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Abstract—Reliable state estimation is crucial for stable plan-
ning and control of legged locomotion. A fundamental component
of a state estimator in legged platforms is Leg Odometry, which
only requires information about kinematics and contacts. Many
legged robots use dedicated sensors on each foot to detect ground
contacts. However, this choice is impractical for many agile legged
robots in field operations, as these sensors often degrade and
break. Instead, this paper focuses on the development of a robust
Leg Odometry module, which does not require contact sensors.
The module estimates the probability of reliable contact and
detects foot impacts using internal force sensing. This knowledge
is then used to improve the kinematics-inertial state estimate
of the robot’s base. We show how our approach can reach
comparable performance to systems with foot sensors. Extensive
experimental results lasting over one hour are presented on our
85kg quadrupedal robot HyQ carrying out a variety of gaits.

Index Terms—Multilegged Robots; Sensor Fusion; Localiza-
tion.

I. INTRODUCTION

LEGGED robots present unique capabilities for traversing
a multitude of rough terrains, where they can potentially

outperform wheeled or tracked systems. The successful imple-
mentation of these capabilities depends on the robot’s ability
to generate viable body trajectories, using a self-estimated
base state vector, computed on board and in real-time. A base
state vector typically includes position, orientation, linear and
angular velocities, and acceleration of the robot’s base.

The essential sensor inputs for self-reliant base state estima-
tion in legged robots typically include an Inertial Measurement
Unit (IMU) — measuring accelerations and angular velocity —
and joint encoders, which are used to compute position and
velocity of the end effectors (i.e., the robot’s feet) through
forward kinematics.

Reliable velocity estimates for the base can be extracted from
the feet velocities expressed in the base frame, a technique
known as Leg Odometry (LO) [1]. Typical approaches use
constraints based on the knowledge of at least one secure
(i.e., non-slipping) contact between the feet and the ground.
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Figure 1: Left: IIT’s Hydraulic Quadruped robot (HyQ). Right:
Summary of the coordinate frames and notations used in this
paper: the Base frame is attached to the geometric center of the
robot’s torso and has the x-axis (red) pointing forward, the y-
axis (green) pointing to the left, and the z-axis (blue) pointing
upward; the IMU frame is also attached to the base link, with
a different orientation; the World frame is a fixed reference
frame. The legs are referred by the following abbreviations:
LF (Left Front), RF (Right Front), LH (Left Hind), RH (Right
Hind).

Detecting such a contact event is not trivial, as it depends on
the amount of frictional force the foot exerts on the terrain [2].
According to the Coulomb model of dry friction, this is directly
proportional to the normal component of the Ground Reaction
Force (GRF) and the foot-terrain static friction coefficient,
which is generally unknown. Additionally, impact forces play
a critical role, as they can cause slippage [3] and exacerbate
undesired compliances in the leg structure. Furthermore, when
contact sensors at the feet are unavailable, the difficulty of the
task increases, as an indirect estimate of the GRF is required.

This paper addresses these issues by providing a novel
probabilistic method for the estimation of reliable contacts
between the feet and the ground. In contrast to conventional
contact estimation methods, which aim to detect the earliest
moments of robot-environment interactions, we are interested
in estimating the probability of contacts which can be used
to minimize the base velocity error. Our method is based on
the estimation of the GRF at foot level, which provides a
measure of confidence that a foot is firmly in contact with
the ground. With this information, the individual velocity
contributions from the stance legs are fused into one base
velocity estimate. To further improve the filter’s performance,
we also incorporate the effect of impacts in the computation
of the uncertainty associated to the velocity estimate. Despite
the absence of contact sensors, our method results in state-of-
the-art performance on a dynamic quadruped robot, executing
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quasi-static and dynamic locomotion gaits.
We validate the performance of the method on the Hydraulic

Quadruped (HyQ) [4], a dynamic platform capable of a variety
of locomotion gaits, including trotting up to 2 m/s and multi-
directional crawling. Fig. 1 depicts the HyQ platform and a
schematic showing the coordinate frames used in this paper and
feet naming conventions. We present results for the proposed
estimator in a variety of dynamic and quasi-static locomotion
experiments with a total duration of 62 min. To the best of our
knowledge, this constitutes the most extensive, scientifically
verified study of kinematics-inertial state estimation on heavy
and dynamic legged systems.

The remainder of this paper is structured as follows: Section
II overviews the relevant literature on the topic; Section III
provides a formal definition of the proposed state estimation
problem which does not require contact sensing; Section IV
presents our approach to contact estimation; Section V describes
how linear velocity measurement updates are created using
this contact information; Section VI describes our experimental
setup as well as extensive test results; in Section VII we discuss
the effect of leg compliance on the experimental results and
the algorithmic limitations of our approach; in Section VIII
we conclude with a summary and some suggestions for future
work.

II. RELATED WORK

State estimation for legged robots is a widely studied prob-
lem. A variety of solutions have been proposed with different
sensor combinations including [5]–[7]. We are however most
interested in larger scale platforms, that can perform dynamic
gaits, such as trotting or running, without contact sensors,
and can carry a substantial payload. In this context, to the
best of our knowledge, the available literature addresses either
legged state estimation with contact sensors or contact/collision
estimation without contact sensors.

A. Legged State Estimation with Contact Sensors

Recently, Blösch et al. [8] developed a state estimator that
fuses leg kinematics and inertial information using an Extended
Kalman Filter (EKF). The state vector includes the feet
positions, whose uncertainty is used to account for moderate
slippage and absence of ground contacts, which are detected
with dedicated sensors. The validity of this approach was
demonstrated on the medium-sized quadruped robot StarlETH
[9] for a 1 min straight crawl. Later [10], the same group
extended their work by replacing the EKF with an Unscented
Kalman Filter (UKF) and redefining the formulation of the state
vector to be robot-centric (i.e., expressed in the base frame).
The velocity contributions of each leg readings are discarded
if the filter innovation, expressed in Mahalanobis distance,
exceeds a fixed threshold, found empirically. This procedure
eliminates the effect of spurious filter updates originating from
the legs whose contact state estimates are unreliable. As in
[8], the performance of the approach was demonstrated on
the StarlETH platform, for a 23 s trot on a flat terrain made
unstable and slippery by placing wooden debris along the way.

In [11], Fallon et al. presented Pronto: an efficient, modular
and open-source EKF-based state estimator. The algorithm
uses an IMU-based process model and combines this with
measurement corrections from different sensor modalities (LO,
LiDAR and vision) to produce a position estimate for the
humanoid robot Atlas, developed by Boston Dynamics. In
particular, the LO module handles contacts using a Schmitt
trigger (a two threshold comparator with hysteresis, see [12])
on the contact sensor signals: the contact is detected when the
low threshold is crossed and it is released when an arbitrary
time has passed and the high threshold is crossed. When the
robot is in double support, only one leg is used, for simplicity.
The filter is able to handle out-of-order and asynchronous
inputs from different sensors. Originally developed for the
DARPA Robotics Challenge, its implementation has been
recently released publicly1. We use this filtering framework
as a basis of the sensor fusion presented herein. We have
replaced the humanoid specific LO module with a quadrupedal
specific approach, which uses the generated kinematics library
of [13] and merges multiple leg contributions to create raw
base velocity estimates.

Ma et al. [14] fuse (using an EKF) the information from
a stereo camera, coupled to the leg kinematics and a tactical
grade IMU. The state vector is defined as an error matrix
(values propagated from the IMU against measurement updates).
The approach is focused on visual inertial fusion with LO
measurements expressed as delta positions between two key
frames, used only in case of failure of the Visual Odometry
(VO). The approach produced a robust performance with an
error below 1 % of the distance traveled when fused with GPS.

B. Contact/Collision Estimation without Contact Sensors

Most research in the area of contact estimation is focused
on collision avoidance for safe Human Robot Interaction (HRI)
with manipulators. De Luca et al. [15] proposed a collision
detection and reaction method which identifies external forces
acting on a link as first order filtered external torques acting on
the manipulator’s joints. The reaction strategy typically involves
stopping or moving the link away and along the direction of
the identified contact. Haddadin et al. [16] extended this work
by introducing a modified version of the contact detection,
more recovery strategies, and by extensively experimenting
with a human subject.

More recently, Hwangbo et al. [17] developed a probabilistic
contact estimator to control the quadruped electric robot
ANYmal without foot sensors. The method fuses information
about dynamics, differential kinematics and kinematics using
a method similar to a Hidden Markov Model (HMM) to
reconstruct the contact status. The validity of this approach
was demonstrated by comparing their method with Generalized
Momentum (GM) approaches, using the delay detected by
OptoForce sensors as a metric.

It has to be noted that the contact detection methods
presented above aim to detect the contact as early as possible,
in order to promptly take counter measures against unwanted
collisions [15], [16] or to control the robot [17]. In contrast,

1https://github.com/ipab-slmc/pronto-distro
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we are interested in detecting the first instant of a leg’s contact
phase from which a reliable and trustworthy velocity measure
can be produced, which is a substantially different goal. This is
achieved by: 1) learning the threshold of the normal component
of the GRF that minimizes the velocity error; 2) incorporating
impact information and consistency between feet velocity
estimates in the covariance associated to the measurement
update of the filter.

III. PROBLEM DEFINITION

The robot base state vector is defined by:

X =
[

xw b ẋb b ẍb b θw b ωb b ba bω

]
(1)

where the base velocity ẋb b, acceleration ẍb b and rotational
rate ωb b are expressed in the base frame b, while the position
xw b and orientation θw b are expressed in the fixed world frame
w. The state vector is completed by IMU acceleration/angular
velocity biases ba, bω , and is updated by an EKF, from [11].

Measurements of acceleration and angular velocity are taken
from the IMU at 500 Hz. These are transformed into the base
frame to produce direct measurements of the base acceleration
ẍb b and angular velocity ωb b as follows:

ωb b = Rb
i ωi b = Rb

i ωi i (2)

ẍb b = Rb
i ẍi i − gb (3)

where Ri
b is the rotation matrix from IMU frame i to the base

frame b. In (3), we assume the effects of angular acceleration
and centripetal force (see [18]) to be negligible. The EKF is
then propagated using a direct inertial process model.

During the filter update step, a measure for the base velocity
ẋb b is computed by fusing a kinematic contribution ẋb bl

from
each foot fl, as follows:

ẋb bl
= − ẋb fl

− ωb b × xb fl
(4)

where ωb b is computed from (2) and ẋb fl
, xb fl

are velocity
and position of the foot fl in the base frame, respectively.

To solve the problem of estimating ẋb b from each contribu-
tion ẋb bl

, we need to know which feet are in stable contact with
the ground and to then fuse the individual leg contributions into
a single EKF measurement update, with associated covariance.

IV. CONTACT ESTIMATION

We define the contact status for a foot belonging to leg
l ∈ {LF, RF, LH, RH} as Sl ∈ {0, 1}, where 1 indicates a
reliable stance (i.e., with no motion relative to the ground) and
0 indicates swing or slipping contact. Let fl be the GRF for
leg l. This is either measured with some degree of uncertainty
or, in our case, computed from the joint position ql, velocity
q̇l and effort τ l, as follows:

fl = −
(
JT
l (ql)

)−1(
τ l − hl(ql, q̇l, gb )

)
(5)

where JT
l (ql) is the Jacobian transpose from joint to Carte-

sian space and hl(ql, q̇l, gb ) is the vector of Centrifu-
gal/Coriolis/gravity torques for leg l, computed using Recursive
Newton-Euler algorithms, as described in [19]. Given the small
mass of HyQ’s legs compared to the torso, we assume the effect

of inertial torques as negligible, compared to the numerical
error of computing q̈.

Given fl = (fl,x, fl,y, fl,z) and following the definition from
[20], the quantity:

µf =

√
f2l,x + f2l,y

fl,z
, ∀fl,z > 0 (6)

defines a metric to evaluate the robustness of a foothold, in
terms of contact stability. This metric is equal to the actual
static friction coefficient µs when the lateral components of the
GRF (denoted with fl,x, fl,y) have a value beyond which the
foot would start slipping. Although µs is unknown, any value
of µf < µs would yield a stable contact, and in particular,
the smaller µf is, the more likely the foot is firmly on the
ground. Hence, the quality of contact for a foot related to leg l
at time k is non-linearly proportional to fkl . For simplicity and
numerical stability, instead of accounting for all the terms of
µs, we ignore the lateral components of fkl , and assume that,
above a certain threshold of fkl,z , the frictional force will be
sufficient to produce a stable, reliable contact.

To learn this threshold, we model the probability of a reliable
ground contact Pk using a discriminative logit model:

Pk(Sl = 1|fkl ) =
1

1 + exp(−βfkz,l − β0)
(7)

where fkz,l is the normal component of the GRF at time k
for leg l, while β and β0 can be regarded as the weights
of a logistic regression classifier. The weights are computed
by maximum likelihood estimation on a training set of data
collected from characteristic motions, as described next.

A. Fitting with Simulated Data

First, we tested our approach on data generated from
simulation, with contact ground truth, for two distinctive
locomotion styles: a quasi-static crawl and a dynamic trot.

The crawl gait was obtained from the controller described in
[21]. The trot gait was generated using the reactive controller
framework presented in [22]. In our experiments the movement
was generated using a step frequency of 1.7 Hz, a duty factor
of 0.5 and a leg stiffness of 8.55× 103 N/m.

Fig. 2 and 3 show — for crawl and trot datalogs, respectively
— the learned logistic function (top plot), the GRF signal
(middle plot), and the fitting of the model against the ground
truth for the test set (bottom plot). As expected, the threshold
for contact activation in the trot gait is higher (by approx. 20
N). This is due to the fact that for this locomotion gait two
legs are off the ground at a time, compared to just one in the
crawl.

B. Fitting with Real Data

To test the classifier in a real scenario, we performed training
on half of a trot log and half of a crawl log from our dataset
(see Section VI-B) and we used the rest of the dataset as a
test set for the learned model.

As no suitable commercial solution for contact sensing was
available on our hardware, the ground truth for the training
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Figure 2: Crawl gait simulation. Top plot: learned logistic
model function. Middle plot: normal component of the GRF
for one leg. Bottom plot: learned stance probability and ground
truth
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Figure 3: Trot gait simulation. Top plot: learned logistic model
function. Middle plot: normal component of the GRF for one
leg. Bottom plot: learned stance probability and ground truth.

was defined as the time sequence of stance leg combinations
that minimizes the error between estimated and true base
velocities. Additional post-processing was applied to maintain
the continuity of the swing and stance intervals. This approach
has the advantage that the classifier tends to learn the force
threshold beyond which the associated velocity measurement
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Figure 4: Crawl gait experiment. Top plot: learned logistic
model function. Middle plot: normal component of the GRF
for one leg. Bottom plot: learned stance probability and ground
truth.

produced by the foot in question becomes reliable.

Fig. 4 and 5 display, for crawl and trot respectively, the
obtained logistic function (top plot), the GRF signal (middle
plot), and the fitting of the model against the ground truth for
the test set (bottom plot). As in the simulation, the threshold
for contact activation in the trot gait is higher.

We compare the state estimation performance using our
contact estimation approach against two other thresholding
methods on fz,l: a single threshold method and a Schmitt
trigger. Table I provides an example of how our approach
improves the state estimation performance as a function of
drift per distance traveled in the x-axis, due to the better
selection of the stance legs used for the velocity computation.
For these experiments, we decoupled the effect of gyro bias
and linear position estimate by using the orientation estimate
from a Vicon motion capture system. In particular the proposed
logistic regression significantly increases the performance of the
LO during the trot gait. For the crawling gait the performance
is on a par with the other two methods, as impact events occur
less frequently and with reduced intensity.

Fixed threshold Hysteresis Logistic regr.
[cm/m] [cm/m] [cm/m]

Crawl 1.34 1.34 1.34
Trot 1.79 0.75 0.43

Table I: Drift per distance traveled in the x-axis of different
contact estimators: fixed threshold, Schmitt trigger (hysteresis)
and our method (logistic regression).
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Figure 5: Trot gait experiment. Top plot: learned logistic
model function. Middle plot: normal component of the GRF
for one leg. Bottom plot: learned stance probability and ground
truth.

V. VELOCITY ESTIMATION

Given an estimate of which feet are likely to be in reliable
contact, we compute a velocity estimate of the base ẋb b and
its associated covariance matrix Σv = diag(σ2

x, σ
2
y, σ

2
z) using

kinematic sensing. This is then used as a measurement in the
EKF update step. To compute the measurement we use the
contact estimation method introduced in Section IV, while to
compute the covariance we leverage the knowledge about the
consistency between the velocity contributions of the stance
legs and the detection of impacts.

A. Velocity Computation

To produce a base velocity update for the filter we combine
the individual base velocity estimates produced by each leg.
We use the probability of a given foot related to leg l being in
contact at time k as a weighting criteria as follows:

ẋb b(k) =

∑
l∈C Pk(Sl = 1|fkl ) ẋb bl

(k)∑
l∈C Pk(Sl = 1|fkl )

(8)

where C is the set of feet that exceed the 0.5 threshold of the
logistic regressor. In this way, the feet velocity contribution is
weighted proportionally to the probability of contact.

B. Covariance Estimation

Correctly estimating the covariance of these velocity contri-
butions is particularly important. The robot executes different
types of dynamic gaits and creates entirely unrealistic velocity
updates when a foot strikes the ground.

To compute the covariance matrix Σv associated with each
velocity update, we considered two factors: consistency between

212.4 212.5 212.6 212.7 212.8

time [s]

-0.05

0

0.05

0.1

x

velocity x-axis

LF RF LH RH vicon

Figure 6: Effect of impulsive force on estimated velocities
during a crawl gait. The Left Hind (LH) leg strikes the ground
at time 212.55 s producing unrealistic velocity estimates for
that leg — as well as for the other legs, due to propagation of
the impact on the rest of the structure.

each contribution ẋb bl
and impact forces. For each coordinate

r ∈ {x, y, z} we compute the corresponding variance at a
given instant as:

σ2
r(k) = σ2

0 + (α1std [ ẋb bl∈C
(k)]c + (1− α1)α2|∆f̄kz |)2 (9)

where:
|∆f̄kz | =

1

dim(C)

∑
l∈C

|fkz,l − fk−1z,l | (10)

is the average of the absolute difference between the current
and previous normal component of the GRF. We use this value
as an indicator of an impact event. σ0 is the baseline standard
deviation for velocity, std [ ẋb bl∈C

] is the r-th component of the
standard deviation of the velocity contributions among stance
legs, α1 is a factor that balances the effects of leg consistency
and impacts (we use 0.5) and α2 is a normalization factor,
computed as the ratio between typical velocity error and |∆f̄z|
at the same instant.

The middle term of (9) incorporates the fact that legs deemed
to be in contact should provide consistent estimates for the
same base velocity. The last term takes into consideration the
effect of impact forces, which propagate throughout the system
and affect also legs that are already in contact (see Fig. 6).

In Fig. 7 we show an example of the adaptive covariance
described in this section, on data from a trot log. We compare
the raw (i.e., not yet processed by the EKF) base velocity
computed from (8) and the ground truth, on the x-axis. The
velocity is colored proportionally to the standard deviation
σx(k) extracted from (9). Note the change of color in the
proximity of feet contact transitions and impacts, where the
standard deviation is increased from 0.02 m/s up to 0.13 m/s.
During these intervals, the confidence in the velocity updates
processed by the EKF is reduced.

VI. EXPERIMENTS

A. Experimental Platform

The experimental results were obtained on the torque
controlled Hydraulic Quadruped robot (HyQ) [4] which is
capable of multiple locomotion gaits. The system is 1 m long,
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Figure 7: Raw velocity on x-axis compared to ground truth
during a trot motion. The standard deviation associated to the
velocity samples is shown with a color scale, ranging from
dark blue (0.03 m/s to dark red 0.13 m/s).

Sensor Type Model Accuracy Rate
IMU Microstrain GX3-25 0.5–2.0◦ 500Hz
Rel. Encoders Avago AEDA3300 BE1 0.0045◦ 250Hz
Abs. Encoders ASM AS5045 0.0879◦ 250Hz
Force Burster 8417 ±25N 250Hz

Table II: HyQ Sensor specifications.

weighs approximately 85 kg and contains 12 actuated revolute
joints with a rotational range of 120◦ each, with a peak torque
of 145 N m at a hydraulic pressure of 16 MPa. A brief summary
of the sensors on the robot, including accuracy and sampling
frequency, is provided in Table II. All the sensor inputs except
the ones from the IMU are generated at 1 kHz within a real-
time environment, sampled at 250 Hz and transmitted as LCM
messages to the filter. The IMU is directly accessed in user-
space via USB at 500 Hz and synchronized passively [23].

B. Dataset

The dataset we recorded for the experimental tests is
summarized in Table III. It consists of seven runs, three
of a trotting gait and four of a crawling gait, for a total
duration of 62 min. The total distance traveled was computed
by path integral of the robot trajectory from Vicon position
measurements at 100 Hz. The velocity signals are computed
by numerical differentiation and de-noised through a delay-
compensated second order Savitzky-Golay filter [24], which
was preferred over a moving average because of its smaller
signal distortion.

Due to the limited size of our motion capture space, these
gaits were performed by repeating forward-backward motions
within a 2.5× 1.2 m2 area. Figs. 8a and 8b depict a typical
trajectory (projected onto the xy-plane) of a crawl and a trot
run, respectively.

C. Performance evaluation

Fig. 9 compares, for a forward trot, the velocity estimates
before filtering (top plot), after filtering (middle plot) and
the ground truth (bottom plot). Despite several spikes due
to impacts, the filtered output is smooth, thanks to the
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(b) Trot trajectory

Figure 8: Typical crawl and trot base trajectories, projected on
the xy-plane. Color changes from dark blue to light yellow
indicate the evolution of time. Starting and ending positions
are indicated by a blue and a yellow dot, respectively.

Name Gait Duration Distance
trot 1 trot 606 s 38.55m
trot 2 trot 608 s 40.85m
trot 3 trot 609 s 48.96m
walk 1 crawl 395 s 8.05m
walk 2 crawl 345 s 6.94m
walk 3 crawl 600 s 10.31m
walk 4 crawl 600 s 10.89m

Table III: Summary of the dataset.

adaptive covariance algorithm presented in Section V, which
automatically reduces the confidence on the kinematics filter
updates during stance transitions.

In Figs. 10 and 11 we show the average performance on
the dataset presented in Section VI-B, of the trot and crawl
logs, for each coordinate. In Fig. 10 we evaluate the Drift
per Distance Traveled (DDT), i.e., the mean position drift
divided by the total distance covered by the robot. Fig. 11
shows the Root Mean Square error (RMS) of the velocity
estimates. We compared the proposed algorithm (yellow bars)
with a simple method based on a fixed threshold of 50 N on
the normal component of the GRF for contact detection, and
static covariance for the velocity updates (dark blue bars).

Although the two gaits we used for our tests differ consid-
erably, for both we noticed a performance degradation on the
y-axis, an issue we attribute to structural flexibility of the leg
(see Section VII for more details).

1) Trot logs: For the trotting logs (left-hand sides of Figs.
10 and 11), we demonstrate that properly handling impacts
improves significantly the performance both in position and
velocity. We have achieved this in the x and the z axes,
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Figure 10: Drift per Distance Traveled (DDT) for trot and
crawl logs. Left blue bars show the baseline method, right
yellow bars show our approach.

where the error in position is more than halved with respect
to the simple method (dark blue bars). In the y axis the
same performance improvement was not achieved due to limb
flexibility, as explained in Section VII.

2) Crawling: The plots on the right-hand side of Figs. 10
and 11 show the two main performance indicators for the
crawling logs. As expected, given the sporadic occurrence of
impacts, the improvement provided by our proposed approach
is limited. We can notice how the error on the z component
is lower than for the trot because of the continuous support
typical for this gait.

VII. DISCUSSION

A. Leg Flexibility Under Load

Large robots like HyQ can exhibit undesired leg compliance
and flexibility when their feet strike the ground, even at slow
speeds. Typical forces at the feet are in the range of 200–600 N
while crawling or trotting, and beyond 1200 N while bounding.
These forces are partially absorbed by the leg structure.
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Figure 11: Velocity Root Mean Square (RMS) error for trot
and crawl logs. Left blue bars show the baseline method, right
yellow bars show our approach.
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Figure 12: Joint Load vs. Position plots for the four legs
under loading/unloading produced at each foot on the y-axis.
Hysteresis indicates non-linear elasticity and energy dissipation
between loading and unloading phases.

A dedicated experiment allowed us to identify that the major
cause of performance degradation along the y-axis (shown
in Figs. 10 and 11) is the intrinsic flexibility of the legs on
the coronal plane. With the robot base fixed in place and the
feet firmly in contact with the ground, we controlled the legs
to produce lateral forces at the feet along the y-axis using a
triangular wave with period of 20 s and intensity of 70 N. Fig.
12 shows the relationship between position and applied torque
at Hip Abduction Adduction (HAA) joints (i.e., joints rotating
around an axis passing through the hip and aligned with the
x-axis). It highlights the nonlinearity of the leg structure and
the hysteresis between loading and unloading phases. Given
the configuration of the experiment, the joint motion should
have been very small, but a range up to 0.24 rad is recorded
(see widths of the graphs in Fig. 12). This indicates significant
structural flexibility.

Methods to model this nonlinearity so as to achieve the
same state estimation performance for the y-axis as obtained
for the x and z axes is ongoing research, as well as testing
the approach on the second version of HyQ, called HyQ2Max
[25], which is expected to show a better structural behavior.

B. Limitations

Besides the mechanical structure of the robot, limitations
lie in: a) the training of the contact classifier and b) terrain
properties. A specific training procedure was required for each
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gait, and would be needed for every new gait or loading
condition for the legs. This could be avoided by performing
unsupervised learning and active exploration of terrain frictional
properties, but at the current stage only tests in controlled single
leg setups have been reported in literature [20]. Alternatively,
simulation could provide a set of parameters for a sufficient
number of cases to generalize the applicability of the approach.

Concerning the terrain properties, in order to correctly
estimate contacts, GRFs need to be projected on the local
plane where the foot is experiencing the contact. Although this
can be done in first approximation by fitting a plane through
the current or recent stance feet positions, more sophisticated
methods (using exteroception) are required when the terrain
inclination changes significantly within the support region.
Other terrain properties, like elasticity or plasticity, are not
explicitly accounted for, but a contact model for specific terrain
classes can be learned through the proposed approach.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a novel probabilistic approach
to contact estimation for state estimation of dynamic legged
robots without contact sensing. The approach uses a logistic
classifier to learn the GRF threshold which has the highest
probability so as to minimize the base velocity error. Addi-
tionally, we presented an algorithm which merges the velocity
contributions of the individual legs, using their probabilistic
contact information, to create the main measurement update
for our combined filter [11].

We have demonstrated that the combination of these two
algorithms can double the performance in position and velocity,
compared to standard methods, and can compensate for a lack
of dedicated contact sensors at the feet.

The presented methodology was developed and extensively
tested with more than one hour of testing data from a
quadrupedal robotic platform without contact sensors, in both
quasi-static and dynamic locomotion regimes.

Our future work includes the integration of exteroceptive
modules to further improve the performance during field trials.
It would also be interesting to extend our approach to robots
equipped with contact sensors so as to provide redundancy in
case of sensor noise or damage.
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