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Foothold Evaluation Criterion for Dynamic Transition Feasibility for
Quadruped Robots

Luca Clemente1,2, Octavio Villarreal1, Angelo Bratta1, Michele Focchi1, Victor Barasuol1,
Giovanni Gerardo Muscolo3, and Claudio Semini1

Abstract— To traverse complex scenarios reliably a legged
robot needs to move its base aided by the ground reaction
forces, which can only be generated by the legs that are
momentarily in contact with the ground. A proper selection
of footholds is crucial for maintaining balance. In this paper,
we propose a foothold evaluation criterion that considers the
transition feasibility for both linear and angular dynamics to
overcome complex scenarios. We devise convex and nonlinear
formulations as a direct extension of [1] in a receding-horizon
fashion to grant dynamic feasibility for future behaviours. The
criterion is integrated with a Vision-based Foothold Adaptation
(VFA) strategy that takes into account the robot kinematics, leg
collisions and terrain morphology. We verify the validity of the
selected footholds and the generated trajectories in simulation
and experiments with the 90kg quadruped robot HyQ.

I. INTRODUCTION

Legged robots are versatile machines that make use
of their sensors to react, adapt and navigate in complex
scenarios. To move, the robot needs to choose a trajectory for
the motion of its base, and decide a feasible contact sequence
for its feet to follow the base. Motions and contacts need to
be both dynamically (e.g., inside the torque limits of the
robot’s actuators or not falling) and kinematically feasible
(e.g., inside the joints’ range of motion).

Optimization-based techniques for legged robot
whole-body control [2], [3], [4], [5] have become prevalent
in locomotion, allowing robots to deal with complex terrain.
Furthermore, some approaches explicitly include terrain
information into the formulation of the locomotion problem
[6], [7], [8]. This is possible thanks to advances in state
estimation and mapping [9], [10], [11], as well as the
algorithmic developments such as the use of automatic
differentiation [12] and differential dynamic programming
[13], [14]. However, in many cases the introduction of the
terrain is not trivial, especially if kinematic and dynamic
feasibility are considered. We categorize two main ways
to tackle the problem: (a) coupled approaches, in which
the base trajectory and footholds are optimized jointly,
and (b) decoupled approaches, in which the footholds are
selected first and then the trajectory is optimized to follow
the footholds.
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Fig. 1: Snapshots of the HyQ robot climbing stair scenario using the
proposed foothold evaluation criterion for dynamic transition feasibility.

The main advantage of coupled approaches is that the
optimized footholds and trajectories are guaranteed to
be realizable by the robot since kinematic and dynamic
constraints can be enforced. The main disadvantage is that
solving this problem involves a large number of variables
and the nature of the problem is in general nonlinear with a
large combinatorial space.

Decoupled approaches split the problem in two. The
foothold selection can be done heuristically or by solving a
less computationally expensive optimization problem. This
releases computational load from the main optimization.
The disadvantage is that it is difficult to guarantee that the
selected footholds yield dynamically feasible trajectory for
the robot’s base.

In this paper we try to reach a compromise between these
two approaches. We devise a strategy to evaluate if a foothold
yields a dynamic transition feasibility for the duration of
the stance phase of a leg, coupled with a vision-based
foothold selection that reduces the chance of reaching
kinematic limits and collisions. We based the evaluation on
the Continuous Convex Resolution of Centroidal Dynamic
Trajectories (C-CROC), presented in [1]. The method looks
for the existence of feasible trajectories for the center of mass
(CoM) (parameterized as Bézier curves) according to the
single rigid body dynamics model (SRBDM). Additionally,
we implement the method presented in [1] to account for
the body angular dynamics in a convex (based on the
insight provided in [1]) and a nonlinear fashion. We propose
and compare the two different formulations to drop the
constant angular momentum assumption: one that keeps the
convexity of the optimization problem, and a second one that
includes the angular dynamics in a nonlinear fashion. We
also integrate the Vision-based Foothold Adaptation (VFA)
presented in [15] to discard footholds that may lead to



collisions or kinematically unreachable locations.
The main contributions are:
1) A dynamic transition feasibility foothold evaluation

that considers linear and angular dynamics of
the SRBDM. We implemented in simulation and
experiments two formulations that consider CoM
motion and base orientation; a convex one (based on
[1]) that includes angular dynamics without breaking
convexity and a novel nonlinear approach.

2) A comparison between a convex and a nonlinear
formulation for different scenarios in terms of quality
of the generated trajectories.

The paper is organized as follows: Section II summarizes
the relevant work; Section III details the formulation of the
dynamic transition feasibility and highlights the differences
with respect to [1]; in Section IV the two formulations
of the optimization problem are presented; simulation and
experimental results are presented in Section V, and in
Section VI we address conclusions and future work.

II. RELATED WORK

We focus on legged locomotion strategies that consider
variations on the terrain, making a distinction between
coupled and decoupled approaches. Furthermore, we place
the work here presented as an intermediate solution between
both of these categories.

Coupled approaches control the motion of the robot
by formulating a single optimal control problem. This
means that the optimization is posed to find a reference
(position and orientation) for the body, contact locations
(footholds), and inputs (ground reaction forces (GRFs),
torques), for a defined planning horizon. One of the most
remarkable examples is the one proposed by Winkler
et al. [7] which makes the problem more tractable by
modeling the robot by means of the SRBDM, although
the optimization is still a nonlinear program (NLP). In
this case, not only reference trajectories for the body and
GRFs are optimized, but also gait timings are included as
decision variables. The richness of the optimized motions is
demonstrated in complex scenarios. Similar approaches to
this were presented previously by solving the optimization
problem via sequential linear quadratic (SLQ) [17] and
fixing the gait sequence to only optimize timing, posing the
problem as a switched system [18]. A different approach
is taken by Aceituno et al. [6], where the proposed
algorithm computes gait pattern, contact sequence, and CoM
trajectories as an outcome of a mixed-integer convex program
(MICP) on several convex surfaces. All of the previously
mentioned coupled approaches showcase the advantages and
the versatility of the generated motions by optimizing inputs,
body references and footholds together. However, all of these
suffer from large computational times and risk getting stuck
in local minima.

Decoupled approaches outsource the foothold selection
to an external module. This reliefs computational cost
from the optimization, since the foothold positions have
a nonlinear relationship with the CoM position [19]. A

method that paved the way to account for the terrain was
proposed by Kalakrishnan et al. [20], where terrain was
discretized considering templates corresponding to portions
of the map in the vicinity of a nominal landing position.
A linear regression method was used to approximate the
selection of an expert user to adapt the landing location
of the feet within the template and the motion of the
base was designed to follow these footholds. Inspired by
this, methods have resourced to template-based foothold
selection using learning-based [8], [15], [24], [21], [22],
[23] or fast optimization [25], [26] strategies. In this way
the optimization problem becomes lighter. The main caveat
when selecting footholds prior to the motion is that in general
only geometric constraints are considered such as collisions,
terrain roughness or kinematic limits. This situation might
lead to postures in which the robot is not able to continue
the motion due to dynamic infeasibility (e.g., the motion is
not achievable due to actuation limits).

Fernbach et al. [1] presented a method to evaluate the
transition feasibility of a motion with contact switches. The
method relies on the parameterization of the trajectory of
the CoM as a Bézier curve, which allows to pose the
problem as a quadratic program. The method makes use
of the SRBDM. Tsounis et al. [27] used this method to
learn dynamic transition feasibility of foothold and devised
a learning-based locomotion strategy to generate locomotion
in complex scenarios with variable terrain. In a similar line,
the authors of [28] trained two coupled neural networks
to evaluate the feasibility of the contacts and generate the
motion trajectory based on the MICP solved in [6].

We extend the work of [1] to evaluate transition feasibility
considering variations of the angular dynamics with both
convex and nonlinear formulations, and on the other hand,
we use the found trajectory of the CoM and base orientation
as reference to guide the base to provide a consistent motion
with the transition feasibility metric.

III. FORMULATION OF CONTACT TRANSITION
FEASIBILITY WITH ANGULAR DYNAMICS

We address the evaluation of dynamic trajectories for the
duration of the stance phase of a specific leg. In other words,
we want to assert the existence of feasible trajectories in
a receding horizon fashion. We generate these trajectories
according to the SRBDM considering as a basis the work of
[1] and account for the angular dynamics in the optimization.
It is worth noticing that in [1], a theoretical implementation
of L̇ 6= 0 is discussed. We propose in the next sections two
ways to address this consideration.

We follow the same argument given in [1], which is to
connect two different sets of states in space and time, we
include angular quantities to the set of states. Thus, a state is
defined as x(t) = [c(t) ċ(t) c̈(t) Θ(t) Θ̇(t) Θ̈(t)]ᵀ ∈ R6×3,
where c is the position of the CoM and Θ is the orientation
of the base, expressed in terms of roll (φ), pitch (γ) and yaw
(ψ) angles.

A feasible dynamic transition subject to dynamics
constraints that connects two sets of states is defined as
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Fig. 2: Example of sub-horizon partitioning. The CoM trajectory connecting
the initial (x0) and the final (xf ) states is partitioned into multiple
sub-horizons. Each of them is labeled according to an increasing index
i and is subject to a different set of constraints.

f(t) : x(t0)→ x(tf ), tf > t0, where t0 and tf correspond
to the initial and final states respectively. We employ
continuously differentiable, parametric curves to describe
position and orientation (similarly to [1]) to reduce the
number of decision variables.

A. Time horizon description

We choose to express the considered time horizon in
terms of contact switches to have a general description,
applicable to any type of gait. A contact switch happens
whenever any foot makes or breaks a contact with the
ground. We define a contact switch horizon (CSH) as the
number of non-simultaneous contact switches occurring in
the considered period T = tf−t0. Once a desired evaluation
time horizon is chosen, we compute the CSH assuming a
periodic gait. A similar approach has been adopted in [1],
where the trajectory is split at contact switches, to consider
transitions between different phases.

For the sake of completeness, we provide a brief
description of the method presented in [1] pointing out the
main differences with respect to what is presented here.
In [1], Bézier curves are adopted to describe the CoM
trajectory. They are curves parametrized by control points.
Thanks to the properties of Bézier curves, one can ensure
that the generated continuous trajectories remain within the
constraints. In [1], it is mentioned that the number of
contact switches can be increased arbitrarily. However, in our
experience, we faced feasibility problems since the method
generates a single Bézier curve for the entire horizon (with
multiple contact switches) with only one degree of freedom
(a single free moving control point). The solution space of
feasible trajectories is thus reduced as the number of contact
switches increases, since the number of constraints increases.
To prevent such reduction, we adopt a CSH partitioning
method (sub-horizon, Fig. 2). We choose to limit each
sub-horizon to two contact switches to prevent the reduction
of the solution space. Such limit is specifically chosen to
connect two sub-sequent stance phases, i.e., lift-off and
touchdown of the same leg. Then, to evaluate an arbitrarily
large CSH, we concatenate multiple sub-horizons by means
of continuity constraints. This leads to a set of parametric
curves, one curve for each sub-horizon, chained together
at way-points (connection points between sub-curves) to
evaluate a longer CSH.

We adopt the SRBDM to assert dynamic transition
feasibility:[

m(c̈− g)

mc× (c̈− g) + L̇

]
︸ ︷︷ ︸

w

=

[
I3 . . . I3

[p1]× . . . [pj ]×

]
︸ ︷︷ ︸

A

f (1)

where g is the gravity vector, I3 ∈ R3×3 is the identity
matrix, f = [f1 . . . fj ]

ᵀ, fj ∈ R3 is the ground reaction
force (GRF) associated to the jth at point pj ∈ R3 expressed
in the world frame and m is the robot’s mass. We express
L̇ as a function of the angular quantities (orientation, rate
and acceleration) by analytically differentiating L = IWω,
where ω is angular velocity of the rigid body expressed in
the CoM frame. One can express ω in terms of Θ̇ making
use of the following mapping:

ω = T(γ, ψ)Θ̇ (2)

where the matrix T is the matrix that maps angular velocity
in the world frame to rotation rates. The derivative of L is
given by:

L̇ = TΘ̇× IWTΘ̇︸ ︷︷ ︸
İWω

+ IW · (ṪΘ̇ + TΘ̈)︸ ︷︷ ︸
IWω̇

(3)

Note that (3) is a highly nonlinear expression that depends
on Θ and its derivatives.

In the following section we describe the two proposed
formulations (convex and nonlinear) to solve the dynamic
transition feasibility problem while accounting for the rate
of change of angular momentum L̇. The first formulation
aims at preserving the convexity of the problem, thus
making it computationally efficient and not prone to local
minima, at the cost of a more limited solution space. The
second formulation offers a wider solution space with more
computational cost.

IV. SOLUTION OF CONTACT TRANSITION FEASIBILITY
WITH ANGULAR DYNAMICS

In this section, we describe two formulations to solve
the transition feasibility problem, namely the convex and
the nonlinear approaches. In the convex approach, we
overcome the nonconvexity of the L̇ analytical expression
by decoupling the linear and the angular parts and including
L̇ as an optimization variable. This formulation yields a more
limited solution space with respect to the nonlinear one. This
is because the intermediate points in the CSH are fixed,
whereas in the nonlinear case we allow variations of the
intermediate and final desired states, as shown in Fig. 3. To
do so (3) as a constraint in function of angular quantities
(Θ, Θ̇, Θ̈) which are now included as decision variables,
leading to smoother and more versatile motions.

To produce consistent solutions, we include boundary
constraints in our formulation. We define a pair of initial and
final states associated to an ith sub-horizon x0, i, xf, i (Fig.
2). x0, i = xf, i−1 is the definition of a continuous function.
We can write this relationship for every sub-horizon as:

[
x0, 2 x0, 3 . . . x0, i

]ᵀ
=
[
xf, 1 xf, 2 . . . xf, i−1

]ᵀ
X0 = Xf (4)

This relationship is implicitly valid for all the sub-horizons
in the convex formulation because of predefined states, but
in the nonlinear case it has to be explicitly enforced.
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Fig. 3: Example of convex (left) and nonlinear (right) CoM linear
trajectories. The CSH is divided in different parts with their own set of
constraints. The initial (c0), final (cf ) and intermediate positions have to
be defined a priori in the convex case, while in the nonlinear one they
are optimized. The solid black circles are the computed states, while the
blue dashed circles are the desired states before the corrective action of the
nonlinear optimization.

A. Convex formulation

For each sub-horizon we parameterize the CoM trajectory
with an 8th order Bézier curve to define the trajectory up
to its third analytical derivative. A generic nth order Bézier
curve has (n+1) control points and each can be associated to
a different state quantity (position, velocity and acceleration).
We then leave a free control point per each sub-curve. The
collected points are used as optimization variables (ρ) and
the system dynamics are described as[

m(c̈(ρ)− g)

mc(ρ)× (c̈(ρ)− g) + L̇

]
︸ ︷︷ ︸

w(ρ)

=

[
I3 . . . I3

[p1]× . . . [pj ]×

]
︸ ︷︷ ︸

A

f

w(ρ) = Af (5)

where ρ ∈ Ri×3 is the collection of free control points
associated to each sub-horizon (Fig. 2). Although the term
c(ρ)×c̈(ρ) is a nonlinear term, it can be shown that it can be
formulated as a linear constraint by employing Bézier curves
to describe the CoM trajectory c [1].

To include the angular momentum rate L̇ preserving
convexity, we define L̇ as an optimization variable and
compute a desired L̇ref , which is then tracked by including
the term ‖ L̇ − L̇ref ‖22 in the cost function. To compute
L̇ref , we define a desired angular behaviour of the robot by
designing a trajectory for the angular variables (Θ, Θ̇, Θ̈)
and then computing the angular momentum rate with the full
expression (3). In the convex case, we decide to describe the
trajectory of the desired Θ as a Bézier curve, to keep a finite
number of parameters. We then formulate the optimization
problem as:

min
ρ,f ,L̇

N ·i∑
k=0

‖ L̇k − L̇ref, k ‖22 + ‖ c̈k(ρi) ‖22

subject to wk(ρi) = Akfk (6a)
0 ≤ fz, k ≤ fmax (6b)
|fx, k| ≤ µfz, k, |fy, k| ≤ µfz, k (6c)

where fmax is an upper limit for the z direction of the force
that the robot can exert on the ground. The tracking cost for
the desired angular momentum rate is given by ‖ L̇−L̇ref ‖22
and we minimize the accelerations (‖ c̈(ρ) ‖22) to incentivize
smoother trajectories. This first method of including L̇ 6= 0
differs from [1] since we are not directly including L̇ as a
parametric curve, but rather expressing L̇ as a function of a
desired angular trajectory.

B. Nonlinear formulation

We present an alternative formulation to the one presented
in Section IV-A. The main difference is that herein we aim
to directly optimize the trajectories of the angular quantities
along the CSH, instead of using them as parameters to
generate and track a desired L̇. One of the main advantages
of this approach is that this method does not require to
set extra constraints to maintain physical consistency. In
particular we introduced slack variables on the position and
acceleration of the intermediate and final states, keeping
fixed the velocity to reach the commanded velocity at
each way-point (Fig. 3). This makes the problem nonlinear
due to the dependency of L̇ with respect to the angular
position, velocity and acceleration. We then define a set of
enhanced states as x = xd + xv , composed by a desired
xd =

[
cd ċd c̈d Θd Θ̇d Θ̈d

]ᵀ
and a variable

xv =
[
∆c 0 ∆c̈ 0 0 0

]ᵀ
part, where ∆c ∈ R3 and

∆c̈v ∈ R3 are decision variables.
We consider velocity and position/orientation variables as

commanded quantities. Although they are not enhanced, they
are still allowed to vary in between user-defined states in
order to reach the designated value at each way-point while
fulfilling the imposed constraints. The optimization problem
is then built as follows:

min
ρ,f ,∆c,∆c̈,Θ,Θ̇,Θ̈

N ·i∑
k=0

‖ L̇k ‖22 + ‖ c̈k(ρi, ∆c̈i) ‖22 (7a)

subject to wk(ρi,∆ci,∆c̈i) = Akfk (7b)

L̇k = L̇f (Θk, Θ̇k, Θ̈k) (7c)
X0 = Xf (7d)
0 ≤ fz, k ≤ fmax (7e)
|fx, k| ≤ µfz, k, |fy, k| ≤ µfz, k (7f)

where the cost function is similar to the one adopted in
the convex formulation. The main difference consists in
‖ L̇k ‖22, which is a cost term that aims at reducing the
angular variation rather than tracking a reference behavior,
helping to incentivize less aggressive motions for the angular
quantities. We then consider (3) as a constraint dependent in
the angular quantities defined as L̇f (Θ, Θ̇, Θ̈) and account
for these quantities as decision variables. This formulation is
computationally more expensive than the convex formulation
and it is prone to local minima, but the output trajectories
are qualitatively better compared to the convex formulation
solutions.

V. RESULTS

In this section we evaluate the proposed evaluation
criterion and the two proposed formulations. We show an
example of an evaluation of a series of contact locations for
foothold selection and verify the feasibility of the generated
trajectories in a stair climbing scenario. Additional results on
flat terrain are reported in the accompanying video.



Fig. 4: Locomotion control pipeline used to implement the proposed foothold evaluation strategies in both experiments and simulations.

Fig. 5: Comparison of VFA (terrain roughness, kinematic reachability,
collisions) versus dynamic foothold evaluation for the RF foot during stair
climbing. In the case of the VFA evaluation, green pixels indicate safe
landing locations and black unsafe. For the dynamic evaluation black pixels
are dynamically infeasible footholds and we show the cost from the solution
of (7a) indicated by the colorbar.

A. Implementation details

To verify the feasiblity of the generated trajectories
provided by the foothold evaluation, we adopt the control
scheme shown in Fig. 4. The Foothold Reference Generator
(FRG) is in charge of generating the foothold positions with
respect to the actual CoM’s states and foothold positions
(xact, pact), according to the user commanded velocity. The
reference foothold positions are evaluated with the VFA [15],
which discards unsuitable footholds according to geometric
constraints and sends the adapted foothold positions p∗ ∈
Rnc×3 to both the Dynamic Optimizer and IK blocks, for
all the contact points nc. The Dynamic Optimizer block
encapsulates the methods presented in this paper. Given
the set of the actual states, the adapted footholds and the
user command, it generates the state references that will
be provided to both the inverse kinematics (IK) block and
the whole-body controller (WBC) [29]. The IK computes
the joint positions and velocities, providing the whole-body
control (WBC) with a set of joint references for the swing
leg trajectories. The WBC computes the required GRFs to
track the reference quantities, transforming them into joint
torques. They are then commanded to the low-level control,
which is in charge of performing the joint torque control.

The convex formulation makes use of the CVXPY
modeling language [30], [31], with ECOS [32] as solver.
The nonlinear approach relies on CasADi [33], acting as
an interface with IPOPT [34]. We evaluated our methods in
simulation and experiments. The simulations were performed
on a i7-8700 CPU using Gazebo [35]. In the experimental
setup, we execute the optimization on an off-board computer.
The generated reference is sent to the onboard Control
computer via ROS messages [36]. In the case of the
simulations, we assume no computational time constraints
to visualize the behavior of the robot while executing the

Fig. 6: Comparison between angular rates (pitch rate) in simulated stairs
scenario. The solid blue line is the pitch rate traversing the scenario
considering L̇ = 0, while the solid red line is the angular velocity achieved
using our nonlinear approach, where L̇ 6= 0.

generated trajectories, whereas in the experiment we perform
a new optimization at each step due to the time constraints
of the approach.

B. Foothold Dynamic Feasibility Evaluation

We evaluate the dynamic transition feasiblity on a stair
climbing scenario. We compute a set of nominal future
foothold locations assuming a periodic gait during one
gait cycle. We then evaluate the neighboring area of
the nominal footholds to avoid reaching kinematic limits,
collisions or unsafe landing locations using the VFA [15].
Subsequently, we check if there exists a trajectory that solves
the problem formulated in (7a) for every candidate foothold.
If the solution exists, the foothold is deemed dynamically
feasible. Additionally we compute a cost map to visualize
the ”quality” of the solution provided by each candidate
foothold. Fig. 5 shows an example of evaluated candidate
footholds for the RF leg during a crawl while climbing
stairs. Each pixel in the figure represents a candidate landing
location. It can be seen that in the dynamic evaluation (Fig. 5
on the right) the footholds located on the top right corner of
the area yield a higher cost, and some footholds deemed
feasible using the VFA (Fig. 5 on the left) are discarded
since no feasible trajectories to solve (7a) was found.

C. Simulations

Effect of time varying angular momentum.
We highlight the importance of considering L̇ 6= 0. Fig. 6

shows a comparison of the pitch velocity for the case where
L̇ = 0 and L̇ 6= 0. Both of these while climbing stairs using
the nonlinear formulation. It can be noted that in the case
of L̇ = 0 the peaks in velocity are considerably larger. The
same simulation applying the convex version of the approach
yielded similar results, which are omitted for the sake of
brevity. These results highlight the importance of the angular
dynamics when dealing with rough terrain.



Comparison between convex and nonlinear formulation.
Fig. 7 shows a comparison of the executed trajectories

and their reference for both the convex and nonlinear
formulation in a stair climbing scenario. Although both
approaches are able to go up and down the stairs, looking
closely at the generated trajectory in the xy plane, one
can see that the nonlinear trajectory yields less aggressive
changes of direction compared to its convex counterpart.
Looking at the velocity in the y direction it can be seen
that the amplitude of the variation of the reference and
the executed velocity is always larger in the case of the
convex formulation with respect to the nonlinear one. We
also provide a comparison between the two approaches on
flat terrain in the accompanying video to highlight that even
on a simple scenario the nonlinear formulation provides
smoother trajectories with less peaks in velocity. Regarding
computation times, the convex took 2.90s for the stair
scenario and 2.96s for the flat scenario in average over
multiple trials to solve the optimization problem, whereas
the nonlinear formulation takes 12.78s for the stair scenario
and 8.0s for the flat scenario.

D. Experiments

In this section we evaluate the hardware feasibility of
the optimized trajectories on the quadruped robot HyQ. We
decided to test the trajectory generated by the nonlinear
formulation since it is the one that proved better in terms
of generated trajectories. The scenario tested is shown in the
snapshots of Fig. 1. It consists of climbing and descending
two steps of 8cm each. Fig. 8 shows the tracking of the CoM
trajectory on the xy plane and the pitch of the robot. As it
can be seen, the robot is able to cross the scenario with a
low tracking error in both position and orientation. As in the
case of the simulation, the accompanying video shows an
experiment of the robot executing the optimized trajectories
on flat terrain and stairs.

Fig. 7: Simulation on stairs. The dashed and solid blue lines are the
nonlinear reference and tracking, respectively. The dashed and solid red
lines are the convex reference and tracking, respectively. Pitch reference
and tracking (third row) follow the same color code as linear quantities. In
the last row an example of feet trajectories is shown, where LF:Left Front,
RF:Right Front, LH:Left Hind, and RH:Right Hind.

Fig. 8: Stairs experiment with nonlinear approach. For the top two plots,
dashed lines are reference and solid lines are tracking signal. The top plot
shows the CoM trajectory tracking on the xy plane and the middle plot
shows the pitch tracking. On the last row we show the feet trajectories,
where LF:Left Front, RF:Right Front, LH:Left Hind, and RH:Right Hind.

VI. CONCLUSIONS

We presented a foothold evaluation criterion to assess
the existence of dynamically feasible trajectories for legged
locomotion that considers both linear and angular dynamics.
We extended the method in [1] by formulating the problem
allowing variations in the angular momentum along the
trajectory (i.e., L̇ 6= 0) as a function of a desired angular
trajectory. We presented two different formulations (a convex
and a nonlinear) both able to generate feasible CoM
trajectories. We showed that the convex formulation is faster
to compute (4 times in average faster than the nonlinear) and
not subject to local minima, while its nonlinear counterpart
is able to generate smoother trajectories.

When dealing with less dynamic gaits, such as crawl, the
robot can track any desired linear and angular behaviour.
But when more dynamic gaits are considered (e.g., trot),
the optimization problem might not be able to find a
solution due to the inability to track linear and angular
quantities simultaneously because of underactuation. Not
being able to forecast how close the solution will be
to the reference L̇ref in the convex formulation, may
lead to unforeseen consequences in terms of tracking and
trajectory generation. This would require to bound L̇ between
physically meaningful limits (e.g. the maximum moment that
the robot can counteract), which is out of the scope of this
paper.A key limitation that affects future implementations of
the convex formulation is the need of designing constraints to
limit the value L̇ to be physically achievable given actuators
limits. In the case of both approaches, the computation times
do not allow them to be used continuously to assess footholds
and provide CoM reference online.

As future work we aim to extend the proposed
formulations to include more dynamic gaits, such as trot, and
to design a learning algorithm that is able to approximate the
proposed formulations, reducing computational burden.
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