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Abstract Three-dimensional object recognition on range
data and 3D point clouds is becoming more important nowa-
days. Since many real objects have a shape that could be
approximated by simple primitives, robust pattern recogni-
tion can be used to search for primitive models. For example,
the Hough Transform is a well known technique which is
largely adopted in 2D image space. In this paper, we system-
atically analyse different probabilistic/randomized Hough
Transform algorithms for spherical object detection in dense
point clouds. In particular, we study and compare four vari-
ants which are characterized by the number of points drawn
together for surface computation into the parametric space
and we formally discuss their models. We also propose a new
method that combines the advantages of both single-point
and multi-point approaches for a faster and more accurate de-
tection. The methods are tested on synthetic and real datasets.

Keywords 3D Hough Transform · Sphere detection ·
Randomized HT · Probabilistic HT

1 Introduction

The high availability of low-cost range sensors has attracted
the research community’s attention towards object recog-
nition tasks on 3D data [1]. Since 3D point clouds bring
more information than 2D images, they allow to overcome
some intrinsic difficulties, like the precise detection of the
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edges (e.g., due to albedo) and the ambiguities caused by the
projection of a 3D scene into a 2D pixel matrix.

The main limitations of 3D point clouds — when ac-
quired with low cost range sensors — are usually related to
their sparse distribution and the presence of noise.

Many applications could take advantage by extracting
three-dimensional information from the environment. For
instance, recognizing 3D geometric regular shapes, such
as spheres, could be a basic step for machine vision tasks,
HCI tasks, head detection and medical image processing [2].
Among the other applications, a fast and precise detection and
3D localization of players and balls could be very useful for
physical rehabilitation or monitoring of sport performance.
Common libraries designed to support the analysis of data
coming from RGB-D sensors (e.g., , Microsoft Kinect) al-
ready guarantee very precise segmentation and description
of the players, but they lack a corresponding support for the
detection of objects which the players interact with or play
through. As many real objects can be approximated by sim-
ple primitives [3] — such as planes, cylinders and spheres —
3D object recognition can be handled by parametric shape
detection. One of the most popular and powerful methods
for detecting parametric shapes in 2D images is the Hough
Transform (HT), first introduced in [4] for line detection.
During the last decades many HT-based methods have been
widely proposed for 2D detection of circles, ellipses and
also arbitrary shapes [5], but only recently has the HT been
applied to a 3D scene, mainly for plane detection [6,7,8,
9]. The popularity of this method stems from the simplicity
and generality of the conversion of features extracted from
the image space into a set of votes collected in a parametric
space, which is easier to analyze. Furthermore, HT is very
robust to outliers, occlusions and deformations of the input
data and it is highly parallelizable.

A great limitation for this method is that both the com-
putational cost and the memory requirements increase expo-
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nentially with respect to dimensionality of the input space.
Several approaches have been proposed to reduce this bur-
den, which could make 3D shape detection unfeasible. Most
of them focus on reducing the dimensionality by exploiting
gradient information to split a high dimensional input space
into several lower dimensional subsets and process them
separately.

This paper focuses on the potential exploitation of HT
methods for detecting spheres in 3D point clouds. For a
sphere detection task, a Standard HT (SHT) application
works on a 4-dimensional parameter space consisting of three
parameters x0, y0, z0 for the sphere center and a fourth r for
the sphere radius. Each point votes for an hyper-cone and we
need at least four intersecting hyper-cones to find the target.
A different approach could be evaluating more than one point
at the same time, in order to reduce the dimensionality of
each surface accumulated into the parameter space. An ex-
treme case is represented by a reformulation of Randomized
HT (RHT) for spheres, which evaluates four points together
and produces a 0-dimensional manifold (i.e., a single point)
on the parameter space. This makes each voting operation
faster, but it requires a large number of votes, since the like-
lihood of picking a good quadruple is biquadratic against
the inlier ratio (i.e., number of inlier points over total num-
ber of points); thus, the number of required votes to have
satisfactory results could be too high.

In this paper we present two main contributions: first, we
provide a theoretical analysis of HT applied to sphere detec-
tion; in particular we make a comparison between different
solutions which draw from one to four point subsets for each
surface calculation and discuss the link between the solutions
and noise that affects input data. Secondly we propose a com-
bined method to find spherical objects in dense point clouds.
The method involves two steps: a first pass scans the cloud
with a single-point HT application to reduce search area and
the amount of outliers. The second pass applies a four-point
HT to find an accurate parameter vector. The method does not
require any gradient or color information, can detect multiple
spheres and is very robust to outliers and partial data.

The rest of the paper is organized as follows. In Section
2 we review the literature relevant to our contribution. In
Section 3 we provide a theoretical analysis of the HT applied
to 3D sphere detection and compare different HT-based vari-
ants. In Section 4 we describe our novel approach. Section
5 illustrates the experimental framework used to validate
the performance of our implementations. The final section
presents conclusive observations about our work.

2 Related work

A brief literature review related to our work is presented
below. The material is listed in chronological order and it is
divided into two groups: for shape detection on 2D and 3D

data, respectively. An old but detailed survey can be found in
[10].

2.1 Early development in 2D image processing

HT was first introduced in 1962 by Paul Hough [11] for
curve detection in bubble chamber photographs [12,13] and
reached the image processing community’s attention in 1969,
thanks to the work of Rosenfeld [14] which studied the sim-
plest and most used HT application of line finding in binary
images. The classical form of HT has been formalized some
years later by Duda and Hart [15] with the so-called “normal
parametrization”.

Several other parametrizations were proposed to detect
straight lines as well as more complex shapes, like circles
[15,16] and ellipses [17]. To overcome the increasing num-
ber of parameters for such shapes — which means a higher
dimensional and therefore more expensive parameter space
— the most adopted approach was to decompose the image
space into a few easier to analyze subsets. Such a decom-
position usually exploits some geometric properties of the
parametric shape and gradient information to divide the ini-
tial set of parameters into smaller subsets that are processed
independently (e.g., [17] exploits the fact that parallel lines
tangent to an ellipse, which is described by five parameters,
are equally distant from the center; thus, they first look for
the center of the ellipse by projecting couples of edges into
a 2D accumulator and then they fix the center of the ellipse
and look for the other three parameters in a similar way; see
also examples on the 3D domain in Section 2.2). Thus, these
approaches are not general, since they rely on the considered
type of parametric shape.

A different approach was proposed by Illingworth and
Kittler [16]. Their implementation, called “Adaptive Hough
Transform” (AHT), adopts an iterative coarse-to-fine search
strategy for detecting lines and circles [18] in 2D and 3D
parameter spaces. It uses a small accumulator array that is
restricted around significant peaks at the end of each iteration
to produce a smaller but finer-grained parameter space for
the next one, until a desired approximation level is reached.
A coarse-to-fine approach is quite straightforward to use and
it has also been adopted for our work.

In 1990 Kiryati et al. [19] introduced the “Probabilistic
Hough Transform” (PHT), which aims to reduce computa-
tional and memory costs of the HT by finding the minimum
subset of input data that produces useful results. They demon-
strated that a successful identification can be performed by
randomly selecting only 2% of the original input data. Several
other works used the same underlying idea. One of the most
important was the Randomized Hough Transform (RHT),
proposed by Xu et al. [20,21] in 1989. This method was used
for line detection and randomly selects pairs of points instead
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of single ones from the image space to vote into a mono-
dimensional array, efficiently implemented by a concatenated
list. Using more than one point as an input constraint has the
advantage to decrease the number of free variables, or, in
other words, the number of projected points corresponding to
each input element. On the other hand, the number of input el-
ements (couples, triplets, sets of points) exponentially grows,
and a some kind of input selection is mandatory. Kiryati et
al. [22] compared probabilistic and randomized approaches
for line detection by varying the input properties. Inspired
by this work, we analyze the performances of different HT
variants for the more complex case of sphere detection in 3D
spaces.

The integrated use of two different transform-based meth-
ods has been explored on 2D images, with the Iterative
Randomized Hough Transform (IRHT) approach [23]. This
method, proposed by Lu and Tan, iteratively applies a Ran-
domized HT to a 2D image for ellipse detection, starting
from the assumption that a RHT with a small poll size usu-
ally identifies a great ellipse that contains the target (greater
ellipses have in fact more consensus points than small ones,
so they should receive more votes). At each iteration a new
search starts inside the area identified by the great ellipse,
until convergence is reached.

Princen et al. [24] proposed a formal definition of HT for
2D shapes. Here we adapt a similar model for 3D data.

2.2 3D HT development

Very few attempts at HT for 3D data have been presented
in the literature. In 1990 Hsu and Huang [25] proposed the
so-called “Partitioned Hough Transform” (PaHT), a parti-
tioned method to reduce both time and space of ellipsoid
detection by using the independent properties of ellipsoid
parameters. This task is performed assuming that the input
image — consisting in a 64×64 matrix range image — could
contain several ellipsoids with the same rotational axis, or-
thogonal to the image plane. Starting from a 7D parametric
shape (X0,Y0,Z0 for center coordinates, A, B,C deformation
coefficients, θ rotation angle around z-axis), the algorithm
divides the parameter vector into two independent groups. In
the first group only ellipses obtained by slicing the ellipsoid
in sequences of ellipses stacked on the y-axis, so that only
four parameters (X0,Z0, A,Cy with Cy = Cy(C, y)), are used.
Similarly all ellipses stacked on the x-axis are detected and
combined by projection to obtain a cross that locates the
ellipsoid center on the xy-plane. Once those coordinates are
detected, further steps are quite straightforward. It is demon-
strated that PaHT can detect multiple ellipsoids, but cannot
detect an ellipsoid if the noise is too large (> N(0, 0.01)).
This method also considers quite small input spaces and
makes use of gradient information to detect the orientation

of the ellipse border at each step. For larger spaces it is not
computational feasible.

Taylor [26] proposed a methodology to reconstruct para-
metric regular surfaces, again from 64 × 64 range images,
by decomposition of the parameter set into several low-
dimensional (with 1 or 2 degrees of freedom) subsets. This
result is achieved by using a multi-window parameter estima-
tion technique, a k-tree parameter space searching a voting
scheme and a conflict resolution process, which eliminates
ambiguities related to parameter guessing hypotheses. The
implementation has been proved to be very accurate for mul-
tiple sphere and cylinder detection, and also robust to typical
noise produced by range sensors available at that time. How-
ever, no high outlier density situations were considered as
our method does.

Spherical object detection is considered an important task
for clinical applications, especially for replacement surgery.
Van der Glas [2] proposed a technique to automatically de-
termine the sub-voxel position and size of a sphere in un-
segmented 3D images, to facilitate the glenohumeral joint
substitution with a prosthesis. The method involves two steps.
First, the sphere center is detected by using the gradient vec-
tor direction (by definition, every normal vector to a spherical
surface points to its center) as input, and a three-dimensional
parameter space for voting. Second, the sphere radius is de-
termined by mapping gradient voxel values on a histogram
and finding maxima. Anisotropy in the z direction and partial
data are also taken into account. Even though this method is
very accurate and suitable for its application, it is not general.
It assumes in fact that there is always a sphere in the 3D
image, and it also needs gradient information. Strong restric-
tions to the radius range are also applied, according to human
biometrics. Similar considerations can be taken for the hi-
erarchical approach proposed by Cao et al. [27], developed
to detect the spherical parameters of the femoral head in CT
images. The approach treats every CT slice with a HT-based
circle detector and votes for the best (x0, y0) projected sphere
center, thus halving the number of parameters. Secondly, the
last center coordinate z0 and radius R are detected with a
second HT voting stage by exploiting geometric relationship
between the sphere parameters.

Sphere detection was also used to automatically calibrate
3D optical sensors, with a sort of three-dimensional version
of the commonly used pattern for 2D camera calibration.
Ogundana et al. [28] proposed a method for sphere detection
in point clouds which employs an optimized accumulator
design; it provides compact data storage and efficient data
access. The method has proved to be fast and accurate, but,
due to the restriction applied, it is not general enough. It
is assumed in fact that the number of spheres is fixed and
known. It is also assumed that the radius is known, thus
the real problem dimensionality is reduced to three (center
coordinates only).
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Kharbat et al. [29] proposed a sphere detection and track-
ing method using an enhanced HT technique and a H∞ filter.
Although the goal for this work is sphere detection, the real
use of a HT-based method is for 2D circle detection, assum-
ing that a projected sphere on a pixel matrix always assumes
a circular shape. However, since the method seems robust
within its application domain, a possible adaptation to circles
on slices extracted from a point cloud will be explored as
future work.

Recently, Abuzaina et al. [30] proposed a basic Hough
Transform method used to detect partially occluded spheres
from point clouds captured with the Microsoft Kinect sen-
sor. Even if the authors highlighted the computational issues
related to the algorithm, they handled the problem only by
sub-sampling the input point cloud (by a factor of 20) and
adapting the quantization steps accordingly, but no algorith-
mic solutions for data selection or space partitioning have
been proposed.

A comparison of presented methods is summarized in
Table 1, where we take into account: the source type and size
(small range images, stack of 2D images, static images. . . ),
whether the method uses gradient information, whether the
number of spheres is variable or not, whether the sphere
radii are variable or not, and whether the method is robust to
outliers and noise.

Table 1 Comparison between different sphere detection methods. From
left to right: method authors, source type and size (Range Images, MR
and CT stacks, 2D images, Point Clouds), whether the method uses of
gradient information (G), whether it supports multiple sphere detection
(M), whether it supports variable radius sphere detection (R), robustness
level to outlier (O) and robustness level to noise (N)

Method Source G M R O N

Hsu and Huang [25] 4096 px RI no yes yes weak weak

Taylor [26] 4096 px RI no yes yes weak robust

Van der Glas [2] MR stack yes no yes weak robust

Cao et al. [27] CT stack yes no yes weak robust

Ogundana et al. [28] > 0.3M PC no no no weak robust

Kharbat et al. [29] 2D no no no weak robust

Abuzaina et al. [30] > 0.3M PC no no yes robust robust

Our method > 0.3M PC no yes yes robust robust

3 Hough transform for 3D Spheres

A sphere in a 3D space is unambiguously defined by four
parameters, which are generally identified by its three center
coordinates and the radius length. Thus, a Standard HT appli-
cation should map each 3D point of a spherical surface into a
manifold embedded in a four-dimensional parameter space.

In the following we define four models for HT, namely
H1,H2,H3,H4, that take as input data a single point as in

the Standard HT or a multi-point set of 2, 3 or 4 points,
respectively.

While the first model is simply a redefinition of the Stan-
dard HT method for spheres in 3D space — or a Probabilistic
HT if we take a random subsample of the original input —
the other three solutions derive from the Randomized HT,
revised for highly parametric shapes. We will formally dis-
cuss the model properties with respect to challenging noisy
conditions and the probability to have a desired accuracy
with a random selection of the input multi-point sets.

3.1 Definitions and symbols

Let us denote with X = (x1, . . . , xM)T a generic point in a
M-dimensional feature space and by Ω = (ω1, . . . , ωP)T a
point in a P-dimensional parameter space Ω. In this specific
case, the feature space contains a 3D point cloud (i.e., M =

3), while spheres in 3D space are described by the above
mentioned four parameters (P = 4). For notation convenience
X and Ω components will be indicated with X = (x, y, z)T

and Ω = (x0, y0, z0, r)T, respectively.
Let X be a specific point cloud, i.e., a collection of N

feature points X j:

X =
{
X j

}
j=1,...,N

X j =
(
x j, y j, z j

)
. (1)

Adapting the formalism proposed by Princen et al. [24]
to 3D images, the Hough Transformation is based on a para-
metric constraint f (X, Ω) = 0, which can be defined for 3D
spheres as in the following equation:

f (X, Ω) = (x − x0)2 + (y − y0)2 + (z − z0)2 − r2 = 0. (2)

Given a source point X j, the set of points in the parameter
space Ω which satisfy the constraint of Eq. 2 lies on a hyper-
surface Ω j (more precisely, a right spherical hyper-cone):

Ω j =
{
Ω ∈ Ω

∣∣∣ f (X j, Ω) = 0
}
. (3)

From a practical point of view, Ω j contains all parameter
sets which generate spheres passing through the point X j.
Given a set of points X belonging to a sphere, the intersec-
tion of the corresponding hyper-surfaces will provide the
parameter vector Ω0 of the sphere itself:

Ω0 =

N⋂
j=1

Ω j (4)

The estimation of the parameter vector Ω0 from a real
point cloud is not feasible in an analytic and exact way [15].
The HT methods, instead, adopt a bounding and quantization
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of the parameter space, which is treated as a discrete accumu-
lator array H. Each array element corresponds to a portion
of Ω (cell) defined by the quantization step ∆.

Let Ω̂ be the quantized parameter space. Let CΩ̂ ⊂ Ω be
the region of Ω quantized to Ω̂. So we can define the function
p(X, Ω̂) as follows:

p(X, Ω̂) =

1, ∃ Ω ∈ CΩ̂ : f (X, Ω) = 0
0, otherwise

(5)

Equation 5 defines a relationship between feature points
and the discretized parameter space (i.e., the elements of the
accumulator array H). It returns a non-zero value only if there
is at least one point Ω in the continuous parameter space that
exactly satisfies the shape constraint f (i.e., it generates a
sphere passing through X);Ω should also be contained within
the discretized region selected by CΩ̂. Thus, the value of the
Ω̂-th cell of the accumulator array H1 is obtained from a
point cloud X as follows:

HΩ̂
1 (X) =

N∑
j=1

p(X j, Ω̂) , (6)

where the subscript of H1 indicates that only one feature
point is drawn from the input data for each hyper-surface
computation in parameter space.

Every non-zero term in Eq. 6 provides an additional hint
to the parameter estimation, and it is also referred as a “vot-
ing” operation. When the voting stage is completed, a peak
detection step analyzes the accumulator array and produces
the vector of estimated parameters Ω0 ∈ Ω̂ for the sought
shape by calculating arg maxΩ̂∈Ω̂ HΩ̂

1 .

3.2 Increasing input constraint size

Given a subset of n input points Ξ =
{
Xi

}
i=1,...,n, the constraint

p expressed in Eq. 5 can be rewritten as follows:

p
(
Ξ, Ω̂

)
=

1, ∃ Ω ∈ CΩ̂ : f (Xi, Ω) = 0 ∀Xi ∈ Ξ

0, otherwise
(7)

Function p in Eq. 7 returns a non-zero value only if there
exists a parameter vector Ω inside the cell CΩ̂ which satisfies
the relation f for all the points Xi in the cloud Ξ.

By varying the subset cardinality n = |Ξ|, different vari-
ants of the Hough Transform can be defined instead of Eq. 6.
In particular, for input sets of size n = 2 we have:

HΩ̂
2 (X) =

N−1∑
i=1

N∑
j=i+1

p
(
{Xi, X j}, Ω̂

)
(8)

In this case, given two points X1 = (x1, y1, z1), X2 = (x2, y2, z2)
randomly drawn from all combinations expressed in Eq. 8,
and their corresponding midpoint Xm = (xm, ym, zm), every
sphere of radius r < rmax must have a center restricted to
lie on a circle with center Xm, radius d =

√
r2 − ‖X1 − Xm‖

2

and axis passing trough X1 and X2 (see Fig. 1a, where one
example sphere with fixed radius and its center locus is de-
picted). As the center coordinates cannot vary freely, a more
convenient parametrization could be:

x = xm + d · u1 cos (θ) + d · v1 sin (θ)
y = ym + d · u2 cos (θ) + d · v2 sin (θ)
z = zm + d · u3 cos (θ) + d · v3 sin (θ)

(9)

where θ ∈ [−π,+π], d ∈ (0, dmax] and U = (u1, u2, u3),V =

(v1, v2, v3) are two generating vectors for the plane that con-
tains the circle. With such a parametrization, the voting stage
is reduced to evaluating every valid (θ, d) couple, instead of
every triple (x0, y0, z0). Using this multi-point model we start
with n = 2 thus we use two nested loops instead of three.

For subsets Ξ composed by three points, the H accumu-
lators are computed as:

HΩ̂
3 (X) =

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

p
(
{Xi, X j, Xk}, Ω̂

)
(10)

In this case, for a three-points subset {X1, X2, X3}, every
sphere center must lie on a straight line, passing through
the subset circumcenter C = (xc, yc, zc) and orthogonal to the
plane π identified by the subset. A proper parametrization
could be:

x = xc + n1 · t

y = yc + n2 · t

z = zc + n3 · t

(11)

where n̂ = (n1, n2, n3) is the normal vector of plane π (see
Fig. 1b). As the computation of votes is run across the only
free parameter t, the complexity is further reduced by one
dimension.

Finally, for 4-element sets, the accumulator is computed
as:

HΩ̂
4 (X) =

N−3∑
i=1

N−2∑
j=i+1

N−1∑
k= j+1

N∑
l=k+1

p
(
{Xi, X j, Xk, Xl}, Ω̂

)
(12)

Equation 12 shows an extreme case, where the input subsets
Ξ are transformed to a single point in the parameter space.
HT corresponds to a RHT application to sphere detection.
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X1

X2

Xm
dU V

(a) Sphere center locus with 2 point constraint

X1 X2

X3

Xc

π

n^

(b) Sphere center locus with 3 point constraint

Fig. 1 Sphere center loci with different point constraints

3.3 Implementation issues

The four HT algorithm variants described above — in the
following called H1,H2,H3,H4 — present several implemen-
tation difficulties, both related to complexity and parametriza-
tion variables of the stored hyper-surfaces. The following
paragraphs deal with these main issues.

Parametrization To correctly implement the HT variants ex-
pressed in Eq. 8 and 10 a different parametrization for com-
puting and for storing hyper-surfaces must be used. This in-
troduces non-trivial issues, since distortions, approximations
and quantization value conversion could negatively affect
the voting stage (e.g., given a discrete (θ, d) couple, it is not
assured that corresponding accumulator cell CΩ, will receive
at most one vote). However, a conversion from “voting space”
to parameter space could introduce additional computational
costs. For these reasons, H2 and H3 implementations will
not be discussed in detail. However, we tested them with a
simplified implementation, but they showed poor results if
compared with the extreme cases of H1 and H4.

Computational complexity Most of the computational effort
is made in the voting stage (i.e., number of voting opera-
tions). Generalizing Eq. 6, 8, 10 and 12, the computational
complexity of HT for a p-dimensional shape detection can
be expressed as:

Cc =

(
N
n

)
·

p−n∏
i=1

S i = O
(
Nn · S

p−n)
(13)

where S i represents the number of quantized values that
run along the i-th parameter and S is the mean value of
S i. Equation 13 shows that high values of n are inapplicable
when the cloud is dense (i.e., N is high), since savings brought
by second factor are rapidly overtaken by the first one. To
overcome this problem, the idea of using a random selection
of the input as done in [20] could be applied; this would limit
the number of subsets Xi used for the voting stage, but a
criterion to approximately estimate a suitable size of such
a sampling of the input has to be defined. Section 3.4 will
introduce the problem of noise and outliers, which is related
to a correct choice.

Memory consumption As the accumulator is generally im-
plemented as a finite multidimensional array, the parameter
space must be bounded along every dimension. Let us de-
note with Mi (resp. mi) a generic upper (resp. lower) limit
value for the i-th parameter. The most general choice for
center coordinates values could be using the maximum (resp.
minimum) coordinates of the point cloud X and using the
minimum extended value of X bounding box as the radius
(so it is assumed that at least a sphere octant is contained
whitin the point cloud).

Let ∆i be the quantization value used to divide the pa-
rameter space along the i-th dimension. Thus, each cell C of
partitioned space Ω has size

∏4
i=1 ∆i and the entire accumu-

lator contains a number Γ of cells equal to:

Γ =

4∏
i=1

⌈
|Mi − mi|

∆i

⌉
(14)

When sparse point clouds are analysed (i.e., points are
very distant from each other), the difference |Mi − mi| forces
to use bigger ∆i values to avoid memory overload and to
maintain the value Γ within an affordable range.

This could lead to excessive approximations or, in the
worst cases, to a wrong estimation.

3.4 Noise and outliers

The correct estimation of a parameter vector Ω0 from a point
cloud X requires that all the analysed elements belong to the
sphere. In real cases this is not true — even if a real sphere is
acquired — mainly due to the presence of noise and outliers.
Intrinsic errors in the acquisition phase, deformations and
numerical issues affecting feature points, introduce a sort of
additive random noise ∆X = (∆x, ∆y, ∆z) so, instead of the
real point location X = (xr, yr, zr)T, the input cloud contains
its noisy version X + ∆X = (xr + ∆x, yr + ∆y, zr + ∆z)T =

(x, y, z)T.
In addition to noise, the input cloud usually includes

outlier features, which belong to non-target objects — even
spherical — or to the background. Those points negatively
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influence the Hough voting stage for a target sphere, and
represent the most relevant issue for sphere detection in a
real context.

For each target shape the entire image space can be ar-
bitrarily partitioned into two subsets, one containing inlier
points and the other outlier points, respectively. Such distinc-
tion is necessary to discuss the model, as inlier rate dramati-
cally influences the performance of the HT variants proposed
in Section 3.2.

3.5 Input selection by varying of inlier rate

The four HT variants introduced in Sections 3.1 and 3.2
are defined in a non-probabilistic fashion, but as mentioned
above, for a real implementation a proper selection of sub-
sets Ξ is needed. In this section we analyze how the size of
drawn subsets influences the probability to have a successful
detection if we use a subset of the cloud points as in the
Probabilistic HT model. For simplicity we will continue to
use the Hn(Ω) notation even with probabilistic versions of
HT.

As stated in the last section, input sets can be viewed as
a disjointed union of the inlier points set I and the outlier
points set O, with N = |I| + |O| = Nin + Nout. Let us consider
the probability P({Xi}n ⊂ I) to find a correct n-subset {Xi}n

i.e., a subset whose points entirely belongs to the model and
contribute to increase the correct peak into the accumulator
space. For a sufficiently large value of N, P can be approxi-
mated as:

P({Xi}n ⊂ I) ≈
(Nin

N

)n

(15)

Let us now consider a point cloud with a certain rate
Nin/N. Let t denote the number of correct votes, v a desired
number of correct votes and s the number of randomly se-
lected points (resp. couples, triples, . . . ) actually taken. Here
we consider v as the minimum number of votes necessary
to achieve a correct detection. For H1(Ω) at least four hyper-
cones must intersect into parameter space, so that v = 4; for
H2(Ω) we have v = 3; for H3(Ω) we have v = 2 and, finally,
using H4(Ω), we have v = 1.

We aim to estimate the minimum number of single points
(for H1) or sample subsets (for H2,H3,H4) that must be taken
to have a number of correct votes greater than v. In such a
manner we estimate in which condition a detection can be
feasible. The probability to have a certain success rate t > v
can be calculated as:

P(t > v) =

= 1 − P f (t ≤ v) = 1 −
v∑

k=0

(
s
k

) (Nin

N

)nk (
1 −

(Nin

N

)n)s−k

(16)

We now want to compare single-point and four-point
algorithms. By adapting the approach taken in [22] to our
case, a proper value of s must be taken so that sH1Nin/N � 1
for H1 application and sH4 · (Nin/N)4 � 1 for H4 application.
Given a certain probability of failure P f , we also have that
sH1 ≈ sH4 · (Nin/N)3.

Furthermore, below a certain Nin/N rate threshold, the
use of H4(Ω) becomes computationally disadvantageous com-
pared with H1(Ω). In normal operating conditions, the thresh-
old T can be calculated as (for more details, see Appendix
A):

T = 3

√
cH4

S
3
· cH1

(17)

where cH4, cH1 are the computational costs of a single vote
operation of H4(Ω) and H1(Ω), respectively. As can be seen,
T is severely influenced by quantization choice, which in
turn drives accuracy performance.

4 Combined Multi-Point Hough Transform

Let us consider a typical point cloud with real 3D data where
the inlier rate is low (e.g., Nin/N ≈ 0.1), so that a H1 applica-
tion should be preferred, according to the criterion expressed
in Section 3.5.

Since H4 execution time depends uniquely on (Nin/N)4,
even a slight increment of inlier rate can dramatically im-
prove its performance. In contrast, H1 time performance is
less sensitive to inlier rate changes (sH1 ∝ Nin/N) and also
depends on the quantization level, which is arbitrary. These
characteristics could be combined to obtain better time and
accuracy performance.

We propose a novel method for sphere detection suitable
in noisy point clouds affected by low inlier rate. Our method
is called Combined Multi-Point Hough Transform (CMPHT)
and involves two steps: first, a H1 is applied to find an ap-
proximation of the sphere location. Secondly, the parameter
detection refinement is achieved by H4.

4.1 Algorithm description

Referring to Algorithm 1, a sufficiently small four dimen-
sional accumulator is initialized, so that H1 is faster than
H4.
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Algorithm 1 CMPHT
Require: X =

{
X j

}
j=1,...,N

. Input point cloud

1: function Detect(X)
2: repeat
3: Ω̃0 ← computeH1 (X) . Coarse detection using H1
4: Compute the ROI of Ω̃0
5: Ω0 ← computeH4 (X,ROI) . Refinement using H4

6: d ← density (X, Ω0) . Density estimation
7: if d ≥ dth then
8: Ω0+ = Ω0 . Add Ω0 to the output set
9: X− = Ω0 . Remove the sphere from the cloud

10: end if

11: until d ≤ dth
return Ω0 . Set of sphere parameters

12: end function

∆1

r + ∆4

r∆2

Fig. 2 Top view of search area box calculation (double dashed line).

Initially, H1 is applied to the cloud X over the accumula-
tor A and a set of approximated parameters Ω̃0 are produced.
The H1 computation is performed using a subset of X, whose
size depends on the estimated inlier amount of the cloud and
is chosen according to the criterion expressed in Section 3.5.

Assuming that the quantization value is chosen properly
(i.e., the quantization step is adequately smaller than the tar-
get radius), those parameters identify a sector (i.e., a Region
of Interest) of the point cloud that should contain the target
sphere. A proper sector size should be chosen by evaluating
the amount of desired outlier removal, the accuracy of H1

application, and point cloud density.
The Region of Interest can be calculated as follows: given

an intermediate estimated parameter vector Ω̃0 = (x̃0, ỹ0, z̃0, r̃)
(Fig. 2, solid line), the maximum error made on the i-th
parameter should be ∆i/2, so the real sphere should be lo-
cated inside a solid composed by morphologic dilatation of
a cuboid with edges ∆i using a sphere of radius r + ∆4 as
structuring element (Fig. 2, dashed line). To simplify the
model and compensate for possible errors, a box of center
(x0, y0, z0) and volume (2(r + ∆4) + 2 maxi ∆i)3 is used.

Once the search area is restricted, a H4 with a larger accu-
mulator (i.e., an accumulator with a more sensitive quantiza-
tion interval) and a poll size proportional to outlier exclusion
amount is applied; for this last step we opted for H4 instead

of a least square method because it is more robust to outliers
(we expect that a typical ROI contains a non negletable set of
points from objects close to the target, e.g., the floor where a
ball lies).

The new estimated parameters obtained during the pre-
vious step must be validated. For an almost spherical object
with radius r, corresponding points should be located only
between two concentric spheres with slightly different radii
r + ε, r − ε. A volume difference between these two spheres
can be used to compute a discretization of object surface
area:

Asphere =

4

3
π (r + ε)3 −

4

3
π (r − ε)3

2ε
(18)

By counting the number of points belonging to the surface
defined in Eq. 18, and by dividing it to the surface area, a
measure of point surface density d is defined. This measure
expresses the number of points per surface unit on a sphere
of radius r. Considering the radius variability, we can define
ε = c · r , c ∈ [0, 1] and the density measure becomes:

d(c) =
3 · Nin

4 π r2 (c2 + 3)
(19)

The surface point density value is expected to be much higher
for a correct identification than an erroneous one. Thus, it
was used as a good measure to identify a new sphere. A
correct threshold value for surface point density could be
inferred using device information (e.g., average number of
points produced, maximum range covered), a ground truth or
by an early input data analysis.

If the density of the detected sphere is above the threshold
dth, the new parameter vector found is stored and the corre-
sponding points are excluded from the original point cloud.
Otherwise no more spheres are detected and the algorithm
stops.

4.2 Execution time and memory space usage

Given a cloud with a known Nin/N, H4 requires that poll
size must be proportional to (Nin/N)4 to achieve a small
failure rate. Denoting the proportionality constant with b, the
execution time of a pure H4 is simply cH4 · b/(Nin/N)4.

In contrast, a pure H1 execution time is proportional to
(Nin/N) and S

3
, where S is the mean accumulator size for a

dimension and depends on ∆i. Thus the execution time for H1

is cH1 ·S
3
· c/(Nin/N) (where c is the proportionality constant

for H1).
Our combined method joins H1 and H4, so its execution

time performs better when:

cH1 · S
3
∗ · c/(Nin/N) + cH4 · b/(Nin/NROI)4 < cH4 · b/(Nin/N)4
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(20)

i.e., when the sum of execution time of a H1 with a coarser
accumulator dimension S ∗ and a H4 with a reduced cloud
NROI is smaller than a pure H4 application with the whole
original cloud. Since S is arbitrary and H4 poll size depends
on a fourth power of inlier rate, a time saving can be usually
achieved when clouds contain many outliers.

Memory usage is the same for H4, since the accumulator
used during the H1 step is small, while during the H4 pass
the same accumulator of a pure H4 is used. However, since
the ROI is smaller than the whole cloud, the quantization
of CMPHT is finer, so with the same memory occupation a
more accurate estimation is achieved.

More sophisticated methods to reduce memory usage
could be used (e.g., sparse n-dimensional arrays), but they
were not investigated here since they are outside the scope of
our work.

5 Experimental results

5.1 Datasets and metrics

We created both synthetic and real datasets for our tests.
Seven synthetic datasets, named from “D1” to “D7” (Fig.
3), have been designed to simulate different types of error
that can occur during the acquisition of a point cloud in a
real context. Datasets from D1 to D6 consists of 100 point
clouds each. Each point cloud is composed by 4096 points
sampled from a basic perfect sphere which are modified to
reflect a specific error type. Center coordinates and radius
of the basic sphere of each sample vary randomly in the
intervals (−10, 10) and (0, 10), respectively. The dataset D7,
also composed of 100 point clouds, is designed to simulate
a more realistic scenario and includes partial spheres and
other non-spherical objects in the scene. Even for D7, the
point clouds differ from each other for random position and
dimension of the objects, with intervals that prevent them
from interpenetrating each other or lying outside the squared
floor (see Fig. 3g). The real dataset is populated by various
game ball configurations acquired with a Kinect sensor (Fig.
4)1.

Dataset D1: it consists of basic sphere sample points with
Gaussian noise added to every coordinate; it is used to
simulate the presence of noise caused by a bad acquisition
of a smooth surface or by irregularities in the surface
itself.

Dataset D2: it is created by adding Gaussian noise with σ =

0.1 to the y and z components of the basic sphere sample
points, and by subtracting from every x component (with

1 The datasets are available at the following url: http://imagelab.
ing.unimore.it/go/hough

x < x0) Gaussian noise with σ = r/2. It was used to
simulate point scattering within a single direction. This is
usually caused by erroneous reconstruction by structured
light or laser range devices.

Dataset D3: it is created by modifying every point sample
pi of the perfect sphere with a power law so that the
corresponding dataset point is:

di = <
[
(xi − pi)(1+c) + xi

]
where xi is the component of pi on the x-axis, where
distortion is applied, c is a uniform random variable taken
from the interval ]0, 1[ and<[z] indicates the real part of
a number z; it is used to simulate a non-linear distortion
along a single axis (usually optical axis).

Dataset D4: it is obtained by applying a homothetic transfor-
mation to every sample point of a perfect sphere. Coeffi-
cients are chosen randomly from the interval (1, 5/4). It is
used to simulate a linear distortion among all axes, which
usually occurs due to acquisitions with a non-perfectly
square pixel sensor.

Dataset D5: it is obtained by adding Gaussian noise with
σ = r/2 to every coordinate of a certain percentage of the
basic perfect sphere sample points. It is used to evaluate
system robustness to uncorrelated outlier points.

Dataset D6: it is obtained by substitution of a certain per-
centage of a perfect sphere sample points with points of
another sphere. It is used to evaluate system robustness to
correlated outliers. Two spheres appear in each instance
of the dataset, but only one can be considered as a target
sphere by keeping the point percentage of the other below
50%.

Dataset D7: it is obtained by composition of different shapes
to reproduce a realistic scenario with multiple partial
spheres and other non-spherical objects. In particular the
dataset contains two half spheres that lie on a square
plane together with a cube and a rectangular box. All the
data were added with uniformly distributed noise (< 1%
of the radius); the maximum inlier rate for each sphere is
around 6 % (Fig. 3g)

Real Dataset: a dataset for a real application was created by
recording some spherical objects (game balls) using the
Microsoft Kinect sensor (Fig. 4), which has been demon-
strated to have a good accuracy for indoor 3D range data
acquisition within 5 m [31,32]. The real dataset consists
of 20 point clouds, both multi-target and single target.

5.2 Tests of HT variants on synthetic point clouds

In this section we compare the performance of the four HT
variants discussed in Section 3.3 against different simulated
conditions. The goal of these tests is to understand how each
type of error alone affects the overall performance of the

http://imagelab.ing.unimore.it/go/hough
http://imagelab.ing.unimore.it/go/hough
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Fig. 4 Real dataset

(a) D1 (b) D2

(c) D3 (d) D4

(e) D5 (f) D6

(g) D7

Fig. 3 Synthetic dataset examples. To make D7 more clear, the points
are coloured according to depth and the cloud is downsampled.

(a) Mean distance error µd for D1 to D6 tests

(b) Mean radius error µr for D1 to D6 tests

Fig. 5 Mean percentage errors (logarithmic scale)

variants. Results are shown in Fig. 5, where, for each dataset
and each variant, we show: the mean distance between the
estimated center and the real center, normalized by the real
radius length, µd (Fig. 5a); the mean estimated radius length
normalized by the real radius length µr (Fig. 5b). These
measures were obtained by running each variant inside three
nested loops: in the first loop we run over each sample of the
dataset, in the second we execute each variant 10 times on
the same sample and in the third we progressively increase
the input size by a constant, until a time limit is hit (5 s in
this case). Time is reported just as an indication, since the
code is not optimized.

For simplicity we did not change the parametrization
of H2(Ω) and H3(Ω) between hyper-surface calculation and
storage: we used (x0, y0) and x0 as variables, instead of (θ, ρ)
and t (see Section 3.2).

Noisy sphere test To analyze the behavior of the four vari-
ants with noisy data, we used several instances of D1 noisy
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spheres with different input sizes. Results confirm that noise
modestly influences accuracy performance of the algorithms
with high values of n (Fig. 5, first column). The H4 algorithm
exhibits, as expected, a better accuracy. As can be seen, the
accuracy of H2 is slightly worse than H1. This is explained
by issues in finding a correct parametrization for voting and
storing phases (see Section 3.3).

Scattered sphere test Point scattering can be considered
a condition similar to the presence of outliers, since mis-
matched points are too distant from the model and cannot
be considered as part of it. Empirical measurements showed
that typical scattering values correspond to a 30% outlier rate,
which is far below the threshold in Eq. 17. This observation
is confirmed by our experiments, where spheres from dataset
D2 have been tested with increasing input sizes. The results
are summarized in Fig. 5, second column, where H4 performs
better than H1.

Distorted sphere test Concerning axis distortions (both linear
and non-linear), the H4 algorithm remains higher performing
and more stable than other variants, as confirmed by our tests
summarized in columns 3 and 4 of Fig. 5. Tests were made
with spheres taken from datasets D3 and D4, using increasing
input sizes.

Outlier sphere test Tests executed on dataset D5 should ex-
hibit an inverted trend with respect to the others, where dis-
tortions and errors can be modeled as a small amount of
outliers. As can be seen in Fig. 5 (column 5), this is not
actually true. The H4 algorithm remains more accurate, al-
though many more draws are necessary to achieve satisfac-
tory detection (according to observations taken in Section
3.5). Nevertheless, H1 remains interesting, since its execution
time is adjustable by modifying the quantization level and is
less sensitive to the estimation of the inlier rate. Furthermore,
usually when H1 fails the estimation it is because it tends to
find the point that maximizes the number of features that are
equally distant to it. This results in a bigger sphere that is
tangent to the target and also collects other spurious points
(notice the high peak on column 5 of Fig. 5b). The region
around this sphere can be used in place of the whole cloud to
reduce the huge number of quadruples that H4 needs to find
the target (see Fig. 6).

Results of tests on the D6 dataset (Fig. 5, column 6)
have commensurate performance with the others, since low
amounts of outliers (< 50%), even if correlated, poorly affect
algorithm accuracy performance.

5.3 Test of CMPHT on synthetic datasets

Since H4 outperformed the other variants on almost all previ-
ous tests, we decided to test it only, against our method, on a

more realistic scenario. For the test we selected 10 instances
from D7 and computed the average error of 100 iterations
on the same instance. In this case the stopping criterion was
a maximum number of points (quadruples) extracted from
Eq. 13 and the result shown is the best obtained within that
threshold. In Fig.7 we show that our method (red diamonds
for distance error, green triangle for radius error) is faster
and more accurate than H4 (blue squares for distance error,
yellow triangle for radius error), since a smaller search vol-
ume with few outliers allows to compute fewer votes and to
perform a finer search with the same accumulator size.

5.4 Test of CMPHT on real datasets

To evaluate the performance of our method on a real sce-
nario, we tested it against the Real Dataset and compared
it with a multi-target version of H4. The stopping criterion
and selection of the results are the same as the tests with D7.
The ground truth was obtained with a least squares method
applied to manually segmented targets.

(a) (b)

Fig. 6 Estimation produced by H1 with coarse quantization (left) and
the result after CMPHT with the same input and quantization step
(right). An RGB picture of the whole cloud is depicted in Fig. 4 (top
left image).

Fig. 7 Mean distance error µd and Mean radius error µr against mean
time µt for tests on D7
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Fig. 8 Result of the detection of CMPHT after background removal

The results are illustrated in Fig. 9: for both distance and
radius error our method outperforms H4 and achieves more
accurate results in less time.

Both algorithms show similar result with respect to tests
with synthetic datasets but some spheres were not detected, in
particular those in very large clouds (Fig. 4, first two clouds
from the left, bottom row, where the door and the table on
the background were captured) or in clouds where the target
is far from the camera (Fig. 4, seventh cloud from left, top
row). This happens for three reasons: first, real clouds can
have a volume so extended that, even with the largest allowed
quantization step, the H1 step of CMPHT is very slow. On
the other hand, since the cloud is dense, H4 requires too
many samples and thus too much time to be successfully
executed. The second reason is device-related and concerns
point density; point density decreases with distance [32],
thus targets that are far from the sensor can generate more
false negatives because the density threshold is not reached
(on the other hand, a low density threshold would increase
the number of false positives, thus a trade-off is needed).
The third reason is related to distortions, which are non-
neglectable over 3 m [32].

These observations are confirmed by additional tests with
some clouds from the Real Dataset that were limited to 1.5 m
(Fig. 8). By eliminating the background, the results with the
CMPHT were similar to ones presented in Fig. 9, while H4

still failed the detection in 70 % of cases.
The background removal step has been introduced since

one of the main applications of the proposed method is the
detection and 3D localization of balls moved by players (see
Section 1). Depending on the final application or the scene
topology, the background removal step can be integrated or
replaced with a plane removal to filter out points belonging
to the floor or even the walls.

In summary, the suitability of the method is related to
the type of the cloud: since the first stage of the CMPHT is
based on H1, our method is more suitable for dense, noisy
and shallow clouds, because in these cases the quantization is
sufficiently coarse to allow a fast computation, but it still re-

Fig. 9 Mean distance error µd and Mean radius error µr against mean
time µt for tests on the Real Dataset

mains appropriately below the radius length. In contrast, deep
and sparse clouds call for straight multi-point approaches.

Although the assumption of a shallow cloud could be
acceptable for many applications (e.g., gesture recognition for
entertainment or rehabilitation, where a person is supposed
to move more laterally than frontally), further investigations
about our future work will include optimization techniques
to increase the speed on large clouds and the accuracy of
objects far from the camera.

Another cause of detection failure is strong distractors,
(i.e., dense groups of points that satisfy the constraint of Eq.
2). For instance, points sampled from intersecting planes are
mostly equally distant to one single point. In this case, the HT
fails and detects a false sphere tangent to planes, as depicted
in Fig. 10.
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Fig. 10 Estimation produced by H1 with coarse quantization. An RGB
image of the whole cloud is depicted in Fig. 4 (seventh image from the
left, top row).

6 Conclusion and Future Work

In this paper we provided a systematic study of different
HT algorithms applied to sphere detection in dense and
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noisy point clouds. In particular we studied several prob-
abilistic/randomized HT-based methods (i.e., methods that
process a random selection of subsets of input points). The
various algorithms differ on the fact that one (H1) uses a
single point as input of the transform while the others use
multi-point tuples as input. Then we inferred a criterion to
determine which is more suitable for a specific condition.
Algorithm variants were also compared with intensive tests
in different simulated conditions.

We also proposed a novel combined HT-based method
(CMPHT) which scans a point cloud in two steps: firstly with
a single-point algorithm to identify a region of interest, and
secondly a multi-point algorithm refines the final detection.
The method has been tested both with a synthetic and a real
dataset, the latter being acquired with a Kinect sensor, and
showed faster execution times and a more accurate estimation
against a straight four-point algorithm, although it is less
stable with real datasets, due to strong distractors, especially
corner walls.

We believe that the proposed algorithm will be very use-
ful in future 3D object recognition applications.

Future work will focus on two directions: improving the
speed of the algorithm against vast clouds, and robustness
against strong distractors. Possible improvements are related
to further reduction of the quantization step and in particular
it will include: planar region and/or background removal,
accumulator design optimized for sparse data, similarly to
what is used in [30], and data partitioning followed by region
growing approaches.

The second direction is related to comparing our algo-
rithm with other approaches. In particular we will consider
adapting the method proposed by [29] to slices extracted
from the point cloud, similarly to what was achieved by [27]
for the specific domain of medical imaging.

A Computing inlier threshold T to compare 1-Point and
4-Point HT methods

Given a point cloud with a certain inlier rate, we want to compute the
inlier rate threshold T to identify whether it is more convenient to use a
single-point approach or a four-point for sphere detection.

According to [22], the error function for H1 is:

εH1 =
1
24
· c4e−c (21)

where c = sH1 · Nin/N. Similarly we have:

εH4 = b · e−b (22)

where b = sH4 · (Nin/N)4. From 21 and 22 we have:

sH1 = sH4 · (Nin/N)3 ·
c
b
≈ sH4 · (Nin/N)3 (23)

Total costs of H1 and H4 are respectively: cH1 · S
3
· sH4 · (Nin/N)3

and cH4 · sH4 thus, if we make those costs equal we can compute the

threshold T = Nin/N as:

T = 3

√
cH4

cH1 · S
3 (24)

Eq. 24 introduces a criterion for choosing the best between H1 and H4
which is based on the estimated inlier rate Nin/N of the input cloud. It
also shows that the threshold T depends on the medium size of the cells
S , a parameter that can be chosen a priori. For small values of S and
very noisy clouds (e.g., with Nin/N < 0.05) the criterion would indicate
H4 as best choice (Nin/N > T ), but with a high number of quadruples
as input and thus with a long execution time. In contrast, for relatively
big values of S one should prefer H1, but there is a risk of voting for big
spheres that are tangent to the target. CMPHT leverages this property
by reducing the search area using H1 with coarse quantization, and then
refining the results with H4.
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(Eds.), ISPRS Workshop on Laser Scanning 2007 and SilviLaser
2007, Espoo, Finland, 2007, pp. 407–412.

8. D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, A data struc-
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