in low leg mobility. When mobility cost is activated, it directs
the NMPC solution to achieve the necessary pitch; in this way, the hip-to-foot distance is
maintained close to the reference value, and hence the leg mobility is improved. Moreover, the
VFA provides the corrected foot position (i.e., to avoid shin or feet collisions with the edges
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Figure 3.15: DLS’ quadruped robot HyQ traversing a pallet with the mobility enhanced real-time
NMPC.

of the pallet) to the NMPC and this further enhances the overall locomotion.

Traversing a repositioned pallet

In this experiment, the NMPC is tested to plan the robot motion in real-time by adapting to
the changes in the environment.

As it can be seen from the uploaded video, when the pallet (0.13 m in height and 0.8 m in
length) is pushed in front of HyQ while walking, the heightmap detects the pallet and the
VFA provides updated foot locations to the NMPC. The NMPC after receiving these updated
footholds delivers a solution by pitching up the robot base in order to adapt to the change in
the environment while maintaining the mobility. Even though the mobility cost is defined for
the stance legs, it is interesting to notice that the NMPC decides to adjust the base pitch while
swinging the RF leg onto the pallet (Figure 3.20) by forecasting the change in the hip-to-foot
distance at the touchdown. This experiment highlights the advantage of the predictive control
over the traditional control approaches for its ability to incorporate the knowledge of the
future states. It also validates the effectiveness of our mobility cost in the NMPC coupled
with the VFA to adapt to the changes in the locomotion environment.
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Figure 3.16: CoM X-Y position and yaw ψ in omni-directional walk experiment. The blue,
dotted red and dashed green line represent the actual, planned and reference values, respectively.

3.9 Discussion and Conclusion

3.9.1 Discussion

The MPC is a popular research topic which demonstrated significant improvements in recent
years. The work presented in this chapter aims at improving state-of-the-art approaches by
introducing a framework that runs at a (sufficient) high frequency and adapts the motion to
the environment.

The RTI scheme for the NMPC enables one to close the loop at 25 Hz on the NMPC with a
prediction horizon of 2 s. The replanning frequency is set to a conservative value to ensure
that the synchronization is always satisfied, even in the presence of a few outliers. This choice
has been validated with trials at lower frequencies and increases the robustness and reliability
of the algorithm.

Other MPC works achieved higher replanning frequency, e.g., [Neunert et al., 2018; Farshidian
et al., 2017a], but in this work, I did not encounter the need for a faster replanning. Indeed,
closing the loop on NMPC at 25 Hz allows us to compensate for the state drifts due to model
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Figure 3.17: The longitudinal ṗc,x, lateral ṗc,y and angular ωz velocity of the robot in omni-
directional walk experiment. The blue, dotted red and the green line represent the actual, planned
and reference values, respectively.

inaccuracies and react to the change in the environment. Anyhow, the solver takes less than
10 ms on average to compute a new solution, so it is always possible to increase the frequency.

In addition, the strength of this formulation is that it is able to generate stable motions in
non-flat terrain acquiring data from the heightmap (differently from [Neunert et al., 2018])
without the need to define heuristic references for orientation or kinematics limits. To the best
of my knowledge, it is the first time that mobility has been addressed in an MPC fashion.

Limitations

The NMPC proved to be effective to compute feasible CoM and GRFs trajectories; anyway, it
is worth highlighting limitations and possible improvements of the formulation. First of all,
the reference generator endows the NMPC with unfeasible, heuristic trajectories; for example,
the X component of the reference GRFs is null even though the tracking of a linear X velocity
is required. Consequently, tuning the weights becomes a crucial and challenging task that can
degrade the performance. An optimization-based reference generator would overcome this
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Figure 3.18: GRFs from one gait cycle in the omni-directional walk experiment (only one cycle
for better visibility of the data). The green, dotted red and dashed blue line represent the output
from WBC i.e., fd

z,i, planned and actual values, respectively.

0 20 40 60 80 100
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 3.19: Planned (red) and Actual (dashed blue) pitch of the robot base while traversing a
static pallet in the experiment at a commanded CoM X velocity of 0.03 m/s.
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Figure 3.20: Robot base pitch achieved during the swing of RF leg while traversing a repositioned
pallet in the experiment a commanded CoM X velocity of 0.05 m/s. The red and dashed blue line
are planned and actual values.

limitation. Furthermore, feet locations and timings are parameters of the NMPC and thus are
not optimized. In particular, the VFA improves the nominal position to deal with kinematic
limits and morphology of the terrain but has no information on the optimal CoM trajectories.

3.9.2 Conclusion

In this chapter, I have presented a real-time NMPC which leverages optimization of leg mobility
to achieve terrain adaptation. Including the contact sequence parameters (footholds and gait
status) inside the SRBD model prevents one from adding the complementarity constraints
explicitly.

In our NMPC, the mobility cost penalizes the hip-to-foot distance from a reference value
corresponding to a high mobility factor, and hence it directs the NMPC to compute essential
robot orientation to maintain high mobility while respecting the kinematic limits. This is
evident from the pallet experiments where we also included VFA to correct undesired foot
positions defined by the heuristics and avoid possible foot and shin collision. Accounting for
the ZMP margin in our NMPC improved the locomotion stability of the robot in all of our
experiments and simulation by keeping a sufficiently large ZMP margin from support polygon
boundaries. Incorporating a force robustness term in the NMPC ensures that the GRFs stay
close to the contact normals and hence, it enables the robot to cope with the estimation error
of the orientation of the contact normals.

Omni-directional walk, traversing a static/relocated pallet and a set of simulations validate
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the locomotion framework on HyQ robot.

The work presented in this chapter has been published in [Rathod et al., 2021].
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Chapter 4

Optimization-Based Reference
Generator

4.1 Introduction

In the previous chapter, I introduced an NMPC-based locomotion framework for quadruped
robots. In this framework, the reference generator module had the purpose of providing
trajectories for the cost function together with footholds and contact sequence. The NMPC
computes the optimal trajectories which are then tracked by the WBC. This pipeline’s
schematic is shown in Figure 3.1.

The idea behind this new chapter is that generally NMPC algorithms utilize reference trajec-
tories computed from heuristics and a proper tuning of the weights is essential to obtain good
performance. For instance, when a legged robot has to deal with some process noise (e.g., react
to disturbances from the environment) or track a specific goal with statically unstable gaits,
the effectiveness of the algorithm can degrade.
The aim is to develop a two-stage optimization framework, in which the reference trajectories
for the NMPC are the solutions of an OCP. Such an approach can deal with the issues of the
heuristic references and consider additional features.

For example, a shortcoming of a standard MPC implementation is related to the fact that
the robot becomes “transparent” to external pushes, i.e., at each sample the new trajectory
starts from the actual position. Therefore an additional effort is required to track a specific
reference Cartesian position or to return, after a push, to the original one.

A common practice is to have user-defined values as a reference for the MPC [Di Carlo et al.,
2018]. In these approaches the user would have to manually change the reference velocity in
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order to compensate for the deviation caused by the push. Another possible solution would be
to add in parallel to the MPC a simple Cartesian PD control action to attract the CoM to a
desired position [Grimminger et al., 2020]. However, this control strategy has some notable
limitations, in particular:

1. the added wrench does not consider the wrench produced by the MPC layer (hence,
there will be a fight between the two controllers with the risk of violating feasibility).

2. the PD is not aware of the hybrid dynamics of the legged robot, i.e., the intermittent
contacts and the (possible) under-actuation.

3. the PD approaches cannot change foot locations, which is crucial to deal with lateral
pushes [Barasuol et al., 2013].

Another possibility to track a fixed goal is adding it to the cost function. This would solve the
issue number 1 of the PD controller, because the constant position is embedded in the cost
function of the MPC, hence the “conflict” is dealt with at the cost level resulting in feasible
contact forces. However, this solution suffers from the fact that footholds cannot be changed,
and thus the robot will be able to apply a limited resistive force before the legs lose their
control authority (e.g., when the CoM/ZMP goes out of the support polygon), and therefore
is of restricted applicability.

Since, undoubtedly, accurately tuning the weights for the different cost terms is a tedious
task [Bouyarmane and Kheddar, 2018] and having more physically meaningful references has
been shown to improve performance [Bledt and Kim, 2019], this chapter extends the algorithm
of Chapter 3 by including a novel optimization-based reference generator. Differently from
[Bjelonic et al., 2022], the optimization is executed online at the same frequency as the NMPC.

The LIP model [Kajita et al., 2001] is used to compute reference trajectories for the CoM while
taking into account the possible under-actuation of a gait (e.g., in a trot). A QP Mapping is
used then to compute the required forces to track those velocities. The foot locations are also
corrected using the optimized reference to drive the robot towards the goal.
The effectiveness of the approach is validated both in simulations and experiments in three
different scenarios:

(a) straight motion

(b) fixed lateral goal

(c) recovery after a push

The proposed approach allows one to address all the limitations of the solutions mentioned
before.
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Figure 4.1: Picture of Unitree’s Aliengo quadruped robot.

I used the Aliengo robot of Unitree1 shown in Figure 4.1. Using a different robot than the
results show in Section 3.8 demonstrates that the performance of the NMPC does not depend
on the chosen hardware.

Outline

The rest of the chapter is organized as follows: Section 4.2 gives an overview of our planning
framework, highlighting the main features of the reference generator. Section 4.3 describes the
optimization problem with the LIP model and how it is used to compute CoM position velocity
and GRFs references. Simulations and experiments with our Aliengo robot are presented in
Section 4.4. Finally, discussion and conclusions are drawn in Section 4.5.

4.2 Locomotion Framework Description

Figure 4.2 gives an overview of the entire locomotion framework and it highlights the new
reference generator. It is an extension of Figure 3.1, and it shows the structure of the new
module. For the sake of clarity of the image, all the elements of the WBC and the PD Joint
Controller have been represented with a unique block since they have not been modified.

The user decides the leg sequence, i.e., type of gait (trot and walk) and order to move the
legs, and the values of both linear vusr

c ∈ R2 and heading ωusr
z ∈ R CoM reference velocities,

i.e., the velocities that the robot should follow. Given the user-defined leg sequence, the gait
scheduler (Section 3.5.1) returns the contact status (either swing or stance) δi,k ∈ R of each
leg i and for each time instant k in the reference horizon (divided into Ng intervals). 2

1Website: https://www.unitree.com/products/aliengo/
2Note that Ng can be different from the number of control intervals N used in the NMPC, with Ng ≥ N .
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Figure 4.2: Block diagram of the proposed locomotion framework. Given the leg sequence, the
user-defined velocities, and the actual state of the robot x̂c, the reference generator computes the
gait status δ, the footholds pf , the reference states xref

c and GRFs uref for the NMPC at each
control loop. If the norm of the error e between the goal and the average CoM position during the
last gait cycle p̄c is smaller than the threshold, simple heuristic techniques are used. In the other
case, the reference generator is in the optimize status. CoM position and velocity to accomplish
the task are computed with a LIP model; a QP mapping is used to obtain the GRFs corresponding
to the ZMP computed by the LIP optimization. In addition, the CoM velocity is used to improve
the footholds. Finally, the NMPC computes the optimal trajectories for CoM quantities xp

c and
GRFs up. A Whole-Body Controller and a PD-Joint controller compute the optimal torques τd

that are sent to the robot.

The robocentric stepping module (Section 3.5.2) has the important task of computing footholds
for each leg over the entire horizon. The sequences pf and δ are the input parameters for the
NMPC optimization.

If the error between the goal and average CoM position is lower than a threshold (Section 4.2.1),
the reference generator does not perform optimizations and heuristic approaches are used to
compute references for the NMPC (Eq. (3.10)). This condition is named heuristic reference
generator. A description is provided in the previous chapter.

Instead, when the reference generator is in the optimize state, the sequences pf and δ are the
input parameters to a first-stage optimization that employs the LIP model (Section 4.3.1).
Here we compute the optimal X-Y CoM trajectory pg

c ,vg
c to reach the goal pgoal

c where
dynamic stability is satisfied (i.e., ZMP always inside the support polygon). However, since
the footholds are computed the first time with the simple heuristic approach, they are then
recomputed using the optimized velocity.

To improve the accuracy, the LIP optimization can be repeated with the new set of footholds.
These two operations, i.e., LIP optimization and update of the footholds, can iterate until a
stop condition is reached, e.g., the maximum number of iterations or difference between two
consecutive solutions below the defined threshold.

The CoM velocity trajectory vg
c computed by the LIP model optimization is then used as
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velocity reference for the NMPC.3 A QP-based mapping (Section 4.3.2) computes the references
for the GRFs uref .

Finally, the output of the NMPC are the CoM trajectories (position, orientation, linear
and angular velocities) xp

c and the GRFs up that will be sent to the Controller block. The
Controller is composed of the 250 Hz WBC Interface (Section 3.6.1), the 250 Hz WBC [Fahmi
et al., 2019] and the 1 kHz PD-Joint controller. They generate the torque references τd for
the low-level joint controller of the robot. The State Estimator module [Nobili et al., 2017]
provides the actual values x̂c of the robot at a frequency of 500 Hz.

4.2.1 Goal Setting and Status of the Reference Generator

As already explained in Section 4.1, the robot cannot follow a user-defined velocity in the
presence of non-idealities or external disturbances,4 due to the MPC transparency. For this
reason, we define the goal pgoal

c ∈ R as the X-Y position the robot would have reached if it
had followed the user-commanded velocities vusr

c . The goal is updated at each iteration of
the NMPC. It is initialized with pgoal

c = p̂c,(x,y) +Ngvusr
c Ts at the beginning of an experiment

and each iteration increments by vusr
c Ts. Variable Ts is the sampling time of the reference

generator and it is equal to 1/fs where fs is the planning loop frequency.5 As an alternative,
the user can decide a fixed goal, either for one coordinate or both. We assume that there are
no obstacles and the goal can be reached.

In order to change the status of the reference generator from heuristic to optimize in a
meaningful way (e.g., no activation due to the normal sway of the robot) the algorithm
considers the average p̄c of the X-Y CoM position during the last gait cycle. To the average
position, we add the offset due to the desired motion in the horizon Ng and compare it with
the goal. The error is computed as: e = pgoal

c − (p̄c +Ngvusr
c Ts) and when its norm ‖e‖ goes

beyond a threshold the reference generator status is set to optimize.

Algorithm 1 illustrates the pseudo-code of the different computation phases of the reference
generator.

4.2.2 Formal Guarantees on Response Time

In an optimization problem, if we set the tracking of the goal in the cost (either in the running
or in the terminal cost), the response will depend on the tuning of the weights of the cost

3As described in Section 3.5, reference CoM position, roll and pitch are not tracked, the reference for the
yaw is obtained by integrating the user-defined yaw rate ωusr

z .
4The case of a fixed goal corresponds to a scenario in which vusr

c,y = 0.
5For the sake of simplicity, the sampling time Ts of the NMPC and the reference generator are set equal to

the same value.
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Algorithm 1 Reference Generator
1: Reference Generator status ← HEURISTIC

2: e← pgoal
c − p̄c −

(∫NgTs
0 vusr

c dt
)

3: if ‖e‖ > tol then
4: Reference Generator status ← OPTIMIZE
5: pf , δ ← Heuristic References
6: if OPTIMIZE Reference Generator then
7: while stop condition is not reached do
8: vg ← LIP Model Optimization(pgoal

c , x̂c)
9: pf ← Robocentric Stepping(vg

c)

10: vref ← vg

11: uref ← QP Mapping(pg
c ,wg,pf)

12: else
13: vref ← vusr

14: uref ← Gravity Compensation
15: pgoal

c ← pgoal
c + vusr

c Ts

16: solve the NMPC

itself. In addition, with this approach, we cannot impose a predefined time Tf in which the
robot reaches the goal (response horizon).6 For these two reasons a hard constraint to impose
that the CoM position matches the goal can be added to guarantee a response interval equal
to Tf , starting from the first time instant when the reference generator is set to the optimize
status. In addition, we also need to impose the same hard constraint on all the samples
after M = Tf/Ts; in this way once reached, the goal is continuously tracked by the reference
generator. Indeed, at every iteration of the NMPC, the interval without constraint should
shrink because otherwise the target would never be reached, see Fig. 4.3. For this reason a
hard constraints on the goal is enforced, with the number of samples M gradually reducing
to zero. In this way, the goal is reached in a time that does not depend on the tuning of the
weights.

In practice, using hard constraints might lead the optimization to be trapped in an infeasi-
ble solution [Hult et al., 2019]. Therefore, an implementation with slacks variables in the
constraints, that allows one to relax them, is preferable. Penalizing their value in the cost
function of problem (4.2) guarantees that the robot reaches the target in a predefined time
interval; if this is not possible, the solver will find the “best” feasible solution.

6The size of the horizon Ng will be linked to the response horizon Tf , therefore there will be a maximum
value of Tf that can be achieved by the reference generator, related to the real-time constraint posed by the
replanning frequency fs. This will depend on the computational power of the machine where the optimization
is run.
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Figure 4.3: Pictorial representation of the goal constraints enforced to achieve a certain response
time Tf . The highlighted blocks corresponds to the nodes of the LIP optimization in which the
constraint (4.2f) is active. At every iteration the variable M is decreased such that the time to
reach the target matches the predefined time Tf .

4.3 Optimized Reference Generator

As already mentioned, the task of the reference generator is to compute along a horizon Ng

the linear (i.e., longitudinal and lateral) CoM velocity reference trajectories vg
c to reach a

desired goal/recover from an external disturbance in a predefined time Tf and the trajectory
of GRFs uref to follow it.

4.3.1 LIP Model Optimization

One of the features of the proposed reference generator is to take into account the intrinsic
under-actuated nature of a robot when only two feet are on the ground [Chignoli and Wensing,
2020]. Therefore, we employ the simplest model that is able to capture this under-actuation:
the LIP model [Kajita et al., 2001]. Indeed, this allows computing the optimal trajectory for
the CoM, while imposing a desired behavior for the ZMP.

The ZMP is defined as “a point on the ground at which the tangential component of the
moment generated by the ground reaction force/moment becomes zero” [Harada et al., 2003],
and its position determines the direction and magnitude of the CoM acceleration. Guaranteeing
that the GRFs are such that the resulting ZMP is inside the support polygon ensures that
they also satisfy the unilateral constraints [Vukobratovic and Borovac, 2004] (the legs can only
push and not pull the ground); therefore they can be effectively realized by a real robot. Since
the support polygon boils down to a line connecting the stance feet during a two-leg-stance
phase, the ZMP will be able to move only on that segment. Even though the ZMP-based
models have been efficiently used in MPC approaches, e.g., [Bellicoso et al., 2018], the LIP
model presents some assumptions (e.g., vertical and angular dynamics are neglected). It is
worth remarking that, aiming to find a compromise between accuracy and computational
efficiency, NMPC uses a more complex model (the SRBD [Orin et al., 2013]) that will consider
these dynamics in the lower optimization stage.

Let us define the state of the reference generator xg = {xg
0, . . .x

g
Ng} ∈ R4×(Ng+1), with

xg
k =

[
pg

c,k,v
g
c,k

]>
∈ R4 the stack of X-Y CoM position and velocity at time k. The control
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inputs are wg ∈ R2×Ng = {wg
0, . . .w

g
Ng−1}, with wg

k ∈ R2 X-Y position of the ZMP at time k.
Footholds pf,k and gait status δk for all the feet at each sample k are the parameters used
to compute the support polygon at each node of the horizon Ng. Additional parameters are
initial Z CoM position p̂c,z and the gravity g ∈ R = 9.81m/s2.

To obtain xg and wg the following optimization problem is introduced:

min
xg,wg

Ng∑
k=0
‖ pg

c,k − pgoal
c ‖2Qp + ‖ vg

c,k ‖
2
Qv + (4.1a)

Ng−1∑
k=0
‖ wg

k −wref
k ‖2Qw (4.1b)

s.t. xg
0 = x̂(x,y) (4.1c)

xg
k+1 = xg

k +


vg

c,kTs + T 2
s g

2p̂c,z

(
pg

c,k −wg
k

)
g

p̂c,z

(
pg

c,k −wg
k

)
Ts

 (4.1d)

wg
k ∈ S(pf,k, δk) k ∈ INg−1

0 (4.1e)

The terms (4.1a) and (4.1b) of the cost function aim to minimize the distance between CoM
position and the goal, the norm of the velocities and the distance of the ZMP from the center
of the support polygon wref

k (for robustness purposes). In addition, the minimization of the
velocity term (4.1a) prevents having large velocities that could determine footholds outside of
the workspace of the leg due to the robocentric stepping. Matrices Qp ∈ S2

+, Qv ∈ S2
+ and

Qw ∈ S2
+ are positive definite weighting matrices. The initial condition (4.1c) is expressed by

setting xg
0 equal to the corresponding values x̂ received from the State Estimator. Equation

(4.1d) corresponds to the discrete CoM dynamics for the LIP model. Equation (4.1e) imposes
that the ZMP always lies inside the support polygon S(pf,k, δk). The symbol INg−1

0 indicates
the set of integer numbers in the closed interval [0 , Ng − 1].

The optimization problem (4.1) does not have any guarantee on the response time. As already
discussed in Section 4.2.2 a formulation with slack variables can be used to impose a predefined
instant in which the robot has to reach the target:

min
xg,wg,s

Ng∑
k=0
‖ vg

c,k ‖
2
Qv +

Ng−1∑
k=0
‖ wg

k −wref
k ‖2Qw + (4.2a)

Ng∑
k=0

(
‖ sk ‖2Qs,q +Qs,lsk

)
(4.2b)

s.t. xg
c,0 = x̂(x,y) (4.2c)

xg
c,k+1 = xg

c,k +


vg

c,kTs + T 2
s g

2p̂c,z

(
pg

c,k −wg
k

)
g

p̂c,z

(
pg

c,k −wg
k

)
Ts

 (4.2d)
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wg
k ∈ S(pf,k, δk) k ∈ INg−1

0 (4.2e)[
sk,x

sk,y

]
≥
[
|pg

c,x,k − pgoal
c,x |

|pg
c,y,k − pgoal

c,y |

]
k ∈ INg

M (4.2f)

sk,x, sk,y ≥ 0 k ∈ INg
0 (4.2g)

The slack variable sk ∈ R2×1 is added in the cost term (4.2b) and thanks to Eq. (4.2f), and
Eq. (4.2g) it allows one to impose that the robot CoM coincides with the goal after M samples.
Differently from the optimization problem (4.1), the cost function does not explicitly include
a position term, since it is enforced with slacks into Eq. (4.2b). Matrices Qs,q ∈ S2

+ and
Qs,l ∈ R1×2 are the additional weights for the quadratic and linear terms for the slack variables.
Equation (4.2c), (4.2d), (4.2e) are the same as Eq. (4.1c), (4.1d), (4.1e) respectively.

4.3.2 QP Mapping

The reference generator computes CoM trajectories which the NMPC must follow, but the
latter also requires reference GRFs uref ∈ R12×N . Since the output of the optimization problem
(4.1) or (4.2) is a trajectory for the ZMP wg, we need to map this into a set of consistent
GRFs, thus moving from a bi-dimensional to the higher dimensional space of contact forces.

For this reason, let us define the set of indices of the legs in contact with the ground by C.
A parametric QP is solved to find the vector of GRFs uqp ∈ R3|C| which corresponds to the
ZMP location wg. If a foot is in the swing phase, its GRFs are set to 0 by default:

uref
i =

uqp
i i ∈ C

03×1 i /∈ C
(4.3)

where i is the leg index.

Note that we need to solve a QP for each sample k in the horizon N , therefore to avoid
overloading the notation, subscript k is not specified in the following quantities.

The parameters of the model are the footholds pf , the X-Y components of the CoM position
pg

c , the ZMP trajectory wg, the initial Z CoM position p̂c,z and the mass of the robot m ∈ R.
Thus, for every k we solve:

min
uqp

‖ uqp
(x,y) ‖

2
Qu +

∥∥∥∥∥∥
∑
i∈C

[
pf,i − [pg

c , p̂cz ]>
]
xuqp

i

∥∥∥∥∥∥
2

Qk

(4.4a)

s.t. wg
x,y =

∑
i∈C pfi,(x,y)u

qp
i,z∑

i∈C uqp
i,z

(4.4b)∑
i∈C

uqp
i,z = mg (4.4c)
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g

p̂c,z
(pg

c −wg) =
∑
i∈C uqp

i,(x,y)
m

(4.4d)

The first term of Eq. (4.4a) is the regularization term on the X-Y components of the GRFs,
with Qu ∈ S2

+ as weighting matrix, while the second one minimizes the angular momentum
rate, and it is weighted by Qk ∈ S3

+. The symbol
[
·
]
x represents the skew-symmetric

matrix associated with the cross product. Equation (4.4b) is the definition of ZMP, Equation
(4.4c) represents the gravity compensation. Equation (4.4d) guarantees that the X-Y CoM
acceleration computed with the LIP model in the reference generator (left term) coincides
with the one of the SRBD used in NMPC (right term). It is worth highlighting that when
the robot is on two legs, the ZMP lies on a line, and so it can only move in a 1D manifold.
During that phase, imposing the Eq. (4.4b) for the X component is enough to guarantee that
also the Y coordinate of the ZMP respects the same constraint.

Along the horizon Ng, each problem is independent of the others, so that they can be solved
in parallel. In this way the computation effort remains low (a couple of ms to solve a QP
problem with linear constraints) and therefore the new reference generator can be integrated
into our high-frequency NMPC scheme.

4.4 Simulation and Experimental Results

The optimization-based reference generator endows the NMPC planner with the capability
to recover from disturbances and avoid drifting in the face of non-idealities. To show its
effectiveness, three template scenarios are tailored:

(a) straight motion

(b) fixed lateral goal

(c) recovery after a push

I performed the simulations and experiments on the 22 kg quadruped robot AlienGo of Unitree.
The trot is considered as a template gait for the experiments because of its inherently unstable
nature. Indeed, any asymmetry in the real robot can make it drift when setting a pure forward
velocity. The quadruped is thus not able to follow a straight line.

The variable Ts is set to 40 ms and the horizon length of both reference generator (Ng) and
NMPC (N) are 50 nodes corresponding to an interval of 2 s; the planning loop frequency is
set to 25Hz as already discussed in Chapter 3. The trot gait parameters are cycle time Tc= 1
s, duty factor D = 0.65. 7 The values of the weighting matrices are reported in Table 4.1.
Without any lack of generalization, slack variables are considered only for the Y component.

7The duty factor is defined as the ratio between the duration of the stance phase and cycle time.
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Table 4.1: Weights used in the Governor

Cost Weight Value

Velocities LIP Qv diag(200, 300)

ZMP Qw diag(100, 350)

Slack
Qs,q diag(0, 1000)
Qs,l [0, 1000]

Forces QP
mapping

Qu diag(100, 100)

Angular
Momentum Rate

Qk diag(1, 1, 1)

Similarly to the NMPC, the HPIPM [Frison and Diehl, 2020] solver integrated into acados [Ver-
schueren et al., 2019] library is used to find the solutions of the problem Eq. (4.2). The problem
(4.4), instead, is solved using eiquadprog [Guennebaud et al., 2011], since it offers a more
straightforward interface for the QPs. There are no scientific consequences in using two
different solvers.

Both reference generator and NMPC run on an Intel Core i7-10750H CPU @ 2.60 GHz.

For the sake of clarity, I recall that the adjective reference refers to the output of the reference
generator, planned to the output of the NMPC, and actual to the real values measured by the
State Estimator.

The video showing the achieved results, both in simulation and real experiment, can be seen
at the following link:
https://youtu.be/Jp0D8_AKiIY.

4.4.1 Simulations

The four-leg-stance phase in a walking trot is the only moment of the gait where the robot
has full control authority and is able to track the reference velocities. Neglecting this fact
would lead to failure or unpredictably longer response times. In our algorithm, the reference
generator already takes into account the under-actuation, enablingone to deal with this issue
successfully. The simulations of the scenario (a) are only reported in the uploaded video.
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Figure 4.4: Simulation, scenario (b): CoM Y position and velocity in a scenario in which the
robot has to reach a target of -0.2 m, with a response horizon of 4.8 s (120 iterations of the
NMPC, shadowed blocks). Yellow lines are the output of the reference generator, which is used
as reference for the NMPC. Blue lines corresponds to the planned trajectories, computed by the
NMPC and tracked by the WBC. The red lines report the actual values.

Scenario (b)

Figure 4.4 refers to the simulation of the scenario (b) in which the robot has to go to a lateral
target (−0.2 m on the Y coordinate) in a predefined time (Tf = 4.8 s) and then keep that Y
position while walking forward. Since X-Y directions are decoupled in the LIP model, the X
component of the goal pgoal

c,x is updated at each iteration of the NMPC according to Algorithm
1 and continuously tracked.

The top plot demonstrates that the reference generator is able to compute reference CoM
trajectories (yellow line) that allow the actual CoM values (red line) to accomplish the task.
Since the reference quantities satisfy the under-actuation of the gait, the velocities are nicely
tracked by the NMPC (respectively yellow and blue line in the bottom part of Figure 4.4) and
consequently by the actual ones.

Figure 4.5, instead, shows the reference wg and actual X-Y components of the ZMP locations
(computed by Eq. (4.4b)) for the same simulation.

As it can be seen, the robot is able to track the reference values for the entire cycle, for both
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Figure 4.5: Simulation, scenario (b): X-Y ZMP location in a scenario in which the robot has to
reach a target of -0.2 m along Y direction with a response time Tf = 4.8 s (120 iterations of the
NMPC). The yellow line corresponds to the output of the reference generator, while the red has
been computed using Equation (4.4b).

X-Y coordinates.

In this simulation the reference generator is always kept in the optimize status to show how
the algorithm is able to track (once the target has been reached) a zero user-defined lateral
velocity vusr

c,y .

Figure 4.6 reports scenario (b) with the same goal (-0.2 m) but different response horizon
(Tf = 3, 2 s). Due to the smaller interval, the response is more aggressive and presents an
overshoot which is then recovered within the 3.2 s interval. The task is achieved by simply
modifying the response horizon Tf ; no tuning of the weights of the cost function is required.
Shaded areas highlight the response horizon. Figure 4.7 shows the tracking error between the
actual and desired Y CoM position. It confirms that the error is negligible and the desired
values are tracked by the robot.

Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion Angelo Bratta



78 Optimization-Based Reference Generator

-0.2

-0.1

0

0 3 6 9 12
-0.4

-0.2

0

Figure 4.6: Simulation, scenario (b): CoM Y position and velocity when the robot has to reach
a target of -0.2 m with a response interval of Tf = 3, 2 s (80 iterations of the NMPC)). As in Fig.
4.4, yellow, blue, and red lines correspond respectively to reference, desired, and actual quantities.
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Figure 4.7: Simulation, scenario (b): goal of -0.2 m with Tf = 3.2 s. Tracking error between
actual and desired Y CoM position (p̂c,y − pp

c,y ).

Scenario (c)

Next, to validate the approach a comparison with a simple cartesian PD approach in the
scenario (c) is performed.
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This is typically implemented computing a feed-forward force fff,y ∈ R which depends on the
error between the actual state and the goal, i.e.,

fff,y = Kp
(
pgoal

c,y − p̂c,y
)

+Kd
(
vusr

c,y − v̂c,y
)

(4.5)

For the first 5 seconds of the motion the robot is pushed with a force of 15 N in the Y direction.
The user velocity vusr

c,y is zero, so the task is to come back to the initial Y position. In Figure 4.8
I report the actual Y CoM position p̂c,y in three different cases.

The green line represents the same scenario considering the system as a second order with a
critically damped response.

From the control theory, we know that the settling time is equal to Tf = 4
ζωn

, with ζ equal
to damping ratio and ωn natural frequency. Rewriting the second-order equation of the
mass/spring/damper as a function of ζ and ωn we have Kp = mω2

n and Kd = 2ζ
√
mKp.

Merging the two expressions it results Tf = 4
√

m
Kp

for ζ = 1.
Considering Tf = 4.8 s and a total robot mass m = 22 kg, Kp is equal to 15 N/m and
consequently Kd = 36 Ns/m.

It is evident that the CoM is far from reaching the goal in the predefined time. Instead, The
purple line represents the case in which the values of the proportional and derivative gain
matrix are manually tuned so that the robot reaches the goal faster. The result is Kp = 170
N/m and Kd = 122 Ns/m. As it can be noticed in the plot, once the disturbance is removed,
the robot moves towards the goal, but it is not able to follow it once it has been reached. In
fact, the robot keeps drifting, moving away from the initial position.

It is possible to conclude thus that the approach with a feed-forward force results in a
slow response, with a steady state error with respect to the goal. The common practice
of setting the PD parameters considering the system behaving as a second order system
(i.e., spring/mass/damper) is not valid due to the under-actuation, showing the limitation of
the approach. In addition, even hand-tuning the parameters does not allow the user to obtain
the desired behaviour.

The result of the proposed approach, instead, is reported with light blue line. Once the
disturbance has been removed, the reference generator computes a velocity trajectory that
brings the robot towards the goal in the desired time Tf (shaded area) and without steady
state error.

4.4.2 Experiments

In this section we present some experiments for the scenarios (a), (b), (c) carried out with the
real robot platform. In these experiments, we employed the problem (4.1) without ensuring
guarantees on the response time. As first experiment we performed scenario (a) on the robot,
as illustrated in Fig. 4.9.

Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion Angelo Bratta



80 Optimization-Based Reference Generator
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Figure 4.8: Simulation, scenario (c): comparison of the actual Y CoM positions between the PD
force approach (green and purple lines) and our reference generator (light blue line). The goal is
to come back to the initial position after a 15 N lateral push of 5 s. For the green line the values
are chosen to impose a response time of 4.8 s considering a second order system response. For the
purple line, instead, Kp and Kd are computed such that the system should have a critically damped
response. In both cases the robot is not able to converge to the goal. With our reference generator
(light blue line) the robot recovers its initial position after the push, without any steady-state
error.
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Figure 4.9: Experiment, scenario (a): Aliengo moving forward with zero lateral velocity set by
the user. The dashed line represents the actual Y CoM position when the reference generator is
forced to be always in heuristic status. The robot diverges from the goal of p̂c,y = 0 and there is
no part in the controller that brings it back. The continuous line shows the actual Y CoM position
when the reference generator automatically changes its state according to the error e. Thanks to
the corrections of the optimize reference generator, Aliengo is able to stay close to the goal.
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Scenario (a)
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Figure 4.10: Experiment, scenario (a): Aliengo moving forward with zero user lateral velocity.
The peaks in the reference velocity (yellow line) represent the moment in which the average Y
position (red line) has passed the threshold (dashed lines) around the initial position and the
reference generator is set to optimize status.

The figure demonstrates that the NMPC with only a heuristic reference generator (dashed
lines) does not succeed in moving on a straight line for a statically unstable gait as trot.

Indeed, the robot suffers lateral and backward (less visible) drifts because of two reasons:

1. the trot being an unstable gait the CoM always diverges between two four-leg-stance
events in opposite directions. Any little asymmetry in the robot results in a cumulative
drift in one direction.

2. since Aliengo has C-shaped legs, they create nonzero moments about the pitch axis
during a swing.

Enabling the optimal reference generator, instead, the robot is able to reach the goal and
prevent the trajectory from drifting (see the continuous line in Figure 4.9).

Figure 4.10 shows the change in the reference lateral velocity (yellow line) done by the reference
generator. When the average Y position (p̄y, red line) exceeds the bounds (p̄bound

y , dashed
lines), the status is changed to optimize and the reference generator brings back the CoM close
to the goal. A threshold of 1 cm around the constant goal has been chosen for the activation.
Once the goal has been reached, the reference generator automatically resets to heuristic, and
the reference velocity becomes equal to the user one (zero). The continuous changing of the
status of the reference generator demonstrates the need to have an external module which
corrects the reference trajectories during a trot.
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Figure 4.11: Experiment, scenario (b): Aliengo robot reaches the target position of -0.15 m and
then keeps moving following the user-defined velocity.

Figure 4.12: Experiments, scenario (c): sequence of screenshots. The robot moves forward
(picture 1), and is suddenly pushed with a stick (picture 2). Once the push is removed (picture
3), the optimized reference generator automatically drives the robot back to its initial position.
Finally, the robot follows the user-defined velocity (picture 4).

Scenario (b)

Figure 4.11 shows the Y position of the robot in the scenario (b) with a fixed goal of -0.15 m.
As in simulation, the robot is able to track the reference value, due to the fact that the velocity
takes into account the under-actuation of the trot gait. In this case, the reference generator is
always set to optimize to demonstrate that it is able to work properly also when the target
has been reached, compensating drifts as in scenario (a).

Angelo Bratta Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion



4.5 Discussion and Conclusions 83

Scenario (c)

In the last experiment, we show how we can use our reference generator to react to external
disturbances, see Figure 4.12. As already mentioned in the Section 4.1, the task is not to
reject the disturbance, but to cope with it and later recover from its effect. An analysis of
techniques to reject disturbances goes beyond the scope of this work.

Figure 4.13 shows the Y position of the CoM in a real hardware experiment in scenario (c)
when the robot receives two manually applied pushes. The threshold on the error is set to 1
cm (dashed purple line). During the push, the robot tries to resist to the disturbance and,
thanks to the high-frequency replanning of the NMPC, it is able to keep the stability and
avoid falling. Once the pushing force is removed, the reference generator drives the robot
back towards the initial position. As in the previous cases, the reference generator is set
automatically to optimize when the robot is diverging from the goal.

The readers are encouraged to check the experiments corresponding to the mentioned results
in the following video:
https://youtu.be/Jp0D8_AKiIY.
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Figure 4.13: Experiment, scenario (c): CoM Y position of the robot. During the motion, the
robot has been pushed twice and it automatically comes back to the initial position when the push
is removed.

4.5 Discussion and Conclusions

4.5.1 Discussion

The reference generator is an important module for an NMPC approach; indeed it provides
the references for the cost term and (some) required parameters. As already mentioned,
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this module can affect the performance of the entire framework. For example, doing some
regularization with some heuristic policies allowed the controller to exploit the known dynamics
of the system [Bledt et al., 2017]. Similarly [Bjelonic et al., 2022] endowed their MPC with
an offline generated library of optimal reference trajectories demonstrating the importance of
warm starting the optimization with feasible reference trajectories.

Motivated by this aspect, the goal of the work proposed in this chapter is to endow the
already developed NMPC framework with online physically informed reference trajectories
to be tracked. Thanks to the usage of an OCP, the proposed reference generator deals with
the under-actuation of the trot and imposes additional features, i.e., reaching a fixed goal or
recovering after a push. In addition, the heuristics of the robocentric stepping is improved
with the output of the optimization.

Some alternatives to the presented approach are described in the Section 4.1. They are the
PD wrench term, adding a position term in the cost function, and the user changing the
reference velocities. Figure 4.8 shows a comparison in simulation with the NMPC + a PD
feed-forward term . It would be interesting to extend the comparison to other state-of-the-art
locomotion frameworks; the difficulty is due to the fact that the code is generally unavailable
and some implementation details are not provided nor dataset of representative experiments
are provided.

Finally, it is worth mentioning that this approach could also be used directly as a planner,
since it computes feasible CoM and GRFs trajectories, according to the LIP model. The
advantage is that the formulation is very lightweight, and thus high replanning frequencies can
be achieved. Anyhow, the assumption of this model, i.e., no vertical and angular dynamics,
restricts the possible applications.

Limitations

Although the formulation has been tested in three different scenarios, the heading, i.e., yaw,
orientation cannot be considered. An extension of the approach needs to be investigated. In
addition, the formulation which imposes a response horizon Eq. (4.2) has been tested only in
simulation; real experiments with that formulation will be included in the future works.
More tests need to be performed to see if the LIP based approach (that is based on a flat
terrain assumption) scales up effectively also to rough terrains.

4.5.2 Conclusion

This chapter presents a novel optimization-based reference generator for quadruped locomotion,
which deals with the under-actuation of statically unstable gaits and with external disturbances.
It exploits the LIP model to compute feasible reference trajectories that allow the robot to
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accomplish a tracking task. A QP mapping is used to determine the GRFs which corresponds
to the ZMP location computed by the LIP model. Velocities and GRFs are used as informative
tracking references by the 25 Hz lower-stage NMPC planner. This results in the absence of
conflicting tasks in the cost function, which simplifies the tuning of the cost weights of the
NMPC.

The approach is validated by performing simulations and experiments with the 22 kg quadruped
robot Aliengo in three different scenarios: (a) straight motion, (b) fixed lateral goal and (c)
recovery after a push. In addition, I presented and validated in simulations a formulation with
slack variables that can guarantee to reach the goal in a specified time, without the need to
further tune any parameters. For the last scenario, we demonstrated that the simple solution
of adding a Cartesian PD in parallel to the NMPC is not enough to return in a predefined
time to the required position.
The work presented in this chapter has been accepted for publication in [Bratta et al., 2022].
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Chapter 5

Contact Planner

Figure 5.1: Picture of the torque-controlled quadruped robot Solo12 [Grimminger et al., 2020].

5.1 Motivation

MPC approaches can automatically generate optimal trajectories for a legged robot and
traverse complex environments, e.g., [Di Carlo et al., 2018; Kim et al., 2019; Mastalli et al.,
2022]. The previous chapters presented an NMPC scheme and an optimization-based reference
generator, able to compute optimal values of CoM and GRFs. Simulations and experiments
with HyQ [Semini et al., 2011] and Aliengo validate the proposed approach. The optimization-
based reference generator improves the heuristic footholds to be coherent with the physically
informed reference trajectories, but the gait sequence, i.e., which leg needs to be moved, is
still decided a priori.

Online motion planning for legged robots remains a challenging problem; indeed, including
the gait status inside the formulation of an OCP causes an increase in the computational cost.
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Few algorithms have been proposed in the literature, e.g., [Deits and Tedrake, 2014b; Winkler
et al., 2018; Amatucci et al., 2022], see Section 2.1.4. They demonstrated to be effective either
in offline techniques or simple scenarios. An interesting idea is the DeepQ Stepper [Meduri
et al., 2021]; it exploits the reinforcement learning to obtain a reactive contact planner for
bipedal locomotion, which was limited to single contacts and cyclic gaits.

This chapter addresses these limitations and proposes an online, MPC friendly multi-contact
planner - ContactNet, that can automatically generate arbitrary gaits, select footholds in
complex terrains, e.g., stepping stones, and recover from external perturbations. The solving
time remains unaffected by terrain complexity. This is in stark contrast with other contact
planning algorithms, such as the MIP [Deits and Tedrake, 2014b] or the MCTS [Amatucci
et al., 2022].

ContactNet is based on a multi-output regression network [Schmid et al., 2022] that ranks a
discrete set of allowed foothold locations. This information is then used to generate a contact
plan. The ContactNet is trained offline using data generated with a novel cost function (see
Section 5.3.2) that chooses footholds which maximize robustness, and stability and minimize
trajectory generation cost. After training, the ContactNet provides the foothold plan to the
NMPC to generate online a desired behavior.

To evaluate this approach, ContactNet generates acyclic walk and acyclic trot behaviors
on the Solo12 robot [Grimminger et al., 2020] in simulation (Figure 5.1). ContactNet can
automatically navigate terrains with holes, even though data collection for training is performed
on flat terrain without holes, without any visual feedback during the training (unlike [Villarreal
et al., 2019]).

Outline

This chapter is organized as follows: Section 5.2 describes the control architecture; Section 5.3
gives an overview of the Contact Planner, highlighting the main features of the ContactNet
and how it is integrated into the locomotion pipeline. Section 5.4 presents the results of
simulation with the Solo12 robot with the ContactNet for both walk and trot in different
scenarios: acyclic gaits (Section 5.4.2), stepping stones (Section 5.4.3) random generated
terrain (Section 5.4.4), and push recovery (Section 5.4.5). Finally, discussion and conclusions
are drawn in Section 5.5.

5.2 Overall control architecture

Figure 5.2 shows the block scheme of the locomotion framework, and how the ContactNet has
been integrated with the other elements already introduced.
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Figure 5.2: Block scheme of the entire locomotion framework. Given the user-defined velocities
and the actual quantities, the ContactNet provides the sequence of footholds, i.e., swing legs
and touchdown points, at a frequency of 3.125 Hz (after each touchdown). Integration of the
user-defined quantities compute the reference trajectories, see Section 3.5. Given the sequence as
parameter, the NMPC computes CoM trajectory and GRFs tracked by a 1 kHz Centroidal WBC
and an impedance controller.

The user decides the linear velocities Hvusr
c ∈ R2 that the robot should follow. Given the X

and Y components of the footholds in the CoM frame C Cpf ∈ R8, Z component of the CoM
p̂c,z ∈ R, actual CoM velocity v̂c ∈ R3 and reference velocities vusr

c , the ContactNet returns
the ranking of the discretized actions, according to the cost function described in Section 5.3.2;
in particular, the best feasible foothold is chosen, i.e., the first element in the ranking order
which is coherent with the terrain. Reference velocities are integrated to compute the CoM
position at the end of the step horizon Ns.1

Those positions and reference velocities are used together with the new foothold to re-evaluate
the neural network after Ns and 2 Ns. Consequently, a sequence of 3 footholds is used to
generate a contact plan pf and δ for a horizon of N = 3 Ns. The swing times are preset
depending on the chosen gait (discussed in detail below). This contact plan along with the
reference CoM trajectories are provided to the trajectory optimizer to generate an optimal
movement using our NMPC optimization.

The CoM trajectories are then tracked by a 1 kHz WBC [Grimminger et al., 2020]2, combined
with a PD controller in Cartesian space for the swing trajectories. The swing trajectory is
defined in the swing frame [Raiola et al., 2020]; a semi-ellipse represents the X component
and a fifth-order polynomial the Z component.

At the end of each step horizon (frequency 3.125 Hz), another iteration of ContactNet and
trajectory planner is executed in the MPC fashion. The motivation and consequence of this

1At the start of this work, I decided to use the heuristic reference generator. The optimization-based one of
Chapter 4 will be integrated in the future.

2This work has been performed during my internship at the Machines in Motion lab of the New York
University, so I used a WBC presented in one of their previous works. There are no substantial differences with
the WBC used in Chapter 3 and 4 developed by [Fahmi et al., 2019]
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Figure 5.3: Example of the evaluation of the ContactNet on a terrain composed of stepping
stones for one leg. Red disks represent some of the actions evaluated by the ContactNet. The
network computes the ranking order, according to which the yellow disk is the one which minimizes
the cost function (5.1). Knowing the terrain map of the terrain yellow is considered unsafe and
discarded. The blue disk corresponds to the first action deemed safe.

choice for the re-planning frequency are discussed in Section 5.5.

5.3 ContactNet

This section describes the cost function and data generation approach used to rank footholds
offline. After that, the details about the ContactNet are provided.

5.3.1 Footholds

The allowed stepping region of each leg is discretized into a fixed set of possible footholds. These
footholds are defined at a fixed distances from the current hip location of the corresponding
foot, similarly to the robocentric stepping described in Section 3.5.2. Subsequently, as the
robot moves, the allowed foothold locations also change. An illustration of the foothold
discretization is shown in Figure 5.3. Discretizing allowed footholds is reasonable because high
precision is not generally necessary during contact planning and exact foothold location can
eventually be further optimized during trajectory optimization. The experiments show that,
despite losing the freedom of stepping anywhere in the leg workspace, very reliable behaviors
can be generated by appropriately discretizing the space.

5.3.2 Cost Function

After having a set of allowed footholds, the goal is to identify the best one, given the terrain and
state of the robot. For this, a novel cost function is used to rank all the foothold locations based
on robot stability, robustness and trajectory optimization. The input is ur = [Cpf , p̂c,z, v̂c,vusr

c ],
where Cpf ∈ R8 represents X and Y components of the foot location in the CoM frame C,
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p̂c,z ∈ R is the Z component of the CoM, v̂c ∈ R3 is the actual CoM velocity. Finally, the
variable vusr

c ∈ R2 is the user-defined reference velocity. This vector fully describes the initial
conditions and references of the robot. In addition, using foot locations in the CoM frame
behaves as a normalization of the data which improves the robustness and accuracy of the
network.

To evaluate a foothold, the NMPC is solved offline to generate a trajectory that moves the
robot from the current configuration to the chosen one. For example, in Figure 5.3, if we
consider the disk colored in blue, we generate a trajectory with a contact plan that moves
the front right leg of the robot to that foothold while minimizing the trajectory optimization
costs (velocity tracking, base reference etc., as discussed in Chapter 3). Using the generated
trajectory, each possible foothold is evaluated using the following cost function:

V =
Ns∑
k=0

Vk + VNs (5.1)

where Ns is the step horizon, Vk is a running cost (evaluated at each point of the trajectory),
and VNs is a terminal cost (evaluated only at the final point).

The running cost Vk consists of three terms:

Vk = γoptVk,opt + γstabVk,stab + γhipVk,hip. (5.2)

The first term corresponds to the cost of the optimization problem obtained from the NMPC,
i.e., tracking of references for states (CoM quantities) and control inputs (GRFs). It guarantees
that a feasible trajectory that respects the dynamics and friction cone constraints exists,
evaluating thus the transition feasibility presented by [Fernbach et al., 2020].
I recall that the approach with the ContactNet uses the SRBD model [Orin et al., 2013], but
any other model could also be exploited.

The quantity Vk,opt is set to a large value if the solver does not converge to a solution (i.e., a
feasible motion can not be generated for the chosen foothold). The variable Vk,stab evaluates
the stability of the motion. It computes the distance of the CoM to the support polygon. For
instance, in a walk, this encourages foothold locations in which the robot is statically stable
(CoM inside the support polygon, Vk,dist = 0); for a trot, this maximizes the controllability
of the robot. The last cost term Vk,hip enforces kinematic limits - it assigns a non-zero value
when a leg in stance violates these limits. Even though the simplified model does not include
joint values, it is possible to detect a violation of the kinematic limits if the distance between
the foot and the hip exceeds a certain threshold. However, the exact position of the hip is
known only at the initial condition of the trajectory. Since the horizon is short, we assume that
the positional offset between the hip and the CoM remains constant for the entire trajectory.
Further, a conservative threshold value is chosen to encourage the motion of one leg when it is
close to the kinematic limits, similarly to [Bjelonic et al., 2021].

Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion Angelo Bratta



92 Contact Planner

The term VNs in the cost function V takes into account the future actions of the robot (value
function). It is defined as follows:

VNs = γcentVcent − γareaVarea. (5.3)

With Vcent, we introduce a penalization on the distance between the CoM and the center of
the support polygon. Minimizing this quantity increases the number of subsequent stable
actions. Finally, the quantity Varea, which is the area of the support polygon, is maximized.
This helps improve the robustness of the contact configuration at the end of the trajectory by
favoring large support areas. The numbers γi ∈ R scale the different cost terms.

5.3.3 ContactNet

Using the cost function V discussed previously, it is possible to automatically generate acyclic
multi-contact plans for locomotion by simply taking the contact transition with the lowest cost.
However, it is not feasible to evaluate online all the possible footholds by computing optimized
trajectories. Indeed, one would need to solve Na = 100+ optimization problems. Consequently,
to overcome this limitation, the presented approach trains offline a neural network that learns
to rank the possible footholds using the cost function (5.1). This section discusses the data
generation scheme and training procedure used to train the neural network ContactNet.

Data Generation

To train the ContactNet, a dataset is generated and contains many possible stepping situations
that can appear on the robot. The robot is initialized in a randomly generated state (different
joint position and velocity) and with a random reference CoM velocities in the range (-0.1,0.1
m/s) for both X and Y directions. An episode is executed and the robot is allowed to walk
for a fixed duration of time. At each touchdown, the cost function (5.1) is evaluated, and
the best foothold, i.e., the one with the smallest V , is selected. Subsequently, a trajectory
is generated with this contact plan for Ns and is tracked on the robot in simulation. Such
episodes are run several times to generate a large dataset containing the optimal values of ur

and V. A new episode is restarted after a chosen number of steps (30 in this case) or when
the robot falls down. Since it is not possible to know which initial step led to the final fall,
in case of falling, the last 3 entries, i.e., the last 3 steps are removed from the dataset. As a
general comment, it is way more convenient to erase “good” entries than add “wrong” ones.

Obviously, generating the dataset is not real-time. Nevertheless, it takes little time - about 6-7
hours with a standard performance computer (3.7 GHz Intel Xeon processor) - for a machine
learning approach.
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ContactNet Training

The goal now is to learn a function fθ : R14 → RNa , which maps the current state of the robot
ur to the list of the ranked footholds. The main advantage of a learning approach is that it
guarantees low computational effort at runtime, allowing one to integrate it into the MPC
framework.

In order to learn the ranking function for all the possible actions, a Multi-Output Regression
Network [Schmid et al., 2022] is used. To do so, the vectors V in the dataset are sorted in
decreasing order to create a vector Y ∈ RNa ; it assigns to each value of V its position in the
sorted vector;3 the smaller the cost for the action a, the higher its value in Y. For robustness
purposes, each entry is normalized by the total number of footholds (classes).

For the sake of clarity, we provide a small example:

• V = [0.8, 0.3, 1]

• sort(V) = [1, 0.8, 0.3]

• sorted indexes for the entries in V are [1, 2, 0]

• Y = [1/3, 2/3, 0/3].

As a training loss, I use the mean squared error between the prediction Ŷ = fθ(ur) and Y.

min
θ

1
Na

Na−1∑
k=0

(Yi − fθ(ur)i) (5.4)

ContactNet Evaluation

After training the ContactNet, one can quickly obtain the optimal foothold by sorting in
decreasing order Ŷ. In certain situations where terrain restrictions exist, one not only has to
sort the Ŷ but also select a safe one, i.e., the foothold which does not correspond to a hole
on the ground, discarding the others. The knowledge of the terrain map is used to identify
the subset of feasible footholds from the allowed ones. It is important to stress that visual
information is exploited only at runtime to filter Ŷ; indeed, the dataset is created only on flat
ground.

An example of such a situation is shown in Figure 5.3, where the robot is expected to walk
across stepping stones (green objects). The red circles correspond to all the allowed footholds of
the LF leg that are ahead of the hip position4. The yellow disk represents the optimal foothold

3Remark: the count of the indices starts from zero.
4Note that the allowed locations behind the actual foothold are not shown for image clarity but are also

evaluated in this situation
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location in Ŷ (that is the one with the minimum cost according to the ContactNet) but it
must be discarded since there is no terrain below it. Consequently, the foothold corresponding
to the blue disk must be selected, which is the best location that also respects the restrictions
due to the terrain. The NMPC is then used to move the robot to the chosen foothold.

Remark: Ranking all of the discretized actions is crucial to navigate complicated terrain
situations online. Note that there is no increase in contact planning time with terrain
complexity because the ContactNet provides the ranks of the footholds all the time. This is
in contrast with other optimization [Fernbach et al., 2020; Deits and Tedrake, 2014b] and
sampling [Amatucci et al., 2022] based planners.

5.4 Results

This section presents the results obtained by performing simulations with Solo12, a 2.2 kg
open-source torque-controlled modular quadruped robot. The entire framework runs on a
Dell precision 5820 tower machine with a 3.7 GHz Intel Xeon processor. The simulations are
performed using the PyBullet library [Coumans, 2013].
The video of the achieved results can be seen here:
https://drive.google.com/file/d/1o1X3qJxsnt8cLWeq--fAfNR8S7RrYciD

5.4.1 Neural Network Architecture

For all the experiments, the ContactNet is composed of 4 fully connected layers with 128
neurons each. All layers except the last one are activated with a ReLU function [Nair and
Hinton, 2010]. As hyper-parameters [Smith, 2018] for training, the number of epochs is equal
to 1000 with a batch size of 100 and a learning rate of 0.001.

The term batch refers to a sub-group of the dataset which is used to update the parameters of
the function fθ(ur) (iteration). This approach, called mini-batch mode, divides an epoch in
several iterations5 and demonstrated better performance than using the entries of the dataset
at the same time. In each epoch different batches are created, such that the final result is not
biased. The batch size is an important element of the training process [Lin, 2022]; in the case
of the ContactNet the value of 100 has been chosen by trial and error.

The learning rate [Bishop, 1995] is probably the most important hyper-parameter6 and
determines how quickly the model is adapted to the problem, since it scales the update of
the parameters of each iteration. The choice of the learning rate is the result of trade-off
between velocity and accuracy: a small learning rate increases the training time, while with
large learning rates the network could converge to a suboptimal solution.

5Number of iterations = number of elements in the dataset divided by the batch size
6“If you have time to tune only one hyper-parameter, tune the learning rate” [Goodfellow et al., 2016]
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The input state ur is normalized to be in the range (-1,1) to improve the accuracy of the
network. To evaluate the network’s performance 70 % of the entries of the dataset are
used as a training set and the remaining part as a test set. The top-5 metric determines
the statistics of the network; in particular, let us consider a correct prediction if the first
element of Ŷ, i.e., what the neural network outputs as the best action, is one of the first five
elements according to the corresponding V stored in the dataset. This metric has a particular
importance for the ContactNet since the best action will not always be feasible due to the
requirements of the terrain.

5.4.2 Acyclic gaits

This subsection discusses the various parameters defined to generate the two gaits - walk and
trot - discussed in the chapter.

Walk

In this motion, the robot is only allowed to move one leg at a time. Considering the same
sampling time Ts = 40 ms, the step horizon Ns is equal to 320 ms (8 Nodes) and it is composed
of 120 ms of full stance phase (3 nodes), 160 ms (4 nodes) of swing phase, and the last node
of full stance phase. The prediction horizon N used by the NMPC is composed of three step
horizons, 960 ms, as discussed in Section 5.2.

The allowed stepping region for each leg is a 20 × 20 cm grid based on the kinematic limits
of Solo12. This space is discretized into 25 footholds which are 5 cm apart, see Figure 5.3.
Subsequently, the robot is allowed to choose from a total of Na = 100 possible footholds - 4 ×
52 since we do not prescribe which leg needs to swing, only that one leg swings at a time.

Using the procedure discussed in Section 5.3.2, 1500 episodes generate the entries for the
dataset. The resulting data had 43410 instances of ur/V. Using the generated dataset, the
ContactNet is trained to predict the optimal footholds. The approach obtained an accuracy of
93.48/90.81 % in the training/test set according to the top-5 metric.

Trot

In the trot gait, two diagonal feet leaves the ground at the same time, i.e., LF/RH or RF/LH.
Subsequently, the possible action allows the robot to move either of these diagonal pairs at a
particular instance. The total stepping region for each leg is a square size 10 × 10 cm. The
foothold discretization resolution is still 5cm, 9 choices per leg. Consequently, at the start of a
stepping horizon, there are a total of 162 foothold choices since two legs leave the ground at
each step . All the other parameters are the same as the walk. The smaller grid for the trot is

Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion Angelo Bratta



96 Contact Planner

justified by the quadratic relationship between actions and options per leg. In addition, the
trot intrinsically moves each leg at a higher frequency, so a smaller step length is generally
required.

Once again, 1500 episodes generate the dataset for this gait and train the ContactNet, obtaining
45000 instances. The neural network achieves an accuracy of 99.48/97.7 % in the training/test
set.

As already explained, the ContactNet generates locomotion for user-defined velocities. The
uploaded video shows the stability and accuracy of the ContactNet simulating a long horizon
motion with change in the reference velocities in a terrain with holes.

5.4.3 Stepping stones scenario

Figure 5.4: Simulation: gait schedule of a walk motion on a stepping stones scenario. White
parts indicates moment in which that leg is in swing. The ContactNet finds a completely acyclic
gait.

To demonstrate the effectiveness of the contact planner in an MPC framework a complex
terrain is designed, composed of 8 sparse stepping stones of different shapes: 3 stars, 2 circles,
and 3 rectangles, Figure 5.3. Two squares are positioned as starting and final points. The task
is to traverse the terrain with a user-defined forward velocity of 0.05 m/s using the ContactNet
trained for the walk gait. The proposed approach successfully navigates the terrain.

Figure 5.4 shows the resulting gait sequence for the entire motion. Each color indicates a
different leg, and the full block denotes a stance phase. The white spaces indicate that the
particular leg is in the swing phase at that time. Figure 5.4 shows that the motion is completely
acyclic. For example, when the front legs are on the last square the CoM is closer to the hind
legs automatically making the swing of the front legs preferable to prevent the CoM from
going outside the support triangle. Hind legs are moved only when stability is guaranteed and
a stepping stone is inside the set of actions.
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Figure 5.5: Simulation: Solo12 robot traversing generated terrain with randomly removed squares
of 5x5 cm dimensions.

The result of the simulation is shown in the uploaded video. The ContactNet in average has
chosen the 6th element of Ŷ, with a maximum of 30 discarded elements for the swing of the
LH leg at time around 10.0 s. 7 The average computation time for a complete iteration of the
ContactNet, i.e., computation of 3 subsequent actions, is 1.6 ms, which is much faster than
the trajectory optimizer.

5.4.4 Random generated terrain

In this section, the ContactNet is used to navigate unstructured environments with various
terrain constraints. The terrain is a rectangle 1.5x0.5 m obtained by placing 300 squares
5x5 cm. Starting from a number of n = 50 till n = 110 (17 % - 37 %), n blocks are removed.

I evaluate the success rate for both the walk and trot setups (see Figure 5.5) with a reference
velocity of 0.05 m/s in the X direction. For each n, 100 different trials are executed to perform
a statistical analysis. A trial is considered successful if all the four legs of the robot overcome
the last block. In addition, to validate the robustness, the navigation task of both gaits is
repeated with Gaussian noise applied to joint velocity measurement. This is performed to
validate the robustness of the approach in conditions closer to the real robot.
The results are shown in Figure 5.6 and Figure 5.7.

The ContactNet has a high rate of success for both gaits, while, as expected, the walk
guarantees better performance due to its intrinsic stability. The addition of noise does not
cause a significant reduction in performance. This suggests that the framework would reliably
work on a real robot. Note that the ContactNet remains robust to noise even though it was
not trained for it, as is commonly done using domain randomizing techniques [Tobin et al.,

7At each iteration of the MPC the ContactNet computes a sequence of three actions. For the plot we
consider only the first because it is the one that is executed.
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Figure 5.6: Successful rate of trot motion over the number of blocks removed with vusr =
[0.05, 0]m/s. For each number of blocks we execute 100 trajectories with and without noise
(Gaussian noise with zero mean and 0.01 variance).

2017]. Furthermore, no assumptions are made about removing blocks to guarantee that a real
feasible path exists.

Another important element that deserves to be analyzed is the computational cost of the
ContactNet. For the analysis we consider the time duration to perform 3 evaluations of the
network (needed to generate the parameters to the NMPC block), along with the time of safe
foothold selection based on the terrain from the vector Ŷ.

Table 5.1 reports the mean value of total computational time for each value of n. It is worth
highlighting that the time is low, around 1 ms, and does not change with the complexity
of the terrain. This contrasts with other approaches, such as MIP and MCTS, which suffer
from the dimension of the solution space. Indeed, the large number of constraints which must
be included in the MIP will cause a significant increase in computational effort and reduce
the possibility of converging to a feasible solution. In addition, the non-convexity of the star
stones is hard to be considered in an analytic constraint. Similarly, given the high number of
possibilities, the efficiency of the expansion phase in MCTS will quickly degrade too. The
ContactNet, however, only has to query the terrain map until the first safe action is found.
Equation (5.1) ensures that the chosen action is the best admissible one.
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Figure 5.7: Success rate of walk motion over the number of blocks removed with vusr = [0.05, 0]
m/s. For each number of blocks we execute 100 trajectories with and without noise (Gaussian
noise with zero mean and 0.01 variance).

Table 5.1: Computational time of the ContactNet

Number of terrain patches removed Walk [ms] Trot [ms]

50 1.272 1.507
60 0.938 0.950
70 0.944 0.803
80 1.152 0.785
90 1.0584 0.874
100 0.9167 0.7899

5.4.5 Push Recovery

As a final result, we tested the robustness of the ContactNet pushing the robot for 1 s with
external forces in the range of ±5N in both X−Y directions, while tracking a forward velocity.
In addition some blocks 10x10 cm are randomly removed. While being pushed, the contact
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planner adjusts footholds to counteract the external disturbance and avoid holes. Once the
push is removed, the robot automatically recovers a stable configuration, for example by
moving a leg which resulted to being close to the kinematic limits.

5.5 Discussion and Conclusion

5.5.1 Discussion

Obtaining footholds, i.e., foot placement and leg sequence is one of the main challenges for a
trajectory planner framework. Optimization techniques [Grandia et al., 2022] and learning
approaches [Kalakrishnan et al., 2011; Villarreal et al., 2019] can provide foot locations
with user-defined gait patterns, e.g., the sequence LH, LF, RH, RF which has been shown
to maximize static stability [McGhee and Frank, 1968]. While several algorithms perform
foothold selection online, the additional difficulties of a MIP increase the computational time.

This chapter deals with those issues and presents an online multi-contact planning framework
that can be easily integrated with existing trajectory optimization approaches through a
multi-output regression network. The ContactNet ranks the discretized possible footholds,
taking into account the optimization of the NMPC.

The main novelty is that it maintains a constant solve time while navigating complex terrains;
indeed, by exploiting the knowledge of the heightmap, the ContactNet discards some options
to provide the best feasible foot placement. As another advantage, transcribing the shape of
the stepping stone in a mathematical formulation is not required; it avoids, thus, nonlinear
constraints in the presence of the stars of Figure 5.5.

The ContactNet exploits all the four legs during the choice of a foothold. For the sake of
clarity, I provide an example: let us imagine that the best option is to move the LF to a
certain point. If this is not feasible, an algorithm of foothold correction such as [Villarreal
et al., 2019] will avoid it by correcting the touchdown of the LF feet.
On the other hand, the ContactNet would take into account also moving the other legs,
choosing for example, a touchdown point for the RF.

This chapter focuses on flat terrain with stepping stones; in particular, the ContactNet can
avoid the holes, even though the training has been performed only with data on flat terrain.
An extension of the approach would consider uneven terrain by discretizing the 3D stepping
region and retraining the network. There is no need to make changes to the optimization
problem since the results of Chapter 3 demonstrate that the NMPC is also efficient in those
scenarios. Anyhow, uneven terrain requires additional components, such as a collision-free
swing trajectory which goes beyond the scope of presenting the contact planning problem.
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Currently, the ContactNet does not update the foothold during the swing phase. Throughout
the experiments, the replanning frequency was demonstrated to be sufficiently robust to
uncertainties in the environment. However, if the need arises for faster updates, the NMPC
can compute the optimal trajectories with arbitrary initial contact configurations. After which,
the cost function (5.1) can also be used to rank footholds during the swing phase.
Subsequently, the foothold could be adapted online by continuously predicting with the neural
network during the swing.

Limitations

ContactNet has only been tested in simulation due to the lack of time before the submission
of this dissertation. However, the analysis with external disturbances and sensor noise gave
evidence that the results should transfer well to the real robot.

Moreover, two neural networks are needed for the walk and the trot. In future works, I aim to
merge them into a single network, obtaining automatic transition between gaits.

5.5.2 Conclusion

In conclusion, this chapter proposed a multi-contact planner, ContactNet, capable of generating
acyclic contact sequences in a few milliseconds, even in the presence of complex terrains. The
ContactNet provides a sequence of footholds to the NMPC optimizer. To the best of my
knowledge, the ContactNet outperforms all the state-of-the-art MIP and MCTS approaches in
terms of computational performance. Simulations with the Solo12 robot are performed with
walk (only one leg moves at a time) and trot (diagonal leg pairs move together) gaits in the
presence of terrain composed of stepping stones. Robustness is demonstrated by injecting
measurement noise and applying external disturbances.
The work presented in this chapter is currently under review for IROS 2023.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In the ’70s, researchers worldwide started to dedicate their effort to building legged robots.
It became immediately evident that having legs allows the robots to walk into uneven and
complex terrains. Indeed, with respect to their wheeled counterparts, legged robots can break
the contact with the ground and thus overcome obstacles and steps. To do so, they must
follow a trajectory that guarantees reliability, stability, and robustness.

In this dissertation, I developed and presented an NMPC framework to obtain optimal values
of CoM quantities and GRFs while adapting the footholds to the environment. In addition, I
sought to remove heuristic components inside the computation of the references. The approach
is generic and thus has been tested on three different quadruped robots (HyQ, Aliengo, Solo12).

Chapter 3 introduces the framework and the OCP formulation. A simplified model, the SRBD
model is used to predict the trajectories of the robot in a horizon of 2 s. A novel mobility cost
term is used to satisfy the kinematic limits and adjust the trunk orientation without requiring
heuristic references. Heuristic footholds are based on user-defined quantities and are provided
as parameters to the OCP. The RTI approach guarantees low computational time (5-7 ms),
and thus a high-frequency replanning (25 Hz) is achieved.

Simulations and experiments with the HyQ robot validate the approach. In particular, HyQ
performs an omni-directional motion, reacting to the changes in the user-defined velocities. By
integrating visual information and online correction of the touchdown points (VFA [Villarreal
et al., 2019]) into the pipeline, the robot is able to step on a pallet (both static and repositioned);
the mobility allows for pitching up and down while walking.
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Chapter 4 deals with the heuristic references and the intrinsic under-actuation of the statically
unstable gait as the trot. An optimization-based reference generator provides a physically
informed trajectory to be tracked by the NMPC. The LIP model and a QP mapping compute
feasible GRFs, avoiding conflict tasks in the cost function. Moreover, the optimal velocities
are used to improve the heuristic of the foothold selection.

This comprehensive locomotion framework is tested with experiments on the Aliengo robot in
three different scenarios: (a) straight motion, (b) fixed lateral goal, and (c) recovery after a
push. In addition, a simulation validates the novel formulation that imposes a user-defined
time to reach the target through slack variables.

Chapter 5 removes the assumption of a heuristic touchdown point by presenting a multi-contact
online planning. ContactNet is a multi-output regression network which ranks a discretized
set of possible footholds. A novel offline cost function considers the NMPC, the robot stability,
and robustness, and it is used to train the network. This approach can handle flat terrain
with holes, i.e., composed of stepping stones, without suffering from high computational cost.

Several analyses are performed in simulation with the quadruped robot Solo with both walk
and trot motions. Adding sensor noise and applying external disturbances demonstrates that
the approach has a high probability to also successfully work on the real platform.

I believe that the contributions of this dissertation improve the state-of-the-art approaches in
a popular field, such as the MPC applied to legged locomotion.

6.2 Future Works

This section provides insight into future works and applications of this dissertation:

• the NMPC introduced in Section 3.3 demonstrated good results and has been integrated
with the optimization-based reference generator and the contact planner. Further
improvements can be achieved by increasing the replanning frequency and augmenting
the complexity of the model.
For example, an idea could be to consider joint quantities to satisfy actuation limits or
to design collision-free swing trajectories.

• the optimization-based reference generator provides feasible X-Y CoM references to
accomplish a task. Additional scenarios can be considered by extending the formulation
to angular velocities.
Moreover, a better validation of the approach foresees the tests with response horizon
formulation, the investigation of how this approach scales up to rough terrains, and
further comparative analyses with the state of the art.
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• the ContactNet has been tested in several scenarios, but unfortunately, only in simulation;
experiments with Solo or HyQ need to be performed. In addition, the architecture of
the network could be improved to consider gait transitions and terrains with steps and
gasps.

• finally, I aim to use the presented approaches to have a quadruped robot being part
of our social life, e.g., helping humans in a disaster response scenario or inspecting an
unknown environment.
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Appendix A

Angular Velocity

I employ the Z-Y -X convention Diebel [2006] for the Euler angles sequence Φ = (φ, θ, ψ)>

to represent the orientation of the robot base where, φ, θ and ψ are the roll, pitch and yaw,
respectively. The angular velocity in inertial and CoM frame is related to the Euler angle
rates with the following relations:

ω = E(Φ) Φ̇ (A.1)

Cω = E′(Φ) Φ̇ (A.2)

E(Φ) and E′(Φ) are the Euler angle rates matrix and conjugate Euler angle rates matrix
respectively given by,

E(Φ) =


cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0
− sin(θ) 0 1

 (A.3)

E′(Φ) =


1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) cos(θ) cos(φ)

 (A.4)

Remark: E depends on pitch and yaw, whereas E′ on roll and pitch. Thus, the Euler angle
rates Φ̇ is

Φ̇ = E−1(Φ)ω (A.5)

Φ̇ = E′−1(Φ) Cω (A.6)
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