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Abstract— We present a real-time SLAM system that com-
bines an improved version of the Iterative Closest Point
(ICP) and inertial dead reckoning to localize our dynamic
quadrupedal machine in a local map. Despite the strong and
fast motions induced by our 80kg hydraulic legged robot, the
SLAM system is robust enough to keep the position error
below 5% within the local map that surrounds the robot. The
3D map of the terrain, computed at the camera frame rate
is suitable for vision based planned locomotion. The inertial
measurements are used before and after the ICP registration, to
provide a good initial guess, to correct the output and to detect
registration failures which can potentially corrupt the map. The
performance in terms of time and accuracy are also doubled by
preprocessing the point clouds with a background subtraction
prior to performing the ICP alignment. Our local mapping
approach, in spite of having a global frame of reference fixed
onto the ground, aligns the current map to the body frame, and
allows us to push the drift away from the most recent camera
scan. The system has been tested on our robot by performing
a trot around obstacles and validated against a motion capture
system.

I. INTRODUCTION

The problem of Simultaneous Localization and Mapping
(SLAM) has a long history: it has been theoretically defined
and solved long ago [1][2]; but the many issues related to
noise, synchronization, latency and rounding errors drive the
research to find new methods and techniques to increase the
robustness against these complications.

In the context of legged robots, even more problems arise,
since some of the simplified hypotheses used in wheeled
robots are not applicable, like the quasi-planar assumption
for the ground which limits movements on the z-axis and
roll/pitch motions. Furthermore, legged locomotion involves
dealing with static and dynamic stability, and impacts that
affects image sensing.

At the Istituto Italiano di Tecnologia, the fully torque-
controlled Hydraulic Quadruped robot (HyQ) has been
designed to perform agile and highly dynamic locomotion
on difficult terrains [3]. It is a versatile robot that weighs
80 kg, is 1 m long and 1 m tall (Fig. 1, Left). The robot’s legs
have three degrees of freedom each, two joints in the sagittal
plane (hip and knee flexion/extension) and one joint for hip
abduction/adduction. HyQ is equipped with a 3DM-GX3 R©-25
IMU, rigidly attached to the robot base, a Bumblebee2 stereo
camera and an Xtion depth sensor. The two image sensors
are mounted on a Pan-and-Tilt Unit (PTU) which provides
two degrees of freedom for active scanning purposes (Fig.
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Fig. 1. The quadruped robot HyQ and its vision system. Left: the whole
robot. Right: detailed view of the robot’s active head consisting of an RGB-D
camera and a stereo camera mounted on a pan and tilt unit.

1, Right). The results presented in Section VI are referred
to the RGB-D sensor only, while the stereo is used for the
calibration setup described in Section III-A. Future work will
involve the use of the stereo camera for outdoor experiments,
where RGB-D sensors becomes unusable due to sunlight.

During the past few years, we have shown several ca-
pabilities of this mechanical platform, among these are
crawling, walking, trotting and jumping while the robot
was teleoperated. Using perception sensors, we recently
demonstrated some planned locomotion in prebuilt maps
[4] and some preliminary results on onboard vision based
locomotion [5].

The development of an online localization and mapping
system is crucial to perform these tasks autonomously. Hence,
we address the SLAM problem in a task oriented manner:
since we are not interested in exploration, we decided to
localize the robot within a map, whose size is suitable for
short-term planning (i.e., 4-5 step in advance). A particular
attention has been given to the output frequency and the
processing power requirement of the SLAM framework as
we aim for onboard autonomous behaviors.

Contributions: This paper presents the development of
a SLAM system for our legged robot that fuses visual 3D
data and IMU data. The main contributions for this work
are: (a) the development of an onboard real-time localization
method that combines ICP-based registration enhanced by
background subtraction of the associated depth image and
inertial signals (b) the proposal of an alternative approach for
3D mapping on dynamic quadruped robots, which leverages



the robocentric nature of short-term planned navigation to
push the drift error away from the operative area (c) a
review on the main issues that affect SLAM on complex
machines, which involved the development of a calibration
technique based on fiducial markers and motion capture (d)
the validation of the aforementioned methods and techniques
on a real application with our dynamic legged robot.

Contents: The remainder of this paper is organized as
follows: Section II describes the relevant works on fusion of
depth/inertial sensors and on perception with legged robots.
Section III lists the non-idealities that occur when performing
mapping on a legged machine, and how we addressed them.
Section IV describes our ICP-based registration method fused
with inertial data for localization. Section V describes our
proposed local mapping approach. Section VI shows our
experimental setup and comments the results obtained with
our hydraulic robot. Finally, Section VII summarizes the work
presented herein and lists its future developments.

II. RELATED WORK

Many groups have recently suggested methods for fusing
the output of depth and inertial sensors for SLAM, state
estimation or scene reconstruction. Usually registration-based
methods are used for dense scene reconstruction, while state
estimation or SLAM methods generally rely on the Extended
Kalman filter.

Nießner et al. [6] combined inertial measurements and
depth sensor outputs for dense scene reconstruction. Their
framework includes a method for detecting an ICP failure
and switching to dead reckoning by IMU integration, to avoid
bad reconstructions.

Schmid and Hirschmuller [7] presented an integrated device
to estimate ego-motion of a camera pair using the depth from
Semi-Global Matching and IMU data. The device includes
also an FPGA to deal with the problem of synchronization
(see Section III-B).

Qayyum and Kim [8] fused inertial and depth sensor with
a modular EKF framework. They addressed the practical
development of an Inertial-Kinect fused SLAM that works
outdoor. They focused on handling the 3D to 2D degeneration
in structured light sensing, called the depth dropout problem.

Bethencourt and Jaulin [9] introduced recently a new
concept for point cloud registration based on an interval
analysis method. They are not focusing on SLAM but
achieved consistent Kinect point cloud matching using also
the IMU data.

With quadruped robot, few groups have also presented some
localization/state estimation solutions. For example Kolter et
al. [10] use a stereo camera with a simple ICP-based technique
for offboard point cloud registration to incrementally build
a map. Then, they use a texture synthesis algorithm to fill
occluded areas in order to perform motion planning with
LittleDog.

Stelzer et al. [11] developed a complete visual navigation
framework for their hexapod robot. The algorithm used
stereo images from which depth images are computed. Pose
estimates are obtained by fusing inertial data with relative

leg odometry and visual odometry measurements using an
indirect information filter.

In a similar way, [12] fused the information from stereo
vision, leg odometry, and IMU in order to obtain accurate
state estimation of BigDog. On the above mentioned system
they also developed a registration pipeline and a 2D cost map
framework tailored for navigation.

Finally [13] proposed an elevation mapping method from a
robot-centric perspective. The localization is performed using
their state estimation framework based on kinematics and
IMU and the mapping is obtained by fusing height maps
from a Kinect.

Our work mainly differs from the ones presented here
because it operates on a 3D domain, as typical scene
reconstructions applications, but it is constrained to real-time
work on limited onboard hardware, an operative condition
typical of SLAM, where most SLAM methods use 2D
representations. To achieve this, we developed a selection
method to reduce drastically the input for ICP and keep
the real-time constraint. Furthermore, all the other methods
except [13] operate in a global reference frame.

Fig. 2. The different reference frames used in this paper. The camera frame,
the base frame and the world frame defined as the base frame position and
orientation at t = 0.

III. NON-IDEALITIES

A. Robot transform calibration

Many of the setups described in the related work include
an image sensor with an IMU rigidly attached to it. This
makes the data fusion between the two sensors easy, since
the displacement between their frames of reference is known
or small enough to be neglected.

As our final goal is to perform SLAM for navigation, the
target of state estimation is the robot base, and not the image
sensor. Thus, a transform between the optical center frame
Oc, and the robot base frame Ob is needed (see Fig. 2); but
retrieving the transform Tb c is not straightforward, because
of:

1) mechanical tolerances between assembly parts of the
robot;

2) mechanical tolerances and distortion of the depth sensor
(see Section III-C);

3) non-rigidity of the materials, which produce undesired
motions when shocks occur;

4) two additional degrees of freedom, provided by the Pan-
and-Tilt Unit, which extend the chain of transformations



to the robot base and thus propagate their respective
errors.

While issue 3) is practically impossible to be eliminated,
issues 1) and 2) can be solved trough a static calibration, and
issue 4) can be partially solved by storing a static calibration
for each angle combination of the PTU.

Note that attaching a second IMU to the camera and
performing sensor fusion would still need Tb c to perform
SLAM.

To retrieve a valid transform Tb c , we developed a calibra-
tion method that involves the use of a motion capture system
and the augmented reality library ArUco [14].

Fig. 3. Our calibration setup: a fiducial marker is surrounded by motion
capture markers. The transform between optical frame and the marker frame
is computed on the 3D points extracted from the fiducial marker. The rest
of the transformation chain is extracted via motion capture.

Fig. 3 depicts the calibration setup: a fiducial marker is
placed on the floor, inside the Field of View (FoV) of the
stereo camera Bumblebee2, which is mounted on the PTU.
The fiducial marker is surrounded by MoCap markers, so
that the mutual position between the frame origins of MoCap
polygon and fiducial marker are known. The transform Tb c

is then computed as:

Tb c =
(

Tw b

)−1
Tw m

(
Tc m

)−1
(1)

where Tw b and Tw m are the transforms — provided by the
motion capture system — that project the base and the marker
into the world frame, while Tc m is the transform between the
marker and the camera frame of reference; its translational
component t is extracted directly as the coordinates of the
marker center in the camera frame, while the rotational part is
computed through Singular Value Decomposition as solution
to the Wahba’s problem [15]:

Tm c =

[
R t
0 1

]
=

[
UMV T t

0 1

]
(2)

where M , U and V are extracted from:

B =

n∑
i=1

wiv
T
i = USV T (3)

M = diag
[
1 1 det (U) det (V )

]
(4)

and wi, vi are the sets of corners points on the marker
coordinate frame and on the camera frame, respectively.

TABLE I
OUR SENSORS DETAILS.

Output Accuracy (m@m)
BB2 0.8 MP 20 fps 0.01@1,29, 0.5@9.6, 1@13.6
Xtion 0.3 MP 30 fps 0.001@0.8, 0.04@4

Range (m) Valid depth pixels HFOV-VFOV (d)
BB2 0.6 - 20 65% 97 - 72
Xtion 0.8 - 4 84% 57 -40

B. Synchronization

The importance of synchronization between heterogeneous
sensor samples is confirmed by the need of several groups to
solve it via hardware, with custom FPGA boards [7], [16],
[17]. Although this appears to be the most effective solution,
it forces either the development of a custom hardware
board or the purchase of new hardware. On the other hand,
synchronization via software is less expensive, more flexible
even though potentially less accurate.

To ensure that the processed IMU and depth signals are
fused only when referred to the same time event, we used
the commodity methods provided by the Robot Operating
System (ROS).

C. Sensor noise and calibration

The noise of a point cloud highly depends on the sensor
used. Tab. I shows an accuracy comparison between the two
sensor we are equipped with. In this paper we process data
from the Asus Xtion sensor as we considered an indoor
environment. Even though it is more reliable than a stereo
camera, when the distance approaches a few meters, the
accuracy drop starts becoming non-neglectable. To cancel
the noise few preprocessing can be used. For example, [18]
recalibrated the structured light sensors to improve the depth
image quality and [19] corrected depth distortion.

IV. DEPTH AND INERTIAL LOCALIZATION

In this section we describe how we improve the ICP
registration and how we fuse it with inertial data.

A. Depth pre-processing and ICP registration

The Iterative Closest Point (ICP) is the most used method
for point cloud registration [20], [21]. It has been demon-
strated that its performance drops dramatically if the number
of points that form 3D features is significantly smaller than
sets of points that yeld ambiguities (e.g., planar surfaces)
[22]. Furthermore, processing a full point cloud per frame is
computationally expensive for a typical onboard computer.

Hence, for each couple of point clouds we aim at selecting
the minimum subset of points that produce good geometrical
features to estimate the robot’s motion, and discarding the rest.
Good candidates for such selection are the points extracted
from depth image pixels that change their intensity abruptly
between two consecutive frames. If we exclude noise side
effects, these are indeed the points that are likely to carry
most of the information about both geometry and motion. The



Fig. 4. Image preprocessing for point selection (from left to right, from
top to bottom): current frame, image difference (thresholded), dilation, final
result.

process of point selection we propose includes the following
steps (see Fig. 4):

• Background subtraction: we compute the absolute
difference of two consecutive frames. Brighter pixels
are likely to correspond to moving 3D features (e.g., the
edge of a brick), while darker pixels to objects far from
the optical center or to geometrically featureless areas
(e.g., the floor). The difference is then thresholded to
have a black and white image (top right corner, Fig. 4).

• Dilation: we operate a morphological operation to
expand the neighborhood of candidate points. The
dilation size d is crucial for the performance: too large
values are likely to produce big clouds with many
featurless areas, whilst small values are likely to create
variability between one cloud and the following.

• Temporal fusion: to avoid abrupt changes between
clouds, we perform a bitwise OR of the current dilated
frame with the previous k frames. Also k plays an
important role for both speed and accuracy.

B. ICP registration and IMU fusion

To converge, ICP requires a good initial guess for the
registration. Similarly to [6], we compute the guess from
the IMU angular positions Qi and linear accelerations ai.
In particular, the angular position differential is computed
as the quaternion multiplication Qi ·Q−1

i−1, while the linear
position differential is computed by double integration of the
raw accelerations using the trapezoidal rule:

vi = vi−1 +
1

2
(ai + ai−1) ∆t (5)

pi = pi−1 + vi−1∆t +
1

2
(∆t)2

(
2ai−1

3
+

ai
3

)
(6)

where vi and pi are the current velocity and position,
respectively.

The raw accelerations are first transformed into the same
frame of reference and low passed filtered before computing
the corresponding velocities and positions.

Given the IMU guess, the registration algorithm works as
follows (see Alg. 1): first we compute the transform between

the two clouds Ci and Ci−1 by means of ICP with guess
T IMU
i . Then, if the resulting transform T ICP is valid, roll and

pitch of T ICP are replaced with the ones of T IMU
i , which are

more reliable because computed with the gravitational field.
An ICP transform is valid if:

1) the ICP fitness score is below a threshold (1× 10−4)
2) the roll and pitch estimated by the ICP are falling in

an interval around the IMU roll and pitch.
3) the translation and rotation are smaller than the maxi-

mum threshold estimated empirically.
In case the transform is invalid, we proceed to dead

reckoning with orientation taken from the IMU and position
taken from the previous valid transform.

In case a global registration is needed, we update T global
i ,

otherwise we transform the map with the current transform,
as detailed in Section V.

Algorithm 1 Point Cloud Registration
1: i← 1
2: Tglobal ← I4
3: getData(C0 Q0, a0)
4: Ctarget ← C0

5: while getData(Ci Qi, ai) do
6: T IMU

i = computeGuess(Qi, Qi−1, ai, ai−1)
7: T ICP

i ← ICP(Csource, Ctarget, T
IMU
i )

8: if isInvalid(T ICP
i ) then

9: T ICP
i ← T ICP

i

10: end if
11: roll(T ICP

i )← roll(T IMU
i )

12: pitch(T ICP
i )← pitch(T IMU

i )
13: T global

i ← T global
i−1 T ICP

i

14: Ctarget ← Csource
15: i← i + 1
16: end while

V. LOCAL MAPPING

Standard approaches to localization that are based on
point cloud registration involve the collection of consecutive
transforms between incoming clouds and their cumulative
multiplication to get the transform between the robot base in
the frame of reference of the first cloud, which is taken as
origin of a fixed world frame.

Given a cloud Cn, where n is an index of both time and
frame number, the recursive equation to get the map Mn is:

Mn = Mn−1 +

n−1∏
i=0

Ti i+1Cn (7)

with the initial condition M0 = C0. The close form of Eq. 7
is:

Mn = C0 +

n−1∑
i=0

(
i∏

j=0

Tj j+1

)
Ci+1 (8)

Eq. 8 shows that as i increases (i.e., we get closer to the
most recent cloud) the expansion of the product between
brackets includes more and more terms. Since each term



Fig. 5. Example of local mapping on a flat terrain with an horizontal
obstacle. The rear part of the map is older and drifted on z axis

carries uncertainties, this ends up into an unavoidable drift
because the localization is referred to a global and fixed world
frame. Loop-closure detection algorithm are usually used to
correct this drift.

However, a global localization is not needed for foothold
planning, since events far away in space and time should not
affect the decision for the steps to be taken in the near future.
Hence, the localization accuracy should be proportional to
the freshness of the data. Here we propose the following
mapping equation:

Mn = Cn + Tn n−1Mn−1 (9)

where the initial condition is again M0 = C0 and the close
form is:

Mn = Cn +

n−1∑
i=0

(
n−i∏
j=n

Tj j−1

)
Cn−i−1 (10)

Eq. 10 shows that the expansion of the product between
brackets now has less and less terms when the index of the
involved cloud approaches n.

Geometrically, the maps of Eq. 8 and 10 differ by a rigid
transform, because in the first case the map is composed by
clouds aligned to the first sample, while in the second all the
clouds are expressed in the frame of the last one.

Hence, the drift is the same for both maps, but the local
map has the advantage of pushing the drift error away in
time, which is more convenient when performing navigation.

An example of local mapping is depicted in Fig. 5.

VI. EXPERIMENTAL RESULTS

To show the effectiveness of our SLAM system, we
performed an indoor trotting sequence with a motion capture
system as ground truth. Even though we use local frame for
mapping, we performed global registration to compare the
localization performance against the motion capture system.

The robot was tele-operated in order to cross different
obstacles arranged on a flat surface. Depth images and point
clouds were recorded at 15 Hz and IMU data at 250 Hz. Then,
we replayed the sequence on the same machine (Intense PC2)
at the same rate and computed the global localization with
the ICP alone and with our proposed algorithm (Alg. 1).

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60

x
 [

m
]

time [s]

vicon
Full Cloud

BG sub.

Fig. 7. Improvement of the ICP using the cloud segmentation based on
depth background subtraction.

A. Background subtraction and Full cloud

An example for the x-axis of the improvement carried out
by the background subtraction against full cloud is depicted
on Fig. 7. The segmentation improves the tracking by more
than 100% for the central part of the run, where the full
cloud, having more static points than good features makes the
ICP underestimate the motion. The background subtraction
reduces the number of points by a factor of 10, allowing to
operate within the real-time constraint. In contrast, for the
full cloud we had to reproduce the data log two times slower.

B. Inertial-ICP and ICP

Fig. 6 shows the estimation of the robot global position and
orientation while the robot was trotting forward and backward
in the area covered by the motion capture system (∼ 3 m2).

Both orientation and rotation are closer to the ground truth
if compared with the ICP only version. As expected, the major
improvement is given by the pitch and roll, which are directly
taken from the IMU. In both methods a non-neglectable drift
in the z-axis is visible. This is due to the lack of features in
the zy-plane of the robot, since the camera was facing the
ground and therefore the estimated motion was more accurate
on the xy-plane.

With our method the maximum drift after 60 seconds of
trotting is about 10 cm on the y-axis, corresponding to a 5%
of the total path. It has to be noted that the robot was often
changing direction on the yaw axis, making the estimate of
y more difficult than other axes.

VII. CONCLUSIONS AND FUTURE WORK

Robot locomotion highly depends on the ability to perceive
and map the environment. In this paper, we presented a local-
ization method that uses point cloud registration with inertial
measurements for real-time local mapping. Our local SLAM
method is robust and fast enough to produce consistent maps
of the The SLAM system has been implemented onboard our
robot HyQ and assessed by using a motion capture system
as a ground truth. In our future work, we plan: a) to assess
the framework in an outdoor environment using the point
cloud provided by our stereo camera (already mounted on the
robot); b) to integrate the real-time localization and mapping
to our reactive trotting or planned locomotion framework, in
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Fig. 6. Experiment with the real robot trotting indoor. The six graphs represent the 6 DOF pose of the robot in the global frame of reference estimated by
the motion capture system (red), the ICP (green) and our framework (blue).

order to perform reactive behaviours in a fully autonomous
manner.
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[14] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280
– 2292, 2014.

[15] F. L. Markley, “Attitude determination using vector observations and
the singular value decomposition,” The Journal of the Astronautical
Science, vol. 36, no. 3, pp. 245–258, 1988.

[16] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. Furgale, and
R. Siegwart, “A synchronized visual-inertial sensor system with fpga
pre-processing for accurate real-time slam,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, 5 2014, pp. 431–437.

[17] G. Camellini, M. Felisa, P. Medici, P. Zani, F. Gregoretti, C. Passerone,
and R. Passerone, “3dv — an embedded, dense stereovision-based
depth mapping system,” in Procs. IEEE Intelligent Vehicles Symposium
2014, Dearbon, MI, USA, 6 2014, pp. 1435–1440.

[18] C. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise for
improved 3d reconstruction and tracking,” in 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), 2012 Second
International Conference on, Oct 2012, pp. 524–530.

[19] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic cali-
bration of depth sensors via slam.” in Robotics: Science and Systems,
2013.

[20] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Proc.
of the 2011 10th IEEE Int. Symp on Mixed and Augmented Reality,
ser. ISMAR ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 127–136.

[21] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-mounted
3-d range sensor with application to mobile mapping,” Robotics, IEEE
Transactions on, vol. 28, no. 5, pp. 1104–1119, Oct 2012.

[22] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,”
in Third International Conference on 3-D Digital Imaging and Modeling
(3DIM 2001), 2001, pp. 145–152.


	Introduction
	Related Work
	Non-Idealities
	Robot transform calibration
	Synchronization
	Sensor noise and calibration

	Depth and Inertial Localization
	Depth pre-processing and ICP registration
	ICP registration and IMU fusion

	Local mapping
	Experimental results
	Background subtraction and Full cloud
	Inertial-ICP and ICP

	Conclusions and Future Work
	References

