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Abstract

Legged robots are expected to outperform wheeled and tracked systems on unstructured, uneven,
and rough terrains. However, they are characterized by higher mechanical complexity and they
require sophisticated control strategies to maintain balance, generate appropriate feet and body
trajectories, and navigate without falling, slipping or getting stuck.

The di�culty in the development of autonomous legged navigation lies in the close rela-
tionship between perception and locomotion. So far, research has been focusing primarily on
locomotion, but in the near future the role of perception will increase in importance because it
is crucial to operate outside the laboratory.

The objective of this dissertation is the introduction of the essential algorithms and tools
required to achieve true autonomy (in terms of perception) and reduce the gap between percep-
tion and locomotion. In particular, it will focus on perception algorithms for semi-autonomous
navigation of the agile, dynamic quadruped robot HyQ [131].

Throughout the dissertation, I will describe the algorithms and the methods to achieve
accurate position and velocity estimates for perception-aware locomotion, as well as local
mapping for visual obstacle negotiation. This thesis introduces a number of novel contributions
which advance the state of the art in legged robot navigation, including: a new contact estimation
method for state estimation; a new variant of the Iterative Closest Point algorithm for e�cient
localization; a multisensor approach to state estimation for smooth and accurate pose and
velocity estimates in challenging conditions; and a local mapping classi�cation method for
visual reactive trotting.
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We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the �rst time.

— T.S. Eliot
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Chapter 1

Introduction

Legged robots are expected to outperform wheeled and tracked systems when they come to
navigate in unstructured, uneven, and rough terrains. The superiority of legs over wheels comes
from the fact that wheels require to be continuously in contact with the ground. This condition
is rare in nature and has to be arti�cially created by building roads and rails. In contrast, legged
locomotion is characterized by intermittent contact with the ground. This is a key advantage
in terms of adaptability to challenging grounds, because the quality of the terrain outside the
contact points is irrelevant, as long as enough leg clearance is guaranteed [135]. However, this
advantage comes at a price: legged robots are characterized by high mechanical complexity.
Furthermore, they require sophisticated control strategies to maintain balance and generate
appropriate feet and body trajectories, to navigate without falling, slipping or getting stuck. To
be competitive, a legged robot has to show these abilities in places which are not accessible
by wheeled or tracked vehicles. These can include disaster zones, dense forests, and steep
mountain trails. Even though legged robots have been developed for decades, the transition
from laboratories to these real scenarios is still far from being complete.

The di�culty in the development of autonomous legged navigation lies in the close rela-
tionship between perception and locomotion. On one hand, the robot has to elaborate a myriad
of signals (coming from itself and the environment) and combine them into useful information.
On the other hand, it has to use this information to move in the environment. Furthermore,
these two processes have to be concurrently executed onboard and in real-time. So far, the most
logical approach has been focusing primarily on locomotion, with the role of perception limited
to the minimum required to complete a speci�c task, or replaced by surrogate tools (e.g., motion
capture systems). However, in the near future the role of perception will increase in importance
because it is essential to operate outside the laboratory. Autonomous robots will need to know
their location, estimate their velocity, scan the environment, decide where to step, and where to
go.

The objective of this dissertation is the introduction of the essential algorithms and tools
required to achieve true autonomy (in terms of perception) and reduce the gap between percep-
tion and locomotion. In particular, it will focus on perception algorithms for semi-autonomous
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1. introduction

navigation of the agile, dynamic quadruped robot HyQ [131].
There are at least three crucial capabilities a dynamic legged robot has to possess in order

to navigate in a real scenario. These can be summarized as follows:

State estimation: how to compute (e�ciently, robustly and at high frequency) an estimate of
position, orientation, linear and angular velocity of the robot’s base. When executed with
only proprioceptive inputs, drift in position is unbounded and additional exteroceptive
sources are required to accommodate for it.

Accurate pose estimation: how to keep the pose drift limited, by means of exteroceptive
sensors like cameras, Light Detection And Ranging (LiDAR), or depth sensors.

Mapping: how to acquire and merge geometrical information about the environment in a
compact, consistent and useful representation.

In this dissertation, I will cover these three critical aspects and address the inherent challenges
of developing a perception system on a real robot. The tight coupling between perception and
locomotion imposes stringent requirements in terms of frequency, accuracy, and smoothness
of the estimates, as well as the resolution of the terrain maps. A typical control loop on HyQ
operates at 1 kHz for the low level control and at 250 Hz for high level control (torque and
trajectory generation). This implies that, to be safely used, the state estimator has to provide an
output at the same (or higher) frequency of the high level control. At the same time, the small feet
(4–5 cm diameter) and the robot length (1 m) impose limits on the accuracy of the state estimator,
which should not drift by more than one foot size per robot length (i.e., 5 cm/m or 5 %), in order
to successfully avoid obstacles, edges, pitfalls and other potential hazards. Furthermore, the
integration of pose and velocity estimates within the control loop requires them to be smooth,
to avoid instabilities. Finally, the resolution of the map should capture the same level of detail
required to properly place the feet on the ground. In our case, the resolution should be on
a scale of ∼ 2 cm (half of the foot size). In addition to these requirements, other challenges
include (but are not limited to): motion blur, scarce illumination, sensor pose calibration, signal
synchronization, onboard computation, shocks, sharp turns, leg compliance, and two-way
communication with the control loop.

Throughout the dissertation, I will describe the algorithms and the methods to achieve the
following objectives:

• accurate and smooth velocity estimates for posture control and disturbance rejection
during dynamic motions;

• accurate pose estimation on rough terrain for pose tracking and accurate mapping;

• robocentric local mapping and classi�cation for visual reactive obstacle negotiation.
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1.1 Contributions
This thesis describes a number of novel contributions which advance the state of the art in
legged robot navigation, including:

• a contact estimation method for state estimation (published in [27] as �rst author);

• a new variant of the Iterative Closest Point algorithm, for e�cient robot localization with
depth sensors (published in [26] as �rst author);

• a multi-sensor approach to state estimation which fuses multiple proprioceptive and
exteroceptive sources to attain smooth and accurate pose and velocity estimates, in
challenging conditions (under review);

• a local mapping classi�cation method to reactive trotting (published in [9] as second
author).

All of the above works have been extensively validated on a variety of experiments carried out
on the dynamic quadruped robot HyQ.

1.2 Outline
The rest of this dissertation is structured as follows: Chapter 2 describes the state of the art in
state estimation, pose estimation and mapping in the context of legged robots; Chapter 3 gives
an overview of HyQ, the research platform subject of the study presented herein, with speci�c
focus to its sensory system, sensor noise characterization, and calibration; Chapter 4 describes
the state estimation framework developed for HyQ, with particular focus to a probabilistic
method for contact estimation suitable for Leg Odometry without dedicated contact sensors.
The presented algorithm has been validated on over an hour of experiments; Chapter 5 is
focused on pose estimation methods for agile dynamic quadruped robots. A new ICP-based
algorithm is introduced, as well as a performance study of other state-of-the-art localization
methods and a new multi-sensor approach to state estimation; Chapter 6 describes the mapping
algorithms which have been successfully used in the robot locomotion control loop, including a
pattern classi�cation method for perception-driven reactive trotting; Chapter 7 concludes the
dissertation with �nal remarks and further research prospects.

3





Chapter 2

Literature Review

This chapter presents the literature concerning the three key aspects of the navigation of legged
robots: state estimation, pose estimation, and mapping. A brief digression on contact estimation
is also given, since it is relevant for what will be presented later in Chapter 4.

Our review starts by discussing proprioceptive state estimation. The word proprioceptive

indicates that the sensors used for the estimation are sensitive to physical quantities concerning
the internal state of the robot, rather than the mutual relationship (e.g., the distance) between the
robot and the environment. Examples of proprioceptive sensors are: accelerometers, gyroscopes,
encoders, and loadcells. It comes natural to start from proprioceptive sensors to estimate the
robot’s state. In this way, the estimation process is independent of the environment, which
could be completely unknown, variable, and di�cult to model.

Exteroceptive state estimation, on the other hand, involves the use of sensors which measure
physical quantities related to the environment. Some examples are cameras, which measure
the intensity of light re�ected by an object, or LiDARs, which measures the distance to a target
by illuminating it with a laser beam. Exteroceptive sensors are typically more complex and
di�cult to handle than proprioceptive ones. For instance, a single image from a 0.3 Megapixel
monochromatic camera contains more than 300 kilobytes of data. In comparison, a single
acceleration measurement can be expressed with just three �oating point numbers, for a total of
12 bytes. Despite their complexity, exteroceptive sensors are fundamental to properly estimate
the pose (i.e., the position and orientation) of a robot. As a matter of fact, linear position and
absolute yaw are quantities not observable by a proprioceptive estimator, which is a�ected
by unbounded drift over these states. On the other hand, proprioceptive sensors are suitable
for estimation of acceleration and velocity. Since legged navigation and locomotion require a
reliable estimate of all the states mentioned above, the best results can be achieved by fusing
both proprioceptive and exteroceptive sources into one estimate, typically in a Kalman �ltering
fashion, as we will see throughout the chapter.

Finally, to successfully navigate in di�cult environments, a robot not only has to know
its own state, but it also requires a good representation of its surroundings. This is important
to plan body trajectories, select footholds, and promptly react to obstacles or other potential
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hazards. Depending on the application, several world representations have been adopted in the
past decades, ranging from simple 2D geometrical maps, to 3D meshes, and even to semantically
enriched topological maps. Throughout the chapter we describe the mapping techniques which
have been successfully adopted for locomotion and navigation of legged robots and mobile
robots in general.

The rest of the chapter is structured as follows: Section 2.1 reviews the work related to
proprioceptive state estimation, including inertial navigation, leg odometry, and the fusion of the
two. Section 2.2 brie�y introduces the topic of contact estimation. Although this is an interesting
topic per se, we discuss it from the perspective of state estimation. In Section 2.3, we introduce
the state-of-the-art techniques for pose estimation with exteroceptive sensors. We then continue
with integrated approaches, which combine multiple modalities (inertial, kinematics, camera,
and laser) to achieve better results. Section 2.5 reviews di�erent mapping techniques and terrain
representations for outdoor mobile robots. We also include some applications of mapping, such
as terrain classi�cation. Section 2.6 concludes the chapter with a summary of the previous
sections.

2.1 Proprioceptive State Estimation
In contrast to industrial manipulators, legged robots have a �oating base. This di�erence can be
modeled by adding a virtual, unactuated joint with 6 Degrees of Freedom (DoFs) connecting the
robot to an arbitrary coordinate frame �xed to the ground [40]. The goal of state estimation
is to observe the state (i.e., position and velocity) of that joint. In the following, we will refer
to the world frame as the inertial coordinate frame attached to the ground and the base frame

as the frame attached to the �oating base. For legged robots, the base frame is conventionally
oriented with the x-axis pointing forward, y-axis pointing leftward, and z-axis pointing upward
the vehicle, as depicted in Figure 3.2b. In this section, we will describe the two state-of-the-art
techniques for proprioceptive state estimation on legged robots: strapdown inertial navigation,
leg odometry, and the fusion of the two.

2.1.1 Strapdown Inertial Navigation
Inertial navigation is a technique for tracking position, velocity and orientation of a moving
vehicle by means of accelerometers and gyroscopes. An accelerometer is a device that measures
proper acceleration a, which di�ers from coordinate acceleration ẍ because it includes the e�ect
of gravity. An accelerometer at rest measures a non-zero value due to the acceleration of Earth’s
gravity, yet it measures a zero value when in free fall. A gyroscope is a device which measures
angular velocity. Its name stems from the original device used for the measurement, which
uses the law of conservation of angular momentum, by means of spinning wheels. Nowadays,
gyroscopes use di�erent physical phenomena to measure angular velocity. The most common
are Micro Electro Mechanical System (MEMS) gyroscopes, which use the Coriolis e�ect by means
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of vibrating structures, and Fiber Optic Gyroscopes (FOGs), which use the Sagnac e�ect [110].
The performance (and price) of these two devices can di�er drastically, therefore it determines
their target application [50].

An Inertial Measurement Unit (IMU) is a device which contains three orthogonal accelerom-
eters and three orthogonal gyroscopes, whose signals can be processed to estimate the state of a
vehicle with strapdown inertial navigation techniques. The term strapdown indicates that the
sensor is rigidly attached to the vehicle’s chassis, instead of being mounted on a gimbal. From
the proper acceleration ai i ∈ R3 and angular velocity ωi i ∈ R3, de�ned in and referred to the
IMU frame i, we can compute the corresponding quantities ab b, ωb b, referred to the base frame
of the vehicle [32]:

ωb b = Rbi ωi b = Rbi ωi i (2.1)

ab b = Rbi ai i − (Rbi ω̇i i)× tbi︸ ︷︷ ︸
angular

−(Rbi ωi i)×
[
(Rbi ωi i)× tbi

]︸ ︷︷ ︸
centripetal

(2.2)

where Rib, tbi are the rotation matrix and the rigid translation from the IMU frame i to the
base frame b, respectively. To simplify the computation, typically the angular and centripetal
components of the acceleration are either neglected [83] or eliminated by choosing the base frame
to be coincident with the IMU frame [17]. From ab b and ωb b we proceed with the estimation of
orientation, velocity, and position, by “integration” of these signals [147].

Attitude Estimation

Let us consider the absolute robot orientation Θw b(t) = Θ(t) ∈ SO(3) at time t. Then, for the
small angle approximation, the corresponding rate Θ̇(t) can be expressed in terms of Θ(t), as:

Θ̇(t) = Θ(t)ω∧(t) (2.3)

where:

ω∧(t) =


0 −ωz ωy

ωz 0 ωx

−ωy ωx 0

 (2.4)

is the skew-symmetric matrix of the base angular velocity ω(t) = ωb b(t) at time t. The solution
of the di�erential Equation 2.3, computed at time t+ ∆t, is the following [147]:

Θ(t+ ∆t) = Θ(t) exp
(∫ t+∆t

t
ω∧(t)dt

)
(2.5)

Since the device is providing a discrete signal, we pass from the continuous time variable t ∈ R
to discrete timesteps k ∈ N. The integral of Equation 2.5 is then computed using the rectangular
rule:

Θk = Θk−1 exp(ω∧k∆t) (2.6)
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where the time interval ∆t = tk − tk−1 corresponds to the time elapsed between two timesteps.
To �nalize the transition function from timestep k − 1 to k, we compute the matrix exponential
using Rodrigues’ rotation formula:

Θk = Θk−1

(
I3 + sin σ

σ
ω∧k + 1− cosσ

σ2 (ω∧k )2
)

(2.7)

where σ = |ωk∆t|, and ∆t is the time elapsed between two samples at timesteps k − 1 and k.
Equation 2.7 shows how to estimate the attitude in a rotation matrix form. For estimation of

quaternion representation and a more detailed analysis on the attitude estimation algorithm,
see [124].

Velocity and Position Estimation

Given the current proper acceleration ak = ab b,k and the current orientation Θk (at timestep
k) from Equation 2.7, the absolute robot acceleration ẍk = ẍw b,k , velocity ẋk = ẋw b,k , and
position xk = xw b,k can be computed again with the rectangular rule:

ẍk = Θkak − gw (2.8)

ẋk = ẋk−1 + ∆tẍk (2.9)

xk = xk−1 + ∆tẋk (2.10)

Note that in Equation 2.8 we subtract the gravitational vector gw = [0, 0, 9.80655]T to convert
from proper to absolute acceleration.

Error Propagation

Equations 2.7, 2.9, and 2.10, provide a full state estimate of the robot’s base. However, gyroscopes
and accelerometers are a�ected by multiple types of error, which are quickly propagated to the
integrated states. For gyroscopes, the error types include: constant bias, scale factor error due
to aging, nonlinearity, scale-factor sign asymmetry due to ampli�er mismatch, deadzone due
to stiction or �ber lock-in, and quantization error [50]. For accelerometers, we can have: bias,
white noise, temperature e�ects, calibration errors, and bias instability [147]. Note that gyro
errors a�ect not only attitude estimation, but also position and velocity (which depend on it).
An attitude error causes an incorrect projection of the gravity vector on the acceleration vector.
The acceleration vector is subsequently integrated, resulting in an incorrect estimate of velocity
and position as well.

To maintain a balance between the simplicity of the calculation and the modeling accuracy,
in practice only the dominant sources of error are modeled, which include: the constant biases,
random walk error on the bias terms, and random walk error on the measurements (raw
acceleration and angular velocity).
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Strapdown inertial techniques alone are inadequate for state estimation of legged robots,
but they are successfully used in combination with other sources, as shown in Section 2.1.3.

2.1.2 Early Proprioceptive Sensor Fusion
Leg Odometry (LO) can be de�ned as the process of estimating the incremental motion of a
legged robot, by means of forward kinematics applied to the feet in stable contact with the
ground. The term was created in analogy with the traditional odometry for wheeled vehicles.
However, in contrast with wheeled vehicles, legged robots have intermittent contact with the
ground, and only the legs in contact with the ground are actually propelling the robot. This
requires a way to detect the stance legs (i.e., legs in non-slipping contact with the ground) when
performing the estimate.

The pioneering work on LO was presented by Roston and Krotkov [118, 117] for Ambler,
a massive hexapod robot (mass of 2500 kg and height of 5 m), designed for space exploration
(Figure 2.1a). Their approach consisted of calculating the position of the feet in the base frame,
detecting slipping or swinging legs, and using the other legs for estimating the robot’s pose.
The pose was calculated as the rigid transformation which minimizes the square error between
the current feet poses in the base frame, and the estimated feet positions in the world frame.
Since the robot was performing only statically stable motions, with one leg moving at a time,
the problem was overconstrained. Thus, the solution to the minimization problem was found by
Singular Value Decomposition (SVD).

Several years later, Lin et al. [105] applied a similar approach to a much smaller (50 cm long,
7 kg mass) hexapod robot, called RHex [122] (see Figure 2.1b). This time, the gait was designed
to move with three legs at a time, but with a su�ciently long double support phase (i.e., with
all legs on the ground) in between one tripod con�guration and the other. Since the robot was
moving only when all the legs were on the ground, the pose was estimated by composition of
the transformations collected at the beginning and at the end of each double support phase. Due
to the absence of contact sensors, to detect the double support phase, the authors designed an
algorithm which detects when all the feet lie on the same plane. Therefore, this leg odometer
implicitly assumes that the terrain is locally planar. Later, the authors extended their previous
work to dynamic gaits [106, 80], and presented one of the �rst attempts of sensor fusion on state
estimation of legged robots. The fusion approach was motivated by the fact that the jogging
gait executed on RHex has a �ying phase, when no legs are in contact with the ground. The gait
is decomposed into four di�erent phases: tripod stance, lifto� transient, aerial, and touchdown
transient. To properly handle the aerial and transient phase, the authors proposed the use of a
12-axis accelerometer suite, made of four 3-axis accelerometers located at di�erent places on the
robot. This allowed them to compute the base angular acceleration (see Equation 2.2), useful to
compute second order dynamics.

At the same time, another work on an hexapod, Lauron III [46], was presented by Gaßmann
et al. [47]. The robot was equipped with a Global Positioning System (GPS) receiver, an IMU,
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joint encoders and foot sensors. Joint loads were inferred from motor currents. In this work, the
authors used the fuzzy logic theory to extend the concept of contacts from a binary state to a
continuous interval [0, 1]. The fuzzy weights were computed taking into consideration three leg
states: ground contact, slippage and collision. Each state was inferred from the sensors through
a simple heuristic (e.g., when the absolute force at the end e�ector is high, the ground contact is
high), and the three states were combined, again heuristically, to determine the fuzzy weight.
The work was one of the �rst fusing LO outputs with other sources. In this case, the pose and
orientation from the leg odometer were fused with GPS signals on an error state Kalman Filter
(KF).

A few years later, Chitta et al. [31] proposed a sensor fusion solution based on the Particle
Filter (see Appendix B.4) for the localization of the small quadruped LittleDog (see Figure 2.1d)
on known terrain. The robot executed a static planned motion composed of four stages: leg
selection (depending on the sequence), foothold prediction, foothold execution, and body motion.
Given the high computational expense of particle �lters at high dimensionality, the state of the
particle �lter was reduced from six to three DoFs: forward displacement, lateral displacement,
and yaw. Since the gait is static, the reduced state was propagated forward when the robot
was in quadruple support, as an incremental planar roto-translation. Since the gait was static,
velocity and acceleration were not part of the state. Roll and pitch were computed directly from
the IMU measurements. The particle �lter and the IMU imposed constraints on �ve DoFs out
of six. The remaining DoF, i.e., the height o� the ground, was computed using the knowledge
of the terrain and the constraints of the leg con�gurations. Since the terrain was known, the
height of each particle was set such that the robot would not penetrate the ground. Then, when
the robot was in triangular support, the swing leg was moved until it was in contact with the
ground. The error between the leg con�guration at the predicted height and the actual leg
con�guration in the four support state was used as a measurement update for the particle �lter.

Reinstein et al. [114, 115] continued the work on proprioceptive sensor fusion by proposing
an Extended Kalman Filter (EKF) approach with a new type of leg odometer. The method have
been applied to Puppy, a small quadruped robot with four actuated joints at the hips and four
passive joints at the knees. The robot was equipped with a MEMS IMU, joint encoders, and
pressure sensors at the feet. The absence of hip joints for adductive/abductive motions imposed
lateral non-holonomic constraints which were exploited for the odometry computation. The
proposed LO method computed only the stride length by regression of a set of features, including:
amplitude, mean, variance and numerical integral of the raw signals. The feature set also included
linear and nonlinear combinations of the above features, for a total of approximately 200 features.
The training phase was executed with standard batch gradient descent on the quadratic error
function. The estimated stride length was used as a measurement update of the EKF, while the
prediction step of the �lter was executed by a strapdown inertial navigation algorithm [124, 125]
(see Section 2.1.1).

Görner and Stelzer [48] have shown a proprioceptive leg estimator for their small hexapod,
the DLR crawler [49] (Figure 2.1e). In contrast with other works, the robot’s pose was estimated
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(a) Ambler (b) RHex

(c) Lauron III (d) LittleDog

(e) DLR Crawler

Figure 2.1: Robots used in the early stages of leg odometry.
(a) Ambler [78] (Carnegie Mellon University, http://www.ri.cmu.edu);
(b) RHex [122] (Boston Dynamics, http://bostondynamics.com);
(c) Lauron III [46] (Forschungszentrum Informatik Karlsruhe, http://www.fzi.de);
(d) LittleDog (Boston Dynamics, http://bostondynamics.com);
(e) DLR Crawler [49] (DLR, http://www.dlr.de)

by using both joint angles and measured torques, without using an IMU. The proposed method
estimated the pose by matching the contact points of the feet on the ground (considered as
“point clouds”) at two consecutive time steps. Therefore, the algorithm required at least three
non-collinear feet in contact with the ground to work. It also assumed a static gait. In this way,
the only force acting on the robot (excluding external ones) was gravitational, so as to estimate
roll and pitch by reconstruction of the gravity vector from the joint torques.

All the works presented above show a signi�cant progress towards a general solution for
proprioceptive estimation on legged machines. However, none of these have shown su�cient
generality in terms of gait, number of feet on the ground, and type of terrain. In the next section,
we explore a variety of general proprioceptive approaches to legged state estimation.
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2.1.3 Kinematics-Inertial State Estimation
A general solution for proprioceptive sensor fusion on legged machines was proposed by Blösch
et al. [17] on the medium sized quadruped robot StarlETH [65] (Figure 2.2a). In their approach,
they proposed an EKF state estimator that included an inertial process model for the Kalman
prediction phase and forward leg kinematics as measurement update. The approach is general
in the sense that it is not restricted to speci�c gaits, terrain types, or leg con�gurations. The
base state includes position, velocity, orientation, acceleration bias, angular velocity bias, and
absolute feet contact points. The inclusion of the feet positions expressed in the base frame is
a key feature of the approach. In a certain way, when a foot touches the ground, the robot is
“scanning” the terrain with its own leg. The contact states of the feet are detected through contact
sensors: whenever a contact sensor detects the swinging phase of a leg, the covariances of that
leg are set to in�nity, and the �lter ignores the leg for the computation. For the remaining legs
l ∈ C , which are in contact with the ground, the forward kinematics provides the corresponding
feet coordinates xb fl

expressed in the base frame. Since the foot is �xed to the ground at that
moment, this measure is equivalent to the di�erence between the absolute foot contact position

xw fl
and the absolute base position xw b:

xb fl
= Θb

w( xw fl
− xw b) (2.11)

Equation 2.11 provides a measurement for the Kalman update process. The authors also provide
a nonlinear observability analysis, which con�rms the non-observability of the linear position
and yaw states, and highlights the degenerate cases when rank loss occurs (e.g., when three feet
are collinear and ω = ẍ = 0). For non-degenerate cases, only one foot in contact is su�cient to
reach the observability region, if the angular velocity axis is not perpendicular to gravity and the
acceleration is non-zero. The validity of this approach was demonstrated on the medium-sized
quadruped robot StarlETH (see Figure 2.2a) for a 1 min straight crawl and a simulated trot.

Rotella et al. [119] extended the work of [17] to a humanoid robot with �at feet. In this
work, the state vector is augmented to include the orientation of the �at foot, which is used
to constrain the other states. The validity of the approach has been shown for a 2 min long
simulated walk. Lubbe et al. [81] also extended the application of [17] by implementing the
developed methodology on a commercial hexapod robot, equipped with industrial grade IMU
and contact sensors. The approach was tested on a quasi-static tripod gait over �at terrain. The
system was controlled to follow a squared path (edges of 1 m) without active body turning. They
reported a position drift of approximately 5 % of the distance traveled, which validated the use
of the framework on commercial hexapods.

In [16], Blösch et al. extended their previous work by replacing the EKF with an Unscented
Kalman Filter (UKF) (see Appendix B.3), and rede�ning the formulation of the state vector to
be robot-centric (i.e., with quantities referred to the base frame). The absolute position of the
contact points is no longer part of the �lter: the measurement update is now computed from the
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(a) StarlETH (b) BigDog

(c) LS3 (d) HyQ

Figure 2.2: Examples of quadruped robots.
(a) StarlETH (ETH Zürich, http://www.rsl.ethz.ch);
(b) BigDog (Boston Dynamics, http://bostondynamics.com);
(c) LS3 (Boston Dynamics);
(d) HyQ (IIT, http://iit.it/hyq), the experimental platform used in this thesis.

(a) Atlas (b) SARCOS Humanoid (c) Valkyrie

Figure 2.3: Examples of humanoid robots.
(a) Atlas (Boston Dynamics);
(b) SARCOS Humanoid (SARCOS, http://www.sarcos.com,
http://www-clmc.usc.edu);
(c) Valkyrie (NASA, http://nasa.gov).
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zero-velocity constraint of the leg in contact with the ground (cf. with Equations 4.9 and 4.10):

− ẋb b︸ ︷︷ ︸
base velocity

+ ωb b × xb fl︸ ︷︷ ︸
rotational velocity

+ Jl(q)q̇l︸ ︷︷ ︸
foot velocity (rel. to base)

= 0 (2.12)

The choice of the UKF was motivated by the dependency on the angular velocity of both the
inertial prediction and the measurement update Equation 2.12. Thus, there is a correlated
noise between the prediction and the measurement update phase of the �lter. With the UKF
setup, this situation is handled by proper choice of the sigma points of the �lter. To remove
measurement outliers, the velocity contributions are discarded if the �lter innovation, expressed
in Mahalanobis distance, exceeds a �xed threshold, which is found empirically. This procedure
eliminates the e�ect of spurious �lter updates originating from the legs whose contact state
estimates are unreliable. As in [17], the performance of the approach was demonstrated on
the StarlETH platform, for a 23 s trot on a �at terrain made unstable and slippery by placing
wooden debris along the way.

An alternative approach to the inertial process model is given by methods based on dynamic
models. Stephens [138] showed that a Center Of Mass (COM) state estimator based on a 1D
Linear Inverted Pendulum Model (LIPM) can improve the estimation of position and velocity of
the COM under external forces on the SARCOS Humanoid robot (Figure 2.3b) executing periodic
motions.

A more theoretical work on the subject was provided by Gür et al. [52]. In their paper, the
authors incorporated a Spring Loaded Inverted Pendulum (SLIP) dynamic motion model into
the state estimate. They demonstrated, with a simulation on a monopod, how the state can be
better tracked when the assumption of constant acceleration between two IMU measurements
is replaced with their dynamic model.

Xinjilefu et al. [148] proposed to use the full body state dynamics on the Atlas robot (Figure
2.3a). However, given the high number of DoFs, using it in a nonlinear KF framework was
computationally unfeasible. Therefore, they separated the estimation of the base and the
estimation of the other joint states into two independent �lters. The base �lter was similar to
other approaches, with an inertial process model for the prediction and forward kinematics
with zero velocity stance feet constraint for the update. This work was later extended by the
same authors in [149]. Instead of using an EKF, they proposed to formulate the state estimation
problem as a Quadratic Programming (QP) problem. In this way, the full model dynamics could
be incorporated into the estimation, without expressing it into the state space, as a Kalman �lter
would require. The estimation was reformulated as an optimization problem which minimizes a
quadratic form of the modeling error and the measurement error, weighted according to the
uncertainties of the model and the measurements. Tests on the Atlas robot have shown that the
chattering due to corrective actions from the feedback controller were reduced by half.
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2.2 Contact Estimation Methods
Most research in the area of contact estimation is focused on collision avoidance for safe Human
Robot Interaction (HRI) with manipulators. De Luca et al. [82] proposed a collision detection and
reaction method which identi�es external forces acting on a link as �rst order �ltered external
torques acting on the manipulator’s joints. The reaction strategy typically involves stopping
or moving the link away and along the direction of the identi�ed contact. Haddadin et al. [53]
extended this work by introducing a modi�ed version of the contact detection, introducing more
recovery strategies, and extensively experimenting with a human subject.

More recently, Hwangbo et al. [67] developed a probabilistic contact estimator to control
the quadruped electric robot ANYmal [66] without foot sensors. The method fuses information
about dynamics, di�erential kinematics and kinematics in a way similar to a Hidden Markov
Model (HMM) to reconstruct the contact status. The validity of this approach was demonstrated
by comparing their method with Generalized Momentum (GM) approaches, using the delay
detected by OptoForce sensors as performance metric.

It has to be noted that the contact detection methods presented above aim to detect the
contact as early as possible, in order to promptly take countermeasures against unwanted
collisions [82, 53] or to control the robot [67]. In contrast, we are interested in detecting the �rst
instant of a leg’s contact phase from which a reliable and trustworthy velocity measure can be
produced, which is a substantially di�erent goal. In Chapter 4 we describe how to achieve this
by: 1) learning the threshold of the normal component of the GRF that minimizes the velocity
error; and 2) incorporating impact information and consistency between feet velocity estimates
in the computation of the covariance of the �lter measurement update.

2.3 Exteroceptive Pose Estimation Methods
In the previous section, we described the state-of-the-art methods for proprioceptive state
estimation of legged robots, starting from the early works in LO, to the fusion with joint
kinematics, dynamics and inertial information. In this section, we introduce exteroceptive
inputs in the estimation process. We �rst describe the exteroceptive pose estimation techniques
alone and then we review the current methods for accurate state estimation fusing proprioceptive
and exteroceptive sources.

2.3.1 Visual Odometry
Visual Odometry (VO) is the process of estimating the egomotion of a robot using the input of
one or more cameras attached to it. The concept dates back to 1980, with the seminal work of
Moravek [93]. Since then, for more than two decades, most of the research e�orts on the topic
were made by NASA and JPL, in preparation of the upcoming Mars Exploration Rover mission.
These works culminated with the successful use of VO on another planet. The algorithm was
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used for multiple years by the Spirit and Opportunity rovers, to track their pose and compensate
for wheel slippage on the sandy surface of Mars [87].

The term visual odometry actually appeared for the �rst time only in 2004, with the work of
Nister [100]. It was chosen in analogy with wheel odometry. Wheel odometry incrementally
estimates the motion of a vehicle by integrating the number of turns of its wheels over time.
Similarly, VO incrementally estimates the pose of a vehicle by tracking the changes that motion
induces on the images of its onboard cameras [127].

VO works under the assumption that the scene captured is su�ciently illuminated, static,
texturized, and overlapping with previously captured ones (i.e., small incremental motion
between consecutive frames). These ideal conditions are rarely met in real scenarios, where
image blur due to vibrations and sharp motions, scarce illumination, and dynamic scenes are
pervasive (see for example, Appendix A.3). For these reasons, the proprioceptive estimation
techniques introduced in the previous sections can provide a valid support when VO fails [83].

The working principle behind VO is based on tracking the relative motion of the objects in
a scene from one camera frame to the next. If the scene captured is static, this is the equivalent
of tracking the camera motion within the environment. When concatenated, the consecutive
frame-to-frame transformations provide an estimate of the full trajectory of the camera (i.e., the
robot’s pose, since the camera is rigidly attached to it). The VO methods can be divided into:

Direct methods: the transformation is given by the solution which minimizes the per-pixel
intensity di�erence between the two images. Direct methods are further subdivided in
three categories [69]: dense (full picture), semi-dense, or sparse;

Feature based methods: the algorithm detects some feature points (e.g., corners) in one image,
and searches for their corresponding ones in the following image. The relative motion
between the two images is given by the solution which minimizes the reprojection error
of one feature set onto the other. If the features are detected in the �rst image and then
tracked in the following ones, with local search techniques, the method is said to be
feature tracking based. Conversely, if the features are independently detected in the two
images, and then matched based on similarity metrics of their descriptors, the method is
said to be feature matching based.

A further classi�cation of VO is based on the number of cameras used: most of the research on
VO has been performed on stereo cameras. This allows to operate in the 3D domain directly,
whereas in monocular VO the problem is underconstrained since the scale is unknown and
multiple views are required to estimate it. For a complete overview on VO, we invite the reader
to consult [127, 44], and the recently released (year 2016) survey by Cadena et al. [24].

In legged robotics, most of the VO methods adopted are feature-matching based and use
stereo cameras. In 2002, Hirschmüller et al. [58] proposed a novel stereo VO which relied on
feature matching instead of feature tracking. The method leverages the rigidity constraint of 3D
motion to discard most of the outliers, and limits the e�ect of remaining ones. The method was
later used on the DLR Crawler (Figure 2.1e), as described in Section 2.4.
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Inspired by [58], Howard [62] presented a VO for two mobile platforms, one of which
is the dynamic legged robot BigDog [107] (Figure 2.2b). His approach is based on feature
detection and matching on the points which have a valid stereo disparity value, using standard
corner detectors. Each detected feature point is then associated to a descriptor given by its
neighborhood. The feature matching is performed by evaluating the Sum of Absolute Distance
(SAD) score between all the feature pairs. Since all the pairs are composed by 3D points (from
2D coordinates and disparity), the matching feature points can be further �ltered by taking into
account rigidity constraints of the motion. The �nal set of inliers is computed as the largest set
of correspondences which respect the rigidity constraints. Finally, the motion is computed by
minimization of the reprojection error using the Levenberg-Marquardt least squares algorithm.
The method was not tested on the real robot, but rather on the sensor head, manually transported
on a sandy testbed.

An almost identical approach to [62] was shown by Huang et al. [64] for autonomous �ight
of a quadrotor equipped with a Kinect sensor (see Section 5.5.1). This method was later fused
with other sensor sources on the Atlas robot [37], in preparation for the DARPA Robotics
Challenge (DRC), but not used in the actual competition.

2.3.2 Visual SLAM
The Simultaneous Localization and Mapping (SLAM) problem for a mobile robot is de�ned as
building a consistent map of the environment while simultaneously determining the robot’s
location within this map [33, 6].

As the name suggests, Visual SLAM (V-SLAM) aims at solving the SLAM problem using
visual inputs (monocular cameras, stereo cameras, RGB-D sensors). The main di�erence between
VO and V-SLAM is that the former typically operates on a frame-to-frame basis and is prone
to drift, while the latter keeps a history of the past poses and visual features. These are used
for graph-based trajectory optimization [71, 73] and detection of loop closures (i.e., situations
when the robot returns to a past location) in order to eliminate the drift accumulated over long
periods of time. These techniques allow to reconstruct the full trajectory of the camera and the
scene it captured.

Some examples of V-SLAM algorithms include ORB-SLAM [94, 95] and LSD-SLAM [35]. To
work properly, V-SLAM methods should be applied under the same (or better) conditions where
VO is normally used. For this reason, V-SLAM is not common in legged robotics and its direct
application to legged robotic navigation is not straightforward.

Since we are more interested in local mapping, in this thesis we will not cover explicitly
V-SLAM for legged robots, even though it is subject to future work (see Chapter 7).

2.3.3 Iterative Closest Point
The Iterative Closest Point (ICP) [13] is a well known algorithm for estimating the rigid trans-
formation that aligns two point clouds capturing the scene, but from di�erent points of view.
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This alignment process is known as point cloud registration. Given its simplicity and broad
applicability, the ICP was quickly specialized into a variety of applications, including: 3D object
reconstruction, non-contact inspection, medical and surgery support, and autonomous vehicle
navigation. We are interested in the last of these applications. In this section we provide a
brief description of the algorithm, and a literature review on the application to mobile legged
platforms. A complete survey on the method and its multiple derivations was provided by
Pomerleau et al. in [109]. A review on the mobile robotic applications of ICP is also available in
[108], by the same authors.

Algorithm Description

The algorithm de�nes:

• a target point cloud C[t]
t ∈ RN×3, whose N points are expressed in the target frame of

reference t, and are kept unaltered;

• a source point cloud C[s]
s ∈ RN×3, whoseN points are transformed from the source frame

of reference s to the target frame of reference t, through the rigid transformation Tt s

The two point clouds can then be merged together into a third one by summing the points of
the target with the transformed points of the source:

C[m]
t = C[t]

t + Tt sC[s]
s = C[t]

t + C[s]
t (2.13)

The goal of ICP is to estimate the transformation Tt s through an iterative process. We can
summarize it as follows:

1. For each point of C[s]
s , �nd the closest point from the cloud C[t]

t ;

2. Compute the Tt s which minimizes the mean squared distance between the previously
de�ned point pairs;

3. Transform the points of Tt s with the estimated transformation;

4. Repeat from 1 until convergence.

Since the two point clouds are captured from di�erent locations, the samples from the source
cloud do not have a perfect correspondence in the target cloud. For this reason, Chen and
Medioni [29] proposed to replace the point-to-point distance metric with the point-to-plane
metric. This was one of the �rst examples of 3D feature extraction to improve the algorithm
in structured environments. Further studies in this direction include: the Generalized-ICP, by
Segal et al. [129], which combines the standard ICP and its point-to-plane variant into a single
probabilistic framework; and the Normal ICP, by Sera�n and Grisetti [133], which incorporates
both normal and curvature information into the point association.
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Inertial-Registration Fusion

The ICP algorithm is known to be sensitive to initial conditions: if the two clouds are too far from
each other, the algorithm will likely diverge or stop on a local minimum. Given the wide di�usion
of low-cost MEMS IMUs, several methods which take advantage of inertial measurements have
been proposed.

Nießner et al. [98] combined inertial measurements and depth sensor outputs for dense
scene reconstruction. Their framework includes a method for detecting an ICP failure and
switching to dead reckoning by IMU integration, to avoid bad reconstructions.

Qayyum and Kim [112] fused inertial and depth sensor information with a modular EKF
framework. They addressed the practical development of an Inertial-Kinect fused SLAM that
works outdoor. They focused on handling the 3D to 2D degeneration in structured light sensing,
called the depth dropout problem.

Bethencourt and Jaulin [14] recently introduced a new concept for point cloud registration
based on an interval analysis method. They are not focusing on SLAM, but achieved consistent
Kinect point cloud matching using the IMU data.

2.3.4 Normal Distribution Transform
In 2003, Biber and Straßer [15] introduced an alternative approach to ICP for the scan matching
of 2D laser scans. The authors called their method Normal Distribution Transform (NDT). The
space is regularly divided into cells of equal size. For each cell containing at least three points,
the mean and covariance matrix of the points is computed. The probability of measuring a
new sample on a cell is thus modeled by the normal distribution parametrized by the mean and
covariance of that cell. Given two scans, the algorithm computes the relative motion between
the two by optimizing the sum of the normal distributions for all the cells using the Newton’s
algorithm.

The NDT was later extended to the 3D domain by Magnusson [85], who applied the method
to the autonomous navigation of mining vehicles. To overcome the sparsity due to the increased
dimensionality, the regular grid partitioning is replaced by iterative subdivision techniques [86].

2.4 Multisensor State Estimation
Chilian et al. [30] proposed a multi-sensor fusion algorithm which uses the related works in
leg proprioceptive estimation [48] and VO [58] for the DLS Crawler. The LO and VO modules,
together with inertial information, are fused into an indirect feedback Information Filter (IF).
The choice of this �lter, which is the dual version of the KF, was motivated by the author because
it can easily handle concurrent inputs. The state maintained by the �lter is an error state, which
contains, as usual: position error, velocity error, orientation error, and biases’ error. The fused
state showed a good accuracy (1.1% error of distance traveled) for the periodic motion inside a
test bed �lled with gravel.
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A very similar approach was adopted by Ma et al. [84, 83], which fused the information from
a stereo camera, leg kinematics, and a tactical grade IMU, using an error state EKF instead of an
IF. Following common inertial navigation techniques from avionics, the state vector is de�ned as
a vector of position, velocity, attitude and IMU biases. The approach is focused on visual inertial
fusion with LO measurements expressed as delta positions between two key frames, used only
in case of failure of the Visual Odometry (VO). The approach produced a robust performance
with an error below 1 % of the distance traveled when fused with GPS.

Fallon et al. [37] presented Pronto: an e�cient, modular and open-source EKF-based state
estimator. The algorithm uses an IMU-based process model and combines this with measurement
corrections from di�erent sensor modalities (LO, LiDAR and VO) to produce a position estimate
for the humanoid robot Atlas, developed by Boston Dynamics. The inertial process model and
the Gaussian Particle Filter (GPF)-based LiDAR modules are the same as presented in [22]. The
LO module handles contacts using a Schmitt trigger (a two threshold comparator with hysteresis,
see [104]) on the contact sensor signals: the contact is detected when the low threshold is crossed
and it is released when an arbitrary time has passed and the high threshold is crossed. When
the robot is in double support, only one leg is used for simplicity. The �lter is able to handle
out-of-order and asynchronous inputs from di�erent sensors. Originally developed for the MIT
DARPA Robotics Challenge team, its implementation has been recently released publicly2.

Recently, Nobili et al. [101] proposed the Auto-tuned Iterative Closest Point (AICP), a robust
pose estimation algorithm for the humanoid robots Valkyrie (Figure 2.3c) and Atlas (Figure 2.3a).
For both robots, the spinning LiDAR from the Multisense SL tri-modal sensor (Figure 3.4e) was
used as input. The LiDAR scans are accumulated using inertial and kinematics information
fused with the EKF of [37]. The method has a pre-�ltering phase, where only the planar portions
of the accumulated LiDAR scans are retained. In this way, only strong 3D features are kept, the
dynamic parts of the scene (e.g., the people) are eliminated.

Although focused mostly on the controller, the work by Koolen et al. [76] dedicates a section
to state estimation on the Atlas robot for the DRC. The authors claim that, when combined with
an ICP registration algorithm, their state estimation algorithm from [75] can reduce the drift
from 2 cm per step to almost zero. However, the ICP based LiDAR registration was not used
during the competition.

2.5 Mapping for Legged Robot Navigation
In this section, we describe a number of mapping methods (online and real-time) for legged
robot navigation. These include elevation maps, meshes, OctoMaps, and point clouds.

When choosing an appropriate mapping representation for a mobile robot, one has to
consider three aspects [136]:

1. The precision of the map must match the precision required by the robot to achieve its
2https://github.com/ipab-slmc/pronto-distro
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goals;

2. The precision of the map must match the precision of the data returned by the robot’s
sensors;

3. The complexity of the map representation has direct impact on the computational com-
plexity of the algorithms which process it.

In other words, a map suitable for navigation should contain enough detail to execute the task
at hand (e.g., footstep planning), yet should be simple enough to be processed by the navigation
algorithms.

2.5.1 Elevation Map
The majority of mapping approaches for legged robots on rough terrains involve the use of
elevation maps for body path planning or tele-operation. This approach has become popular for
wheeled vehicles, especially planetary rovers [88], and has also been adopted for legged robots.

In elevation maps, the environment is represented as a discretization of a function h =
f(x, y), where x and y are the planar coordinates of a reference plane (typically gravity aligned)
and h is the corresponding elevation of the terrain from that plane [23]. The xy plane is
usually discretized in a regular grid of cells, which can be e�ciently stored in a 2-D array. Each
value of the array contains a summary of the measurements collected within the area of the
corresponding cell.

Stelzer et al. [137] developed a complete visual navigation framework for their hexapod robot.
The algorithm used stereo images from which depth images were computed. Pose estimates are
obtained by fusing inertial data with relative leg odometry and visual odometry measurements
using an indirect information �lter.

With quadruped robots, a few groups have also presented some localization/state estimation
solutions. For example, Kolter et al. [74] used a stereo camera with a simple ICP-based technique
for o�board point cloud registration to incrementally build a map. Then, they used a texture
synthesis algorithm to �ll occluded areas in order to perform motion planning with LittleDog.

Bajracharya et al. [7] presented a stereo mapping approach which uses a hybrid 2D/3D data
structure. Developed under the DARPA LS3 program, this mapping algorithm attains a map
�delity of 5 cm out to 5 m.

Bradley et al. [21] used a similar representation for the terrain when using the LS3 robot
(Figure 2.2c), but also included 3D blobs to model vertical obstacles, such as trees and bushes, as
an additional element to the elevation map.

Fankhauser et al. [38] proposed an elevation mapping method which incorporates uncertain-
ties from the sensor and the state estimator [17], by means of a Kalman �lter, from a robot-centric
perspective. The mapping is obtained by fusing height maps from a Kinect.
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2.5.2 Point Cloud
Fallon et al. [36] presented a perception and planning algorithm which allowed the Atlas hu-
manoid to continuously step up and down on a pile of cinder blocks with the Atlas humanoid,
without stopping. The map used to generate the footsteps was collected online with the Kintin-
uous algorithm [143] using the point clouds generated from the Multisense SL device. Since the
point clouds from stereo are noisier than their depth sensor counterparts, the output from the
device is pre-�ltered and smoothed. For the actual footstep planning, plane extraction was also
applied to the smoothed cloud.

2.5.3 OctoMap
The 3-D equivalent of elevation maps is represented by occupancy voxel maps (i.e., a 3D array of
cells). This representation is highly ine�cient, due to the intrinsic sparsity of the 3D space. To
overcome this limitation, Hornung et al. proposed an implementation based on octrees, called
OctoMap [61]. This data structure was used as a prior map for the localization in [22, 37, 60] and
for foothold planning in [145, 90], as will be detailed in Section 3.8. Although a GPU-accelerated
implementation exists [57], it has mostly been evaluated for indoor service robots.

2.6 Summary
In this chapter, we have reviewed several state-of-the art methods to endow a legged robot with
motion estimation and mapping capabilities. We have seen that legged machines, especially when
employed in di�cult operations in GPS-denied environments, can bene�t from multi-sensor
fusion techniques. The trend towards techniques which use a combination of proprioceptive
and exteroceptive state estimation is highlighted in Table 2.1. In Chapters 4 and 5, we describe
how the state estimator we developed on Hydraulic Quadruped (HyQ) corresponds with this
trend.

For mapping, by far, the most used approach is towards elevation map representations.
This appears to be a reasonable tradeo� between complexity and detail: the terrain is always
“dense”, while occasional overhanging obstacles can be handled by enriching the representation
instead of using an explicit voxel representation. Chapter 6 describes in detail the mapping
system implemented on HyQ, which consists of a lightweight Point Cloud representation with
on-demand heightmap extraction.
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Method Year Filter State LO IMU VO GPS LiDAR

Roston and Kotkov [117] 1992 x,θ 3

Gaßman et al. [47] 2005 EKF x,θ 3 3

Lin et al. [80] 2006 EKF x,θ 3 3

Chitta et al. [31] 2007 PF x,θ 3 3

Stephens [138] 2011 KF x,θ 3

Reinstein et al. [114] 2011 EKF x,θ, 3 3

Chilian et al. [30] 2011 IF δx, δθ, δẋ, δbω, δba 3 3 3

Ma et al. [84] 2012 EKF δx, δθ, δẋ, δbω, δba 3 3 3 3

Blösch et al. [17] 2012 EKF x,θ, ẋ,p,bω,ba 3 3 3 3

Blösch et al. [16] 2013 UKF x,θ, ẋ,bω,ba 3 3 3 3

Rotella et al. [119] 2014 EKF x,θ, ẋ,p, z,bω,ba 3 3

Xinjilefu et al. [149] 2014 QP x,θ, q̇, q̈ 3 3

Fallon et al. [37] 2014 EKF x,θ, ẋ,bω,ba 3 3 3 3

Nobili et al. [101] 2017 EKF x,θ, ẋ,bω,ba 3 3 3

Table 2.1: Comparison of di�erent state estimation approaches. Legend: x = linear position;
ẋ = linear velocity; θ = orientation, ω = angular acceleration; ba = acceleration bias;
bω = angular acceleration bias; δ = error state; q = joint position; p = foot position;
z = foot inclination; q̇ = joint velocity.
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Chapter 3

System Overview

HyQ is the robotic platform used for all the experiments presented in this dissertation. In this
chapter we describe its main characteristics from a perception-oriented perspective. After a brief
overview, most of the attention is dedicated to its sensory system con�gurations, calibration,
and signal synchronization (which are crucial for state estimation and mapping purposes). For a
detailed description of the mechanical design, we invite the reader to consult [131, 132].

3.1 Mechanical Design
HyQ is a fully torque-controlled hydraulic quadruped robot. It has been designed to perform a
variety of motions, ranging from agile and highly dynamic locomotion to slow, careful motions
on challenging terrains [132]. It weighs 85 kg, is 1 m long and 1 m tall (see Figure 3.2a). Figure
3.1 shows HyQ’s leg and joint con�guration: the robot has four legs: Left Front (LF), Right
Front (RF), Left Hind (LH), Right Hind (RH). Each leg has three actuated DoFs: two joints,
the Hip Flexion-Extension (HFE) and the Knee Flexion-Extension (KFE), rotate around an axis
perpendicular to the sagittal plane (red); one joint, the Hip Abduction-Adduction (HAA), rotates
around an axis perpendicular to the coronal plane (blue). At the nominal pressure of 16 MPa,
these joints can exert a maximum torque ranging from 120 N m for the HAA to 145 N m for the
other joints.

3.2 Frames of Reference
Figure 3.2 summarizes the frames of reference adopted throughout this dissertation. The base

frame is located at the geometric center of the torso, in the plane where all four HAA axes
lie. It follows the forward-left-up ground vehicle convention for orientation. The world frame

(sometimes called local frame in literature [84, 83], in contrast to the global coordinates provided
by satellite navigation systems) is an inertial frame attached to an arbitrary �xed point on
Earth. It is often chosen to be coincident with the base frame when the robot is in its starting
position. The imu frame is located at the sensor origin of the IMU. Its relative transformation
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cor  onal
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Figure 3.1: Joints names and planes conventions on HyQ. The robot’s legs have three actuated
degrees of freedom each: two joints rotating perpendicularly to the sagittal plane
(red), the Hip Flexion/Extension and the Knee Flexion/Extension; one joint rotates
perpendicularly to the coronal plane (blue), the Hip Abduction/Adduction. The legs
are identi�ed by the following abbreviations: Left Front (LF), Right Front (RF), Left
Hind (LH), Right Hind (RH). The RH foot and its knee joint are occluded.

from the base frame is computed based on the CAD model of the robot and sensor datasheet.
The horizontal frame (not shown in the picture) is an additional convenient frame introduced in
[8], for trajectory generation purposes. Its position is coincident with the base frame, and its
z-axis is aligned with the gravity vector (i.e., the roll and pitch orientations are perpendicular to
the gravity vector).

3.3 Proprioceptive Sensors
In this section, we describe the characteristics of the proprioceptive sensors mounted on HyQ.

3.3.1 Encoders
Each one of the 12 joints of HyQ is equipped with a couple of absolute/relative, magnetic/optical
encoders. The absolute encoder (AMS model AS5045) is a 12 bit digital magnetic encoder.
With 4096 di�erent outputs, its resolution is: sabs = 4096/360° = 0.0879°. It is used only at
the robot startup, to detect the initial position of the joints. After the robot startup and joint
initialization with the absolute encoder, an incremental digital optical encoder (Avago model
AEDA3300 BE1, see Figure 3.3a) is used. The relative encoder has 80000 counts per revolution,
providing a resolution of: srel = 80000/360° = 0.0045°. The encoders are used to measure
the joint positions q ∈ R12, and to compute the joint velocities, q̇ ∈ R12, through numerical
di�erentiation.
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3.3. Proprioceptive Sensors

(a) (b)

Figure 3.2: The Hydraulic Quadruped robot and its frames of reference. The Base frame is
attached to the geometric center of the robot’s torso and has the x-axis (red) pointing
forward, the y-axis (green) pointing to the left, and the z-axis (blue) pointing upward;
the IMU frame is also attached to the base link, with a di�erent orientation; the
World frame is a �xed reference frame.

(a) Avago AEDA3300 BE1 (b) Burster 8417

(c) Microstrain 3DM-GX3-25 (d) Microstrain 3DM-GX4-25 (e) KVH 1775

Figure 3.3: Proprioceptive sensors mounted on HyQ. (a) joint relative encoder; (b) loadcell;
(c)-(e) IMUs.
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3.3.2 Joint Force/Torque Sensor
Two of the three actuated joints of HyQ’s leg, HFE and KFE, are moved by a piston. To measure
the torque at these joints, we use Burster 8417 loadcells (Figure 3.3b), connected in series with
the cylinders. From the force measured by the loadcell, we then compute the joint torque by
multiplication with the lever arm’s length. The measurement uncertainty for the loadcells is
±25 N. The torque at the HAA joint is instead directly measured by a custom made torque sensor
(not depicted). In the following, we will indicate these sensors with the term joint force/torque

sensors, and we implicitly assume that their output is always a torque τ ∈ R12.

3.3.3 Inertial Measurement Unit
Three di�erent IMUs have been mounted on HyQ since its construction: the Microstrain 3DM-
GX3-25 [91] (Figure 3.3c), the Microstrain 3DM-GX4-25 [92] (Figure 3.3d), and the KVH 1775
[68] (Figure 3.3e).

The Microstrain 3DM-GX3-25, and the newer model 3DM-GX4-25, are two compact indus-
trial grade MEMS IMUs, commonly used in robotics, especially for drones. They internally run
a Kalman-based �lter, which provides an estimate of the device attitude, alongside the proper
acceleration and angular velocity measurements. Even though there are many factors (and
metrics) to consider when evaluating the performance of an IMU, one of the most critical ones
is the gyro bias instability (see [147]). The GX3 and GX4 have a bias instability of 18 °/h and
10 °/h, respectively. Thus, they are categorized as moderate performance grade [50] (i.e., not
suitable for navigation purposes by means of strapdown techniques only).

Since HyQ is designed to perform highly dynamic (yet precise) motions, the above mentioned
IMUs have been accompanied with a higher grade one, the KVH 1775 [68] (Figure 3.3e). This
sensor is characterized by navigation grade FOG gyros (0.05–0.1 °/h bias instability), which
allows for a precise estimate of the attitude over longer periods of activity. During the DRC
competition, 11 of the 23 team �nalists (including the winner) relied on the performance of an
almost identical device: the KVH 1750 IMU [1]. The same IMU is also adopted by the highly
dynamic quadruped Cheetah [4].

3.4 Exteroceptive Sensors
In this section, we describe the exteroceptive sensors mounted on HyQ, including: depth sensors,
stereo cameras, and LiDARs.

3.4.1 Depth Sensor
Depth sensor cameras, also known as RGB-D sensors, are a devices which output color point
clouds by coupling a VGA camera, an Infrared (IR) camera, and a structured light projector. The
projector illuminates the scene with a known light pattern, from which the device generates the
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3.4. Exteroceptive Sensors

(a) ASUS Xtion (b) Point Grey Bumblebee 2

(c) Hokuyo URG-04LX (d) Velodyne HDL-32E (e) Carnegie Robotics Multi-
sense SL

Figure 3.4: Exteroceptive sensors used on HyQ. (a) depth sensor; (b) stereo camera; (c) planar
LiDAR; (d) rotating LiDAR; (e) sensor head (LiDAR + stereo camera).

point cloud by triangulation. The point cloud is then colorized by projecting the image plane of
the VGA camera onto the image plane of the IR camera.

The �rst notable consumer device of this kind, the Microsoft Kinect, was introduced in
2010. Since then, there has been an increasing interest in these commodity sensors, even in the
robotics community. In particular, the ASUS Xtion sensor (Figure 3.4a) gained popularity due to
its comparable performance yet smaller size and power consumption than the Kinect [54]. The
ASUS Xtion mounted on HyQ has a 0.3 Megapixel rolling shutter camera, with a resolution of
640 × 480 pixel at 30 FPS, or 320 × 240 at 60 FPS. It is mainly used for indoor (due to sunlight
interference) mapping and localization, as detailed in Chapter 5.

3.4.2 Stereo Camera
Due to the interference caused by sunlight, active depth sensors like the ASUS Xtion are not
suitable for outdoor operations. Furthermore, these kind of sensors have a limited �eld of
view (cf. Table 3.1). For this reason, HyQ is also equipped with stereo cameras. Two models of
stereo cameras are used on HyQ: the Bumblebee 2 from Point Grey Inc. (Figure 3.4b), and the
Multisense SL from Carnegie Robotics (Figure 3.4e).

The Bumblebee 2 mounted on HyQ is a global shutter 0.8 Megapixel camera, with maximum
resolution of 1032 × 776 pixel at 20 FPS. It has been used mainly for mapping [56].

The Multisense SL (Figure 3.4e) is a tri-modal (LiDAR, camera, depth from stereo) sensor
consisting of a rotating LiDAR, a stereo camera and integrated FPGA circuitry, to compute 3D
point clouds from stereo, in hardware. The stereo camera of the Multisense SL used on HyQ
has a 4 Megapixel imager, with a resolution of 1024 × 1024 pixel at 15 FPS. The sensor comes
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3. system overview

pre-calibrated and synchronized for all the modalities. The camera is equipped with LED �ash
lights, to illuminate the scene when needed.

3.4.3 LiDAR
LiDAR sensors provide a strong support in obtaining high precision range measurements, even
in conditions of scarce illumination, fog and dust. Three types of LiDAR are used on HyQ, mainly
for localization purposes (see Chapter 5): the Hokuyo URG-04LX (Figure 3.4c), the Velodyne
HDL-32E (Figure 3.4d), and the Hokuyo UTM-30LX-EW (Figure 3.4e).

The Hokuyo UTM-30LX-EW is a planar range scanner with a maximum range of 30 m
and a wide Field of View (FoV) of 270°. The scans are generated at 40 Hz. As a component of
the Multisense SL, it can fully rotate around a forward-looking axis of the device, to obtain a
complete scan of the environment in a few seconds, keeping the device static. The sensor is
dustproof and waterproof.

The Velodyne HDL-32E is a motorized LiDAR sensor, mainly produced for the automotive
industry. Its bigger version, the HDL-64E, was one of the protagonists of the 2005 DARPA
Grand Challenge and the 2007 DARPA Urban Challenge – two autonomous driving competitions
organized by DARPA to push forward the research on self-driving ground vehicles. The sensor
emits 32 beams, distributed vertically on a range of 40°, and rotates freely around its vertical
axis. This allows it to get a full point cloud, with 360° horizontal FoV, at 10 Hz.

The Hokuyo URG-04LX is a short range (4 m), low-frequency (10 Hz) LiDAR sensor for
indoor usage. It is rigidly attached to the robot’s chassis (see Figure 3.5a) and it is used for 2D
localization (see Section 5.3).

3.4.4 Depth Sensor Noise and Calibration
The noise of a point cloud highly depends on the used sensor. Table 3.1 shows an accuracy
comparison, expressed in meters at di�erent distances, between the Bumblebee 2, the ASUS
Xtion and the Multisense SL’s stereo camera. Even though it is more reliable than a stereo camera,
when the distance approaches a few meters, the accuracy drop starts becoming non-negligible.
To cancel the noise, a few preprocessing methods can be used. For example, [97] recalibrated the
structured light sensors to improve the depth image quality and [139] corrected depth distortion.

3.5 Sensor Con�gurations
From its construction in 2010, the HyQ robot received a few mechanical and hydraulic upgrades,
which included the removal of the passive springs from the lower leg, and the substitution of
the electric motors with hydraulic rotary actuators at the HAA joints. More recently, also the
sensory system has evolved towards better performing, integrated, and rugged solutions. In
the following sections, we describe the two sensor setups used for the experiments and the
dataset collection described in the following chapters. We will denote them with the terms
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Speci�cation Bumblebee 2 ASUS Xtion Multisense SL

Output [Megapixel] 0.8 0.3 4
Frequency [FPS] 20 30 15

Depth resolution [m@m]
0.01 @ 1.29 0.001 @ 0.8 ± 0.0003 @ 1
0.5 @ 9.6 0.04 @ 4 ± 0.03 @ 10
1 @ 13.6

Range [m] 0.6–20 0.8–4 0.4–10
Valid depth [%] 65% 84% N/A
HFOV×VFOV [°] 97×72 57×40 80×80

Table 3.1: Comparison between depth sensors speci�cation used on HyQ: the Bumblebee 2
stereo camera, the structured light ASUS Xtion, and the Multisense SL stereo camera.

Sensor Con�guration A Con�guration B

ASUS Xtion 3 3

Bumblebee 2 3

Velodyne HDL-32E 3

Hokuyo URG-04LX 3 3

FLIR PTU-D46-17 3

Multisense SL 3

Microstrain 3DM-GX3-25 3

Microstrain 3DM-GX4-25 3

KVH 1775 3

Table 3.2: List of sensors and additional actuators for Con�guration A and Con�guration B.

Con�guration A and Con�guration B. Both con�gurations share the same encoder and joint
force/torque sensor setup, while the other sensors change from one to the other. Table 3.2
summarizes the sensors available for each con�guration.

3.5.1 Con�guration A
In Con�guration A, HyQ is equipped with a 3DM-GX3-25 IMU (Figure 3.3c), rigidly attached to
the robot base. The exteroceptive sensors are visible on Figure 3.5a: a Bumblebee 2 stereo camera
(Figure 3.4b), and an ASUS Xtion depth sensor (Figure 3.4a), are mounted on a Pan-and-Tilt Unit
(PTU), which provides two degrees of freedom for active scanning [90] and image stabilization
purposes [12]. The Hokuyo URG-04LX is placed below the torso, upside-down, and the Velodyne
HDL-32E is mounted on top of the robot. A schematic of LiDAR’s and camera’s FoVs is provided
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(a) Sensor setup.
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(b) Field of View scheme.

Figure 3.5: Exteroceptive sensors in Con�guration A and their Fields of View. Note that the
�elds of view are not in scale and do not consider self-occlusions.

in Figure 3.5b.
This con�guration has been used for the experiments presented in Section 5.2, Section 5.3,

and Section 5.4. The datalogs of Dataset 1 (Appendix A.1) and Dataset 2 (Appendix A.2) were
also recorded in this con�guration.

3.5.2 Con�guration B
In Con�guration B, the Bumblebee 2 stereo camera, the Pan-and-Tilt-Unit, and the Velodyne
LiDAR are replaced by the Multisense SL (Figure 3.6a). This choice is motivated by multiple
factors: the stereo camera from the Multisense SL has a higher resolution and provides point
clouds directly; the rotational axis of the LiDAR permits the use of laser returns for terrain
mapping, as well as for localization; all the sensor modalities are synchronized via hardware,
with no extra e�ort from the user (see Section 3.7); the Multisense SL device is rugged and
tested against vibration and high temperatures. The Microstrain 3DM-GX3-25 is replaced by its
upgraded model, the 3DM-GX4-25 (Figure 3.3d). The con�guration also includes a KVH 1775
FOG IMU (Figure 3.3e). Figure 3.6 shows the sensor arrangement for this con�guration and the
corresponding FoV of the exteroceptive sensors. Note that, with this new LiDAR setup, the rear
view is lost, but there is more scanning surface in front of the robot.

The Con�guration B is used in the experimental session of Section 5.5, as well as in the
dataset of Appendix A.3.
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(a) Sensor setup.
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(b) Field of View scheme.

Figure 3.6: Exteroceptive sensors in Con�guration B and their Fields of View. Note that the
�elds of view are not in scale and do not consider self-occlusions.

3.6 Camera Pose Calibration
One of the critical aspects of state estimation with exteroceptive sensors is the availability of the
correct rigid transformation between these sensors and the base frame of the robot. For instance,
if we perform VO with a camera, we need to correctly estimate the rigid transformation Tb c

which maps the points in the camera frame c to the base frame b. Retrieving this transform is
not straightforward, because of:

1. mechanical tolerances between assembly parts of the robot;

2. mechanical tolerances and distortion of the depth sensors;

3. non-rigidity of the materials, which produce undesired motions when shocks occur.

While issue 3) is impossible to solve in practice, issues 1) and 2) can be solved trough an
appropriate static calibration procedure. In order to retrieve a valid transformation Tb c, we have
developed a calibration method which uses a motion capture system and a library for augmented
reality, ArUco [45]. In the following, we show how to perform the calibration with Bumblebee
2, from Con�guration A. However, the method can be generalized to any stereo camera.

Figure 3.7 depicts the calibration setup: a �ducial marker is placed on the �oor, within the
FoV of the stereo camera. The �ducial marker is surrounded by motion capture markers (small
re�ective dots). Without loss of generality, we assume that the frame origin of the �ducial
marker and the origin de�ned by the motion capture polygon are the same. We indicate this
uni�ed marker frame as m. The rigid transformation Tb c is then computed as:

Tb c =
(

Tw b

)−1 Tw m

(
Tc m

)−1 (3.1)
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vicon
markers

m

Figure 3.7: Sensor calibration setup. A �ducial marker is surrounded by motion capture markers.
The transform between optical frame and the marker frame is computed on the 3D
points extracted from the �ducial marker. The rest of the transformation chain is
extracted via motion capture system.

where Tw b and Tw m are the rigid transformations (provided by the motion capture system)
that project the base frame and the marker frame onto the world frame, respectively. The rigid
transformation from the marker frame m to the camera optical frame c is de�ned as Tc m. Let
t be the translational component of Tc m. Its value corresponds to the vector coordinates of
the marker center, expressed in the camera frame. The rotational part of Tc m can instead be
computed through SVD, as the solution to Wahba’s problem [89]:

Tm c =

R t
0 1

 =

UMV T t
0 1

 (3.2)

where M , U and V are extracted from:

B =
n∑
i=1

wivT
i = USV T (3.3)

M = diag
[
1 1 det (U) det (V )

]
(3.4)

and wi, vi are the sets of corner points on the marker, expressed in the marker frame m and
the camera frame c, respectively.

3.7 Synchronization
As we have seen in the previous sections, HyQ is a complex robot. It is equipped with several
sensors, each one providing signals at di�erent frequencies, bandwidths, and from di�erent
interfaces. These signals eventually have to be fused, in order to generate a state estimate of
the robot base. For this, we need a common time frame and a synchronization mechanism.
The importance of synchronization between heterogeneous sensor samples is con�rmed by
the need, from several groups, to solve this problem via hardware with custom FPGA boards
[128, 99, 25, 83]. Although this is the most e�ective solution, it is not applicable anywhere on
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the robot. In our case, the Multisense SL provides this capability for synchronizing the LiDAR
and the stereo camera images. For the other signals, we rely on the following strategies:

• the joint states (encoders and joint force/torque sensors) signals are synchronized through
EtherCAT [2] at 1 kHz in a realtime environment;

• the signals generated by the IMU, which is directly connected to the controller computer,
are routed with the Lightweight Communication and Marshalling (LCM) library [63] (a
inter-process communication library, suitable for low latency robotic applications). The
synchronization with the other signals is performed using the absolute timestamp of the
computer, fused with the local timestamp of the device, with a passive technique [102];

• synchronization between di�erent computers is operated through the Network Time
Protocol [3].

3.8 Locomotion and Perception Capabilities
HyQ is designed to be a versatile robot. Its mechanical and hydraulic structure is able to support
a variety of gaits and maneuvers, including: trotting [8], static crawling [146], dynamic crawling
[145], climbing on inclined surfaces [43], and bounding [103]. Over the course of its development
at the Dynamic Legged System Lab, the progressive integration between control and perception
allowed for an increasing number of sophisticated locomotion skills.

In 2013, Focchi et al. [42] demonstrated that, by monitoring the joint force/torque sensors
and estimating the impact forces at the feet, the periodic trajectories generated by the Reactive
Controller Framework (RCF) [8] can be reactively adjusted to step over an unexpected obstacle
of 11 cm, which corresponds to 14 % of the total leg length. In the same year, Havoutis et al. [56]
showed, experimentally on HyQ, the �rst implementation of an onboard perception-assisted
gait transition between a dynamic trot and a static crawl. Their proposed method consists of the
following steps: 1) point cloud acquisition from a depth camera; 2) dominant plane extraction,
to determine the terrain inclination, which is assumed to be �at; 3) computation of the robot
orientation from the extracted plane orientation and IMU; 4) computation of the robot position,
from image registration techniques [113]; 5) generation of elevation maps, from the point clouds
and estimated robot pose. From the elevation map analysis, the robot was able to switch from a
trotting to a crawling gait, and step on a 14 cm pallet. In 2014, Bazeille et al. showed a trotting
gait parameter modulation assisted by stereo imagery. Velocity, step height, and length were
adjusted according to the characteristics of the point cloud captured by the robot. In the same
year, Winkler et al. [146] presented a framework for foothold planning, with force-based foothold
adaptation, to overcome highly challenging terrain. The planned footholds were executed on a
pre-acquired map with the KinectFusion algorithm [96]. In 2015, Winkler et al. [145] extended
their previous work with a dynamically stable crawl. The maps were in this case pre-acquired
with a depth sensor and collected before the execution, in an OctoMap data structure [61].
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In the following chapters, we describe in detail the fundamental capabilities (state estimation,
localization, mapping) required to migrate these and other locomotion skills from controlled lab
environments towards real scenarios.
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Chapter 4

Probabilistic Contact Estimation for
Proprioceptive State Estimation

This chapter addresses the problem of estimating the 6-DoF position and velocity of the HyQ
robot’s base with proprioceptive sensors. In particular, we want to estimate the base state using
an IMU, joint encoders, and joint force/torque sensors. IMUs provide direct measurements of the
base angular velocity and linear acceleration. The encoders are generally used to compute the
base linear velocity [16] or position [17] from forward kinematics (see Section 2.1.2). To produce
valid measurements, only the feet �rmly in contact with the ground have to be considered. For
this reason, most state estimators in legged robotics [17, 16, 37, 84] use dedicated contact sensors
to detect which feet are able to provide reliable velocity or position estimates.

In this chapter, we explain how to identify the feet in reliable contact with the ground by
using joint force/torque sensors, instead of contact sensors. Avoiding the use of contact sensors
at the feet (especially on machines the size of HyQ) is desirable for many reasons: it reduces the
overall cost, weight, and complexity of the system [67]; it allows the use of rugged, inexpensive
and easily replaceable feet; it reduces the number of single points of failure (because dependency
on contact sensors compromises the functionality of the overall system in case any of them are
damaged).

Without dedicated contact sensors, detecting and handling contacts is not trivial, as they
depend on the amount of frictional force the feet exert on the terrain [123]. According to
the Coulomb model of dry friction, this is directly proportional to the normal component
of the Ground Reaction Force (GRF) and the foot-terrain static friction coe�cient, which is
generally unknown. Additionally, impact forces play a critical role, as they can cause slippage
[20]. Throughout this chapter, we describe a method to probabilistically detect the contact
threshold on the GRF that minimizes the error of the velocity measurements obtained from
the joint encoders and forward kinematics. We also describe how to use this information to
fuse multiple velocity contributions from the stance legs into one measurement for the Kalman
measurement update step. These methods have been validated on a dataset of more than one
hour of locomotion logs (see Appendix A.2) on the HyQ robot.
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The remainder of this chapter is structured as follows: Section 4.1 formally de�nes the base
state estimation problem and describes the EKF framework implemented on HyQ (which is used
also in Chapter 5); Section 4.2 describes a novel probabilistic approach to contact estimation for
state estimation and compares its performance with other state-of-the-art approaches found
in literature; Sections 4.3 and 4.4 shows in detail how the linear velocity measurement and its
associated covariance are computed from the detected contact and integrated into the �lter;
Section 4.5 show an extensive performance validation of the state estimation framework method
with experiments on HyQ performing a variety of gaits; Section 4.6 discusses the limitation of
the approach and possible improvements; and �nally, Section 4.7 summarizes the content of the
chapter.
Most of the material presented in this chapter has been published in [27] as �rst author.

4.1 Filter Framework
We de�ne the robot base state vector to be estimated as:

x =
[

xw b ẋb b ẍb b Θw b ωb b ba bω
]T

(4.1)

where the base velocity ẋb b ∈ R3, acceleration ẍb b ∈ R3 and rotational rate ωb b ∈ R3 are
expressed in the base frame b, while the position xw b ∈ R3 and orientation Θw b ∈ SO(3)
are expressed in the �xed world frame w (for the frames of reference and their locations, see
Section 3.2). Finally, the state space is completed by IMU acceleration and angular velocity
biases: ba ∈ R3, bω ∈ R3.

To estimate the state, we adopt the EKF framework of [22, 37]. The goal of the EKF is to
estimate the mean and covariance of the Gaussian distribution over the state xk at time k (see
Appendix B.2). The prior distribution over the state is propagated using the acceleration and
angular velocity sensed by the IMU as inputs, while the posterior is subsequently computed by
integration of velocity measurements from the LO.

4.1.1 Inertial Process Model
An IMU measures proper acceleration and angular velocity. Given the rotation matrix Rib ∈
SO(3) and translation vector tbi ∈ R3, which describe the rigid transform from IMU frame to
base frame, we can compute the measurements of the base acceleration ẍb b and angular velocity
ωb b, as follows [32]:

ωb b = Rbi ( ωi b − bω) = Rbi ( ωi i − bω) (4.2)

ẍb b = Rbi ( ẍi i − ba)− gb − (Rbi ω̇i i)× tbi︸ ︷︷ ︸
angular acceleration

−(Rbi ωi i)×
[
(Rbi ωi i)× tbi

]︸ ︷︷ ︸
centripetal force

(4.3)
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Note that since the IMU is sensing the proper acceleration, we need to subtract the gravity vector
from the measurement, expressed in the base frame gb = Rbw gw = Rbw

[
0 0 9.80655

]T
. This

requires the knowledge of the current robot orientation Rbw.

Prior State

Following commonly-used approaches, we use acceleration and angular velocity from Equations
4.3 and 4.2 as �lter inputs u and remove them from the state x. For readability, we drop the
frame subscripts, add the time subscripts, and mark the prior and posterior states with the −
and + superscripts. The input uk and prior state x−k are de�ned as:

uk =

ω̃k
˜̈xk

 =

Rbi ( ωi i − b+
ω,k−1)

Rbi ( ẍi i − b+
a,k−1)

 (4.4)

x−k =



x−k
ẋ−k
Θ−k
b−a k

b−ω k


=



x+
k−1

ẋ+
k−1
0

b+
a k−1
b+
ω k−1


+



ẋ+
k−1∆t

(−ω̃k × ẋ+
k−1 + (Θ+

k−1)−1 gw + ˜̈xk)∆t
Θ+
k−1 exp(ω∧k∆t)

ḃ−a,k−1∆t
ḃ−ω,k−1∆t


(4.5)

In Equation 4.4 we assume the e�ects of the angular acceleration and the centripetal force of
Equation 4.3 to be negligible. Biases ba and bω are computed at the �lter initialization, when
the robot is stationary. At runtime, the corresponding bias rates are treated as white Gaussian
noise, and integrated accordingly [147]. Noise parameters for bias rates can be extracted from
datasheets, from the analysis of Allen variances [34], or by process identi�cation [22].

Equation 4.5 computes the prior state using Euler integration over the timestep ∆t: the cur-
rent position x−k is estimated from the previous posterior position and velocity; current velocity
ẋ−k depends on the previous states and IMU inputs (here indicated with a ∼, to distinguish
them from the quantities in Equations 4.2 and 4.3). Note that the previous orientation Θ+

k−1 is
required to align the gravity vector to the base frame and to compute the current orientation
Θ−k from Equation 2.6.

Prior Covariance

The prediction step of the EKF is completed by the computation of the covariance P−k , which is
propagated as follows:

P−k = GkP
+
k−1G

T
k + VkRkV

T
k (4.6)

The matrices Gk = I + Gc∆t, and Vk = Vc∆t, are computed from the partial derivatives of
the nonlinear transition function xk+1 = g(xk,uk,wk) over the state and the input vectors,
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respectively [22]:

Gc = ∂g

∂x
=


−ω∧ (ΘTg)∧ 0

0 −ω∧ 0
Θ −Θẋ∧ 0

 (4.7)

Vc = ∂g

∂u
=


ẋ∧ gI
I 0
0 0

 (4.8)

4.1.2 Measurement Model
Let us consider the joint position and velocity measurements: q ∈ Rn, q̇ ∈ Rn, with n = 12 for
HyQ. Thus, the velocity of each foot fl, expressed in the base frame, can be computed through
forward kinematics, as:

ẋb fl
= Jl(q)q̇l (4.9)

where Jl(q) ∈ R3×3 is the Jacobian which maps the joint angles of leg l to the end e�ector
(i.e., the foot), and q̇l ∈ R3 is the block of the joint state vector relative to leg l. If the leg l is
stationary with respect to the ground, a measure of the base velocity can be computed from
Equation 4.9 as follows:

ẋb bl
= − ẋb fl

− ωb b × xb fl
, (4.10)

where ωb b is computed from Equation 4.2 and xb fl
is the position of foot fl expressed in the

base frame.
From the contributions ẋb bl

, ∀l ∈ L = {LF,RF, LH,RH} (see Section 3.2) we can compute
a Kalman measurement ẋk. To perform this operation, we need: a) to know which feet are in
stable contact with the ground; b) to fuse the individual leg contributions into a single EKF
measurement update; c) to compute the associated covariance. In the following sections we
cover these three points.

4.2 Probabilistic Contact Estimation
In this section, we describe a contact estimation method suitable for base state estimation.
Generally, contact estimation is a relevant problem for Human-Robot interaction, where the
robot has to detect a contact or a collision as early as possible, in order to promptly take counter-
measures to avoid damage to either a human or the machine [82, 53]. In contrast, the method
described in this section is designed for state estimation, and it aims to �nd the force threshold
at which the foot deemed to be in contact can provide reliable velocity measurements for the
EKF. The two time instances when this threshold is crossed and when a contact event begins
might be di�erent, with the latter typically happening earlier.
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4.2. Probabilistic Contact Estimation

4.2.1 Ground Reaction Forces Estimation
We estimate the GRFs by considering the equation of motion for a �oating base system. The
dynamics of a �oating-base articulated-body system can be expressed as two coupled dynamics
equations, computed using Recursive Newton-Euler algorithms, as described in [39]. The �rst
equation describes the dynamics of the �oating-base body (6 DoFs, underactuated), while the
second one describes the dynamics of the n rigid-bodies (i.e., for HyQ, n = 12) attached to
it through active joints (i.e., active DoFs). The equations of motion of such a system can be
partitioned as follows:

[
Ic F

F T M

] ẍb b

ω̇b b

q̈

+

hb
hq

 =

 JTcb
JTcq

 f +
[

0
τ

]
(4.11)

where: Ic ∈ R6×6 is the composite rigid body inertia of the robot; F ∈ R6×n is a matrix which
contains the spatial forces required at the �oating base to support unit accelerations about each
joint variable; hb is the spatial bias force (e.g., gravity/centrifugal), for the composite rigid body
containing the whole �oating-base system; M ∈ Rn×n denotes the active joint link’s inertia
matrix (i.e., leg segments); hq ∈ Rn denotes the respective vector of Coriolis, centrifugal and
gravitational forces; ẍb ∈ R3 and ω̇ ∈ R3 are the vectors representing the �oating-base linear
and angular accelerations, respectively; q̈ ∈ Rn and τ ∈ Rn are the vectors of active joints
accelerations and torques. If c is the number of contacts with the ground, f ∈ R3c is the vector
of GRFs that enter in the dynamic equation through the contact Jacobians Jcb ∈ R3c×6 and
Jcq ∈ R3c×n. Note that since our platform has nearly point-like feet, we assume that it cannot
generate moments at the contact points – but only pure forces (hence, 3 components for each
leg). Since the mass of each leg of HyQ is less than 8% of the total robot weight, we opt to
neglect the e�ect of inertial torques. This avoids introducing noise in the estimation, due to the
numerical di�erentiation in the computation of q̈. Therefore, we can estimate the GRFs from
Equation 4.11, as:

f = −(JTcq(q))†
(
τ − hq − F T

[
ẍb b ω̇b b

]T
)

(4.12)

where (·)† is the Moore-Penrose pseudo-inverse. In practical applications, due to the block-wise
structure of Jcq , it is possible to perform the computation for each stance leg separately as:

fl = −(JT
cql

)−1
(
τ l − hq,l − F T

l

[
ẍb b ω̇b b

]T
)

(4.13)

where: fl ∈ R3 is the GRF for leg l; ql ∈ R3, q̇l ∈ R3 and τ l ∈ R3 are the leg joint position,
velocity and torque, respectively; Jcql

(ql) is the l-th foot Jacobian (which for HyQ is a square
matrix); hq,l is the vector of centrifugal/Coriolis/gravity torques, for leg l.
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4.2.2 Contact Classi�cation
We de�ne the contact status for a foot belonging to leg l ∈ {LF, RF, LH, RH} as sl ∈ {0, 1},
where 1 indicates a reliable stance (i.e., with no motion relative to the ground) and 0 indicates
leg swing phase or slipping contact.

Given fl = (fl,x, fl,y, fl,z) and following the de�nition of [59], the quantity:

µf =

√
f2
l,x + f2

l,y

fl,z
, ∀fl,z > 0 (4.14)

de�nes a metric to evaluate the robustness of a foothold in terms of contact stability. This
metric is equal to the actual static friction coe�cient µs when the lateral components of the
GRF, denoted with fl,x, fl,y , have a value beyond which the foot would start slipping. Although
µs is unknown, any value of µf < µs would yield a stable contact, and in particular, the smaller
µf is, the more likely the foot is �rmly on the ground. Hence, the quality of contact for a foot
related to leg l at time k is nonlinearly proportional to the corresponding GRF fkl . For simplicity
and numerical stability, instead of accounting for all the terms of µf , we ignore the lateral
components of fkl , and assume that, above a certain threshold of fkl,z , the frictional force will be
su�cient to produce a stable, reliable contact. To learn this threshold, we model the probability
of a reliable ground contact Pk using a discriminative logistic regression model:

Pk(sl = 1|fkl ) = 1
1 + exp(−βfkz,l − β0)

(4.15)

where fkz,l is the normal component of the GRF at time k for leg l, while β and β0 can be
regarded as the weights of a logistic regression classi�er. The weights are computed by maximum
likelihood estimation on a training set of data collected from characteristic locomotion behaviors,
as described in the following section.

4.2.3 Training Set Generation
To generalize their applicability, logistic classi�ers require a good training set, su�ciently large
and able to cover the region of interest of the input. In our case, the training set includes the
ground truth of contact events sk = (sLF, sRF, sLH, sRH)k , and the corresponding GRF values for
all the legs. Excluding the data generated by simulation, we assume that the ground truth for
contact events is not available. Using manually labeled data is impractical for datasets longer
than a few minutes, therefore we need to de�ne a semi-supervised routine to generate them.

Let us consider that for every time step k and leg l ∈ L, the corresponding velocity
contribution ˆ̇xk,l is computed from Equation 4.10. We also assume to have access to the velocity
ground truth ẋk for the base. Thus, for each time step k, we can compute the optimal leg
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4.2. Probabilistic Contact Estimation

combination s∗ ∈ B4, which minimizes the absolute velocity error:

s∗k = arg min
s∈B4

∣∣∣∣∣
[1
s̄

∑
l∈L

I(ˆ̇xk,l, sl)
]
− ẋk

∣∣∣∣∣ ∀k > 0 (4.16)

where:

• I(a, b) is the indicator function, which outputs 0 if b = 0 and a otherwise;

• sl is the l-th element of s;

• s̄ is the sum of non-zero elements of s.

Assuming that error is lower for a �rmer contact, Equation 4.16 provides a basic rule to generate
a training set which teaches the classi�er the optimal threshold on the GRF signals for triggering
the contact. However, in a practical implementation, we have to take into account the special
case of a robot �ying phase (i.e., , when s =

[
0 0 0 0

]
). We also have to consider that

numerical instability in the optimization process (e.g., two leg combinations giving very similar
errors) may lead to unrealistic frequent contact phase switching.

Starting from Equation 4.16, the complete algorithm to generate the training set is detailed in
Algorithm 1. For each timestep, k and leg combination, s we compute the average base velocity
(lines 7–11) of the 14 possible leg combinations (all except the “no legs in stance” combination).
Then we choose the combination which minimizes the error against the ground truth, E (lines
14–16). The �ying phase combination is treated separately: if all the non-�ying combinations
provide an error beyond a threshold ε, the �ying phase is triggered (line 19).

After computing the optimal sequence s∗ for every timestep k, we manually �ll the gaps
and remove spurious contacts (line 24). The error threshold ε and the parameters for the region
growing algorithm are manually selected.
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Algorithm 1 Contact Training Set Generation Algorithm
1: for each k > 0 do
2: E∗ ←∞ . initialize minimum error
3: s∗ ← (0, 0, 0, 0) . initialize leg combination
4: for each s ∈ B4 − {(0, 0, 0, 0)} do
5: s̄← 0 . initialize number of stance legs
6: ˆ̇xk = (0, 0, 0) . initialize estimated velocity
7: for l = 1 : 4 do
8: ˆ̇xk,l = −ẋk,fl

− ωk × xk,fl

9: ˆ̇xk ← ˆ̇xk + I(ˆ̇xk,l, sl)
10: s̄← s̄+ I(1, sl)
11: end for
12: ˆ̇xk ← ˆ̇xk/s̄
13: E ← |ˆ̇xk − ẋ| . compute error
14: if E < E∗ then
15: E∗ ← E
16: s∗ ← s
17: end if
18: end for
19: if E∗ > ε then
20: s∗ = (0, 0, 0, 0)
21: end if
22: sk ← s∗
23: end for
24: filter(s1, . . . , sk, . . . )
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Figure 4.1: Crawl gait simulation. Top plot: learned logistic model function. Middle plot:
normal component of the GRF for one leg. Bottom plot: learned stance probability
and ground truth

4.2.4 Performance Evaluation
In this section we evaluate the performance of the contact detection algorithm. A comparison
with other common methods is shown for both simulation and real data. Since the target
application for the contact estimation is state estimation, the performance metric of choice is
the Drift per Distance Traveled (DDT) (see Appendix C).

Fitting with Simulated Data

First, we tested our approach on data generated from simulation, with contact ground truth, for
two distinctive locomotion styles: a static crawl and a dynamic trot. The crawl gait was generated
using a quasi-static crawl controller, as described in [43]. The trot gait was generated using the
reactive controller framework presented in [8]. In our experiments, the trot gait was generated
using a step frequency of 1.7 Hz, a duty factor of 0.5 and a leg sti�ness of 8.55× 103 N/m. All
simulation are performed on �at ground.

Figures 4.1 and 4.2 show — for crawl and trot datalogs, respectively — the learned logistic
function (top plot), the GRF signal (middle plot), and the �tting of the model against the ground
truth for the test set (bottom plot). As expected, the threshold for contact activation in the trot
gait is higher (by approx. 20 N). This is due to the fact that for this locomotion gait two legs are
o� the ground at a time, compared to just one in the crawl.
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Figure 4.2: Trot gait simulation. Top plot: learned logistic model function. Middle plot: nor-
mal component of the GRF for one leg. Bottom plot: learned stance probability and
ground truth.

Fitting with Real Data

To test the classi�er in a real scenario, we performed training on half of a trot log and half of a
crawl log from our dataset (see Appendix A.2) and we used the rest of the dataset as a test set
for the learned model.

As no suitable commercial solution for contact sensing was available on our hardware, the
ground truth for the training was generated with the optimization described in Section 4.2.3.
This approach has the advantage that the classi�er tends to learn the force threshold beyond
which the associated velocity measurement produced by the foot in question becomes reliable.

Figure 4.3 and 4.4 display, for crawl and trot respectively, the obtained logistic function (top
plot), the GRF signal (middle plot), and the �tting of the model against the ground truth for the
test set (bottom plot). As in the simulation, the threshold for contact activation in the trot gait is
higher, with a larger gap between the two gaits in the data collected from real motions.

We compared state estimation performance using our contact estimation approach against
two other thresholding methods on fz,l: a single threshold method and a Schmitt trigger. Table
4.1 provides an example of how our approach improves the state estimation performance as a
function of drift per distance traveled on the x-axis, due to the better selection of the stance
legs used for the velocity computation. For these experiments, we decoupled the e�ect of gyro
bias and linear position estimate by using the orientation estimate from a Vicon motion capture
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Figure 4.3: Crawl gait experiment. Top plot: learned logistic model function. Middle plot:
normal component of the GRF for one leg. Bottom plot: learned stance probability
and ground truth.

Fixed threshold Hysteresis Logistic regr.
[cm/m] [cm/m] [cm/m]

Crawl 1.34 1.34 1.34
Trot 1.79 0.75 0.43

Table 4.1: DDT of di�erent contact estimators: �xed threshold, Schmitt trigger [104] (hysteresis)
and our method (logistic regression).

system. In particular, the proposed logistic regression signi�cantly increases the performance
of the LO during the trot gait. For the crawling gait, the performance is equivalent to other
methods, since impact events occur less frequently and with reduced intensity.

4.3 Measurement Integration
In the previous section, we described a method to detect which feet are in reliable contact
with the ground. This information is essential to form a measurement update for the Kalman
update step. In the following, we describe how to compute the mean and covariance for the EKF
measurement update, formally described by the measurement function zk = h(xk,wk).
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Figure 4.4: Trot gait experiment. Top plot: learned logistic model function. Middle plot:
normal component of the GRF for one leg. Bottom plot: learned stance probability
and ground truth.

4.3.1 Velocity Estimation
Given an estimate of the feet that are most likely to be in reliable contact, we compute a velocity
estimate of the base ẋb b and its associated covariance matrix Σv = diag(σ2

x, σ
2
y , σ

2
z) using

kinematic sensing. This will then be used as a measurement update in the EKF update step.
To compute the estimate we use the contact estimate introduced in Section 4.2.2, while to
compute the covariance we leverage the knowledge about the consistency between the velocity
contributions of the stance legs and the detection of impacts.

To produce a base velocity update for the �lter, we combine the individual base velocity
estimates produced by each leg. The most straightforward way to compute this velocity is to
compute the simple average of the stance feet:

ẋk = E[ẋk,l] = 1
dim(C)

∑
l∈C

ẋk,l (4.17)

where C is the set of feet detected as in stance, and dim(C) is its cardinality.
Since for each velocity contribution we have access to the probability of contact Pk , we can

leverage this information to produce a better estimate than the one from Equation 4.17. At each
timestep k, we can use the probability of a given foot related to leg l as a weighting criteria for
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Figure 4.5: Comparison between velocity on x-axis computed using contact estimation with
simple average (yellow), weighted average (purple) and ground truth (blue). Note
that the weighted average method avoids part of spurious velocity peaks. The data
was recorded from a trotting gait experiment (Dataset 2 of Appendix A.2).

the measurement:
ẋk =

∑
i∈C Pk(sl = 1|fkl )ẋk,l∑
i∈C Pk(sl = 1|fkl )

(4.18)

where C is the set of feet that exceed the 0.5 threshold of the logistic regressor. In Equation
4.18 the importance of a velocity contribution from a leg is proportional to its probability of
being in reliable contact. Figure 4.5 shows a comparison between the velocity estimation from
Equations 4.17 and 4.18. The weighted average reduces the number of negative peaks (yellow
line) by giving more importance to reliable legs. Note that not all the peaks are removed, since
impact forces can create unrealistic velocities for all the legs.

4.4 Covariance Estimation
Correctly estimating the covariance of these velocity contributions is particularly important.
The robot executes di�erent types of dynamic gaits and creates unrealistic velocity updates
when a foot strikes the ground.

4.4.1 Inter-Leg Variance
For simplicity, let us assume that each velocity contribution ẋk,l comes with the same diagonal
covariance matrix, Σ0:

Σ0 =


σ2

0,x 0 0
0 σ2

0,y 0
0 0 σ2

0,z

 = Λ(σ2
0,x, σ

2
0,y, σ

2
0,z) = Λ(σ0,x, σ0,y, σ0,z)2 (4.19)
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Without further assumptions, the mean of the Gaussian distribution over the measurement
µ̄ = ẋk is given by Equation 4.17. Similarly, the covariance matrix Σv is given by:

Σv = Var[ẋk] (4.20)

= E
[
Var[ẋk|ẋk,l]

]
+ Var

[
E[ẋk|ẋk,l]

]
= Σ0 + 1

dim(C)
∑
l∈C

(µl − µ̄)(µl − µ̄)T

= Σ0 + 1
dim(C)

∑
l∈C

(ẋk,l − ẋk)(ẋk,l − ẋk)T (4.21)

Equation 4.21 states that the covariance of the �nal measurement, composed by the fusion of
multiple measurements (each one coming from stance legs l ∈ C), is the mean of the covariances
of the single leg distributions Σ0, plus the covariance of the means of those distributions. This
result re�ects the fact that legs deemed to be in stable contact with the ground should provide
the same estimates for the same base velocity. Ideally, if all the contributions had the same value,
the second term of Equation 4.21 would disappear and Σv would be reduced to Σ0. In contrast,
high inter-leg covariance would increase the uncertainty of the distribution on the estimated
base velocity.

4.4.2 Impact Detection
When the foot strikes the ground, the e�ect of impulsive forces induce a contact, since the GRF
has a high norm. However, the corresponding velocity contributions initially produce unrealistic
measurements which propagate to all the legs, as shown in Figure 4.6. During these events, the
uncertainty of these measurements increases dramatically. Impact events are characterized by
discontinuities in the GRF. Given the normal component of the GRF at time k and k − 1, we
can compute its absolute di�erence as |fkz,l − f

k−1
z,l |. If we compute the average value over the

stance legs, we can de�ne the following quantity:

∆k,f = |∆f̄kz | =
1

dim(C)
∑
l∈C
|fkz,l − fk−1

z,l | (4.22)

Equation 4.22 de�nes a metric to measure the intensity of an impact force. It is calculated as the
absolute value of the average di�erence of the normal component of the GRF. Now, we want to
incorporate this information into the covariance matrix of Equation 4.21. The second term of
Equation 4.21 is a sum of squared matrices. For simplicity, we reject the cross-correlation terms
and keep only the diagonal terms of this sum:

Σv = Σ0 + 1
dim(C)

∑
l∈C

(ẋk,l − ẋk)(ẋk,l − ẋk)T

≈ Σ0 + Λ(σe,x, σe,y, σe,z)2 (4.23)
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Figure 4.6: E�ect of impulsive force on estimated velocities during a crawl gait. The Left Hind
(LH) leg strikes the ground at time 212.55 s producing unrealistic velocity estimates
for that leg — as well as for the other legs, due to propagation of the impact on the
rest of the structure and concurrent redistribution of the robot’s weight over the
support legs.

When an impact occurs, the uncertainty increases proportionally to ∆k,f . We incorporate this
fact in Equation 4.23 by doing a linear combination of the two e�ects of inter-leg covariance
and impacts:

Σv = Σ0 +
[

1
2Λ(σe,x, σe,y, σe,z) + I3

∆k,f

2α

]2

(4.24)

where α is a normalization factor, computed as the ratio between typical velocity error against
the ground truth and ∆k,f at the same instant.

In Figure 4.7, we show an example of the adaptive covariance described in Equation 4.24,
on data extracted from a trot log. We compare the raw (i.e., not yet processed by the EKF) base
velocity computed from Equation 4.18 and the ground truth, on the x-axis. The velocity is
colored proportionally to the standard deviation on the x-axis extracted from Equation 4.24.
Note the change of color in the proximity of feet contact transitions and impacts, where the
standard deviation is increased from 0.03 m/s to 0.13 m/s. During these intervals, con�dence
in the velocity updates processed by the EKF is reduced.

4.5 Experimental Results
In this section, we describe the performance assessment of the �lter presented above. A series
of experiments, which include the execution of both dynamic and quasi-static gaits for over an
hour, have been carried out to validate the robustness of the estimator.

4.5.1 System Overview
Figure 4.8 shows an overview of the EKF-base framework used on HyQ: acceleration and angular
velocity are measured directly from the IMU at 500 Hz via USB and synchronized with the other
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Figure 4.7: Raw velocity on x-axis compared to ground truth during a trot motion. The standard
deviation associated to the velocity samples is shown with a color scale, ranging
from dark blue (0.02 m/s to dark red 0.15 m/s).

signals passively [102]. Joint position, velocity and e�ort are provided by a real-time process
which synchronously samples the encoders and joint force/torque sensors at 1 kHz. These
signals are then transmitted to the �lter at 250 Hz. Thus, on average, the inertial prediction is
executed twice before a measurement is available.

The three blocks in green, which are part of the same UNIX process, are: IMU (Section
4.1.1), Stance Detection (implementation of the stance detector explained in Section 4.2) and Leg
Odometry, explained in Section 4.3.1. These constitute the sources required to compute the prior
and the posterior distributions for the �lter. The �lter output is used by the controller directly
(red block). The �lter is modular and accepts multiple occasional or low-frequency position and
velocity estimates (blue blocks at the bottom), as we will see in Chapter 5.

4.5.2 Performance Evaluation
Figure 4.10 compares, for a forward trot, the velocity estimates before �ltering (top plot), after
�ltering (middle plot) and the ground truth (bottom plot). Despite several spikes due to impacts,
the �ltered output is remarkably smooth. This is thanks to the adaptive covariance algorithm
presented in Section 4.3.1, which automatically reduces the con�dence in the kinematics �lter
updates during stance transitions.

In Figures 4.11 and 4.12, we show the average performance on the dataset presented in
Appendix A.2, with a distinction between trot and crawl logs, as well as between coordinates.
In Figure 4.11 we evaluate the DDT (i.e., the mean position drift divided by the total distance
covered by the robot, see Appendix C), while Figure 4.12 shows the Root Mean Square Error
(RMSE) of the velocity estimates. For comparison with the proposed algorithm (yellow bars),
we provide a simple method (dark blue bars) based on a �xed threshold of 50 N on the normal
component of the GRF for contact detection, and static covariance for the velocity updates.

Although the two gaits we used for our tests di�er considerably, for both we noticed a

52



4.5. Experimental Results

Stance Detection

Leg Odometry

IMU EKF
ω II , ẍ II
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Figure 4.8: Schematic of the EKF framework used on HyQ.

performance degradation on the y-axis – an issue we attribute to structural �exibility of the leg.
We provide more detailed discussion about this issue in Section 4.6.

Trot logs

For the trotting logs (left-hand sides of Figures 4.11 and 4.12), we demonstrate that properly
handling of impacts signi�cantly improves the performance in both velocity and position. We
have achieved this in the x- and the z- axes, where the error in position is more than halved
with respect to the simple method (dark blue bars in Figure 4.11. See also Figure4.9 for compared
trajectories). In the y-axis the same performance improvement was not obtained. We discuss
the issue of limb �exibility in that axis in Section 4.6.

Crawl logs

The plots on the right-hand side of Figures 4.11 and 4.12 show the two main performance
indicators for the crawling logs. As expected, given the sporadic occurrence of impacts, the
improvement provided by our proposed approach was limited. We notice how the error on the
z- component is lower than for the trot because of the continuous support typical for this gait.
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Figure 4.13: HAA Torque vs. Position curves of the four legs under loading/unloading produced
by a triangular wave with period 20 s and amplitude 70 N at the foot on the y-axis.
Note the hysteresis due to damping between loading and unloading.

4.6 Discussion
In this section, we discuss the limitation of kinematics-inertial state estimation. We focus in
particular on the mechanical structure and the proposed training approach.

4.6.1 Leg Compliance
Large robots like HyQ exhibit leg compliance and �exibility when their feet strike the ground,
even at slow speeds. Typical forces at the feet are in the range of 200–600 N while crawling
or trotting, and beyond 1200 N while bounding. These forces are partially absorbed by the leg
structure.

A dedicated experiment shows that the major cause of performance degradation along the
y-axis (shown in Figures 4.11 and 4.12) is the intrinsic �exibility of the legs on the coronal
plane. With the robot base �xed in place and the feet �rmly in contact with the ground, we
controlled the robot to produce lateral forces at the foot along the y-axis, using a triangular wave
with period of 20 s and intensity of 70 N. Figure 4.13 shows the relationship between position
and applied torque at HAA joints (see Chapter 3) which highlights the nonlinearity of the leg
structure and the hysteresis between loading and unloading phases. Given the con�guration of
the experiment, the joint motion should have been very small, while instead a range of 0.24 rad
is recorded (see the widths of the graphs in Figure 4.13). This indicates signi�cant structural
�exibility.

The development of methods to model this nonlinearity, in order to achieve the same
performance on the y-axis as was obtained on the x-axis, is a subject of ongoing research. We
are also interested in testing the approach on the second version of HyQ, called HyQ2Max [130],
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which is expected to show a better structural behavior.

4.6.2 Limitations
Besides the �exibility in the mechanical structure of the robot, limitations lie in a) the training of
the contact classi�er and 2) terrain properties. For the whole dataset, only two training phases
were su�cient, one for each gait, but new trainings are needed for every new gait or loading
condition for the legs. This could be avoided by performing unsupervised learning and active
exploration of terrain frictional properties, but at the current stage, only tests in controlled single
leg setups have been reported in literature [59]. An alternative solution could be simulation,
which would provide a set of parameters for a su�cient number of cases in order to generalize
the applicability of the approach.

Concerning the terrain properties, in order to correctly estimate contacts, GRFs need to be
projected on the local plane where the foot is experiencing the contact. Although this can be
done in �rst approximation by �tting a plane through the current or recent stance feet positions,
more sophisticated methods (using exteroception) are required when the terrain inclination
changes signi�cantly within the support region. Other terrain properties, like elasticity or
plasticity, are not explicitly accounted for, but a contact model for speci�c terrain classes can be
learned through the proposed approach.

4.7 Conclusion
In this chapter, we presented a state estimation �lter which uses inertial measurements and
kinematics to estimate position and velocity of the robot’s base. The �lter, originally designed
by Bry et al. [22], fuses two sources: an inertial process model and a novel LO module. In
contrast to previous works, which rely on foot sensors, our novel LO module uses a probabilistic
approach to contact estimation, which makes it suitable for dynamic legged robots without
contact sensors. The LO algorithm uses a logistic classi�er to learn the GRF threshold with
the highest probability to minimize the velocity error against the ground truth. Additionally, it
probabilistically merges the velocity contributions from the individual legs in order to create
the main measurement update. Furthermore, instead of using �xed covariance, the module
dynamically computes the uncertainty associated to the measurement, accommodating for
the typical foot-ground impacts of a dynamic legged machine. We have demonstrated that
the combination of these two new algorithms (contact estimation and covariance estimation)
can double the performance in estimated position and velocity (when compared to standard
methods) and that it can compensate for the lack of dedicated contact sensors at the feet. The
method have been extensively tested for more than one hour on a quadrupedal robotic platform
without contact sensors, in both quasi-static and dynamic locomotion regimes. This work has
been published on [27] as �rst author.
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In the next chapter, we will focus on the integration of exteroceptive pose estimation
methods, to eliminate the drift on the non-observable states (i.e., linear position and yaw).
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Chapter 5

Multisensor Fusion for Accurate
Pose Estimation

In the previous chapter, we introduced an EKF which fuses proprioceptive sensing (kinematic
and inertial) for state estimation of the dynamic quadruped robot HyQ. Proprioceptive sensing
provides an essential basis for legged state estimation: it comes at a high rate (> 100 Hz), which
is critical to control the robot, and it does not depend on environmental conditions (e.g., lighting,
textures, etc. ). However, without exteroceptive inputs, the linear positions and yaw orientation
are not observable [17, 16]. Hence, the drift over these states increases over time. In this chapter,
we analyze di�erent algorithms to limit and eventually eliminate the drift (by fusing together
proprioceptive and exteroceptive sources) and to achieve a smooth and accurate pose estimate.

Accurate pose estimation has been explored and tested extensively for wheeled and �ying
robotic platforms, while fewer examples of real scenario applications on dynamic legged robots
exist. The main di�erences between estimating robot poses of wheeled or �ying platforms rather
than legged platforms are: the average speed, the smoothness of the trajectory, and the accuracy
requirements.

In typical operative conditions, wheeled and �ying robots are generally faster than legged
machines, but their trajectory is expected to be smoother. The advantage of having intermittent
contact with the ground, which makes legged robots naturally superior in terms of rough
terrain traversability, comes at the price of harsher motions [12]. This is challenging for vision
based localization, because the repetitive camera shaking causes motion blur, and it breaks the
assumption of small incremental motions in between camera frame acquisitions.

In general, wheeled and �ying mobile robots have less restrictive requirements in terms of
pose estimation accuracy. If we exclude extremely aggressive maneuvers, for which dedicated
hardware and software is being developed [79], a few cm of pose uncertainty can be tolerated
with no harm for a �ying robot, but it is critical for a legged robot which has to select a safe
sequence of footholds on a dangerous terrain.

Finally, cars and drones can exploit some characteristics of their trajectories. Most wheeled
robots can assume a planar trajectory, which means estimating three DoFs instead of six. On
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the other hand, �ying robots can take advantage of a bird’s-eye view, which is useful for feature
tracking and uniform sensor sampling [134]. In contrast, none of these characteristics can be
exploited by legged machines.

For these reasons, accurate pose estimation of dynamic legged robots remains a challenging
and hot topic of research. These platforms have signi�cantly di�erent requirements and operate
in di�erent conditions from their other mobile counterparts. Therefore, the extension of state-
of-the-art algorithms (designed for wheeled or �ying robots) to legged platforms is an attractive
subject for research.

After describing the requirements of a dynamic legged robot, in this chapter we will explore
a number of sensor fusion solutions to achieve accurate base pose estimates.

The �rst solution is a novel pose estimation method, which combines inertial measurements
and point cloud registration. We introduce a new ICP variant suitable for real-time computation
on small depth sensor devices. The initial guess for the registration is computed from inertial
measurements. This algorithm, which was developed independently from the EKF framework
introduced in the last chapter, was the �rst stand-alone solution for real-time robot localization
implemented on HyQ.

The other three pose estimation methods presented throughout the chapter are incorporated
into the EKF of Chapter 4, as shown by the blue boxes in Figure 4.8. The �rst integrated solution
incorporates a bidimensional LiDAR registration algorithm into the estimation process, the Fast
and Robust Scan Matcher (FRSM) [5]. This state-of-the-art localization method was originally
designed for drones moving horizontally. With a series of experiments on our datasets, we show
that the drift is almost negligible for horizontal motions. The second sensor fusion solution
integrates a 3D localization algorithm, also designed for drones [22]. Based on GPF, this method
allows 3D localization when accurate prior maps are available. In this case, the integration of
LiDAR information shows good results on HyQ. However, when progressively moving towards
real scenarios, we need to integrate more than one exteroceptive sensor modality, in order to
overcome the complexity due to the many conditions in which a legged robot is expected to
operate. The last sensor fusion solution we present is a novel pose estimation method, which
gracefully combines the strengths of four di�erent sensor modalities: inertial, kinematics [27],
stereo VO [64], and LiDAR registration [101]. We show that this “hierarchy” of modules provides
a smooth, stable and accurate pose estimate, which can be safely used within the control loop
for precise autonomous navigation.

The remainder of the chapter is structured as follows: Section 5.1 states the requirements
for pose estimation on dynamic legged robots; Section 5.2 describes a novel ICP variant for
localization on depth sensor with small FoV; in Section 5.3 we brie�y describe the LiDAR regis-
tration method of [5]. Then, we provide a performance study of its integration in our framework
and robotic platform; similarly, in Section 5.4, we provide a description and performance study
of a GPF based localization method [22], also running on HyQ; Section 5.5 shows our most
complete approach to sensor fusion for accurate pose estimation. The method has been tested
in long duration experiments in a challenging test area – the chapter is concluded by Section 5.6
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where we discuss the performance and prospects of the presented approaches, and draw �nal
conclusions.

The material presented in Section 5.2 has been published in [26] as �rst author. The material
from Section 5.5 is currently under review (at the time of writing this dissertation).

5.1 Requirements
The ultimate goal of the HyQ project is to achieve versatile, semi-autonomous locomotion in
open spaces as well as constrained environments, such as partially collapsed buildings with
debris and other hazardous obstacles along the way (e.g., low or overhanging pipes, staircases,
stepping stones, holes). The size of its feet, approximately 4 cm in diameter, poses a very
stringent requirement in terms of localization accuracy, with a desired target from 5 cm/m
to 1 cm/m at best. This requirement is motivated by safe execution of footstep planning,
posture control, and ultimately autonomous navigation. Additional constraints are imposed
by operative conditions, such as: traversal of featureless areas, scarce illumination, limited
power consumption and onboard computation. To date, the closest example of a pose estimator
developed under these requirements has been reported in [83]. However, the system described
therein was not designed for closed loop execution nor to be used in constrained environments,
where small scale accuracy (e.g., for foothold planning) is more critical than large scale accuracy
(e.g., for global path planning).

5.2 Selective Iterative Closest Point
The ICP is one of the best known methods for point cloud registration [96, 18]. This method
has been widely used for o�ine scene reconstruction as well as online robot localization [108].
However, its performance decreases dramatically if the number of features is small and not
uniformly distributed [120]. A typical example is given by a robot moving on a �at surface:
since the motion is almost parallel to the �oor, the algorithm tends to stop immediately at a local
minimum, because it cannot detect the relative motion between two overlapping and sliding
planes [29].

The recent introduction of cheap and accurate depth sensors on the mass market has
moved forward the research of registration-based localization, including ICP-based. However,
when requirements impose limited computing resources, processing a full point cloud (≈ 300 k
points) at the nominal framerate (30 Hz) remains di�cult. Dropping frames, so as to reduce
the framerate, is not a favorable option because larger motions has to be estimated in between
frames, which can lead to poor performance. To solve these problems, a desired feature would
be the ability to select the smallest subset of points which carries most of the information
about the robot’s ego-motion between two frames. These points should also incorporate robust
geometrical features, in order to avoid ambiguities.
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In the computer vision domain, background subtraction techniques proved to be e�ective
for detecting moving objects in the image space [19]. Similarly, good candidates for accurate 3D
registration are the points whose pixel intensity change considerably between two consecutive
frames in the depth image space. Besides outliers due to noise, these are indeed the points that
are likely to carry most of the information about both geometry and motion. In this section, we
describe how to extract these points and use them to improve both accuracy and speed of the
ICP registration algorithm. The registration is further improved by integrating inertial data for
real-time robot localization and mapping.

Note that alternative methods based on single frame image processing would not achieve
the same result. For instance, edge detection on depth frames would retain only geometrical
information, but not motion. Randomized selection of points would speed up the registration,
but with the same or worse accuracy as using the full cloud.

5.2.1 Method Description
We assume, for each timestep k, to have access to the current point cloud Ck ∈ RN×3 and to
have memory of the previous cloud Ck−1 ∈ RN×3. Each cloud consists of N tridimensional
points pk ∈ R3 whose coordinates indicate the intersection between a physical surface and
the IR light ray projected by the sensor. The clouds are organized, i.e., they come arranged into
n×m matrices (with nm = N ) in accordance with the camera FoV. As a result, an equivalent
representation of point clouds is available as a depth image Dk ∈ Rn×m. The pixel intensities
of a depth image, expressed in meters, are proportional to the relative distance between the
camera’s optical center and the surface being hit by the IR light. Figure 5.1b shows an example
of a depth image, converted to grayscale for display purposes. We now describe the processing
steps to select the feature point for ICP registration. These are:

Background subtraction: we compute the absolute di�erence of two consecutive frames
D∆,k = |Dk −Dk−1|. Brighter pixels of D∆,k correspond to detectable object motions
in the scene. These are moving 3D features (e.g., the bricks’ edges in Figure 5.1b), while
darker pixels correspond to objects far from the optical center, or portions of the image
with apparent absence of motion (e.g., the �oor);

Tresholding: the di�erence image D∆,k is processed by a binary threshold operator. The
threshold is manually chosen to �lter out most of the background noise (Figure 5.1c).
Surprisingly, when using raw depth images (i.e., with �oating point values) rather than
their grayscale conversion, the background noise was almost absent;

Dilation: for small motions, the thresholded points are sparse and unconnected. We apply a
morphological dilation operator to expand the neighborhood of candidate points (Figure
5.1d). The dilation size d is crucial to the performance: very large values are likely to
produce big clouds with many featureless areas, while small values can cause instability
due to variability between the target and source clouds;
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(a) RGB frame (b) Depth frame

(c) background subtraction (d) dilation

(e) �nal result

Figure 5.1: Image preprocessing for point selection.

Temporal fusion: to increase the overlapping between the source and target clouds, we per-
form a bitwise OR of the current dilated frame with a history of previous h frames. Again,
the history size h has to be chosen properly to balance speed and accuracy: longer history
would increase the number of selected points and decrease the speed;

Mask: the binary image obtained from the previous step is �nally used to mask Dk and Dk−1

and obtain the source and target clouds. An example of the �nal result is shown in Figure
5.1e. After the processing pipeline, only 10% of the original point clouds have been
retained. The brick edges are correctly segmented, while the majority of ground points,
which are ambiguous to the matching algorithm, are removed.

To demonstrate the e�ectiveness of this approach, we run the ICP open-source implemen-
tation from [121] on a datalog recorded on HyQ trotting between bricks 1 m forward and 1 m
backward. Note that the proposed algorithm does not depend on a speci�c ICP implementation,
because it executes a smart selection of the input for the registration, rather than operating
at the registration level. Therefore the use of other implementations, such as libpointmatcher

[109], would have been equally valid.
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Figure 5.2: Comparison between the estimated robot position on x-axis computed with ICP
using the full point cloud (green) and with ICP using background subtraction
(blue). The ground truth is provided by a motion capture system (red). Since the
majority of the points lies on the same �at surface, with the full cloud the motion is
underestimated.

Figure 5.2 shows the estimated x-axis component of the robot’s trajectory using the full
point cloud (green) and the selected point cloud (blue). The two are compared with the ground
truth (red), measured from a Vicon motion capture system. The selection algorithm improves
the tracking by more than 100% in the central part of the run. The full cloud, having many more
points perceived as static rather than moving 3D features, makes the ICP underestimate the
motion. As an additional bene�t, the background subtraction reduces the number of points by
a factor of 10, allowing it to operate within the real-time constraint. In contrast, with the full
cloud, the execution was twice slower than in real-time.

5.2.2 Inertial Measurement Integration
To converge properly, ICP requires a good initial guess for the point cloud registration. In a
similar manner to [98], we compute the guess from the IMU. In the following, we assume that
point clouds and IMU quantities have been previously transformed into a common reference
frame, using the calibration techniques described in Section 3.6.

We use the absolute orientation quaternion q ∈ R4 (estimated onboard the device) and the
linear accelerations ẍ (computed from Equation 4.3). The ICP guess is a relative transformation
between two point clouds Ck , and Ck−1. Hence, we compute the corresponding angular position
di�erence as the quaternion multiplication q∆t = qk ·q−1

k−1, while the linear position di�erence
is computed from the positions obtained by double integration of the raw accelerations using
the trapezoidal rule [111]:

ẋj = ẋj−1 + 1
2(ẍj + ẍj−1) ∆tj (5.1)

xj = xj−1 + ẋj−1∆tj + 1
2(∆tj)2

(2ẍj−1
3 + ẍj

3

)
(5.2)
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Note that the duration of ∆tj = tj − tj−1 ≈ 1/250 s in Equations 5.1 and 5.2 is di�erent from
the time elapsed between the generation of the two point clouds ∆t = tk − tk−1, which is
≈ 1/30 s. When a new cloud is available, the corresponding translation x∆t = xk − xk−1 is
computed from Equation 5.2 at 30 Hz.

Once the guess from the IMU is obtained, the registration algorithm works as follows (see
Algorithm 2): �rst, we compute the transformation between the two clouds Ck and Ck−1 by
means of ICP with guess:

TIMU
k =

[
R(q∆t) x∆t

0 1

]
(5.3)

where R(·) is the function which converts a quaternion into a rotation matrix.
If the result of the registration TICP

k is valid, roll and pitch of TICP
k are replaced with the

roll and pitch from TIMU
k , which are more reliable because they have been computed with the

gravitational �eld (lines 11–12). An ICP transformation is considered valid if:

• the ICP �tness score is below a threshold (of < 1× 10−4);

• the roll and pitch estimated by the ICP fall in an interval around the IMU roll and pitch;

• the translation and rotation are smaller than the maximum threshold estimated empiri-
cally.

In case the transformation is not valid, the linear position part of TICP
k is replaced by the

latest valid linear position update (lines 8–9), which corresponds to assuming a constant velocity.
The algorithm then continues by accumulating the computed incremental transformation (line
13) and replacing the target point cloud with the source point cloud (line 14).

Algorithm 2 Point Cloud Registration
1: k ← 1
2: Tglobal ← I4
3: getData(C0 q0, ẍ0)
4: Ctarget ← C0
5: while getData(Ck qk, ẍk) do
6: TIMU

i = computeGuess(qk,qk−1, ẍk, ẍk−1)
7: TICP

k ← ICP(Csource, Ctarget,TIMU
k )

8: if isInvalid(TICP
k ) then

9: TICP
k ← TICP

k−1
10: end if
11: roll(TICP

k )← roll(TIMU
k )

12: pitch(TICP
k )← pitch(TIMU

k )
13: Tglobal

k ← Tglobal
k−1 TICP

k

14: Ctarget ← Csource
15: k ← k + 1
16: end while
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Figure 5.3: Example of online mapping with the Selective ICP algorithm.

5.2.3 Experimental Results
To show the e�ectiveness of the registration algorithm and its combination with inertial mea-
surements, we performed an indoor trotting sequence with obstacles along the way on our
platform HyQ. The ground truth has been measured with a motion capture system. The robot
was tele-operated in order to cross di�erent obstacles arranged on a �at surface. Depth images
and point clouds were generated at 30 Hz and IMU data at 250 Hz (see Section 3.5.1).

Figure 5.4 shows the estimated position and orientation while the robot was trotting forward
and backward in the 2.5× 1.2 m2 test area. We compare the estimated position with the Selective
ICP only (green line) and with the Selective ICP fused with IMU measurements (blue line). The
ground truth is provided by a Vicon motion capture system (red line).

In general, we can see that both position and rotation estimates of the inertial-registration
solution are closer to the ground truth if compared with the ICP-only version, even though the
improvement is sometimes marginal (≈ 1° in yaw). As expected, a major improvement is given
by the pitch and roll, which are directly taken from the IMU. In both methods, a non-negligible
drift in the z-axis is visible. This is due to the lack of features in the zy-plane of the robot, since
the camera was facing the ground and therefore the estimated motion was more accurate on the
xy-plane.

With our method, the maximum drift after 60 s of trotting is about 10 cm on the y-axis,
corresponding to 5% of the total path. Note that the robot was aggressively changing direction
on the yaw axis, making the estimate of y more di�cult than other axes. Nevertheless, the drift
was su�ciently low to produce accurate point cloud maps, as depicted in Figure 5.3.

5.2.4 Discussion
The results presented in 5.2.3 highlight the bene�ts of having a selective algorithm when the
features in the scene are outnumbered by geometrically featureless areas. When the robot is
moving quickly inside feature-rich areas, the method approximates the standard ICP, since the
number of selected points increases and potentially include all of the input data.

The proposed method is general, in the sense that it does not depend on a speci�c ICP
implementation because it operates on the input for the registration rather than the registration
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Figure 5.4: Experiment with the real robot trotting indoor. The six graphs represent the 6 DoF
pose of the robot in the global frame of reference estimated by the motion capture
system (red), the ICP (green) and our framework (blue).
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itself. Further optimizations which involve the integration of the IMU (e.g., constraining the ICP
search to comply with IMU measurements) are applied indirectly by using it as initial guess for
the ICP.

The method does not include mechanisms to detect apparent motion inducted by dynamic
environment, which could lead to wrong motion assumptions if the robot is static and a signi�cant
portion of the environment is moving in front of it. However, this kind of situation could be
handled by fusion with other sources, such as LO.

More sophisticated techniques to handle potential failures due to dynamic scenes, a better
integration with the IMU signals, and more extensive tests on di�erent datasets are subject of
future work.

5.3 Fast and Robust Scan Matcher
The FRSM is an Inertial-LiDAR based, open-source localization library1, �rst introduced in [5]
for autonomous quadrotor �ight in GPS-denied environments.

Even though quadrotors have 6 DoFs, the library is assuming a multi-level planar trajectory,
i.e., triples (x, y, yaw) at di�erent values of z. This allows the decoupling of the pose estimation
in two separate problems: planar pose estimation and height estimation. Here we analyze the
performance of the former, under the assumption that HyQ will not pitch or roll signi�cantly.
This assumption can be considered acceptable only in indoor environments without major
unevenness (e.g., obstacles, ramps, staircases). In the following sections, we progressively move
towards solutions which can handle more general situations.

The FRSM algorithm of [5] solves the registration problem in the 2D domain with a map-
based probabilistic approach rather than frame-to-frame iterative optimization (as ICP does).
This guarantees robustness against errors due to slightly non-horizontal motion, as proved by
the authors in [5]. In map-based probabilistic scan matching, a grid map M is created from past
scans, and incoming scans are matched against that map. The map incorporates, for each cell,
the likelihood of a laser return being measured in that location. Assuming that each LiDAR
measurement is independent from the other ones composing the scans, the total likelihood for
a scan to be measured in a location of the map is the product of the individual likelihoods of
each beam composing that scan. The algorithm then performs a search over the rigid body
transformations which maximizes the total likelihood for the scan.

In this section, we describe the fusion of the FRSM library with the EKF described in Chapter
4. The output of the library is used as position and yaw updates of the �lter, which fuses
them together with inertial information and LO. To this end, we mounted a Hokuyo URG-04LX
horizontally on the robot’s trunk, as described in Section 3.5.2. This sensor is substantially
inferior in terms of range (4 m vs. 30 m) and update frequency (10 Hz vs. 40 Hz) than the one
tested on the original library (Hokuyo UTM-30LX).

1https://github.com/abachrach/frsm
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Figure 5.5: DDT on the trot and crawl logs taken from Dataset 2. The light blue bars on the left
indicate the estimate fusing IMU and LO, while the yellow bars on the right of each
group indicate the estimate fusing IMU, LO and FRSM. The whiskers indicate ±
standard deviation computed over the dataset used.

5.3.1 Experimental Results
In this section, we provide both quantitative and qualitative results of the fusion between IMU,
LO and FRSM modules. In particular, we show the pose estimation performance of the �lter on
Dataset 2 (see Appendix A.2), and we provide an example of application with state estimation
used in the control loop.

Pose Estimation Performance

Figure 5.5a and 5.5b compare the performance of the �lter in two combinations: using only IMU
and LO, and using IMU, LO and FRSM. In almost all cases, the FRSM library is erasing the drift
in position and yaw. For the z-axis in the crawl logs, the algorithm is performing slightly worse
than the kinematics-inertial combination. This is caused by the di�erent covariance setup for
the LO, which a�ects a state not updated by the scan matcher module. However, the value is
within the range of performance requirements (see Section 5.1).

An example of trajectory is shown for a trot log from Dataset 2 in Figure 5.6. We can see
that the �lter estimate is very close to the ground truth in every condition, except when the
sensor is too far or too close to the starting point (bottom peaks on the top plot of Figure 5.6).
Note that, in order to achieve reliable performance, the �lter has to use all the aforementioned
proprioceptive and exteroceptive sources. The IMU and FRSM alone would have provided
rougher trajectories, due to the low frequency scan matcher updates (10 Hz). Furthermore, the
contribution of kinematics is fundamental for velocity estimation (which is required for in-loop
control).

Figure 5.7 shows the orientation performance. Roll and pitch (top and middle plots) are
a�ected by a small bias of 2°. The yaw, instead, has a negligible error, due to the contribution of
the FRSM.
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Figure 5.7: Orientation of IMU + LO + FRSM modules (fused with Pronto, the EKF introduced
in [37] and used in [27]) against Vicon (from Dataset 2).
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Figure 5.8: Push recovery with state estimation in the loop. The robot was commanded to trot
in place and keep its position. After several pushes from the operator, the robot
recovered its position along the green line of the treadmill. The ability to recover its
position in a constrained space using the state estimation in the loop demonstrates
the reliability and robustness of the �lter.

In-the-Loop Control Performance

In this section, we describe an example application of the state estimation in the loop for posture
and trunk control. Figure 5.8 shows some screenshots from the experiment. The robot is trotting
in place and commanded to keep a zero position (green edge beside the treadmill). After a series
of disturbances from the operator, the robot returns to the zero position with no drift. The
experiment demonstrates qualitatively the robustness and reliability of the estimator. Note that,
by the design of the push recovery algorithm [8], both position and velocity estimates are used
at the same time. This demonstrates how the �lter is gracefully fusing di�erent sensor inputs
into a smooth and accurate signal.
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5.4 Gaussian Particle Filter
In the previous section, we have shown the performance of the FRSM coupled with inertial
and LO by means of an EKF. With the contribution of the scan matcher, the �lter produces
very accurate pose estimates. However, the scan matcher algorithm is e�ective only when
the robot is moving more or less horizontally. In this section, we relax this constraint with
a 6 DoFs localization module based on the GPF algorithm and OctoMap. This module has
been originally developed for a �xed-wing Micro Aerial Vehicle (MAV) [22], and it was later
extended to humanoids in [37]. In this section, we discuss the performance on HyQ, arranged in
Con�guration A (see Section 3.5.1). In contrast with the original application, we use a Velodyne
HDL-32E, which has a spinning head producing 360° scans composed of 32 rings at 10 Hz instead
of a single linear array at 40 Hz.

5.4.1 Scan Filtering
The GPF algorithm of [22] requires a prior 3D OctoMap [61] model of the environment. This is
usually built from a sequence of scans fused together when the robot is static or, it is collected
manually. In our case, since the point clouds produced by the Velodyne are sparse, we need to
run inertial-kinematics state estimation or a motion capture system while the robot is executing
push-up motions to fuse multiple clouds from di�erent heights to �ll the gaps in the map. During
this scan collection process, input �ltering is essential. If outlier points are not �ltered from
the scan while building the model, they become persistent artifacts in the OctoMap, and the
localization algorithm performs poorly.

For this reason, we perform intrascan-based �ltering before using the scans to build the
OctoMap model. We use a di�erential �lter, which discards a point if: a) it is invalid (zero value),
b) has an invalid left neighbor, c) the di�erence between its range value and its left neighbor
range value is greater than a threshold. An example of the scan before and after �ltering is
depicted in Figure 5.9. This �lter e�ectively removes the points in mid-air, which would produce
artifacts in the empty space. Given the constrained space and the accuracy requirements, the
voxel size of the OctoMap was set to 5 cm.

5.4.2 Experimental Results
In this section, we compare the state estimation performance of: 1) IMU and LO; 2) IMU, LO and
FRSM; 3) IMU, LO and GPF. All the tests have been conducted on Dataset 1 (see Appendix A.1).

The summary of the position estimate performance is shown in Figure 5.10. Note that the
results for the �rst two sensor combinations are di�erent from previous sections because the
dataset is di�erent (on Dataset 2 the Velodyne scans are unavailable). In general, we see that the
FRSM is more e�ective at reducing the drift. An exception is again given by the z-axis: since
the scan matcher is not providing updates on that state, the high covariance set on the LO in
order to avoid con�icts with FRSM is causing a decrease in performance. Another example of
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(a) Un�ltered Velodyne scan (b) Di�erential �ltered Velodyne scan

Figure 5.9: Comparison between un�ltered and �ltered point clouds. Note the outlier points in
a straight line that are removed after �ltering.
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Figure 5.12: Orientation of IMU + LO + GPF modules (fused with Pronto, the EKF introduced
in [37] and used in [27]) against Vicon (from Dataset 1).

the importance of covariance tuning, to properly balance the fusion of the various signals, is
given by Figure 5.11. The known issue on the y-axis from LO (see Section 4.6.1) is propagated to
the position estimate and is causing a signi�cant drift (∼ 10 cm).

5.5 Multisensory State Estimation: Inertial,
Kinematics, LiDAR and Visual Odometry

In the previous sections, we have presented three methods to perform accurate pose estimation
on the HyQ robot: Selective ICP, Fast and Robust Scan Matcher, and Gaussian Particle Filter. The
accuracy obtained by these methods matches the requirements stated in Section 5.1. However,
real missions involving HyQ navigating in a disaster scenario impose operative conditions which
go beyond the capabilities of these methods. The Selective ICP helps localization on grounds
characterized by a lack of 3D features and of depth sensors with very limited FoV. In total absence
of 3D features, the restricted FoV would not provide enough clues for ICP to converge. The
FRSM is restricted to quasi-planar motions, which rarely occur when navigating outdoors. The
GPF appears to be the most general method, since it can operate in a 3D environment. However,
the collection of a prior map in situ makes its applicability to a real scenario impractical. For
example, even if it was working reliably on Atlas [37], it was not used for the Finals of the
DARPA Robotics Challenge [101].

Indeed, there is no general localization method and/or sensor modality which can single-
handedly generalize well enough to �t the wide spectrum of situations in which a semi-
autonomous robot is expected to operate. In this context, sensor fusion of multiple proprioceptive
and exteroceptive sources appears to be the most reasonable way to achieve the estimation

74



5.5. Multisensory State Estimation

accuracy, reliability and versatility demanded by real world missions.
In this section, we describe a novel heterogeneous sensor fusion method. We build upon the

EKF framework and LO described in Chapter 4 by adding two pose estimation methods: a VO
module, presented in [64], and an ICP-based LiDAR localization method, presented in [101].

The work presented in this section is the result of a collaboration with the Robot Perception
Group, led by Dr. Maurice Fallon 1.

5.5.1 Visual Odometry
The VO method presented in [64] was originally developed for drones equipped with an IMU
and the Kinect depth sensor. In this section, we evaluate its performance with the depth data
provided by the stereo camera of the Multisense SL sensor. In contrast to depth sensors, the
quality of the point clouds generated with stereo cameras is highly dependent on how much
texture is present in the scene. Hence, dark or textureless areas can lead to poor results. On the
other hand, depth sensors can work in total darkness, but are prone to failure when sunlight
interferes with the light beams projected by the device. The algorithm is used to estimate
frame-to-frame rigid transformations, at 10 Hz. It consists of several steps, including:

Image preprocessing: conversion to grayscale, Gaussian smoothing, Gaussian pyramid to
identify strong features at multiple scale levels;

Feature extraction: a FAST corner detector [116] is applied to each pyramid level, and only
the best scoring feature descriptors are retained;

Rotation estimation: an initial guess for the rotation is estimated through analysis of current
and previous frames;

Feature matching: each feature is normalized and assigned to a descriptor. The matching
between the features in the stereo pair is done through minimization of the SAD metric
and further optimization for re�nement;

Inlier detection: the matches between features and their relative distances are arranged as
vertices and edges of a graph, respectively. A greedy algorithm is used to approximate
the maximal clique of the graph, to reject weak correspondences;

Motion estimation: the rigid transformation estimate is obtained by minimization of the
Euclidean distances between inliers, and then by minimizing the reprojection error with
a non-linear least-squares solver. Finally, a keyframe technique is used to reduce short
scale drift.

For further information we invite the reader to consult the original work in [64].
The rigid transformations produced by the algorithm are integrated into the EKF as position

(linear and angular) corrections.
1http://robotperception.inf.ed.ac.uk/
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5.5.2 Auto-tuned ICP
The Auto-tuned ICP method was recently introduced in [101] to overcome the limitations of
the GPF and baseline ICP-based methods, which are prone to failure in the presence of variable
overlapping between frames to be registered, and to clutter. The method computes online a
metric Ω that indicates the amount of overlapping between the source and target point clouds,
and automatically adapts the algorithm in accordance with that measurement. Before performing
the registration, the cloud is preprocessed to include only planar features – an opposite approach
to what was presented in Section 5.2. This is well justi�ed by the large FoV provided by the
LiDAR mounted on the Multisense SL sensor of Carnegie Robotics. Nominally, it can cover 75%
of a sphere after a complete rotation. By comparison, a depth sensor with a FoV of 58°× 45°
covers only 4%.

The algorithm builds on the other modules by sending periodical position corrections at
low frequency (0.5 Hz). Between two corrections, the algorithm accumulates scans using the
poses computed by the EKF from the other sensor modalities, and computes the registration.

5.5.3 Fusion Algorithm
Both the VO module and the AICP algorithms provide asynchronous pose updates to the EKF
�lter. This requires a way to avoid con�icts between the updates and to handle delays, which
can be in the order of seconds. The �lter keeps a history of measurements. Whenever a new
update is available, the history is rewritten from the timestamp associated with the update until
the most recent event. This allows it to handle unordered, concurrent updates from the ICP
and VO processes. An example is provided in Figure 5.13: at event #1 a new LiDAR correction
becomes available. Its timestamp is in between the history of poses computed by the inertial
and kinematics processes. At event #2 the correction is incorporated into the �lter state, and the
portion of history in green is rewritten. At event #3 the �lter has propagated to the corrected
state, and a new VO update in the past becomes available. At event #4 the update is incorporated,
and the portion of history in green is again rewritten.
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5.5.4 Experimental Results
In this section, we show the performance of the complete fusion algorithm running on HyQ in
challenging conditions (see Appendix A.3). We validate the pose estimation performance both
outside and inside the control loop.

Pose Estimation Performance

With a real mission in mind, we evaluated the �lter performance on a challenging dataset
recorded (with the robot in Con�guration A) in a 17 m long semi-structured environment (see
Appendix A.3). The recorded motions executed on HyQ included trotting at di�erent speeds
and directions, sharp turns, and crawling on uneven and rough terrain. The level of di�culty
was raised further by the poor lighting conditions and occlusion caused by the protection bar of
the Multisense SL sensor (see Figure A.2).

Despite all these conditions, the algorithm was able to successfully reconstruct the scene.
The di�erent sensor modalities are seamlessly fused to achieve a smooth position signal. In
particular, Figure 5.14 shows that:

• the combination of IMU and kinematics provides a smooth but drifting estimate (cyan
line);

• the combination of IMU and VO also provides a smooth but drifting estimate (magenta
line);

• the combination of IMU, LO and AICP provides a non-drifting yet discontinuous estimate,
due to low frequency updates (yellow line);

• the combination of all of the above signals provides a smooth and non-drifting estimate,
due to the contribution of a hierarchy of frequency updates (green line): inertial and
kinematics at 1 kHz, VO at 10 Hz and AICP at 0.5 Hz.

Note that, in order to work, the AICP requires the availability of a high frequency pose estimate
between the completion of two pose corrections. The pose is needed to properly accumulate
the various scans acquired at di�erent angular positions of the sensor head. If the �lter pose is
drifting too much during this time interval, the accumulated point clouds will be distorted, and
the registration will fail.

The hierarchy is also fundamental for fault tolerance: the core of the estimator (i.e., the
proprioceptive-based estimation described in Chapter 4) runs at high frequency and is totally
decoupled from the registration-base pose corrections provided by the AICP module. If the
correction is unavailable for some reason, e.g., because of a sensor failure, the estimate will
degrade gracefully because the �lter continues to use the proprioceptive inputs to compute the
state. In other words, the AICP, which runs at low frequency, depends on LO – but the opposite
does not hold.
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Figure 5.14: Estimated trajectories with di�erent sensor modalities: inertial + kinematics (cyan);
inertial + visual odometry (magenta); inertial + kinematics + registration (yellow);
inertial + kinematics + visual odomeetry + registration (green). In red, the test
area as reconstructed using all the modalities.

(a) (b) (c)

Figure 5.15: Pose Estimation in-the-loop: indoor square wave experiment. The robot is com-
manded to move from one white stripe on the left to one white stripe on the right
multiple times, at increasing speeds and distances. The stripes are placed 10 cm
apart. After 15 min of motions, the robot is still correctly stopping at the chosen
white line.

Control In-the-Loop Performance

The performance of the �lter update is further evaluated by direct use in the control loop. We
designed a square wave experiment where the robot is commanded to oscillate between two
lines several times at increasing speeds (see Figure 5.15). At every speed increment, a wider
interval is chosen. After more than 50 periods and a speed increment from 0.2 m/s to 0.6 m/s,
the feet still land at the desired location, indicated by the white stripes on the �oor in Figure
5.15.

As a further demonstration of its robustness, the algorithm was executed in a similar
experiment but in a di�erent environment. The robot’s motion was repeated over a longer
distance (5 m) with no issues (see Figure 5.16).
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(a) (b) (c)

Figure 5.16: Pose Estimation in-the-loop: outdoor square wave experiment.The robot is com-
manded to move from the starting position to the orange stripe, at 5 m. After
more than 10 of forward-backward motions (i.e., 50 m traveled), the robot is still
correctly stopping at the orange line.

(a) (b)

Figure 5.17: Example of online LiDAR mapping with multi-sensor state estimation. a) visual
feedback from the Multisense SL stereo camera. Note the di�cult conditions of
the scene: underexposed areas due to night operations, overexposed areas due
to light �ashing, occlusions due to the protection frame, and image blur due to
shocks. b) map reconstructed in realtime from LiDAR scans. Note that, since the
LiDAR source is a rotating planar device, the map is build scan-by-scan using the
state estimator. Note also how the bricks are accurately reconstructed

Online Mapping

One of the fundamental applications of accurate state estimation (and in particular pose es-
timation) is mapping. Figure 5.17 provides an example of online mapping with LiDAR scans.
Even though the LiDAR has better performance than cameras, it is much sparser, because it
provides only a planar set of points. Therefore, the state estimator has to provide a smooth high
frequency pose estimate, in order to collect each scan and fuse it with the previous. Despite
the adverse lighting conditions (Figure 5.17a), the bricks and the ramp in front of the robot
are correctly reconstructed (Figure 5.17b). This result highlights the bene�t of having multiple
exteroceptive sources for the pose estimation, and demonstrates the quality of the presented
algorithm.
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Method Limitations

FRSM [5] 2D planar motion required
Selective ICP [26] reduced FoV
GPF [22] accurate prior map required
AICP [101] multiple planar regions required
FOVIS [64] textured scenes required

Table 5.1: Limitations of the exteroceptive pose estimation methods.

5.6 Conclusion
Accurate pose estimation is a fundamental component of a legged navigation system, since it
enables the safe execution of both foot and body trajectories. Furthermore, it allows for the
creation of accurate geometrical representations of the environment, as we will see in the next
chapter. Good representations of the environment constitute an essential input for foothold and
body trajectory planners, which are used to overcome di�cult areas.

In this chapter, we have shown several pose estimation algorithms which individually
display good localization performance in controlled environments. In Section 5.2 we have
presented a new e�cient selection algorithm for ICP, which reduces the computational burden
and increases the accuracy when the scene lacks of feature for the registration. The work has
been published in [26] as �rst author. In Sections 5.3 and 5.4 we have studied the performance of
two state-of-the-art LiDAR localization algorithms on HyQ: the FRSM [5] and the GPF [22]. The
two methods are fused with IMU and LO measurements using the �lter presented in Chapter 4.
Originally developed for �ying robots, only one the two methods have been tested on a legged
machine [37], yet it has never been executed inside the control loop during dynamic motions.

Despite the good performance shown by these methods, in a �eld mission no one method
alone can generalize all possible scenarios.

Table 5.1 lists the di�erent approaches shown, together with their main “weakness”. Through-
out the chapter, we have summarized the progress towards a versatile, robust and general way to
estimate a pose on HyQ robots. We also have proven that a hierarchical sensor fusion approach
(i.e., from high frequency drifting updates to drift-free low frequency updates) with multiple
pose estimators can generalize well against the adverse lighting and motion conditions a real
scenario is expected to have. Section 5.5 showed the most recent results in this direction. We
envision this approach to be the most versatile, because it can handle challenging situations by
leveraging both 2D and 3D features, as well as kinematics and inertial navigation. To date, the
most similar results to what presented in Section 5.5 have been presented in [83], where good
pose estimation performance is shown, yet in-the-loop demonstration is missing.
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5.6. Conclusion

Future ways to improve this work include the incorporation of more sophisticated methods
of performing concurrent integration of multiple pose updates, and the integration of more
sophisticated algorithms for VO.
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Chapter 6

Robocentric Mapping and
Locomotion Applications

In the previous chapter, we presented several algorithms for accurate pose estimation of dynamic
legged robots. Pose estimation is fundamental for e�ective tracking of base and feet trajectories,
but it is also essential to build, online and onboard, a consistent geometrical representation of the
environment. We refer to this process, simply, with the term mapping. In this chapter, we discuss
what mapping approaches are suitable for the locomotion of dynamic legged robots. In particular,
we are interested in mapping algorithms for reactive or short-term planned locomotion, rather
than global path planning navigation.

Short term planning (i.e., planning of base and feet trajectories with a horizon of 4–5 steps)
is motivated by biology [150]: studies on human subjects demonstrated that, for safe locomotion
on di�cult terrains, two steps planned ahead are su�cient to achieve stable locomotion in almost
every condition, despite disturbances and di�culty of the terrain. To generate appropriate body
trajectories, the robot needs a small scale (2–3 robot lengths) but detailed (≈ 1–2 cm accuracy)
map of its surroundings.

In contrast, global path planning for long-term navigation usually has di�erent requirements.
Over long distances (tens to thousand of meters), we need techniques to build a compact
representation of large scale areas. Moreover, for such distances, even a small drift in the pose
estimate eventually becomes large and needs to be corrected. This problem is generally solved
with topological maps, graph based localization, and loop-closure detection. These and other
techniques are part of a large �eld of study: the SLAM theory [51].

The focus of this chapter is small scale mapping and its use of endowing HyQ with sophis-
ticated locomotion skills, such as walking on stepping stones or promptly avoiding obstacles
on-the-�y while trotting.

The remainder of this chapter is divided as follows: Section 6.1 is dedicated to the de�nition
of mapping perspectives and the implementation of di�erent representations on HyQ; in Section
6.2 we describe a novel method based on terrain pattern classi�cation to reactively negotiate
obstacles while trotting; in Section 6.3 we describe an image processing approach to costmap
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computation for foothold planning; in Section 6.4 we discuss strengths and limitations of the
proposed approaches; the chapter is concluded by Section 6.5 where we summarize and indicate
future directions.

I published the work presented in this chapter in [26] as �rst author, and [9, 11] as second
author.

6.1 Mapping Representations
In this section, we analyze the di�erence between global mapping and robocentric mapping, and
we describe two mapping algorithms (one 3D and one 2D) implemented on HyQ.

6.1.1 Global Mapping vs. Robocentric Mapping
Pose estimation algorithms based on point cloud registration (e.g., ICP) compute, at each time
step, the rigid transformation which aligns the most recent point cloud to a past cloud, which
is used as a reference. The transformations are then incrementally accumulated in order to
estimate the rigid transformation which aligns the latest point cloud available with the �rst
point cloud acquired. By applying the appropriate static transformations (i.e., between camera
and robot base), this is the equivalent of estimating the rigid transformation between the world
frame and the base frame, i.e., the pose of the robot. If during this process we accumulate the
aligned point clouds, implicitly, we have also implemented a mapping algorithm.

Let us de�ne a point cloud Ck ∈ RN×3, captured at time k by a camera or a LiDAR sensor.
The points of this cloud all refer to the optical frame of the device. Since the sensor is moving
together with the robot, but the captured scene is static, the points of a new point cloud are
de�ned in a new frame of reference. When not ambiguous, we will identify all these new frames
of reference with their corresponding time step, k. The pairwise registration algorithm provides
an estimate of the rigid transformation Tk−1 k , which aligns the current cloud Ck to the previous
cloud Ck−1. With these elements, we can recursively compute the current mapMk, de�ned in
the frame of the �rst cloud C0, as:

T0 k = T0 k−1 Tk−1 k =
(
k−1∏
i=0

Ti i+1

)
(6.1)

Mk =Mk−1 + T0 kCk (6.2)

with the initial conditionM0 = C0.
Equation 6.1 incrementally builds a map of the environmentMk. All the points of the

map are the sum of the clouds collected over time and aligned with the �rst cloud C0. Since
all the points from the map are expressed in the same frame of reference (that of C0) we can
arbitrary choose it as our world frame. We call this mapping procedure global mapping, since
all the points are expressed in an inertial, �xed frame.
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The close form of Equation 6.1 is given by:

Mk = C0 +
k−1∑
i=0

[(
i∏

j=0
Tj j+1

)
︸ ︷︷ ︸

= T0 i+1

Ci+1

]
(6.3)

Equation 6.3 shows that as i increases (i.e., the closer we get to the most recent cloud, Ck)
more terms are accumulated in the transform T0 i+1 = T0 1 . . . Ti i+1. Since each term Ti i+1 is
estimated by the registration algorithm, it is a�ected by a certain amount of error. Therefore,
the largest error is accumulated around the most recent cloud Ck.

Global mapping is not really needed for foothold planning. Events far away in space should
not a�ect the decisions for steps taken in the near future. Hence, the localization accuracy
should be inversely proportional to the age of the data. We de�ne the following algorithm:

Mk = Ck + Tk k−1Mk−1 (6.4)

where the initial condition is againM0 = C0. In this case, at every step k, the current mapMk

is given by the sum between the most recent cloud Ck and the previous mapMk−1, aligned
with Ck.

We de�ne this approach as robocentric mapping, because at each time step k the current
mapMk is aligned with the current sensor frame, which is rigidly attached to the robot.

The close form of Equation 6.4 is:

Mk = Ck +
k−1∑
i=0

[(
k−i∏
j=k

Tj j−1

)
︸ ︷︷ ︸

T
k k−i−1

Ck−i−1

]
(6.5)

Equation 6.5 shows that the expansion of the product Tk k−i−1 = Tk k−1 . . . Tk−i k−i−1 has
less terms when the newest clouds are accumulated.

Geometrically, the maps generated by Equation 6.3 and 6.5 only di�er by a rigid transfor-
mation. In the �rst case, the map is the sum of clouds aligned to the �rst one, C0, while in the
second, all the clouds are expressed in the frame of the most recent one, Ck. Hence, the drift is
the same for both maps, but it is distributed di�erently. Assuming a continuous motion, with
the robocentric mapping approach the error due to drift is concentrated far from the robot, and
the most accurate portion of the map (i.e., the one used by the planner/controller) is close to it.

The advantage of robocentric mapping is shown by Figure 6.1: the robot is approaching
a horizontal obstacle on �at ground. The point cloud colormap is proportional to the z-axis
coordinate: low areas start from red and high areas go to violet. Due to a small pitch error
accumulated over time, the terrain behind the robot appears lower than in reality. With global
mapping, the opposite situation would happen, causing an underestimation of the obstacle’s
height.
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Figure 6.1: Example of local mapping on a �at terrain with an horizontal obstacle. The colormap
follows the z-axis and ranges from red (low values) to blue/purple (high values).
True ground level is green. Note that the rear part of the map (on the right) is older
and drifted downwards on the z-axis

6.1.2 Robocentric Point Cloud Mapping
In the previous section, we have shown the advantage of using robocentric mapping over global
mapping. In this section, we describe the implementation of a robocentric point cloud mapping
algorithm, suitable for reactive and short-term planned locomotion of the HyQ robot.

Algorithm 3 Robocentric Point Cloud Mapping
1: M0 = Tb cCc,0
2: for each k > 0 do
3: Ck ← Tb cCc,k . Cloud into base frame
4: Mk ← Tk k−1Mk−1 . Map into current base frame
5: for each p ∈Mk do
6: if (px < minx Ck or py < miny Ckor py > maxy Ck) and
7: |px| < θx and |py| < θy then . p outside Ck and within limits
8: Cb ← Cb + p
9: end if

10: end for
11: Mk ← voxelf(Ck, vsize)
12: end for

The pseudocode is listed in Algorithm 3. First, we initialize the map with the �rst point
cloud transformed into the base frame (line 1). Then, given a new cloud Cc,k expressed at
time k and in the camera (or LiDAR) frame c, we transform it into the actual base frame b.
In the following, we omit the subscript for the base frame, and call the result simply Ck (line
3). Without loss of generality, we assume that the pose estimation algorithm provides the
incremental transformation Tk k−1 between the base frame at time k − 1 and the base frame at
time k. In the case of a pure ICP-based estimator, such as the one described in Section 5.2, the
output is already incremental. Hence, we can apply the static transformation between camera
(LiDAR) frame and base frame in order to compute it. If the estimator is giving an absolute pose,
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Ck

Mk

2µx
2µy
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Oby
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Figure 6.2: Robocentric map example. The current mapMk is the sum of the blue and green
areas. Points exceeding the blue area are trimmed to keep the map compact.

as in the EKF of Section 4.1, we can compute the incremental transformation from the two poses
recorded at time k and k − 1, as: Tk k−1 = ( Tw k)−1( Tw k−1).

We apply Tk k−1 to the previous mapMk−1, as in Equation 6.4 (line 4). Then, we add to
Cb,k only the points p ∈Mk that are outside the border of Ck, which is indicated by the green
area in Figure 6.2 (line 6). With this process, we want to discard all the points in the map which
are overlapping with the FoV of the camera, with some tolerance to account for the trapezoidal
shape of the projection of Ck on the ground. At the same time, we also discard all the points of
the map which are outside a prede�ned 2θx × 2θy area that surrounds the robot (light blue area
of Figure 6.2). This can easily be done because all the points are expressed in the base frame of
reference (line 6). Finally, the map is passed through a voxel �lter, in order to equally distribute
the points (line 11).

The boundaries of the map (2θx, 2θy) and the voxel size vsize are crucial parameters for
the system: small voxels (e.g., < 1 cm) would make the cloud too dense to be processed in
time (i.e., less than the sampling period), while a sparse cloud would produce gaps in the
heightmap extracted from it (see Section 6.1.3). Similarly, large boundaries would reduce the
output frequency of the mapper. For our experimental setup, we used a voxel size of 2 cm,
and a map 2 m wide and 3.5 m long, with the robot center placed 0.25 m in front of the map
center. These parameters met the desired update frequency of 30 Hz, with the depth sensor
from Con�guration A (see Chapter 3 for more details on the sensing equipment).

The robocentric point cloud mapping algorithm described above allows us to keep a small
but detailed tridimensional model of the terrain. The memory allocated for the map is �xed over
time, because any data outside the region of interest is discarded as the robot moves. This is
an important advantage for online foothold planning, because the computation of features for
the optimization is performed only where needed. However, when a simpler representation is
su�cient, e.g., when we are not interested in overhanging objects or tunnels, elevation maps
are preferred, because they are dimensionally less expensive.

87



6. robocentric mapping and locomotion applications
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Figure 6.3: Local heightmap example. The heightmap is computed on the desired foothold of
the LF leg, with d = 5 and r = 3 cm

6.1.3 Elevation Mapping
An elevation map, or heightmap, is a matrix Hk ∈ Rn×m whose values indicate the average
distance from an arbitrary plane. Typically the xy-plane of the base is used, but a gravity-aligned
plane can also be useful for trajectory generation, as we see in Section 6.2.

A heightmap can be extracted from a point cloud map with the following steps:

1. project the point cloud map onto the plane of choice;

2. divide the plane into a regular grid of cells;

3. compute the average height of the points within the same cell.

Note that, with this procedure, we lose the third dimension and possibly generate undesired
artifacts. Let us consider two di�erent objects stacked on top of each other (e.g., a table top and
the �oor). Their heightmap counterpart would be merged into one solid object with half the size
of the tallest of the two stacked objects. This can lead to failures if the robot plans to climb the
artifact. To avoid this issue, we can trim the original point cloud to equal the maximum stretch
of the legs, and/or use a di�erent aggregation function to merge the points within the same cell,
such as the maximum or the median. Another problem when converting from point clouds to
heightmaps is gaps. To avoid gaps, the size of the grid cells should be bigger or equal to the
voxel size used to �lter the point cloud map.

Local Heightmaps

In some circumstances, there it is not necessary to compute the entire heightmap map from the
point cloud map, but only in the vicinity of the footholds, as depicted in Figure 6.3. Given a
desired foothold position, the corresponding heightmap is computed in the same way as the full
point cloud. However, this time we also discard all the points outside a square area of d2 · r2

around the desired foothold location, with d and r being the number of cells per line and the
width of each cell in meters, respectively. When no points are available, the predicted z location
of the foothold can be used.
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The use of local heightmaps around footholds is useful to speed up the computation. The
robot keeps a point cloud of its vicinity, and computes the heightmap on demand, where
requested. Again, the proper choice of the parameters d and r is crucial to keep real-time
performance.

In the next section, we see a real scenario application of local heightmaps to enable obstacle
avoidance on-the-�y while trotting.

6.2 Terrain Pattern Classi�cation for Visual Reactive
Trotting

The RCF[8] is a robust central pattern generation controller. It has been proven to be e�ective
against disturbances and small obstacles when walking blindly. However, to overcome or avoid
obstacles which are higher than a few cm, we need visual feedback. Let us consider a collection of
four local heightmaps (one per foothold), de�ned to be parallel to the xy-region of the horizontal
frame (see Section 3.2). We wish to select, from these heightmaps, the landing position which
minimizes foot and shin collisions with frontal obstacles.

For this task we set the heightmaps parameters to d = 15 and r = 2 cm. However, our
heightmap extraction software is designed to change these values in real-time. Since the feet
trajectories are generated in the horizontal frame, the plane where heightmaps are generated is
the xy-plane of the horizontal frame. At the beginning of each step, the RCF controller sends
the desired foothold location to the mapper and waits for the corresponding local heightmap
until the apex of the foot swing trajectory is reached. To reduce the e�ect of noise, a Gaussian
Filter of size 3× 3 pixels is also applied to the heightmap before it is sent.

6.2.1 Foothold Correction as a Classi�cation Problem
Once the heightmap is received, we need to compute the optimal foot touchdown position. We
can consider the local heightmaps as matrices, and solve this problem from a machine learning
perspective.

In particular, we treat the obstacle negotiation as a supervised classi�cation problem: each
heightmap is a feature vector x = [1 x1 · · · xn]T ∈ R(n+1)×1, where n is the number of cells of
the heightmap, and an extra term is added to include the bias term. The class y ∈ Nm indicates
one of the m possible corrections applicable to that nominal foothold position (see Figure 6.4).

To maintain a trade-o� between speed and accuracy, we opted for heightmaps composed of
15× 15 cells, and for an output set of 8 possible displacements, one for each cardinal direction,
plus the “null” displacement. Hence, x ∈ R226×1 and y ∈ N9.
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Figure 6.4: Left: example of point cloud in colorized by elevation (from dark blue to cyan). The
cloud covers an area of 30× 30 cm. The green ball indicates a desired foothold posi-
tion. Right: the corresponding heightmap with the 8 possible footholds adjustments
and the displacements according to the robot axis convention.

Figure 6.5: Examples of pattern, taken from the training set. The images are in false colors
and rescaled between minimum (dark blue) and maximum (dark red) values of the
heightmap pattern. Each pixel represents the average height of a 2 cm2 area of
terrain, referred to the horizontal frame of the robot.

6.2.2 Training Set Generation
We generated a dedicated training set for each leg. First, we de�ned 33 di�erent patterns that
�t a variety of possible obstacles, namely: stairs, bars, logs or stones. An example of the 33
categories is depicted in Figure 6.5.

For each pattern, we acquired 100 samples from real depth sensor imagery, for a total of
3300 input examples. Since the type of trajectory adjustment depends on the involved leg, the
set of examples was replicated four times and independently labeled for each leg.

6.2.3 Logistic Regression for Foothold Decision
As a classi�er, we opted for a logistic regressor [55], which had been demonstrated to be
su�ciently robust ( 90% success rate) and fast (only four 15× 15 matrix multiplications) during
our preliminary tests with the patterns shown in Figure 6.5.

Since we have more than one class (in our casem = 9), we opted for a One-vs-All multi-class
classi�cation by training m binary classi�ers hθi

, i ∈ Nm where θi ∈ R(n+1)×1 is the weight
vector for the i-th class and:

hθi
= hθi

(x) = 1
1 + exp (−θT

i x)
(6.6)
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(a) robot (b) point cloud map (c) local heightmaps

Figure 6.6: Log traversal experiment. The robot is crossing a horizontal obstacle made of rolled
soft material simulating a fallen log. (a) the robot is adjusting the nominal foot
position to step in front of the obstacle. (b) the point cloud map at the time of
crossing. (c) the four heightmaps at the nominal foot positions. The obstacle is
clearly visible by the two front legs (top left and right squares).

Given a speci�c leg, a class c ∈ Nm and a training set of k examples (x(i), ỹ(i)), with
x(i) ∈ R(n+1)×1, i ∈ Nk, and ỹ ∈ {0, 1} (which indicates whether y = c or not) we compute
the weight vector θc by minimizing the cost function:

J(θc) = +1
k

k∑
i=1

C(hθc(x(i)), ỹ(i)) + λ
n∑
j=1

(θjc)2 (6.7)

where:
C(hθc(x(i)), ỹ(i)) = log (hθc(x(i)) + (1− ỹ(i)) log (1− hθc(x(i))) (6.8)

and λ = 0.001.
From the weight vectors we de�ne the weight matrix of a leg as Θleg = [θ1 θ2 θc ... θm]T ∈

R(n+1)×m and hΘleg(x) = [hθ1 hθ2 · · · hθm ]T.
The predicted class y for a test example xt is then computed as the index of:

max (hΘleg(xt)) (6.9)

We assigned to each class y a corresponding o�set (∆leg
Ox,∆

leg
Oy), as depicted in Figure 6.4.

6.2.4 Experimental Results
We validated the performance of this approach with a series of experiments on HyQ. We placed
a horizontal obstacle (e.g., a rolled carped similar to a log) with a height of 8–12 cm in front of
the robot and crossed it with the robot trotting forwards and backwards. Figure 6.6 captures
the instant when the robot is crossing the obstacle. In Figure 6.6a we see the robot successfully
adjusting the step length and place its foot after the obstacle. Figure 6.6b shows the point
cloud map at the same moment, while 6.6c shows the four heightmaps extracted at the desired
footholds. The obstacle is clearly visible by the two front legs (top left and right squares), and
was correctly classi�ed (cf. with sixth and seventh patterns in the top row of Figure 6.5).
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(a) height map (b) cost map

(c) simulation environment (d) planned footholds

Figure 6.7: Foothold planning results using a heightmap

In the next section, we describe another application of elevation maps for quadrupedal
locomotion.

6.3 Terrain Cost Map for Foothold Planning
A common approach for foothold planning from elevation maps Hk ∈ Rn×m is to associate
a traversal cost to each value of the map. Given this costmap, the most suitable sequence
of footholds to reach a goal can be computed as the optimal sequence which minimizes the
overall cost of traversal [137, 41]. In this section, we describe how to compute a costmap from a
heightmap with image processing techniques.

From an image processing perspective, a cost map for foothold planning should assign a
high cost to the following features in the heightmap:

High frequencies: they correspond to discontinuities on the morphology, such as the edges
of a rock;

Small uniform areas: since the robot has a non negligible foot area and it could miss such
foothold;

Extreme values: in particular, the relative height from the terrain to the nominal position of
the leg (56 cm from the base). The maximal extension and retraction for a leg are 10 cm
and 20 cm, respectively. Beyond these values, the cost should be in�nite, since it is out of
the leg workspace.

To incorporate this information into the costmap, we compute the image derivatives of the
elevation map, and then we assign a cost which depends both on the direction and the intensity
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of those derivatives. The cost map computation involves �ve steps:

Pre-processing: the elevation map is �rst processed by a sharp �lter, to ease the process of
edge detection;

Edge detection: the edges of a height map re�ect the actual discontinuities of the ground. To
compute them we apply a Canny edge detector [28];

Morphology operator: since the foot has a �nite area, we want to avoid the margins around
the edges. We apply a dilation operator with a round structuring element along the edges.
The size of the structuring element is chosen according to the dimension of the foot and
the desired safety margin for the planning;

Gaussian �ltering: we apply a Gaussian �lter to incorporate uncertainties around the edges.
The covariance is chosen in accordance with the uncertainty of the mapping, pose
estimation, and foot trajectory tracking;

Height cost computation: the cost map computed in the previous steps is linearly combined
with the original height map, to take into account the cost of the height of the cells.

Figure 6.7a shows an example of a heightmap. The heightmap has been computed by
reprojection of the point cloud extracted from a Bumblebee stereo camera as described in [10].
The corresponding costmap is shown in Figure 6.7b. In this �gure, the values of the colormap
vary between dark blue for low costs and dark red for high costs. For the �nal step of the
costmap computation (height cost), we compute the absolute di�erence between the robot’s
foot level and the height map. This can be noted by looking at the center of stepping stones,
which have the smallest cost because they lie at the same level of the robot’s feet (see Figure
6.7c). Unknown heights were treated as a special case by assigning them to the maximum cost
(dark red). The �nal planned foothold sequence from the costmap is shown in Figure 6.7d [11].

6.4 Discussion
In Section, 6.1 we have demonstrated how a robocentric approach to mapping is more suitable
for locomotion applications, where loop-closure techniques are not required. Its formulation is
equivalent to the more commonly used global mapping, but it better distributes the drift over
the map. The only potential drawback of this solution is the computational cost for applying
the transformations. In a global mapping approach, at each step we only have to apply a
transformation to the latest acquired cloud (see Equation 6.1), while in the robocentric approach
we align the entire map to the cloud (see Equation 6.4). If the map is signi�cantly bigger than
the cloud, this could cause a computational overhead. In our case, since the map is bounded and
�ltered, the di�erence is negligible.

Although more sophisticated mapping representations are available, the combination of
point cloud mapping and on-demand local heightmaps has proven to be e�ective for a static
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and dynamic locomotion application. In these situations, simplicity and speed are of utmost
priority, because the robot stability depends on promptly delivered information. When the
execution of more complicated motions in cluttered environments is required, (e.g., chimney
climbs [43], crawling inside tunnels, etc. ), these mapping solutions may be insu�cient. Di�erent
representations are also required for long term navigation. As we discussed in Chapter 5 for
pose estimation, for mapping we also devise the combination of multiple solutions as the most
promising technique. For example, in a long term mission, a hierarchy of maps could provide an
appropriate solution for the many involved problems: topological maps for global path planning;
point cloud maps for foothold planning; heightmaps for dynamic and reactive locomotion;
OctoMaps or meshes for planning in constrained environments.

6.5 Conclusion
In this chapter, we have described di�erent mapping approaches and their applications to static
and dynamic locomotion. In particular, we have explained the concept of robocentric mapping
and hightlighted its bene�ts for locomotion when compared to global mapping. We have also
presented two algorithms for terrain modeling: point cloud mapping and local elevation mapping.
These two mapping algorithms have been successfully used for obstacle traversal in both static
and dynamic gaits. In particular, for the dynamic gaits we have introduced a novel approach
to terrain classi�cation in-the-loop based on logistic regression which enables the robot to
reactively negotiate obstacles in real-time while trotting. This work was the �rst showing the
potential of terrain classi�cation in-the-loop during dynamic legged motions. The work has
been published on [9] as second author.

Future research will head towards the inclusion of more information in the maps (e.g., un-
certainties) and the incorporation of additional mapping algorithms for long term navigation.

94



Chapter 7

Conclusion and Future Work

The �nal goal of the HyQ project is to create a vehicle for extreme terrain, able to autonomously
negotiate obstacles and traverse them, similar to what legged animals have been doing for
millions of years. Since the construction of the �rst robot prototype in 2010, the HyQ project
has signi�cantly moved forward the research in legged locomotion. In less than �ve years, the
team of the Dynamic Legged System Lab was able to publicly demonstrate a variety of gaits and
locomotion skills, including1: planned walk on uneven terrain [144], reactive locomotion over
rough terrain [8], balancing under disturbances, highly dynamic motions (with aerial phase),
step re�ex [42], chimney climbing [43]. These demonstrations have shown the true potential of
legged locomotion, when the terrain is too di�cult for wheels and tracked vehicles.

The inherent complexity in achieving this goal resides in the close relationship between
perception and locomotion. Every millisecond, the robot has to know the status of its joints, its
location in the world, its base velocity, and what the terrain looks like. At the same time it has to
process all of this data, and generate the appropriate actuator commands to propel itself, without
falling, slipping or getting stuck. These operations have to be executed on multiple scales, from
low level joint position and torque tracking, to foot trajectory generation and foothold selection,
and even to global path planning and navigation over long distances.

Given the amount of complexity involved, most of the research e�ort has been focused on
control theory and locomotion aspects of the problem. The role of perception and reasoning
was instead limited to the minimum level required to complete a speci�c task. Often, some of
the perception capabilities were replaced by surrogates, such as motion capture systems for
localization. For this reason, there are only a few examples of �eld-capable autonomous legged
robots, while the rest are still con�ned to laboratories and test facilities.

The objective of this dissertation was to introduce the essential algorithms and tools required
to achieve true autonomy in terms of perception, and to reduce the gap between perception and
locomotion. After three years of a PhD, the HyQ robot has attained unprecedented levels of
perception-aware locomotion. In particular, we have achieved the following milestones:

1A summary video of these capabilities is available at: http://www.youtube.com/watch?v=
ENHvCGrnr2g
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7. conclusion and future work

• integration of an EKF-based state estimator, which fuses an inertial process model and
a novel LO algorithm, to achieve accurate and smooth velocity estimates. These are
fundamental for attitude control and disturbance rejection, especially when performing
dynamic motions, such as trotting. Experiments with in-the-loop state estimation have
shown signi�cant improvement in the trunk position control when trotting on uneven
surfaces;

• fusion of VO- and LiDAR-based localization algorithms within the above mentioned �lter
to achieve very accurate pose estimation, even in adverse conditions, including: scarce
illumination, motion blur, uneven and rough terrain, sharp motion. The level of accuracy
of the pose estimate, as well as its stability, is demonstrated by the successful execution
of multiple in-the-loop experiments. These show a seamless base pose tracking of a
practically drift-free estimated trajectory;

• development of a lightweight, robocentric point cloud mapping algorithm, with on-
demand local elevation mapping capabilities;

• tight integration of the mapping algorithm within the control loop, to modulate the
trotting behavior and to perform reactive vision-in-the-loop obstacle negotiation.

Future directions of research include:

Additional tests. We are interested in concurrently executing all the elements explained above,
on the robot. In particular, to decouple the problems of state estimation and mapping, the
state estimator has been tested within the control loop, but with mapping not actively
used. On the other hand, the mapping algorithm was actively used in the control loop,
but with an external source of localization;

Terrain assessment and classi�cation. We would like to continue the research in terrain
classi�cation by introducing more sophisticated techniques to modify the locomotion
behavior, depending on the terrain characteristics;

Advanced SLAM techniques. Future long-term missions in unknown environments will re-
quire large scale mapping. In this context, the integration of typical SLAM techniques
[95], like loop-closure detection and pose graph optimization [73], will be investigated.
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Appendix A

Datasets

All the algorithms presented in this dissertation have been tested extensively on HyQ. Where
possible, the data used for performance assessment have been collected and organized in a
dataset. In this appendix we describe the content and the characteristics of three datasets,
collected between the summer of 2015 and the end of 2016. Appendix A.1 describes the Dataset
1, used for the performance assessment of the LiDAR-based localization modules described
in Sections 5.3 and 5.4. Appendix A.2 describes the Dataset 2, mainly used to test the state
estimation framework with inertial and LO inputs described in Chapter 4; Appendix A.3 describes
the Dataset 3, used to test the multi-sensor approach of Section 5.5 in challenging conditions for
the perception. All the datasets have been recorded in LCM format [63].

A.1 Dataset 1
This dataset was recorded in mid 2015 with the robot in Con�guration A (see Section 3.5.1). It
consists of six logs (three with trotting gait and three crawling gait) for a total of ≈ 8 min. Each
datalog includes the following sensor measurements/estimations and additional information:

• joint states at 250 Hz (position q ∈ R12, velocity q̇ ∈ R12 and e�ort τ ∈ R12);

• IMU proper acceleration ai i ∈ R3 and angular velocity ωi i ∈ R3, measured from the
Inertial Measurement Unit;

• Velodyne HDL-32E laser scans at 10 Hz;

• Hokuyo URG-04LX laser scans at 10 Hz;

• ASUS Xtion Pro point clouds at 30 Hz;

• Pan and Tilt Unit (PTU) angle positions (pan and tilt) at 50 Hz;

• robot base position xw b at 100 Hz, in the world frame, from Vicon motion capture system,
used as ground truth;
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Name Gait Duration [s] Distance [m]

d1-trot-01 trot 78 4.02
d1-trot-02 trot 91 4.55
d1-trot-03 trot 82 4.98
d1-crawl-04 crawl 39 0.87
d1-crawl-05 crawl 83 1.25
d1-crawl-06 crawl 89 1.49

Table A.1: Summary of Dataset 1.

• robot kinematic tree model.

A summary of the datalogs is provided in Table A.1: it contains the datalog ID, the type of
gait (trot or walk), total duration, and total distance traveled, which has been computed by
integration of the absolute velocity estimated from Vicon position measurements.

A.2 Dataset 2
The Dataset 2 has been recorded from winter 2015 to mid 2016 for the experimental tests on
the proprioceptive state estimator described in Chapter 4. The datalogs include the following
signals:

• joint states at 250 Hz (position q ∈ R12, velocity q̇ ∈ R12 and e�ort τ ∈ R12);

• Microstrain 3DM-GX3-25 signals at 250 Hz (proper acceleration ai i ∈ R3 and angular
velocity ωi i ∈ R3);

• Hokuyo URG-04LX laser scans at 10 Hz;

• robot base position xw b at 100 Hz (from Vicon motion capture system, used as ground
truth);

• robot kinematic tree model.

The dataset is summarized in Table A.2: it consists of seven runs, three of a trotting gait
and four of a crawling gait, for a total duration of 62 min. The total distance traveled was
computed by path integral of the robot trajectory from Vicon position measurements at 100 Hz.
The velocity signals are computed by numerical di�erentiation and de-noised through a delay-
compensated second order Savitzky-Golay �lter [126], which was preferred over a moving
average for its smaller signal distortion.

Due to the limited size of our motion capture space, these gaits were performed by repeating
forward-backward motions within a 2.5× 1.2 m2 area. Figures A.1a and A.1b depict a typical
trajectory (projected onto the xy-plane) of a crawl and a trot run, respectively.
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Figure A.1: Typical crawl and trot base trajectories, projected on the xy-plane. Color changes
from dark blue to light yellow indicate the evolution of time. Starting and ending
positions are indicated by a blue and a yellow dot, respectively.

Name Gait Duration [s] Distance [m]

d2-trot-01 trot 606 38.55
d2-trot-02 trot 608 40.85
d2-trot-03 trot 609 48.96
d2-crawl-04 crawl 395 8.05
d2-crawl-05 crawl 345 6.94
d2-crawl-06 crawl 600 10.31
d2-crawl-07 crawl 600 10.89

Table A.2: Summary of Dataset 2.
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Name Gait Duration [s] Distance [m]

d3-trot-01 trot 313 ∼18
d3-trot-02 trot 330 ∼20
d3-trot-03 trot 469 ∼32
d3-crawl-04 crawl 869 ∼17
d3-crawl-05 crawl 675 ∼13.5

Table A.3: Summary of Dataset 3. The distance traveled is approximated, since the ground
truth was not available.

A.3 Dataset 3
The Dataset 3 has been recorded in winter 2016 for the experimental tests on the multi-sensor
state estimator described in Section 5.5. In contrast with the previous datasets, the datalogs
contain data collected with the robot in Con�guration B. The signals from the 3DM-GX4-25
and the KVH 1775 have been synchronized with the joint states in real-time (through dedicated
EtherCAT boards) for signal comparison purposes. The dataset includes the following signals:

• joint states at 1 kHz (position q ∈ R12, velocity q̇ ∈ R12 and e�ort τ ∈ R12);

• Microstrain 3DM-GX3-25 and KVH 1775 IMU signals at 1 kHz (proper acceleration
ai i ∈ R3 and angular velocity ωi i ∈ R3) measured from the Inertial Measurement

Unit (Microstrain 3DM-GX3-25);

• Stereo and depth images at 10 Hz (from Multisense SL)

• Hokuyo URG-04LX at 10 Hz laser scans;

• Hokuyo UTM-30LX at 40 Hz (from Multisense SL);

• robot and Multisense SL kinematic tree model.

The dataset is summarized in Table A.3: it consists of �ve runs, three of a trotting gait and two
of a crawling gait, for a total duration of 44 min. All the datalogs (except d3-trot-03) have been
recorded on an extended test area of 20× 5 m2 (Figure A.4), with di�erent types of obstacles,
ramps and rocks (see Figures A.3b, A.4 and Section 5.5). The environmental conditions were
challenging for the perception system: because the experiments were taken at night, the image
is underexposed on the sides and overexposed at the center (due to �ashlights). Furthermore,
the protection frame for the camera occludes part of the scene (see Figure A.3)
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Figure A.2: Cropped camera and depth images from Multisense SL. Note the challenging light-
ing conditions and structure of the test arena.

(a) Protection frame (b) Camera image

Figure A.3: Detail of the Multisense SL protection frame and the corresponding occlusion on
the image.

Figure A.4: Test area for Dataset 3. The area in picture is displayed without obstacles. During
the individual runs, ramps and rocks have been added (see Figure A.2).
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Appendix B

Gaussian Filters

Gaussian Filters model the state to be observed, x, as a random variable whose density function is
de�ned by a multi-variate Gaussian distribution. The constitutive parameters of this distribution
are the mean µ and the covariance matrix Σ:

p(x) = 1√
2π|Σ|

exp
[
− 1

2(x− µ)TΣ−1(x− µ)
]

(B.1)

In the following sections, we describe three widely used types of Gaussian �lters: the Kalman
Filter, the Extended Kalman Filter, and the Unscented Kalman Filter [140]. We conclude the
appendix with the Particle Filter and its Gaussian approximation.

B.1 Kalman Filter
The Kalman Filter [72] is an optimal recursive state observer for linear Gaussian systems. Let
xk ∈ Rn×1 be the state vector to be estimated, uk ∈ Rn×1 a control action, and zk ∈ Rm×1

a measurement coming from a sensor, all evaluated at time step k ∈ N. Their relationship,
assumed to be linear, is stated as follows:

xk(xk−1,uk) = Akxk−1 +Bkuk + vk (B.2)

zk(xk) = Ckxk +wk (B.3)

where zero mean Gaussian additive terms p(vk) = N (0, Rk) and p(wk) = N (0, Qk) are
de�ned as process noise and measurement noise, respectively. In (B.2) the process is assumed to
be Markovian. Hence, the current state xk depends only on the previous state xk−1 (which
incorporates all the information about the past states x0:k−2 and measurements z0:k−1) and the
current control action uk. The parameters Ak ∈ Rn×n, Bk ∈ Rn×n, and Ck ∈ Rm×n depend
on the timestep k only.

Since the state is modeled as Gaussian, at each iteration k the ouput is a mean µ = x̂k and
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a covariance matrix Σ = Pk.

Prediction

x̂−k = Akx̂k−1 +Bkuk (B.4)

P−k = AkPk−1A
T
k +Rk (B.5)

Update

Kk = P−k C
T
k (CkP−k C

T
k +Qk)−1 (B.6)

x̂k = x̂−k +Kk(zk − Ckx̂−k ) (B.7)

Pk = (I −KkCk)P−k (B.8)

During the prediction step, in (B.4) the prior state x−k is predicted using the process model
equation B.2, while the predicted covariance P−k is computed in (B.5) by propagation of the
previous covariance and addition of the process noise covariance.

When a new measurement zk is available, the priors x−k and P−k are updated: (B.6) computes
the Kalman gain Kk, a quantity which expresses how much weight the �lter gives to the new
information carried by the measurement. A gain of Kk = 0 will just ignore the measurement,
whereas a gain of Kk = 1 will use the measurement as the only source to compute the state, as
shown by the second term of (B.7). Finally, in (B.8) the covariance is updated by means of the
Kalman gain, similar to what is done for the state.

The Kalman �lter relies on the assumptions that the state, noise and measurements are
Gaussian, and the system is linear. These assumptions are unrealistic in many applications –
especially for the linearity assumption. The �lters described in the following sections provide
approximation techniques to relax the linearity assumption.

B.2 Extended Kalman Filter
The EKF was originally developed to accommodate for the nonlinearity of the transition and
measurement functions [142]:

xk(xk−1,uk) = g(xk−1,uk,vk) (B.9)

zk(xt) = h(xk,wk) (B.10)
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This is achieved by linearization of g(·) and h(·) through a �rst order Taylor series expansion,
where they are replaced as follows. We de�ne the followining quantities:

Gk = ∂g(x,uk)
∂x

∣∣∣∣
x=x̂k−1

(B.11)

Hk = ∂h(x)
∂x

∣∣∣∣
x=x̂−

k

(B.12)

g(x,uk) ≈ g(x̂k−1,uk) +Gk(x− x̂k−1) (B.13)

h(x) ≈ h(x̂−k ) +Hk(x− x̂−k ) (B.14)

After being linearized, the operations for the �lter are similar to the linear version:

Prediction

x̂−k = g(x̂k−1,uk) (B.15)

P−k = GkPk−1G
T
k + VkRkV

T
k (B.16)

Update

Kk = P−k H
T
k (HkP

−
k H

T
k +Qk)−1 (B.17)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (B.18)

Pk = (I −KkHk)P−k (B.19)

B.3 Unscented Kalman Filter
An alternative solution to recover approximated mean and covariance of a distribution after
nonlinear transformation is provided by the UKF. Originally proposed by Julier and Uhlmann
[70], this variant of the Kalman �lter is based on the intuition that, instead of approximating a
known non-linear function in order to recover mean and variance of the �tting Gaussian, these
parameters can be estimated by transforming a �nite set of points from the initial distribution
and seeing how the shape of the original Gaussian has changed. With 2n + 1 points, the
estimated mean and variance are closer to the true distribution than the ones estimated with
the EKF, with the additional bene�t that no derivatives are required. Let us consider a sequence
of 2n+ 1 “sigma” points computed as follows:

X [0] = µ (B.20)

X [i] = µ+
√

(n+ λ)Σ i = 1, . . . , n (B.21)

X [i] = µ−
√

(n+ λ)Σ i = n+ 1, . . . , 2n (B.22)

where λ = α2(n+ κ)− n, and α, κ are scaling parameters that determine the distance of the
sigma points from the mean. The sigma points are passed to the function g, to reconstruct how
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it is distorting the original mean and covariance:

µ′ =
2n∑
i=0

w[i]
mg(X [i]) =

2n∑
i=0

w[i]
mY [i] (B.23)

Σ′ =
2n∑
i=0

w[i]
c (Y [i] − µ′)(Y [i] − µ′)T (B.24)

By combining (B.23) and (B.24) into the Kalman �lter framework, we obtain (for simplicity, the
one-dimensional state x is used):

Prediction (B.25)

Xk−1 =
[
x̂k−1, x̂k−1 +

√
(n+ λ)Σ, x̂k−1 −

√
(n+ λ)Σ

]
(B.26)

X̄k = g(Xk−1, uk) (B.27)

x̂−k =
2n∑
i=0

w[i]
mX̄k (B.28)

P−k =
2n∑
i=0

w[i]
c (X̄ [i] − µ̄k)(X̄ [i] − µ̄k)T +Rk (B.29)

Update (B.30)

Zk = h(X̄k) (B.31)

ẑk =
2n∑
i=0

w[i]
mZ̄

[i]
k (B.32)

Sk =
2n∑
i=0

w[i]
c (Z [i]

k − ẑk)(Z
[i]
k − ẑk)

T +Qk (B.33)

Σ̄x,y
k =

2n∑
i=0

w[i]
c (X [i]

k − µ̂k)(Z
[i]
k − ẑk)

T (B.34)

Kk = Σ̄x,y
k S−1

k (B.35)

x̂k = x̂−k +Kk(zk − ẑk) (B.36)

Pk = P−k −KkSkK
T
k (B.37)

B.4 Gaussian Particle Filter
The particle �lter models the posterior distribution with a �nite set of samples called particles,
each one representing a di�erent hypothesis of the real state [141]. In contrast with the Gaussian
distribution, this representation is non-parametric, and provides more freedom in terms of
possible shapes of the posterior distribution (e.g., multimodal distributions).

The basic intuition behind this algorithm is to approximate the posterior distribution with
a discrete set of M sample points x[0], . . . , x[M ] ∈ X drawn from a set of hypotheses X̄
which approximate the prior distribution. The full algorithm, which involves the integration of
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measurements is as follows:

1: X̄t = Xt = ∅
2: form = 1 tom = M do
3: sample x[m]

t ∼ p(xt|ut, x[m]
t−1)

4: w
[m]
t = p(zt|x[m]

t )
5: X̄t = X̄t + (x[m]

t , w
[m]
t )

6: end for
7: form = 1 tom = M do
8: draw i with probability ∝ w

[m]
t

9: add x[i]
t to Xt

10: end for
11: return Xt

At line 3, the algorithm constructs its temporary set of hypotheses x[m]
t by drawing from

the prior distribution, p(xt|ut, x[m]
t−1). Then, from the measurement update p(zt|x[m]

t ), it updates
the importance weight w[m]

t . The importance weight incorporates the information provided by
the measurement: the hypotheses which are consistent with the measurement are assigned to
a bigger weight. The posterior is computed from lines 7–9: each new particle is the result of
an drawing with replacement from the prior distribution, proportional to the weights (line 8).
The extraction using the weight is the crucial part of the algorithm, because it incorporates the
measurement into the estimation. If a particle is assigned with a small weight, it will have a
small chance to get collected for the posterior. This allows to gather the particles in the region
where the posterior has high probability.

The Gaussian particle �lter is a special case of particle �lter where the approximated
distribution is Gaussian. The approximated Gaussian distribution is computed from the weighted
mean and covariance of the population of particles [77].
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Appendix C

Performance Metrics

C.1 Drift per Distance Traveled
The performance metric used to assess position accuracy throughout this dissertation is the
Drift per Distance Traveled (DDT), which for display convenience is expressed cm/m or %.
Given N samples of the true position x = [x, y, z]T, and the estimated position x̂ = [x̂, ŷ, ẑ]T,
the DDT for the x-axis is de�ned as follows:

DDTx = 100
1
N

∑N
k=1 |xk − x̂k|∑N−1

k=1 |xk+1 − xk|
= 100 ēx∑N−1

k=1 ∆x

(C.1)

The norm of the DDT for the three axes gives the total DDT, as:

DDT = 100

√
ē2
x + ē2

y + ē2
z∑N−1

k=1

√
∆2
x + ∆2

y + ∆2
z

(C.2)

where the numerator expresses the norm of average of the absolute di�erence between estimated
position x̂ and the ground truth x, while the denominator express the discrete path integral
of the position computed from the ground truth (i.e., the total distance traveled). The metric
expresses the average distance from the real position, normalized by the total distance traveled.
Given the sub-millimetric accuracy of the motion capture system, the denominator of (C.1) may
assume larger values than expected, since the integral is including all the small “ripples” in
the trajectory (cf. Figure A.1b). However, the estimator usually operates at higher frequencies
than the motion capture system. Therefore, the estimator captures the same level of detail and
compensates for the high frequency components of the trajectory.
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C.2 Root Mean Square Error
The Root Mean Squared Error is a commonly used metric for comparing the performance of
velocity estimators. Given N samples of ground truth velocity ẋk and estimated velocity ˆ̇xk,
the RMSE is de�ned as the root of the mean of the absolute quadratic error |ẋ− ˆ̇x|:

RMSE =

√∑N
k=1|ẋk − ˆ̇xk|2

N
(C.3)
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