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Abstract—Accurate estimation and compensation of slippage
are critical challenges for tracked robots operating in unstruc-
tured terrain. This work presents a novel real-time method
for estimating longitudinal and lateral slippage in a tracked
vehicle using the Iterative Re-weighted Least Squares (IRLS)
algorithm. By combining data from proprio-ceptive and extero-
ceptive sensors, the IRLS-based estimator is designed to predict
slippages using only wheel speeds, GPS and IMU readings. We
validate our approach in a simulated environment, comparing it
to two other methods: a baseline with no slippage compensation
and a prediction technique based on a exponential function
approximation. Our estimation method adapts over time through
data-driven updates and enables a slippage-aware controller [1]
to achieve better trajectory tracking performance with respect
to a fixed parameter estimator.

I. INTRODUCTION

The accurate estimation of slippage represents a significant
challenge in robotics, particularly for wheeled robots operating
in dynamic environments. The phenomenon of slippage has the
potential to significantly impact a robot’s ability to navigate
autonomously, and perform tasks, thereby making it a pivotal
issue in achieving the final objective of a task (e.g. plane-
tary exploration [2]). When a robot moves through terrains
with different characteristics, whether it’s uneven ground, wet
surfaces, or other unpredictable conditions, its motion can
be influenced by numerous interaction factors that are often
difficult to predict or measure. In such scenarios, accurately
estimating slippage is essential for ensuring reliable operation
and effective control. Slippage occurs when the robot wheels
or tracks lose adhesion to the terrain, causing a discrepancy
between the actual vehicle movement and the one predicted
by the kinematic model.

Tracked Mobile Robots (TMR) provide a large contact area
with the ground, offering enhanced mobility in unstructured
environments. However, the skid steering effect, intrinsically
present in tracked vehicles, involves the occurrence of both
longitudinal and lateral slippage, which poses challenges for
precise control and path tracking. To address these challenges,
kinematic models must be adapted to account for the effects
of slippage.

J.Y. Wong’s work [3] provides a comprehensive review of
research in the field of vehicle-terrain interaction, commonly
known as terramechanics, a subject essential for simulating
vehicle behavior on diverse terrains. Building on this, Al-
Milli et al. [4] introduced a model to predict the traversability
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of skid-steered vehicles on soft terrain, addressing excessive
slippage during turns. Ahn et al. [5] used an Extended Kalman
Filter (EKF) integrated with a soil model to estimate track-soil
interactions in real time, identifying critical soil parameters
like cohesion and friction angle for enhanced control. Zhao
et al. [6] proposed a trajectory prediction method for tracked
robots using EKF and an Improved Sliding Mode Observer
(ISMO) to estimate slippage, improving navigation on varied
terrains. Moosavian and Kalantari [7] experimentally modeled
slip in tracked robots, using exponential functions based on
path curvature to estimate slip coefficients.
In this work, we propose a novel method for real-time estima-
tion and compensation of both longitudinal and lateral slippage
using an Iterative Reweighted Least Squares (IRLS) algorithm
[8]. Our approach employs proprioceptive (IMU, encoders)
and exteroceptive (GPS) sensors to estimate slippage by com-
paring the tracks’ velocity predicted by a kinematic model
with the actual velocity measurements from the encoders.
Once sufficient data is recorded, the IRLS-based estimator
is continuously fitted to the data. After the parameters are
optimized, the estimator can predict slippage using only the
wheel speeds as inputs. This method utilizes multiple robots to
accelerate data collection and fit the estimator in a distributed
manner. We will observe that the a compensation based on
the proposed approach effectively reduces the tracking error,
showing improvement in convergence over time. The terrain
is divided into patches with distinct characteristics, with the
exact location of each patch assumed to be known.

A. Problem Formulation

Given a composition of terrains with varying friction coeffi-
cients and a closed-loop desired trajectory, our objective is to
minimize the tracking error in both position and orientation by
performing real-time estimation and compensation of slippage.
In this context, we consider a scenario with an arbitrary
number of robots (five in our case) randomly positioned along
the trajectory as shown in Fig 1.

The objective is to construct a distributed slippage map,
where each terrain patch is associated with a estimator that
utilizes the left and right wheel speeds ωL and ωR to predict
the slippage components: βL and βR, representing longitudinal
slippage, and α, representing lateral slippage. After the initial
lap, during which each robot collects sufficient data, the IRLS
algorithm is applied to generate an estimation based on the
local data. This estimate is subsequently updated after every
half-lap as new data is collected. The robots, connected via
point-to-point communication, share their local estimates to
collaboratively refine a global estimate. Each local estimator
update results in a corresponding update to the global esti-
mator. To validate the approach, we will compare the average
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tracking error across three methods: no slippage compensation,
a compensation based on an exponential estimation proposed
in [1], and a compensation based on the IRLS-estimation
introduced in this work.

Fig. 1. RVIZ visualization of the tractor simulation, depicting the desired
trajectory and the grid map representing terrain patches with distinct friction
coefficients.

B. Robot Platform

The robots employed in this experiment comprise five
Robodyne MAXXII tracked robots. The MAXXII is a skid-
steering unmanned ground vehicle (UGV) designed to ensure
optimal traction across a range of terrains, including both soft
and hard surfaces. Each robot is equipped with a number of
advanced sensors, including a 9-degree-of-freedom (9DOF)
inertial measurement unit (IMU), such as the XSens Mti-300,
and a U-blox real-time kinematic (RTK) GPS. Additionally,
the wheel encoders on the robot’s tracks measure the actual
velocities of the tracks. This data is instrumental in determin-
ing whether the robot is experiencing slippage with respect to
the robot base, thereby allowing for the evaluation of traction
performance under varying conditions.

As the present study is conducted within a simulated envi-
ronment, the sensor data is inherently deterministic in nature.
To more accurately replicate real-world conditions we added
to each sensor a random Gaussian noise.

II. PROPOSED SOLUTION

A. Lyapunov Based Control of tracked vehicle

To control the tracked robot along the desired trajectory,
we utilize a Lyapunov-based controller, developed in [1].
Although the primary focus of this work is on the estimation
process, understanding the controller is essential for the role of
slippage values in affecting the trajectory tracking. The tracked
vehicle’s model is an adapted version of the unicycle model,
with the following kinematic equations [9]:

ẋ =
v

cos(α)
cos(θ + α)

ẏ =
v

sin(α)
sin(θ + α)

θ̇ = ω

(1)

where x and y are the Cartesian coordinates in the world
frame, θ is the orientation with respect to the x-axis, v is the
forward velocity, ω is the angular velocity, and α represents the
lateral slippage angle, which depends on the terrain and robot
characteristics. We designed a non-linear control law based on
the following Lyapunov function (see [1] for details):

V =
1

2
(e2x + e2y) + (1− cos(eθ + α)) (2)

To achieve globally asymptotic convergence, the control inputs
are selected as follows:

v = (vd + δv) cos(α)

ω = ωd + δω
(3)

where

δv = −kpexy cos(ψ − (θ + α))

δω = −vdexy
1

cos(α+eθ
2 )

sin

(
ψ − α+∆

2

)
− kθ sin(eθ + α)− α̇

(4)

where exy and eθ are the errors between the actual and
desired states. (3) can be mapped to sprocket wheel speed
ωL, ωR that serve as set-points for the low-level controller.
The longitudinal slippages βL and βR for the left and right
tracks, directly affect sprocket wheels, and can be computed
by comparing the actual track velocities, derived from the
body-frame tangential velocity vb,x and ω, with encoder-based
velocities.

βL = vencL − vtrackL

βR = vencR − vtrackR

(5)

where vencL,R
= RωL,R are track velocities estimated from

encoder velocities and R is the sprocket radius, while vtrackL,R

are the expected velocities given by:

vtrackL = vb,x − ωB

2

vtrackR = vb,x +
ωB

2

(6)

where B is the track width. The lateral (or side) slippage
angle α is calculated using only the body-frame velocity
components:

α = atan2(vb,y, vb,x) (7)

B. Distributed IRLS Slippage estimation

To estimate the slippage values for each robot, we employ
an IRLS algorithm. The decision to use IRLS was driven by
two key factors:

• Near-Linearity of Slippage Values: Through our anal-
ysis (see Section III), we found that the slippage values,
particularly the longitudinal slippage components βL and
βR, exhibit near-linear behavior with respect to ωL and
ωR. The lateral slippage angle α shows more nonlinear-
ity characteristics derived from the atan2 function. To
handle this problem, we employ a form of polynomial
regression to keep the same algorithm for βL,R and α.



• Handling Sensor Uncertainty: The second motivation
for using IRLS is its ability to manage uncertainty, which
arises from the fusion of data from multiple sensors
such as encoders, GPS, and IMU from each robot in a
nontrivial way. These sensors introduce varying levels of
noise and potential outliers into the data. IRLS improves
robustness by iteratively updating the weights of the least
squares regression based on the residuals. This process
reduces the impact of noisy or inaccurate data, ensuring
more reliable estimates.

The predicted value for the lateral slippage α is directly
applied in the control equation (3), influencing both the
commanded forward v and angular velocity ω. Next the pre-
dicted values of the track longitudinal slippages βL(ωL, ωR),
βR(ωL, ωR), are employed to correct the set-points ωL, ωR:

ωdes
L,R = ωL,R +

1

R
βL,R (8)

III. IMPLEMENTATION DETAILS

The entire simulation1is employing a distributed parameter
model of the tracked vehicles which accounts for detailed
terra-mechanics interactions and is implemented inside the
Locosim robotic framework [10]. A closed trajectory with
different radius of curvature is implemented connecting a set
of via-points with cubic splines. As previously mentioned,
the terrain is defined as a 9 × 9 meter area, composed of
multiple patches 3 × 3 meters in size (see Fig. 1). Each
patch is characterized by a different friction coefficient. The
patch size was chosen to ensure that the robot can traverse
an entire patch with its full body, while allowing variations
in orientation and velocities. This configuration simulates
an unstructured terrain where the robot experiences varying
slippage conditions that should estimate and compensate for.
The default friction coefficient was set to 0.1. We use this value
as a baseline and introduce slight random variations (0.09041,
0.13349, 0.15680) to construct the friction coefficient map.
Since the locations of the patches are assumed to be known,
the estimation problem involves creating a separate estimator
for each patch. Each robot has its own slippage map, where
each patch corresponds to a specific estimator. As the robot
traverses the terrain, the process of local and global estimation
is applied to each of these estimators. A terrain map class
allows the robot to retrieve the correct patch based on its x, y
coordinates, ensuring that the appropriate estimator is selected
for each section of the terrain. This same process is also
used to manage the parameters of the exponential estimation
presented in [1].

A. Analysis of Slippage Linearity and Motivation for IRLS

Figure 2 presents 3D plots of these slippage surfaces in
relation to the left and right wheel speeds, ωL and ωR.
The data was identified in [1] by collecting slippage values
during the execution of an open-loop velocity trajectory on
terrain with a default friction coefficient µ = 0.1. The Figure

1A video of the simulation can be found at this link.
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Fig. 2. 3D visualization of the ground truth slippage surfaces for βL, βR,
and α as functions of the left and right wheel velocities ωL and ωR. The
frictiction coefficient is set to µ = 0.1

shows that, for a certain range of low, positive velocities, the
longitudinal slippage components βL and βR exhibit nearly
linear behavior. In contrast, the lateral slippage component
α presents non-linear characteristics, particularly near the
extremes {(ωL,min, ωR,max), (ωL,max, ωR,min)}. To manage the
moderate non-linearity observed, we opted for a third-order
polynomial regression. While polynomial regression models
non-linear relationships, it remains a linear statistical esti-
mation problem, allowing us to apply the IRLS algorithm
without modifications. This approach effectively balances the
complexity of the model with the observed near-linearity of
the slippage components.

IV. RESULTS

In this section we compare the ground-truth slippage sur-
faces obtained in [1] with those produced by our estimation
method to evaluate the accuracy and effectiveness of our
approach. The primary objective is to assess the accuracy of
the slippage estimation and to validate the effectiveness of
our approach in comparison to a method which involves a
fixed parameter function approximator based on exponentials,
particularly in terms of trajectory tracking improvement. We
conducted the same simulation with three different slippage
compensation strategies: (1) the baseline, where no slippage
estimation is applied, assuming the vehicle is controlled as a
unicycle (see [1]), (2) our proposed approach, which employs
a distributed IRLS algorithm to estimate slippage parameters,
and (3) the approach based on the exponential approximation.
The estimated parameters in both 2), 3) case are used in the
slippage-aware controller (3). In Fig. 3, we see that the ex-
ponential approximation method does not change its tracking
accuracy over time, as it relies on precomputed constants and
does not adapt to new data like while the IRLS approach
does. The advantage of the IRLS approach can be showcased
looking how the average of the tracking errors evolves as a
function of the number of completed laps in Fig. 4 where the
IRLS method demonstrates a dramatic improvement over time
outperforming both the baseline and the exponential methods.

Fig. 5 contains time series data for the slippage components
estimated using the IRLS and the exponential approximation
methods. The signal obtained from the ground truth slippage
component is notably noisy due to the integration of multiple
sensor measurements. An initial observation is that, as previ-
ously explained, IRLS does not produce any estimates during
the first lap, whereas the exponential approximation begins to

https://youtu.be/kiJUTdoGCvQ
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Fig. 3. Comparison of the desired trajectory and the actual trajectory
realized during the first and fifth laps using three slippage compensation
approaches. The comparison highlights the trajectory tracking performance
and improvement over time for each method. In background, the friction map
is reported.
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correct the slippage immediately. It is evident that for the slip-
page components βL and βR, the exponential method tends to
overestimate positive values while zeroing out negative values.
Conversely, the exponential approach provides a more accurate
prediction for the α component. This discrepancy suggests that
the exponential approximation may not adequately capture the
near-linear characteristics of the slippage components βL and
βR. Regarding the IRLS estimates, the second lap exhibits
some episodes of overestimation, which diminishes in the third
lap thanks to the incorporation of new data and improved
weighting accuracy.

Finally, to visually compare the surface shapes produced
by our IRLS estimator and those computed by [1] for a
friction coeff of µ = 0.1, a 3D plot containing the three
surfaces is presented in Fig. 6. As observed, the overlay
for βL in the lower range of ωL is not accurate, showing
some discrepancies. Regarding α, we can see, as previously
discussed, a lack of generalization at both the upper and
lower margins of the value range. Despite this characteristics,
overall, the overlay is acceptable, and we consider our IRLS
approach to provide a satisfactory approximation compared to
the ground truth data. In this work, we assumed an a-priori
knowledge of the terrain. In future research, we plan to develop
a Neural Network (e.g., [11]) capable of identifying the type
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Fig. 6. True vs Predicted plot of the three slippage components obtained with
IRLS

of terrain at each robot’s location. This information will be
used as input for our local estimator, enabling the creation of
a slippage map of the terrain.
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