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This paper analyzes the importance of considering the body velocity for foothold adaptation during

legged locomotion. We show how this velocity affects the decisions made by a foothold adaption
strategy, and the number of feasible footholds computed by the approach. We extend our previous

work by considering the body velocity in this foothold adaptation method and augmenting a
convolutional neural network (CNN) classifier to account for the current velocity of the robot.

Our results suggest that the foothold evaluation strategy has a better performance with this new

CNN than with architectures that assume a constant velocity and that only consider heightmaps
as input for the foothold evaluation.

1. Introduction

Legged robots require autonomy to deal with obtacles during navigation. Some approaches

rely only on proprioceptive feedback.1–3 However, they are limited to reactive adaptations

and lack the benefits of anticipative actions computed using exteroceptive sensors (e.g.,

cameras and laser scanners). Alternatively, optimization-based algorithms4,5 allow online

body motion and foothold replanning using terrain maps but their computational complexity

limits their application to slow (quasi-static) gaits. For this reason, some approaches6–9 use

machine learning models to approximate the computationally heavy operations related to

terrain analysis. A convolutional neural network (CNN), for example, can be used to evaluate

the geometry of terrains and identify rough areas to avoid foot and leg collisions.7–9

In a previous work, we proposed a CNN-based foothold adaptation strategy to infer safe

foothold locations from terrain data in approximately 0.2 ms, which allowed us to apply the

approach for dynamic locomotion.7 However, this approach assumed that the robot moves

with a constant velocity during the entire swing phase which has some disadvantages in

scenarios similar to Fig. 1: (i) the approach will output reasonable foothold locations for

that specific velocity, being less robust for higher velocities and too conservative for lower

ones; (ii) in case of slow speeds, the robot behaves aggressively around sharper objects,

like steps and stairs, taking larger corrections when is not needed; and (iii) if the foothold

evaluation is too conservative, it does not find the safe foot placements between obstacles

that are relatively too close to each other.

In this paper, we address these challenges, and propose an alternative approach to over-

come them. The contributions of this paper are:

(1) An analysis of the effects of the robot’s forward velocity on the evaluation of foothold

adaptations based on kinematic criteria.

(2) A new formulation for the CNN-based classifier that also considers the forward

velocity of the robot as input. We show that this CNN has a better performance

than architectures that assume a constant velocity and consider only heightmap

values.
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Fig. 1. Simulated scenario for evaluating the proposed approach.

The paper is organized as follows: in Section 2, we describe the foothold adaptation strat-

egy considered in this paper. Later in Section 3, we analyze the effects of the robot’s forward

velocity on the kinematic criteria used in this framework. In Section 4, we propose a CNN

that explicitly considers the forward velocity of the robot to approximate the heightmap

evaluation process.

2. Vision-Based Foothold Adaptation

The short time window in which a decision needs to be made is one of the reasons why

foothold adaptation in dynamic legged locomotion is a complex problem. To tackle this

problem, the Vision-based Foothold Adaptation (VFA)7 strategy was proposed based on

using visual information about the terrain in a fast and continuous fashion. In this section,

we briefly describe the VFA for a better understanding of the paper (for a detailed description

refer to 7). The foothold adaptation process is divided into four stages (see Fig. 2):

1. Foothold prediction: we estimate the landing position of the foot during the swing

phase (called nominal foothold) as:

p̂ = p̄ +
DfVf

2fs
+ ∆tṙ, (1)

where p̂ is the nominal foothold, p̄ is a reference position on the ground determined by the

trajectory of the leg, Df is the duty factor, Vf is the commanded forward velocity, fs is the

step frequency, ∆t is the remaining swing-time of the leg, and ṙ is the current body velocity.

2. Heightmap extraction: given a predicted nominal foothold, we construct a

heightmap H with height values expressed with respect to a frame located at the hip posi-

tion, and whose center corresponds to the nominal foothold.

3. Heightmap evaluation: given a heightmap H, each cell is considered a candidate

foothold pc and evaluated according to four criteria (see subsection 2.1) to determine if it

is feasible. We denote this evaluation as h(H). Among all the feasible footholds, we select

the closest to the nominal as the optimal foothold.

4. Foot trajectory adjustment: the relative displacement between the nominal

foothold and the optimal foothold ∆p is sent to a trajectory generator to adapt the original

foot swing trajectory.

Foothold prediction Heightmap extraction Heightmap evaluation Trajectory adjustment

Fig. 2. Phases of the VFA. From left to right, initially, the nominal foothold p̂ is predicted based on the

motion of the trunk and the predefined trajectory of the leg. Then, a heightmap H is extracted around the
vicinity of the nominal foothold. From the heightmap, an optimal foothold is evaluated according to h(H).

Once the location of the optimal foothold is computed, the trajectory of the leg is continuously adjusted to

adapt it to the new foothold location using vector ∆p.



2.1. Heightmap Evaluation

The VFA evaluates a heightmap centered around the nominal foothold p̂ based on the

following criteria:

Terrain roughness: for each candidate foothold location pc we compute the mean and

the standard deviation of the slope relative to its neighborhood. We discard those footholds

whose sum of mean and standard deviation is larger than a specific threshold.

Kinematic feasibility: we discard the candidate foothold locations that are outside of

the workspace of the leg.

Foot frontal collision: for a given lift-off position, we discard those candidate foothold

locations whose swing trajectory collides with the terrain.

Leg collision: we discard those candidate footholds that might produce a collision of

the leg limbs with the terrain during the whole step cycle (i.e., stance and swing phases).

Distance to nominal foothold: in case several footholds satisfy all the previous cri-

teria, we select the closest to the nominal foothold, namely the optimal foothold.

This heightmap evaluation process only considers the current heightmap in order to

select the optimal foothold. This is possible thanks to a number of assumptions made about

the robot’s motion, e.g., that the trunk velocity remains constant during the swing phase

of the legs. In the following section, we describe how the body velocity influences the result

of the aforementioned criteria, and motivates its explicit consideration in the evaluation of

footholds.

3. Influence of the Body Velocity on Vision-Based Foothold Adaptation

This section analyzes the influence of the body velocity on the heightmap evaluation and the

number of feasible footholds computed by the VFA. The body velocity Vf plays a crucial

role in the heightmap evaluation because this velocity changes the displacement of the hip,

affecting the criteria related to the leg kinematics (namely, kinematic feasibility and leg

collision). The rest of this section details the effects of the body velocity on these criteria.

3.1. Influence on the Heightmap Evaluation

Kinematic feasibility: a candidate foothold pc is kinematically feasible if it lies inside

the leg workspace during the whole stance period. During the stance period, the hip of

the leg moves with respect to its foothold, changing its workspace accordingly. Hence, to

evaluate the kinematic feasibility criteria, we need to consider the leg workspace during

the touchdown and the next lift-off of the leg (at the beginning and the end of the stance

period). The kinematically feasible candidate footholds are the footholds that overlap the

leg workspaces during touchdown and next lift-off. This overlapping is inversely related to

the body velocity Vf because an increment in Vf increases the hip displacement, decreasing

the overlapping. Figure 3a illustrates this correlation between kinematic feasibility and body

velocity. It shows the configuration of the leg during the touchdown and the next lift-

off, and the corresponding overlapping workspaces, for two different velocities (Vf1 and

Vf2). As shown, the kinematically feasible footholds (the horizontal red and blue lines) are

inversely proportional to the body velocity.

Leg collision: a candidate foothold pc is collision free if the configuration of the leg does

not collide with the terrain during the step cycle. The body velocity Vf changes the hip

displacement, which might result in configurations where the leg collides with the environ-

ment. For example, with an increment in body velocity, the shin might become closer to the
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Fig. 3. An overview of the influence of the body velocity on two foothold evaluation criteria: (a) kinematic

feasibility and (b) leg collision for a low (Vf1) and a high (Vf2) body velocity. The shaded regions represent
the workspace of the robot. The variable pc is a candidate foothold. The horizontal red and blue lines

represent the kinematically feasible footholds.

ground, as shown in Fig. 3b. This situation reduces the number of feasible footholds due to

the leg collision criterion.

3.2. Influence on the Number of Feasible Footholds

The number of feasible footholds is implicitly affected by the body velocity, because it

depends on the evaluation criteria mentioned in Section 3.1. To verify this, we performed

two simulations in the scenario shown in Fig. 1, and collected the heightmaps resulting from

these simulations. In the two simulations, we use body velocities of 0.2 m/s, and 0.5 m/s,

respectively, while keeping the other settings identical (step frequency of 1.4 Hz, duty factor

of 0.6, and step height of 0.12 m). After collecting the heightmaps, we evaluate the VFA

offline using the criteria detailed in Section 2.1 while considering the body velocity as an

input.

The outcome of these simulations is shown in Fig. 4 and Fig. 5. In Fig. 4, we plot the

number of feasible footholds computed by evaluating the VFA for the four legs for the

two velocities. As shown in the figure, lower body velocities can result in higher number

of feasible footholds. In Fig. 5, we plot the distance to nominal of the four legs for the

two velocities. The distance to nominal is the distance between the optimal foothold from

the VFA, and the nominal foothold p̂. We use this metric to indicate how far the optimal

foothold is from the nominal one. The shorter the distance to the nominal foothold, the

smaller the magnitude of the disturbance on the robot due to the foothold adaptation. As

shown in the figure, lower body velocities can result in smaller values of the distance to

nominal.

Figures 4 and 5 show that some body velocities can give more feasible solutions to the

robot that are closer to the nominal footholds. To elaborate, in the simulation where the

robot was trotting with a forward velocity of 0.2 m/s, if the VFA of our previous work

was used (where the forward velocity was assumed to be constant of 0.5 m/s in the VFA

evaluation), it will result in less number of feasible footholds that are further away from the

nominal foothold. This can put the robot in situations with less alternatives that might lead

to unsafe footholds if there is a large uncertainty in the heightmap.
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Fig. 4. Number of feasible footholds. The number of feasible footholds according to the evaluation criteria

for a body velocity of 0.2 m/s (orange), and 0.5 m/s (blue) using the scenario shown in Fig. 1.

0.0

0.1

X
Y

 d
ist

an
ce

to
 n

om
in

al
 [m

] LF RF

0 1 2 3 4
Longitudinal body position [m]

0.0

0.1

X
Y

 d
ist

an
ce

to
 n

om
in

al
 [m

] LH

0 1 2 3 4
Longitudinal body position [m]

RH

Fig. 5. Distance to nominal. The distance to nominal (the distance between the optimal foothold from
the VFA and the nominal foothold) for a body velocity of 0.2 m/s (orange), and 0.5 m/s (blue) using the

scenario shown in Fig. 1.

4. Velocity-Aware Foothold Evaluation with Convolutional Neural

Networks

The VFA was devised to provide safe foothold locations during dynamic locomotion. This

means that the foothold adaptation should be performed continuously in short periods

of time. However, the heightmap evaluation (Section 2) is a computationally demanding

operation. As a solution, the VFA approximates the evaluation h(H) with a CNN to infer

the optimal foothold in a faster way7 (see Fig. 6a). This network consists of two convolutional

layers with 5× 5 kernels, 2× 2 padding, ReLU activation and 2× 2 max-pooling operation,

and two fully-connected layers with ReLU and softmax activations. This CNN only considers

a heightmap as input, reason why it is trained with foothold evaluation data that assumes

that the robot moves with a constant velocity.

To approximate a heightmap evaluation that explicitly considers the forward velocity

of the robot, h(H,Vf ), we slightly modified the aforementioned CNN by concatenating

the velocity value to the one-dimensional feature vector obtained from the convolutional

layers (see Fig. 6b). Our decision is based on: (i) exploiting an architecture that has already

shown a good performance in the extraction of features from heightmaps, (ii) capturing the

non-linear dependence of the forward velocity in the foothold evaluation, thus evaluating it

with at least two fully-connected layers, and (iii) making a minimal increment in the number

of parameters (8237 parameters for the velocity-aware CNN compared to 8217 parameters

for the previous CNN).

5. Results

In this section, we evaluate the effect of including the forward velocity on the prediction

accuracy of the CNNs. Later, we analyze how considering this forward velocity affects the
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Fig. 6. Convolutional neural networks that approximate the evaluation of a heightmap. (a) Heightmap-only
CNN. This model considers only current heightmap values and predicts optimal footholds assumming the

robot moves with a constant velocity. (b) Velocity-aware CNN. This neural network explicitly considers the
current forward velocity as input. It has an architecture similar to the CNN in (a). Note, however, that

the forward velocity is concatenated with the feature vector obtained from the convolutional layers before

passing through the fully-connected ones.

foothold adaptation of a legged robot in a simulation experiment.

5.1. CNN Prediction

We trained three different types of CNNs. The first two, denoted by ĥ0.2 and ĥ0.5, were

trained using Vf = 0.2 m/s and Vf = 0.5 m/s fixed forward velocity, respectively. The

architecture of these CNNs is shown in Figure 6a. The third type of CNN, denoted by ĥV,

has a velocity-aware architecture ( Figure 6b) and it is trained with evaluations that consider

velocities between 0.0 m/s and 0.6 m/s. Therefore, in total we trained 12 different CNNs,

one per each leg and CNN type.

The parameters of all the CNNs are optimized to minimize the cross-entropy loss of

classifying a candidate foothold location as optimal according to the evaluation criteria

described in Section 2.1. We used the Adam optimizer with a learning rate of 0.001, and

16316 heightmaps collected from simulation, which are split in 80% as training set and

20% as validation set. We have performed the training process with five different random

seeds, and the CNNs with better performance in the validation set are the ones considered

in this section. To analyze their performance, we had a test set (1480 new heightmaps) of

evaluations with velocities of 0.2 m/s, 0.5 m/s, and 12 equally spaced velocities in the range

of 0.0 m/s and 0.6 m/s.

The performances of the trained CNNs in predicting optimal-footholds are summarized

in Table 1. The ĥV CNNs have, on average, a better optimal-foothold prediction than the

ĥ0.2 and ĥ0.5 networks. We believe that this performance is due to the decoupling of the

velocity-dependent features that should be obtained from the convolutional layers. That

is, concatenating the velocity after the convolutional layers allows them to focus on the

construction of features relevant to the foothold evaluation but not related to the velocity.

The performance of ĥV is also better in giving solutions that are feasible and closer to the

true optimal footholds.

An unexpected result is that despite the ĥ0.2 CNNs were trained with evaluation data

that considers a velocity of 0.2 m/s, their performance is worse than CNNs trained with a

velocity of 0.5 m/s (see column Vf = 0.2 m/s in Table 1). As we could see in Section 3, lower

forward velocities make the locations of the initial foothold and the hip of the robot in the

heightmap closer to the nominal foothold, and thus closer to its center. If we also consider

that in most cases, the optimal-foothold is even closer to the center, we have a significant

amount of optimal-footholds closer to the nominal. This produces a CNN slightly biased

towards solutions closer to the center and that ignores solutions far from it.



Table 1. Optimal-foothold prediction of three different CNNs. The table shows the performance on the test

set for evaluations with velocities of 0.2 m/s, 0.5 m/s, and 12 velocities in the range of 0.0 m/s and 0.6 m/s.

The left-front, right-front, left-hind and right-hind legs are denoted by LF, RF, LH and RH, respectively.
The values reported in the perfect-match and feasible footholds rows are expressed in percentage (%) over

the total size of the test set. On the other hand, the values of the distance to optimal (last row) are in cm. A

CNN that considers the velocity as input has a better performance, in terms of perfect-matching, prediction
of feasible footholds, and distance to the true optimal. See subsection 5.1 for further discussion.

Vf = 0.2m/s Vf = 0.5m/s Vf ∈ [0.0, 0.6] m/s

Leg ĥ0.2 ĥ0.5 ĥV ĥ0.2 ĥ0.5 ĥV ĥ0.2 ĥ0.5 ĥV

Perfect match

LF 87.70 88.90 95.30 87.30 89.20 94.40 87.56 88.85 94.87

RF 87.70 91.80 96.00 87.30 92.00 95.10 87.46 91.68 95.59

LH 85.10 89.10 93.10 85.50 90.10 93.90 85.34 89.43 93.37
RH 86.50 89.70 93.50 87.00 91.10 94.20 86.82 90.21 93.81

Feasible foothold

LF 95.60 96.60 98.50 95.10 96.50 98.50 95.43 96.48 98.45
RF 96.10 97.40 98.80 95.60 97.20 98.20 95.88 97.26 98.59

LH 95.30 97.90 97.60 94.40 97.60 98.30 94.88 97.74 97.88

RH 95.50 97.40 97.40 94.40 97.30 98.50 95.01 97.30 97.97

Distance to optimal

LF 0.61 0.63 0.20 0.67 0.57 0.44 0.64 0.62 0.22

RF 0.62 0.51 0.16 0.68 0.45 0.27 0.65 0.50 0.19
LH 0.72 0.62 0.29 0.70 0.56 0.33 0.72 0.60 0.28

RH 0.71 0.56 0.25 0.67 0.50 0.27 0.69 0.54 0.27

5.2. Simulations

We evaluated the proposed improvements to the VFA and the accuracy of the trained CNN

on the simulation scenario depicted in Fig. 1. It is comprised by a series of bars of 15 cm

high, 20 cm wide, equally spaced 30 cm. We chose this type of scenario because the spacing

between the bars makes it necessary for the robot to step on the ground when crossing from

one bar to another. This situation has high chances to lead to leg collisions, which is the

evaluation criterion that has the more relevant effect when considering the body velocity to

select safe footholds.

The robot is commanded to trot at a forward velocity Vf of 0.2 m/s, a step frequency fs
of 1.4 Hz and a duty factor Df of 0.6. The body velocity ṙ is fed into the CNN continuously.

We are mostly interested in performing locomotion at slow velocities, since it is when the

improvement in performance is most noticeable, as stated in Section 3. However, we are

also interested to show how the constant update of the forward velocity plays a role in the

selection of future foothold locations.

Figure 7 shows a comparison of the body velocity in the x direction of the body, when

crossing the scenario depicted in Fig. 1, using three different CNNs. As it can be seen, the

variation of the body velocity as the robot crosses the scenario is less when the CNN is

trained for different forward velocities. This is because the selection of the foothold reduces

the number of impacts with the bars. In the case of the CNN trained considering a constant

forward velocity of 0.2 m/s, although that is the commanded velocity, the actual robot’s

velocity suffers variations caused by the changes in foothold location with respect to the

nominal ones. These changes perturb the robot and consequently change its acceleration.

The variations in velocity lead to kinematic configurations that were not considered during

training, which leads to leg collisions. On the other hand, the CNN trained assuming 0.5 m/s

forward velocity, generates aggressive actions, either to far from the obstacle, or continuously

trying to overcome it. Effectively, these large displacements with respect to the position of

the nominal foothold increase the size of the disturbance on the trunk, leading to higher

variation in forward velocity.
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Fig. 7. Comparison of body velocity using three different CNNs while crossing the scenario depicted
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(red), constant at 0.5 m/s and variable body velocity (blue). Five trials were performed for each CNN and

we show the average of them.

6. Conclusions

In this paper, we have analyzed the influence of the body velocity in foothold adaptation

during dynamic legged locomotion. We have shown how this velocity is directly related to

hip displacement. Therefore, it alters the evaluation of the kinematic criteria in a framework

that selects feasible footholds based on them. In addition, we have proposed a CNN classifier

that explicitly considers the velocity of the robot and approximates the foothold evaluation

process. Our results show that our foothold evaluation strategy has a better performance

with this CNN than with architectures that assume a constant velocity and that only con-

sider heightmaps as input. We plan to improve the performance of the CNN by considering

additional variables, testing new architectures and training with data collected from the real

robot.
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