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Abstract

This paper considers the torque control problem for robots with flex-
ible joints driven by electrical actuators. It is shown that the achievable
closed loop tracking bandwidth using PI torque controllers may be lim-
ited due to transmission zeros introduced by the load dynamics. This
limitation is overcome by using positive feedback from the load motion in
unison with PI torque controllers. The positive feedback is given in terms
of load velocity, acceleration and jerk. Stability conditions for designing
decentralized PI torque controllers are derived in terms of Routh-Hurwitz
criteria. Disturbance rejection properties of the closed system are charac-
terized and an analysis is carried out investigating the use of approximate
positive feedback by omitting acceleration and/or jerk signals. The results
of this paper are illustrated for a two DoF system. Experimental results
for a one DoF system are also included.

1 Introduction

Enhancing the bandwidth of torque tracking is one of the challenges in building
high performance legged robots. The problem of increasing the torque band-
width cannot be resolved by using faster actuators but it is related to the load
motion rather than the actuator dynamics. This issue becomes more critical
when the load has little friction, i.e. good bearings are used at the point where
the load is attached to the transmission. In the robotics community, many pub-
lications on torque control have disregarded the load dynamics from the analysis
[1, 2, 3] and this problem has been overlooked.
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However bandwidth limitations in force control problems using hydraulic
actuators have been reported in civil and automotive engineering. In [4] the in-
teraction between the load motion and the actuator was shown for a hydraulic
actuator. It was shown that a natural velocity feedback interaction path exists
between the load (in that case a civil structure) and the actuator. Moreover,
using a linearized model it was shown that the poles of the structure become
the zeros of the open loop force transfer function. As a result, if the structure
is lightly damped, the actuators will be unable to apply a force at the natural
frequency of the structure, regardless of actuator dynamics speed (bandwidth).
In [4] it was shown that the problem is not due to the actuator dynamics but due
to the structure (load) dynamics. In [5], experimental results of a car suspen-
sion test rig were reported where a conventional PID controller was incapable
of producing appropriate force tracking and resulted in a significant phase lag
at frequencies higher than 1 Hz. The car test rig used very fast servo-valve
dynamics to improve the force tracking performance but the problem was not
resolved. In [6], the interaction between the hydraulic actuator and the struc-
ture is discussed and an intuitive positive velocity feedback scheme is proposed
to compensate for the load motion by negating the effect of the natural velocity
feedback. Despite simulation studies and experimental results, further analysis
details on the effect of adding the positive feedback loop were not presented.
Later in [7], several improvements were made to this method including the addi-
tion of phase adjustment to the positive velocity feedback. Also the magnitude
of the positive velocity feedback was underestimated to avoid potential insta-
bility. In [8] motor torque control was considered using a disturbance observer
while no load was attached to the motor. In this work we are interested in torque
control at the joint and a system where the inertia is coupled via a compliant
joint. In [9], the authors showed how motion compensation can be applied to
electrically and hydraulically actuated joints of a quadruped robot called HyQ
[10]. In [11], positive torque feedback was used to improve the problem of joint
tracking, but it does not report the load motion problem. It was reported
that positive joint torque feedback can compensate the detrimental effects of
load torques on position tracking performance. However, with non-ideal torque
sources, simple unity gain positive torque feedback can actually deteriorate the
performance, or even result in instability.

Various complex control designs can be used for torque control. For instance,
in [12] a combination of model based computed torque control, a state feedback
and a nonlinear H∞ was applied to a six DoF robot manipulator with joint
flexibility. A high performance torque control method was implemented on a
light weight robot arm in [13]. These methods need a good model and are
implemented in centralized architectures which places additional requirements
on real-time communication among various Degrees of Freedom (DoF).

In practice, the use of decentralized PI controllers is widespread in robotics.
PI controllers are easy to tune but have limitations in terms of tracking band-
width and disturbance rejection. The main idea in this paper is to use de-
centralized controllers by mitigating the existing limitations using quantified
positive feedback. The source of these limitations will be fully characterized for
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multi-dof systems in terms of multi-variable zeros.
The main contributions of this paper are the following: The role of positive

feedback is studied for mechanical systems driven with electric motors. It is
shown that simple PI controllers can be used together with positive feedback
to significantly improve torque tracking performance. Stability conditions for
designing decentralized PI torque controllers, when the positive feedback is ap-
plied, are presented in terms of Routh-Hurwitz criteria. A two DoF case study
is used to illustrate the theory via root locus analysis and numerical simulations.
Experimental results of a one DoF system are presented, validating the use of
positive feedback.

The paper is organized as follows. Section 2, presents the system model and
characterizes the corresponding multi-variable transmission zeros. Limitations
on the achievable closed loop torque bandwidth are explained in terms of the
transmission zeros when using simple PI controllers. The use of positive feed-
back is introduced and it is shown that this can be designed to decouple the
joint torque from the load dynamics. The positive feedback is given by three
terms involving load velocity, acceleration and jerk. General results to investi-
gate closed loop stability when using this method are presented in section 2.4.
Section 2.5, discusses disturbance rejection properties of the closed loop system
and in particular points out additional limitations when using PI torque con-
trollers. In section 3, a case study based on a two DoF model is used to verify
the main results via nonlinear simulations and root locus analysis. In particular,
the root locus analysis in section 3.4 investigates the effects of using a partial
positive feedback by neglecting load acceleration and/or jerk terms. Section 4
presents some experimental results for one joint of a robot leg prototype [14].
Concluding remarks are given in section 5.

Notation Throughout the paper, lower case letters are used for scalars, lower
case and bold letters are used for vectors and uppercase letters are used for
matrices. Moreover, subscripts L and m refer to load and motor, respectively.

2 System Model and Main Results

This section presents the main results of the paper for the multi-Dof system
given by

ML(θL)θ̈L + CL(θ̇L,θL) +BLθ̇L +G(θL) = τL + τLd, (1)

Jmθ̈m +Bmθ̇m +N−1τL = Kti+N−1τd, (2)

Li̇+Ri = vm −Kωθ̇m, (3)

τL = KH

(
N−1θm − θL

)
, (4)

where θL, θm, θ̇L, θ̇m are the angular positions and velocities of the load
and motor in relative coordinates; τL denotes the joint torque; τLd, τd are
disturbances acting on the link and motor; i and vm are the motors current
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and voltage, respectively. The motor disturbance τd can represent meshing
friction and torque ripples produced by a reduction gearbox. We assume that
the joint torque τL, the load and the motor positions are measured. Note
however that one set of measurements is redundant since (4) provides a relation
between them. A description of the system parameters is summarized in Table
1. The motor equations in the model correspond to a DC permanent magnet
motor but as indicated by several motor manufacturers the same equations can
be used for DC brushless motors whenever these are appropriately commutated.
Linearizing (1) at a given load position with zero angular velocity yields

MLθ̈L +BLθ̇L +KLθL = τL. (5)

where ML is obtained by evaluating the mass inertia matrix at a given load
position and the linearized gravity vector KL is obtained by evaluating the
partial derivative of G at the given robot configuration.

Throughout the paper, the linearized model is used to investigate stability
and disturbance rejection properties of the closed loop system when a PI torque
controller is combined with positive feedback. The linearized analysis can be
easily repeated for several configurations of interest by generating a suitable
mesh of the robot workspace. In this manner the closed loop performance of
the robot can be investigated at different robot configurations. A case study will
illustrate that the predicted performance using the linearized analysis can be
reasonably close to the results obtained via nonlinear simulations. The following
result presents an important property of the linearized system.

Lemma 1 Multi-variable Transmission Zeros
Consider the linearized system given by (5), (2)-(4) and define
ΛL(s) = MLs

2 +BLs+KL.
The transmission zeros from the motor voltage to the joint torque are given by
the roots of the polynomial det(ΛL(s)) = 0.

Proof: See Appendix 6.
Lemma 1 has substantial implications on the achievable closed loop performance
of a torque control system when using PI torque controllers. Consider the case
when BL and KL are positive definite matrices then the transmission zeros lie
in the left half plane. If the damping BL is very small then these zeros will
be close to the imaginary axis and the PI controller poles at the origin will be
attracted towards these zeros. Hence closed loop poles near the imaginary axis
arise and these poles have slow transients therefore the closed loop system has
a low bandwidth. These effects will be illustrated in section 3.2 for a two DoF
example. When KL is not positive definite then some transmission zeros appear
in the right half plane (non-minimum phase zeros). In addition, in this case the
open loop system is also unstable. In general this type of systems are more
difficult to control [15] and further discussions are given for the two DoF case
study in a later section.
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Table 1: The System Parameters
Parameter Description Parameter Description Parameter Description

Jm Motor & gearbox inertia R Motor resistance ML Mass-inertia matrix
Kt Torque-current constant Bm Motor Damping CL Coriolis & centrifugal force vector
Kω Back-emf constant L Motor Inductance G Gravity vector
KH Transmission stiffness N Reduction ratio KL Linearized gravity matrix
BL Joint Damping - - -

2.1 Positive Feedback Compensation

This section introduces the idea of positive feedback compensation and shows
how by suitable design, it can decouple the load motion from the joint torque
dynamics.

Lemma 2 Consider the linearized system (5), (2)-(4) and introduce the feed-
back vm = F (s)θL + vr, where vr is the reference voltage. The corresponding
linear closed loop system is given by

[
Q(s) Y (s)
−I ΛL(s)

] [
τL

θL

]
=

[
vr

0

]
+

[
(Ls+R)K−1

t τ d

τLd

]
(6)

where I is an identity matrix and

Q(s) = ((Ls+R)K−1
t Λ1(s) +Kωs)NK−1

H (7)

= A3s
3 +A2s

2 +A1s+A0

Y (s) = (Ls+R)K−1
t Λm(s)N +KωNs− F (s) (8)

= Γjs
3 + Γas

2 + Γvs− F (s)

Λm(s) = Jms2 +Bms, Λ1(s) = Λm(s) +N−1KHN−1. (9)

where
Γj = LK−1

t JmN, Γa = LK−1
t BmN +RK−1

t JmN, Γv = RK−1
t BmN +KωN, (10)

and

A3 = ΓjK
−1
H , A2 = ΓaK

−1
H , A1 = ΓvK

−1
H + LK−1

t N−1, A0 = RK−1
t N−1. (11)

Proof: See Appendix 7.
A block diagram representation of (6) is shown in Fig.1. Inside the dashed box
we have the intrinsic feedback in the system and the outer positive feedback
loop can be chosen to cancel out the intrinsic feedback. From Lemma 2 by
selecting F (s) such that Y (s) = 0, the joint torque τL is decoupled from the
load dynamics.

Lemma 3 Positive feedback compensation
The feedback

vm = Γjθ
(3)
L + Γaθ̈L + Γvθ̇L + vr (12)

Decouples the joint torque τL from the load dynamics.
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Figure 1: Control block diagram for linearized system, where τr denotes the
input reference torque, F (s) is the positive velocity feedback gain.

Proof. This is a direct consequence of Lemma 2. Setting Y (s) = 0 in (6),
solving for F (s) and taking inverse Laplace transforms yields (12).
Note that in (6) the matrix on the left hand side becomes lower triangular for
the feedback (12) since Y (s) = 0. This implies that the load dynamics are
unobservable from the joint torque and the multivariable transmission zeros are
cancelled by the load dynamic poles.

In addition, the feedback compensation (12) only depends on the drives pa-
rameters and since these matrices are diagonal (12) is a decentralized feedback
assuming that the velocities, acceleration and jerk signals are available. Fur-
thermore, the matrix Q(s) is also a diagonal matrix that only depends on the
drive parameters.

Remark 1: The results in Lemmas 2 and 3 can be obtained without using
the linearized equation (5). The derivation can be carried out entirely in the
time domain but becomes a little more elaborate. Therefore for the nonlinear
system, the positive feedback compensation (12) also decouples the joint torque
τL from the load dynamics.
The next section considers the design of a PI torque controller.

2.2 PI Control and Positive Feedback

Once the feedback compensation is implemented we introduce a decentralized
PI torque controller given by

vr = Kp(I +
Ki

s
)(τr − τL) (13)

where Kp, Ki are diagonal matrices, and τr is the reference torque.
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Lemma 4 Consider the system in Lemma 2 and the PI torque controller (13).
The closed loop system is

[
Qc(s) Y (s)s
−I ΛL(s)

] [
τL

θL

]
=

[
Kp(s+Ki)τ r

0

]
+

[
(Ls+R)K−1

t τ d

τLd

]
(14)

where
Qc(s) = A3s

4 +A2s
3 +A1s

2 + (A0 +Kp)s+KpKi. (15)

Proof. From Lemma 2, substituting (13) in (6), the result follows after some
standard algebraic calculations.
Lemma 4 will be used in subsequent sections to determine closed loop stability
for any given PI controller and any feedback compensation as in Lemma 2.

2.3 Implementation Requirements

Implementation of the feedback compensation (12) requires velocity, accelera-
tion and jerk signals which are not measured. In general, the acceleration and
jerk feedback terms cannot be discarded since the system (14) can become un-
stable even if Qc(s) is asymptotically stable. A result for investigating stability
when acceleration and/or jerk feedback are ignored is given in section 2.4 and
further discussions are presented in section 3 for a two DoF example. In the ex-
perimental section 4, load’s velocity, acceleration and jerk are computed online
and used for full load motion compensation.

The velocity, acceleration and jerk signals required in (12) can be obtained
via robust numerical differentiators. Relevant publications in this topic are [16],
[17], and [18]. In [19] an application is considered where numerical differentiation
is used to determine acceleration. In [20] the authors present a nonlinear velocity
estimator. Reducing noise in the measurements can be accomplished using high
resolution position encoders and filtering to obtain approximate derivatives, as
used in the experimental results in section 4.

An alternative to numerical differentiation is to use the system model. From
the nonlinear equation (1) we can obtain the load acceleration and jerk signals

θ̈L = M−1
L (θL)(−CL(θ̇L,θL)−BLθ̇L −G(θL) + τL) (16)

θ
(3)
L = M−1

L (θL)
(
−ṀL(θL)θ̈L − ĊL(θ̇L,θL)−BLθ̈L − Ġ(θL) + τ̇L

)
(17)

In (16)-(17) the load disturbance τLd has been neglected since this is not
known. Neglecting the disturbance can have some degradation in performance
but does not affect stability. Estimation of load acceleration and jerk also re-
quires knowing the Coriolis, gravity and dynamic parameters of the system
accurately. Furthermore (16) and (17) incorporate all the load interactions and
can be implemented as a centralized scheme. For the linearized analysis ac-
celeration and jerk signals can be computed from (5), also ignoring the load
disturbance τLd

θ̈L = M−1
L (−BLθ̇L −KLθL + τL) (18)

θ
(3)
L = M−1

L

(
−BLθ̈L −KLθ̇L + ˙τL

)
(19)
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In this case (18)-(19) can also be written as feedback in terms of system states,(
θm, θL, θ̇m and θ̇L) or (τL, θL, ˙τL and θ̇L).

2.4 Stability Analysis

This section, first considers the stability of the closed loop system in Lemma
4 when the positive feedback compensation is chosen as in Lemma 3 so that
Y (s) = 0. The second result in this section is derived to determine closed loop
stability of the system when the positive feedback compensation is partially
implemented.

Lemma 5 Consider the closed loop system in lemma 4 with the feedback com-
pensation in Lemma 3, then the closed loop torque response is given by

Qc(s)τL = Kp(s+Ki)τ r + (Ls+R)K−1
t sτd. (20)

Proof. From (14) setting Y (s) = 0.
Since all the matrices in (20) are diagonal, the system reduces to a set of un-
coupled single input single output systems and Qc(s) = diag(qc1(s), qc2(s),
..., qcn(s)) where each polynomial qci(s) = a3is

4 + a2is
3 + a1is

2 + (a0i + kpi)s+
kpikii and all the scalars kpi, kii, a3i, a2i, a1i and a0i are positive. From the
Routh-Hurwitz array, conditions for stability of Qc(s) are

0 < kpi < (
a1ia2i
a3i

− a0i) and (21)

0 < kii <

(
a1ia2i
a3i

− (a0i + kpi)

)(
(a0i + kpi)a3i

k2pia
2
2i

)
. (22)

These inequalities give a range of values for the controller gains kpi and kii en-
suring closed loop stability.

The second result in this section is useful for investigating stability when the
full compensation in Lemma 3 is not implemented for example to determine if
the terms involving jerk and acceleration can be neglected.
Consider the PI torque controller (13) and the feedback compensation

vm = αjΓjθ
(3)
L + αaΓaθ̈L + αvΓvθ̇L + vr, (23)

where the coefficients Γj , Γa and Γv are defined in (10) and αj , αa and αv are
scalars between [0, 1]. The closed loop system is given by

[
Qc(s) X(s)s
−I ΛL(s)

] [
τL

θL

]
=

[
Kp(s+Ki)

0

]
τ r +

[
(Ls+R)K−1

t τ d

τLd

]
(24)

From (23), F (s) = αjΓjs
3 + αaΓas

2 + αvΓvs and using (8) we arrive at
X(s) = (1− αj)Γjs

3 + (1− αa)Γas
2 + (1− αv)Γvs.

Lemma 6 The closed loop characteristic polynomial of (24) is given by

det(Qc(s)ΛL(s) +X(s)s) = 0 (25)
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Proof. From (24) the determinant of the block partitioned matrix is

det(Qc(s)) det(ΛL(s) +Q−1
c (s)X(s)s) = det(Qc(s)) det

(
Q−1

c (s){Qc(s)ΛL(s) +X(s)s}) (26)

= det(Qc(s)) det(Q
−1
c (s)) det(Qc(s)ΛL(s) +X(s)s) (27)

But det(Qc(s)) det(Q
−1
c (s)) = 1 and this gives (25).

Remark 2: Expanding (25) in powers of s we can obtain a state space realiza-
tion of (Qc(s)ΛL(s) +X(s)s) in terms of block companion matrix and compute
the corresponding eigenvalues to determine stability of the closed loop system
(24). The block companion form is given in 8.

2.5 Disturbance Rejection

This section provides the main result to asses the disturbance rejection prop-
erties of the closed loop system with a PI torque controller for both the full
positive feedback compensation and a partial compensation. The disturbances
of interest are τd those occurring at the motor since these can represent nonlin-
ear friction and torque ripples in the gearbox.

Lemma 7 Disturbance Transmission

1. For the closed loop system in lemma 5 with full feedback compensation the
transfer function matrix from τd to the joint torque τL is

τL = Q−1
c (s)(Ls+R)K−1

t sτd (28)

2. For the closed loop system (24) with a partial feedback compensation the
transfer function matrix from τd to the joint torque τL is

τL = [I +Q−1
c (s)X(s)Λ−1

L (s)s]−1Q−1
c (s)(Ls+R)K−1

t sτd (29)

Proof. Equation (28) in part 1 follows easily by setting τr = 0 in (20). For
(29) in part 2 setting τr = 0 in (24) and using the inverse of a block partitioned
matrix we have

τL = [Qc(s) +X(s)Λ−1
L (s)s]−1(Ls+R)K−1

t sτd

= [Qc(s)(I +Q−1
c (s)X(s)Λ−1

L (s)s)]−1(Ls+R)K−1
t sτd

= [I +Q−1
c (s)X(s)Λ−1

L (s)s]−1Q−1
c (s)(Ls+R)K−1

t sτd

From (28) and (29) the disturbance rejection properties of the linearized
system can be displayed via the relevant frequency response plots. This will be
illustrated in section 3 for the two DoF example.
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3 Case Study

In this section a two DoF nonlinear model is used as a case study to show the
improved torque performance with PI controllers combined with the positive
feedback (12). Model parameter values are given in section 3.1. Nonlinear
simulations are presented in sections 3.2 and 3.3, while section 3.4 discusses
how the load stiffness KL affects the transmission zeros. Also, the effects on
closed loop stability when ignoring jerk and acceleration in the positive feedback
are investigated. It is shown that to maintain stability jerk and acceleration
feedback terms in general cannot be discarded except for some particular cases.

3.1 Model and Controller Descriptions

Parameter values for the two DoF model are provided in this section. The
mass-inertia matrix ML, Coriolis CL and gravity G vectors are given in relative
coordinates:

ML(θL) =

[
0.3047 + 0.1908 cos(θL2) 0.0871 + 0.0954 cos(θL2)
0.0871 + 0.0954 cos(θL2) 0.0871

]
, (30)

CL(θ̇L,θL) =

[
−0.0954(2 ˙θL1

˙θL2 + ˙θL2
2
) sin(θL2)

0.0954 ˙θL1
2
sin(θL2)

]
, G(θL) =

[
6.6438 sin(θL1) + 1.034 sin(θL1 + θL2)

1.034 sin(θL1 + θL2)

]
. (31)

The linearized gravity matrix at θL is

KL =

[
6.6438 cos(θL1) + 1.034 cos(θL1 + θL2) 1.0340 cos(θL1 + θL2)

1.0340 cos(θL1 + θL2) 1.0340 cos(θL1 + θL2)

]
. (32)

Substituting the operating point θL = [0, 0.5]T and θ̇L = [0, 0]T in the linearized
model (30) - (32) yields

ML =

[
0.4721 0.1708
0.1708 0.0871

]
, CL =

[
0
0

]
, KL =

[
7.5512 0.9074
0.9074 0.9074

]
. (33)

The analysis can be repeated at other operating points θL. Identical drives
are used for each DoF in this system. A harmonic drive gearbox with stiff-
ness KH = 912I [Nm

rad ] and reduction ratio N = 150I. A motor with in-
ductance L = 3.2 10−4I [H], resistance R = 0.664I [Ω], torque constant
and back EMF constant Kt = Kω = 0.041I [V.secrad ]. The total drive inertia,

Jm = 1.387 10−5I [Kg.m2] and damping Bm = 1.996 10−5I [V.secrad ]. The load

damping is BL = 0.01I [V.secrad ].
Decentralized PI torque controllers were designed using the result in Lemma

5 and the Routh-Hurwitz inequalities (21) and (22). Fig.2 shows the stability
region for the controller gains, where the maximum value for kp is 14. In ad-
dition, the controller gains were also selected so that the closed loop system
without positive feedback is also stable. The controllers are given by

Gc(s) = ko

[
(s+12.5)

s 0

0 (s+25)
s

]
, (34)

where ko ∈ [0 6]. The controller gain ko = 2 is chosen to achieve a closed loop
torque bandwidth of 50 Hz (settling time of about 45 msec) and overshoot of
30% at each joint after applying the positive feedback (12).
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Figure 3: Torque step responses of nonlinear closed loop system with positive
feedback (left) and without positive feedback (right)
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Figure 2: Stability region for the PI torque controller gains.

3.2 Nonlinear Simulation Results

This section presents simulation results comparing the closed loop performance
with and without positive feedback for the PI torque controller (34) and ko = 2.
Equations (16) and (17) are used in the nonlinear simulations to compute the
load acceleration and jerk terms in the positive feedback.

Fig.3 shows closed loop simulation results of the nonlinear system for a
torque step command of τr = [3, 0]T . A fast response is achieved with positive
feedback compensation as seen in the left hand side plots in Fig.3 while the
step response shown in the right hand side without the positive feedback has
a long transient and is oscillatory. It is evident that the positive feedback has
considerably improved the torque tracking bandwidth. However Fig.4 shows
that the control signals for the system with positive feedback are more responsive
to load motion.

3.3 Disturbance Rejection

In this section, the disturbance rejection properties of the proposed controller are
analyzed in terms of bode plots for the closed loop system using the results from
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Figure 4: Motor voltages for torque step responses of nonlinear closed loop
system with positive feedback (left) and without positive feedback (right)

Lemma 7. In particular it is shown that the linearized analysis can predict with
reasonable accuracy the amplitudes of oscillations caused by cyclic friction τd at
the motor input. The predicted amplitudes match well the oscillations observed
in nonlinear simulations. In general, nonlinear friction and torque ripples cause
undesirable effects in the closed loop response of mechanical systems which may
be reduced by increasing the bandwidth of the closed loop system or designing
suitable friction compensation schemes. In particular, torque ripples or cyclic
friction in gearboxes give rise to oscillations [21] [22]. These disturbances are
then propagated throughout the system.

Fig.5 shows the step response nonlinear simulation of the closed loop system
with cyclic friction included in both motors. The torque reference for joint one
is 3 Nm and zero for joint two. Full positive feedback is applied together with
the PI torque controller. The RMS torque errors are 0.0961 Nm and 0.0725
Nm for the first and second DoFs respectively. The torque ripple used at the
input of the motors is τd = 0.013 cos(2θm + φ) Nm where φ = π for joint
one and φ = π

2 for joint two. The amplitude and phase of the torque ripples
were estimated from experimental data for a drive mounted on a single joint
system and corresponds to the fundamental frequency of the ripples arising in
the harmonic drive [21]. Similar models for cyclic friction have been reported
in [22] for other types of gearboxes.
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Figure 6: Bode plot of joint torque with torque ripple disturbance for the two
DoF system. The peak magnitude is about 35 Hz.
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Figure 5: Joint torque step response with torque ripple disturbance and the
corresponding control input for a two DoF system.

The bode plots in Fig.6 show how the disturbances τd affect the joint torque.
The worst case is the resonance at 35 Hz while all other frequencies are atten-
uated much further. Note that the peak amplitude in the bode plot predicts
quite well the oscillation peaks in the nonlinear simulation shown in Fig.3. The
power spectral density of the torque oscillation errors due to cyclic friction is
shown in Fig.7. The figure clearly shows that peak values occur in the frequency
range 30 − 40 Hz which is in the neighborhood of resonant peak in the bode
plot.

3.3.1 Resonance Compensation

There are several options to reduce the effect of torque ripples, for example using
lead or notch compensators in cascade with the PI controllers. For the nonlinear
simulation shown in Fig.8, a lead compensator GLC(s) = ( 628128 )

s+128
s+628 is added

in cascade with the PI controller. The simulation clearly shows a substantial
reduction in the peak amplitude of the oscillations to about 0.1. The RMS
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Figure 8: Joint torque step response with torque ripple disturbance and the
corresponding control input with lead compensation.

torque errors have been reduced to 0.0640 Nm for joint one and 0.0391 Nm for
joint two. The resulting bode plot in Fig.9 also shows the effectiveness of the
lead compensator which has attenuated all the magnitudes to less than 0.091.

Stiction is another disturbance which is present in torque control problem.
Fig.10 shows the effect of stiction before and after lead compensation. The
simulations show that also the effects of stiction are reduced for the controller
with the lead compensator. If disturbance rejection cannot be improved with PI
controllers and simple additional compensators then more complex controllers
are needed. This highlights some limitations when using PI control.

3.4 Transmission Zeros and Approximate Positive Feed-
back

This section first considers how load stiffness KL and damping BL affect the
transmission zeros location in the complex plane. Then the effects of approxi-
mate positive feedback on pole-zero cancellations and closed loop stability are
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investigated, in particular when the load acceleration and jerk terms in the
positive feedback are neglected.

3.4.1 Effect of Load Stiffness and Damping on Transmission Zeros

This section presents a discussion regarding load stiffness KL and damping BL

effects on the multivariable zeros. The two DoF case study is used to illustrate
these effects numerically. Throughout it is assumed that BL is positive definite.

First consider the case when the load stiffness is positive definite, KL > 0.
In this case the transmission zeros will always lie in the open left half plane
and when damping is small these zeros will be located near the imaginary axis.
For the linearized system (33) there are four transmission zeros, the roots of
det(ΛL(s) = 0), located in complex pairs at −0.0304 ± j3.0036 and −0.2037 ±
j7.4767. As BL increases the zeros move towards the real negative axis. For the
case study setting BL = diag([0.8, 0.4]) there are two complex zeros −0.9408±
j3.3033 and two real zeros at −2.4747 and −17.29.

When KL = 0, the linearized system will have as many zeros as degrees
of freedom located at the origin. Since ML and BL are positive definite, the
remaining zeros lie on the negative real axis. The zeros at the origin cancel out
with unobservable eigenvalues at the origin. For the case study two zeros at
the origin cancel out with two unobservable eigenvalues and the two remaining
zeros are at −0.0186 and −0.4496. As BL increases the zeros on the negative
real axis move away from the origin. Note however that, despite the closed
loop torque subsystem being stable, the overall system is not internally stable
since there are zero eigenvalues that are unobservable form the torque sensor.
Finally when KL is indefinite or negative definite, KL ≤ 0, there will be zeros
in the right half plane (non-minimum phase zeros). In this case the open loop
system is also unstable. If the tw DoF system is linearized at θL = [π2 ,

π
2 ]

T then
KL = [−1.0340 − 1.0340;−1.0340 − 1.0340] and clearly this is not positive
definite (one zero eigenvalue and one negative eigenvalue). There is a zero at
the origin which cancels out with an unobservable eigenvalue, the other zeros
are at −3.5042, −0.0919 and 3.38893. The open loop system also has and an
unstable eigenvalue at 0.0361. Linearizing at θL = [1.8, 2.1]T , gives KL =
[−2.2601 −0.7506;−0.7506 −0.7506] which is negative definite and the system
has two minimum phase zeros −3.5034, −2.4371, two non minimum phase zeros
at 2.3118 and 3.4511 and two unstable open loop eigenvalues at 0.0077 and
0.0449. In these cases the unstable open loop system could be stabilized via a
sate feedback. For the case study a motor position feedback would be sufficient.
However taking into account that state feedback does not change the system
zeros the stabilized system still would have non-minimum phase zeros and trying
to cancel the non-minimum phase zeros using positive feedback is not feasible
since exact pole-zero cancellations will not take place in practice.

An alternative is to consider gravity compensation methods to remove the
gravity torque G in the nonlinear system. Gravity compensation methods for
systems with flexible joints have been investigated in [23] [24] and are based on
the desired gravity compensation (in terms of the desired load position) or using
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Figure 11: Root locus plot as the positive feedback varies, α ε [0, 1], for the PI
controller gain k0 = 2

a motor biased compensation. However these methods are only approximate and
do not completely remove the gravity torques. Methods employing the actual
load position for gravity compensation could be used but these have not been
studied in detail and at present we cannot ensure that this is a suitable approach
in conjunction with the positive feedback scheme for torque control, particularly
for systems that give rise KL being indefinite or negative definite. This question
is left open for future research. Therefore when KL ≤ 0 the positive feedback
compensation does not seem to be a suitable strategy for torque control.

3.4.2 Effect of Approximate Positive Feedback on Stability

This section considers approximate implementations of the positive feedback
compensation for the two DoF case study. In particular, we investigate the
effects on closed loop stability when ignoring terms involving load acceleration
and jerk.

First consider the positive feedback in (23) and let α = αj = αa = αv, where
α takes values in the interval [0, 1]. In this analysis the acceleration and jerk are
computed from equations (18)-(19) written in state feedback form. For α = 0
there is no positive feedback applied while for α = 1 the full compensation is
used. For intermediate values of α, a partial positive feedback compensation is
implemented. The closed loop poles are given by the roots of the characteristic
polynomial in Lemma 6. As α varies, Fig.11(a) and 11(b) show the root locus of
the closed loop poles for the two DoF system and the PI controller gain k0 = 2
in (34). The position of the transmission zeros are shown as circles and the
poles are shown as crosses. Fig.11(a) displays the root locus in the vicinity of
the transmission zeros and for α = 1 four poles cancel the four zeros. Fig.11(b)
shows an overall view of the root locus. From this analysis we conclude that
the closed loop two DoF system with the PI controller remains stable for all α
ε [0, 1].
Neglecting the jerk term :
Consider the positive feedback (23) with αa = αv = 1 and αj = 0 so that
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the term involving jerk is removed. Using Lemma 6 the effect of discarding jerk
feedback is investigated. For the two DoF case study, Fig.12(a) and 12(b) display
the root locus plot around the transmission zeros without the jerk feedback term
and varying the PI gain ko in the interval [0, 6]. In Fig.12(b) it can be seen
that the angle of departure from the pole is towards the unstable region but the
pole is quickly drawn toward the transmission zero. In this case, ignoring the
jerk term does not produce an unstable closed loop system. This result can also
be verified for the nonlinear system via a simulation.

Unfortunately this conclusion does not hold in general and we next provide
an example showing that without jerk feedback instability can arise. For the
two DoF system, KL > 0 and BL is very small. Now suppose that a motor
with a different and larger electrical time constant was chosen, for example if
the inductance L was larger by a factor of ten. In this case varying the PI gains
ko in the interval [0, 0.6] we arrive at a conditionally stable system 1. Stability
without jerk feedback could be recovered if the damping BL were sufficiently
large, for example if BL = diag[0.1, 0.1]). In summary, when KL > 0, there are
cases in which jerk feedback cannot be discarded and Lemma 6 can be used to
investigate this issue.

When the load stiffness KL = 0, numerous nonlinear simulations without
jerk feedback have not shown stability problems. However a proof for this
conjecture is left as an open question. Recall that for KL = 0, the transmission
zeros lie on the real negative axis as opposed to the complex zeros presented in
section 3.4.1. It seems that in this situation it is easier to compensate the effect
of load motion without jerk feedback.
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Figure 12: Root locus plot of the approximate positive feedback near the trans-
mission zeros, without jerk feedback and varying the PI torque controller gain
ko in the interval [0, 6]

Neglecting jerk Γj and acceleration Γa :
Consider the positive feedback (23) with αv = 1 and αa = αj = 0 so that the
terms involving acceleration and jerk are removed. Using Lemma 6 the effect of
discarding these terms is investigated. First consider the two DoF case study,
when KL > 0 and BL is very small. In the root locus plot shown in Fig.13 it

1Conditional Stability: A conditionally stable system switches between stable an unstable
operation as the loop gain varies.
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Figure 13: Root locus plot of the approximate positive feedback near transmis-
sion zeros, without jerk and acceleration feedback and varying the PI torque
controller gain ko ∈ [0, 6].

can be seen that the angles of departure from the poles are toward the unstable
region and the system is conditionally stable. Instability occurs for PI gains ko
in the intervals (0.00073, 7.5196) and ko > 12.53. Stability can be restored by
further increasing the gain ko but then performance becomes quite oscillatory
because other poles get close to the imaginary axis. When KL > 0 and BL is
sufficiently large, for example if BL = diag{0.8, 0.4}, then the close loop system
without acceleration and jerk feedback remains stable as shown in Fig.14(a).
In summary, when KL > 0, there are cases in which acceleration and/or jerk
feedback cannot be discarded. This can be investigated using Lemma 6. Finally,
when KL = 0 the system without acceleration and jerk feedback appears to
remain stable. This conjecture is left open for future research.

−180 −160 −140 −120 −100 −80 −60 −40 −20 0

−400

−300

−200

−100

0

100

200

300

400

 

Real

Im
ag

(a) Overall root locus.

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

−10

−5

0

5

10

 

Real

Im
ag

(b) Zoomed area near the ori-
gin.

Figure 14: Root locus plot of the approximate positive feedback without jerk
and acceleration feedback for larger damping BL and varying the PI torque
controller gain ko ∈ [0, 6].

4 Experimental Results

The proposed positive feedback and lead compensation was implemented on
the robotic prototype leg presented in [14], and shown in Fig.15 to verify the
theoretical results. A 3.6 kg weight was attached at the leg end-effector (center
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of mass at 0.42 m from the center of rotation including the mass of the lower leg)
to increase the gravity load and permit a reasonable torque step magnitude. The
prototype robotic leg used has two actuators (M1 and M2) which both move the
knee joint while the hip is un-actuated. In this experiment the second actuator
M2 which applies assistive torque at the knee using a bungee cord was removed
and only the main knee motor M1 was used for the experimental verification.
Moreover, the hip joint was mechanically locked and the leg was tested while
fixed above the ground on the supporting frame. In the experiments a torque
step of 3 Nm was applied and the results are presented as follows. The torque
signal is measured using two 19 bit encoders measuring the deflection of a torsion
bar with known stiffness (930 Nm

rad ), connected between the gearbox output and
the link output. The estimated value of joint damping BL is 1.5 for the leg.
Note that this value of BL is much larger than the joint damping used in the

simulation study presented in section 3. The PI controller Gc(s) = 2(s+10)
s

was designed to have 46 Hz closed loop bandwidth with full positive feedback.
The closed loop system also remains stable for the same PI controller without
positive feedback compensation but the closed loop bandwidth is substantially
reduced to 0.7 Hz. The velocity is obtained using a 3rd order Butterworth filter
with cut-off frequency of 50 Hz and the acceleration and jerk are obtained with
first order differentiation of the velocity and acceleration respectively.

Fig.16 compares the system’s torque step response in four cases. The step
torque reference (τr) is applied at t = 0.4 sec. First, part (a) in Fig. 16 shows
the closed loop step response without positive feedback. Second, in part (b) the
same PI controller is used with positive velocity feedback Γv = 6.909329. Third,
part (c) the PI controller is used with positive velocity and acceleration feedback
Γa = 0.054354. Finally, in part (d) the same PI controller is used with full
positive feedback proposed in Lemma 2 with positive velocity (Γv), acceleration
(Γa) and jerk feedback Γj = 3.975e − 5. The bandwidth of the torque control
system with the velocity feedback increases to 46 Hz. As mentioned, since
BL = 1.5 is large we can ignore the acceleration and jerk feedback terms without
causing instability or degrading closed loop performance.

When using the positive feedback compensation (see Fig.16) the torque set-
tles at the desired value but a 15-20 Hz ripple can be observed which is due to
the harmonic drive gearbox friction. This frequency range is shown in the power
spectral density graph in Fig. 17. The lead compensator GLC =

(
750
128

)
s+128
s+750

is designed to improve disturbance attenuation of the torque ripples and tran-
sient response of the torque control. GLC is placed in cascade with the output
of the PI controller. Fig.18 depicts the system’s torque step response in four
cases. The power spectral density plot of the lead compensated torque response
is shown in Fig.19. Clearly the magnitude of the oscillations around 15-20 Hz
are considerably reduced by 50%.
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Figure 15: The prototype robotic leg used in the experiments.
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Figure 16: The experimental results of applying the positive feedback of the
prototype leg. Torque reference and torque response are shown with dashed,
solid lines, respectively. Parts (a), (b), (c) and (d) show the PI control, PI
control with velocity compensation, PI control with velocity and acceleration
compensation and PI control with velocity, acceleration and jerk compensation,
respectively.

21



0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Hz

P
ow

er
/H

z

Figure 17: Spectral density plot of the uncompensated (without notch compen-
sation) torque response.
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Figure 18: The experimental results of applying the positive feedback with
lead compensation of the prototype leg. Torque reference and torque response
are shown with dashed, solid lines, respectively. Parts (a), (b), (c) and (d)
show the PI control, PI control with velocity and lead compensation, PI control
with velocity, acceleration and lead compensation and PI control with velocity,
acceleration, jerk and lead compensation, respectively.
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Figure 19: Spectral density plot of the lead compensated torque response.
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5 Conclusions

This paper provides a detailed study regarding the use of positive feedback to
improve torque control in flexible joint robots driven by electrical actuators. It is
shown that torque control bandwidth limitations depend on the load dynamics
and a positive feedback scheme can be obtained to improve torque tracking for
robots with electrical actuators. A two DoF nonlinear system is used as an
example to illustrate torque tracking improvements that can be achieved with
positive feedback and simple PI controllers. Approximate positive feedback
implementations are also considered and closed loop stability is analyzed using
root locus methods. Simulations and experimental results for a prototype robot
are shown to confirm the theoretical results.

6 MIMO Transmission Zeros

The linearized system equations can be written in matrix form

W (s)

⎡
⎣ i

θm

θL

⎤
⎦ = B vm (35)

where,

W (s) =

⎡
⎣ Ls+R Kω s 0

−Kt Λ1(s) −N−1KH

0 −KHN−1 ΛL(s) +KH

⎤
⎦ , B =

⎡
⎣ I

0
0

⎤
⎦ (36)

Λ1(s) = Λm(s)+N−1KHN−1, Λm(s) = Jms2+Bms, ΛL(s) = MLs
2+BLs+KL

and KL includes the linearized gravity torques. The system matrix P (s) is
defined as

P (s) =

[
W (s) −B
C 0

]
(37)

The system zeros are the values s0 where P (s0) looses rank, that is

rank(P (s0)) < n+min(rank(C), rank(B)

where n is twice the number of DoF. The system zeros include the transmission
zeros and input/output decoupling zeros. When the system is controllable and
observable there are no input/output decoupling zeros. In the transfer function
matrix, input/output decoupling zeros cancel out with uncontrollable and/or
unobservable poles.

We need to show that P (s) looses rank iff det(MLs
2 + BLs + KL) = 0.

To accomplish this we carry out a series of elementary transformation of the
system matrix P (s). These transformations amount to post-multiply and/or
pre-multiply P (s0) by a series of unimodular matrices. A unimodular matrix is
a square polynomial matrix that has a constant (non-zero) determinant. The
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inverse of a unimodular matrix is also a unimodular matrix.
Let P̃ (s) = Q1(s)P (s)Q2(s),

Q1(s) =

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 I I
0 0 0 K−1

H

⎤
⎥⎥⎦ (38)

and
Q2(s) =

⎡
⎢⎢⎣

−K−1
t 0 0 0
0 I 0 0
0 0 I 0

−(Ls+R)K−1
t Kωs 0 −I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I −Λ1(s)N −Λ1(s)N +N−1KH 0
0 N N 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ (39)

Then

P̃ (s) =

⎡
⎢⎢⎣

0 0 0 I
I 0 0 0
0 0 ΛL(s) 0
0 I 0 0

⎤
⎥⎥⎦ (40)

It is clear that Q1(s) and Q2(s) are unimodular matrices and therefore P (s)
and P̃ (s) are equivalent. It is also evident that P̃ (s) looses rank iff ΛL(s) looses
rank and this in turn is equivalent to the condition det(ΛL(s)) = 0.

7 Proof of Lemma 2

The plant output torque is given by

y = C

⎡
⎣ i

θm
θL

⎤
⎦ (41)

where C = [0 KHN−1 −KH ]. Converting (36) in terms of torque τL gives

W (s)

⎡
⎣ i

θm

θL

⎤
⎦ = W (s)

⎡
⎣ I 0 0

0 NK−1
H N

0 0 I

⎤
⎦
⎡
⎣ i

τL

θL

⎤
⎦ = B vm (42)

Let,
vm = F (s)θL + vr, (43)

Then (35), (36), (42) and (43) yield

⎡
⎣ (Ls+R) (KωNK−1

H s) (KωNs− F (s))
−Kt (Λ1(s)NK−1

H ) (Λ1(s)N −N−1KH)
0 −I ΛL(s)

⎤
⎦
⎡
⎣ i

τL

θL

⎤
⎦ = B vr (44)

From (44) solving for the motor current i, substituting in the equation for the
torque τL and pre-multiplying by (Ls+R)K−1

t yields

[
((Ls+R)K−1

t Λ1(s) +Kωs)NK−1
H (Ls+R)K−1

t Λm(s)N +KωNs− F (s)
−I ΛL(s)

] [
τL

θL

]
=

[
vr

0

]
(45)

8 Block Companion Matrix

Consider a polynomial matrix P (s) = Pns
n + Pn−1s

n−1 + ...+ P1s+ P0 where
Pi and p ×p constant matrices and Pn is invertible. A block companion matrix
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representation of P (s) is

A =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 0 0 0
0 0 I 0 0 0
...

...
...

...
...

...
0 0 0 0 0 I
−P−1

n P0 −P−1
n P1 −P−1

n P2 · · · −P−1
n Pn−2 −P−1

n Pn−1

⎤
⎥⎥⎥⎥⎥⎦

where 0 and I are p × p zero and identity matrices respectively.
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