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Passive Whole-body Control for Quadruped Robots:
Experimental Validation over Challenging Terrain

Shamel Fahmi1†, Carlos Mastalli1,2†, Michele Focchi1 and Claudio Semini1

Abstract—We present experimental results using a passive
whole-body control approach for quadruped robots that achieves
dynamic locomotion while compliantly balancing the robot’s
trunk. We formulate the motion tracking as a Quadratic Program
(QP) that takes into account the full robot rigid body dynamics,
the actuation limits, the joint limits and the contact interaction.
We analyze the controller’s robustness against inaccurate friction
coefficient estimates and unstable footholds, as well as its capabil-
ity to redistribute the load as a consequence of enforcing actuation
limits. Additionally, we present practical implementation details
gained from the experience with the real platform. Extensive ex-
perimental trials on the 90 kg Hydraulically actuated Quadruped
(HyQ) robot validate the capabilities of this controller under
various terrain conditions and gaits. The proposed approach is
superior for accurate execution of highly dynamic motions with
respect to the current state of the art.

Index Terms—whole-body control, quadrupedal locomotion,
optimization, passivity, active impedance

I. INTRODUCTION

ACHIEVING dynamic locomotion requires reasoning
about the robot’s dynamics, actuation limits and interac-

tion with the environment while traversing challenging terrain
(such as rough or sloped terrain). Optimization-based tech-
niques can be exploited to attain these objectives in locomotion
planning and control of legged robots. For instance, one
approach is to use non-linear Model Predictive Control (MPC)
while taking into consideration the full dynamics of the robot.
Yet, it is often challenging to meet real-time requirements
because the solver can get stuck in local minima, unless proper
warm-starting is used [1]. Thus, current research often relies
on low dimensional models or constraint relaxation approaches
to meet such requirements (e.g. [2]). Other approaches rely
on decoupling the motion planning from the motion control
[3, 4, 5]. Along this line, an optimization-based motion planner
could rely on low dimensional models to compute Center of
Mass (CoM) trajectories and footholds while a locomotion
controller tracks these trajectories.

Many recent contributions in locomotion control have been
proposed in the literature that were successfully tested on
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bipeds and quadrupeds (e.g. [6, 7, 8, 9, 5, 10]). Some of them
are based on quasi-static assumptions or lower dimensional
models [11, 12, 13]. This often limits the dynamic locomotion
capabilities of the robot [6]. Consequently, another approach,
that is preferable for dynamic motion, is based on Whole-Body
Control (WBC). WBC facilitates such decoupling between
the motion planning and control in such a way that it is
easy to accomplish multiple tasks while respecting the robot’s
behavior [9]. These tasks might include motion tasks for the
robot’s end effectors (legs and feet) [8, 9], but also could be
utilized for contacts anywhere on the robot’s body [14] or for
a cooperative manipulation task between robots [15]. WBC
casts the locomotion controller as an optimization problem,
in which, by incorporating the full dynamics of the legged
robot, all of its Degrees of Freedom (DoFs) are exploited
in order to spread the desired motion tasks globally to all
the joints. This allows us to reason about multiple tasks and
solve them in an optimization fashion while respecting the full
system dynamics and the actuation and interaction constraints.
WBC relies on the fact that robot dynamics and constraints
could be formulated, at each loop, as linear constraints with a
convex cost function (i.e., a QP) [2]. This allows us to solve
the optimization problem in real-time.

Passivity theory is proven to guarantee a certain degree of
robustness during interaction with the environment [16]. For
that reason, such tool is commonly exploited in the design
of locomotion controllers to ensure a passive contact inter-
action. Passivity based WBC in humanoids was introduced
first by [17] to effectively balance the robot when experi-
encing contacts. By providing compliant tracking and gravity
compensation, the humanoid was able to adapt to unknown
disturbances. The same approach was further extended first
by [12] and later by [8]. The former extended [17] to posture
control, while the latter analyzed the passivity of a humanoid
robot in multi-contact scenarios (by exploiting the similarity
with PD+ control [18]).

In our previous work [13], the locomotion controller was
designed for quasi-static motions using only the robot’s cen-
troidal dynamics. Under that assumption, we noticed that
during dynamic motions, the effect of the leg dynamics no
longer negligible; and thus, it becomes necessary to abandon
the quasi-static assumption to achieve good tracking. Second,
since the robot is constantly interacting with the environment
(especially during walking and running), it is crucial to ensure
a compliant and passive interaction. For these reasons, in this
paper, we improve our previous work [13] by implementing a
passivity based WBC that incorporates the full robot dynamics
and interacts compliantly with the environment, while satisfy-
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Fig. 1: Overview of the whole-body controller as part of our locomotion framework. The dashed black box (cartouche) presents an overview
of the robot’s joints, feet and generated wrenches and forces. LH, LF, RH and RF are Left-Hind, Left-Front, Right-Hind and Righ-Front
legs, respectively. HAA, HFE and KFE are Hip Abduction/Adduction, Hip Flexion/Extension and Knee Flexion/Extension, respectively.

ing the kinematic and torque limits. Our WBC implementation
is capable of achieving faster dynamic motions than our
previous work. We also integrate terrain mapping and state
estimation on-board and present some practical implementa-
tion details gained from the experience with the real platform.

Contributions: In this paper, we mainly present experimen-
tal contributions in which we demonstrate the effectiveness
of the controller both in simulation and experiments on HyQ.
Compared to previous work on passivity-based WBC [8, 12],
in which experiments were conducted on the robot while
standing (not walking or running), we tested our controller
on HyQ during crawling and trotting. Similar to the recent
successful work of [5] and [19] in quadrupedal locomotion
over rough terrain, we used similar terrain templates to present
experiments of our passive WBC on HyQ using multiple gaits
over slopes and rough terrain of different heights.

The rest of this paper is structured as follows: In Section II
we present the detailed formulation and design of our WBC
followed by its passivity analysis in Section III. Section IV
presents further crucial implementation details. Finally we
present our simulation and experimental results in Section V
followed by our conclusions in Section VI.

II. WHOLE-BODY CONTROLLER (WBC)

In this section we present and formulate our WBC. Figure
1 depicts the main components of our locomotion framework.
Given high-level user velocity commands, the planner gener-
ates a reference motion online [20] or offline [4], and provides
it to the WBC. Such references include the desired trajectories
for CoM, trunk orientation and swing legs. The state estimator
supplies the controller with an estimate of the actual state
of the robot, by fusing leg odometry, inertial sensing, visual
odometry and LIDAR while, the terrain estimator, provides an
estimate of the terrain inclination (i.e. surface normal). Finally,
there is a momentum-based observer that estimates external
disturbances [20] and a lower-level torque controller.

The goal of the designed WBC is to keep the quadruped
robot balanced (during running, walking or standing) while
interacting passively with the environment. The motion tasks
of a quadruped robot can be categorized into a trunk task
and a swing task. The trunk task regulates the position of
the CoM and the orientation of the trunk1 and is achieved
by implementing a Cartesian-based impedance controller with

1Since HyQ is not equipped with arms, it suffices for us to control the
trunk orientation instead of the whole robot angular momentum.

a feed-forward term2. The swing task regulates the swing
foot trajectory in order to place it in the desired location
while achieving enough clearance from the terrain. Similar
to the trunk task, the swing task is achieved by implementing
a Cartesian-based impedance controller with a feed-forward
term. The WBC realizes these tasks by computing the optimal
generalized accelerations and contact forces [6] via QP and
mapping them to the desired joint torques while taking into
account the full dynamics of the robot, the properties of the ter-
rain (friction constraints), the unilaterality of the contacts (e.g.
the legs can only push and not pull) (unilateral constraints),
and the actuator’s torque/kinematic limits. The desired torques,
will be sent to the lower-level (torque) controller.

A. Robot Model

For a legged robot with n DoFs and c feet, the forward
kinematics of each foot is defined by na coordinates3. The
total dimension of the feet operational space is nf = nac.
This can be separated into stance (nst = nacst) and swing
feet (nsw = nacsw). Since we are interested in regulating the
position of the CoM, we formulate the dynamics in terms of
the CoM, using its velocity rather than the base velocity4 [12].
Assuming that all the external forces are exerted on the stance
feet, we write the equation of motion that describes the full
dynamics of the robot as:[
Mcom 06×n
0n×6 M̄j

]
︸ ︷︷ ︸

M(q)

[
v̇com

q̈j

]
︸ ︷︷ ︸

q̈

+

[
hcom
h̄j

]
︸ ︷︷ ︸

h

=

[
06×n
τj

]
+

[
JTst,com

JTst,j

]
︸ ︷︷ ︸
Jst(q)T

Fgrf

(1)
where the first 6 rows represent the (un-actuated) floating
base part and the remaining n rows represent the actuated
part. q ∈ SE(3) × Rn represents the pose of the whole
floating-base system while q̇ =

[
vTcom q̇Tj

]T ∈ R6+n and
q̈ = [v̇Tcom q̈Tj ]T ∈ R6+n are the vectors of generalized
velocities and accelerations, respectively. vcom = [ẋTcom ωTb ]T

∈ R6 and v̇com = [ẍTcom ω̇Tb ]T ∈ R6 are the spatial velocity
and acceleration of the floating-base expressed at the CoM.
M(q) ∈ R(6+n)×(6+n) is the inertia matrix, where Mcom(q)
∈ R6×6 is the composite rigid body inertia matrix of the robot
expressed at the CoM. h ∈ R6+n is the force vector that

2This is similar to a PD+ controller [18].
3Without the loss of generality, we consider a quadruped robot with n = 12

DoFs with point feet, where c = 4 and na = 3.
4In this coordinate system, the inertia matrix is block diagonal [12]. For

the detailed implementation of the dynamics using the base velocity, see [17].
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accounts for Coriolis, centrifugal, and gravitational forces5.
τ ∈ Rn are the actuated joint torques while Fgrf ∈ Rnst is
the vector of Ground Reaction Forces (GRFs) (contact forces).
In this context, the floating base Jacobian J ∈ Rnf×(6+n) is
separated into swing Jacobian Jsw ∈ Rnsw×(6+n) and stance
Jacobian Jst ∈ Rnst×(6+n) which could be further expanded
into Jst,com ∈ Rnst×6, Jst,j ∈ Rnst×n, Jsw,com ∈ Rnsw×6 and
Jsw,j ∈ Rnsw×n. The operator [̄·] denotes the matrices/vectors
recomputed after the coordinate transform to the CoM [17].
Following the sign convention in Fig. 1, recalling the first 6
rows in (1), and by defining the gravito-inertial CoM wrench
as Wcom = Mcomv̇com+hcom ∈ R6, we can write the floating-
base dynamics as:

Wcom = JTst,comFgrf (2)

such that JTst,com maps Fgrf to the CoM wrench space.
The feet velocities v = [vTst v

T
sw]T ∈ Rnf could be separated

into stance vst ∈ Rnst and swing vsw ∈ Rnsw feet velocities.
The mapping between v and the generalized velocities q̇ is:

v = Jq̇ (3a)

v =
[
Jcom Jj

] [vcom

q̇j

]
= Jcomvcom + Jj q̇j (3b)

such that Jcom ∈ Rnf×6 and Jj ∈ Rnf×n. Similar to the
feet velocities, we split the feet force vector F = [FTst F

T
sw]T

∈ Rnf , into Fst ∈ Rnst and Fsw ∈ Rnsw .
Assumption 1: The robot is walking over rigid terrain in

which the stance feet do not move (i.e., vst = v̇st = 0).

B. Trunk and Swing Leg Control Tasks

To compliantly achieve a desired motion of the trunk, we
define the desired wrench at the CoM Wcom,d using the
following: 1) a Cartesian impedance at the CoM Wimp that
is represented by a stiffness term (∇Vcom,K = Kcom∆xcom)
with positive definite stiffness matrix Kcom ∈ R6×6 and a
damping term (Dcom∆vcom) with positive definite damping
matrix Dcom ∈ R6×6, 2) a virtual gravitational potential
gradient to render gravity compensation (∇Vcom,ḡ = mg)6, 3)
a feedforward term to improve tracking (Wff = Mcomv̇com,d)
and a compensation term for external disturbances −Wext

[20]:

Wcom,d = Wimp +∇Vcom,ḡ +Wff −Wext (4a)
Wimp = ∇Vcom,K +Dcom∆vcom (4b)

such that ∆xcom = xcom,d − xcom, ∆vcom = vcom,d − vcom

are the tracking errors ∈ R6 of the position and velocity,
respectively.

Similarly, the tracking of the swing task is obtained by the
virtual force Fsw,d ∈ Rnsw . This is generated by 1) a Cartesian
impedance at the swing foot that is represented by a stiffness
term (∇Vsw = Ksw∆xsw) with positive definite stiffness
matrix Ksw ∈ Rnsw×nsw and a damping term (Dsw∆vsw) with

5Note that hcom = −mg+vcom×∗Mcomvcom according to the spatial
algebra notation, where m is the total robot mass.

6∇V[.] denotes the gradient of a potential function V[.]. For more informa-
tion regarding the Cartesian stiffness and gravitational potentials, see [8].

positive definite damping matrix Dsw ∈ Rnsw×nsw , and 2) a
feedforward term to improve tracking (Fsw,ff = Mswv̇sw,ff ):

Fsw,d = ∇Vsw +Dsw∆vsw + Fsw,ff (5)

such that ∆xsw = xsw,d − xsw and ∆vsw = vsw,d − vsw are
the tracking errors of the swing feet positions and velocities
respectively. Alternatively, it is possible to write this task at
the acceleration level, with the difference that the gains Ksw

and Dsw have no physical meaning:

v̇sw,d = v̇sw,ff + Ksw∆xsw + Dsw∆vsw (6)

C. Optimization

To fulfill the motion tasks in Section II-B and to distribute
the load on the stance feet, while respecting the mentioned
constraints, we formulate the QP:

min
u=[q̈T FT

grf ]
T
‖Wcom −Wcom,d‖2Q + ‖u‖2R (7a)

s. t. Au = b (7b)
d < Cu < d̄ (7c)

such that our decision variables u = [q̈T FTgrf ]
T ∈ R6+n+nst

are the generalized accelerations q̈ and the contact forces
Fgrf . The cost function (7a) is designed to minimize the
trunk task and to regularize the solution. The equality con-
straints (7b) encode dynamic consistency, stance constraints
and swing tasks. The inequality constraints (7c) encode friction
constraints, joint kinematic and torque limits. All constraints
are stacked in the matrix AT =

[
ATp ATst ATsw

]
and

CT =
[
CTfr CTj CTτ

]
and detailed in the following sections.

1) Cost: The first term of the cost in (7a) represents
the tracking error between the actual Wcom and the desired
Wcom,d CoM wrenches from (2) and (4a) respectively. Since
Wcom is not a decision variable, we compute it from the
contact forces (see (2)) and re-write ‖Wcom −Wcom,d‖2Q in
the form of ‖Gu− g0‖2Q with:

G =
[
06×(6+n) JTst,com

]
, g0 = Wcom,d (8)

2) Physical consistency: To enforce physical consistency
between Fgrf and q̈, we impose the dynamics of the unactuated
part of the robot (the trunk dynamics in (2)) as an equality
constraint:

Ap =
[
Mcom 06×n −JTst,com

]
, bp = −hcom (9)

3) Stance condition: We can encode the stance feet con-
straints by re-writing them at the acceleration level in order to
be compatible with the decision variables. Since vst = Jstq̇,
differentiating once in time, yields to v̇st = Jstq̈ + J̇stq̇.
Recalling Assumption 1 yields Jstq̈ + J̇stq̇ = 0 which is
encoded as:

Ast =
[
Jst 0nst×nst

]
, bst = −J̇stq̇ (10)

such that J̇st is the time derivative of Jst. For numerical
precision, we compute the product J̇stq̇ using spatial algebra.
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4) Swing task: Similar to Section II-C3, we can encode the
swing task directly as an equality constraint, i.e. by enforcing
the swing feet to follow a desired swing acceleration v̇sw(q) =
v̇sw,d ∈ Rnsw yielding:

Jswq̈ + J̇swq̇ = v̇sw,d (11)

that in matrix form becomes7:

Asw =
[
Jsw 0nsw×nst

]
, bsw = v̇sw,d − J̇swq̇ (12)

where we computed v̇sw,d as in (6). Note that this imple-
mentation is analogous to the trunk task in Section II-B. The
difference is that this implementation is at the acceleration
level while the other is at the force level. However, without
any loss of generality, the formulation (5) could also be used.
In Section IV-B we incorporate slacks in the optimization to
allow temporary violation of the swing tasks (e.g. useful when
the kinematic limits are reached).

5) Friction cone constraints: To avoid slippage and ob-
tain a smooth loading/unloading of the legs, we incorporate
friction/unilaterality constraints. For that, we ensure that the
contact forces lie inside the friction cones and their nor-
mal components stay within some user-defined values (i.e.
maximum and minimum force magnitudes). We approximate
the friction cones with square pyramids to express them
with linear constraints. The fact that the ground contacts are
unilateral, can be naturally encoded by setting an “almost-
zero” lower bound on the normal component, while the upper
bound allows us to regulate the amount of “loading” for each
leg. We define the friction inequality constraints as:

dfr < Cfru < d̄fr, Cfr =
[
0p×(6+n) Ffr

]
(13)

with:

Ffr =

F0 . . . 0
...

. . .
...

0 . . . Fc

 , dfr =

f0
...
f
c

 , d̄fr =

f̄0

...
f̄c

 (14)

where Ffr ∈ Rp×nst is a block diagonal matrix that encodes
the friction cone boundaries and select the normals, for each
stance leg and dfr, d̄fr ∈ Rp are the lower/upper bounds
respectively. For the detailed implementation of the friction
constraints refer to [13].

6) Torque limits: We notice that the torques be obtained
from the decision variables since they can be expressed as a
bi-linear function of q̈j and Fgrf . Therefore, the constraint on
the joint torques (i.e., the actuation limits τmin < τj < τmax)
can be encoded by exploiting the actuated part of the dynamics
(1):

dτ < Cτu < d̄τ , Cτ =
[
0n×6 M̄j −JTst,j

]
(15)

dτ = −h̄j + τmin(qj), d̄τ = −h̄j + τmax(qj)

where τmin(qj), τmax(qj) ∈ Rn are the lower/upper bounds
on the torques. In the case of our quadruped robot, these
bounds must be recomputed at each control loop because they
depend on the joint positions. This is due to the presence of

7Alternatively, it is possible to write the swing task at the joint space rather
than in the operational space by changing the matrix Asw, bsw.

linkages on the sagittal joints (HFE and KFE), that set a joint-
dependent profile on the maximum torque (non-linear in the
joint range).

7) Joint kinematic limits: We enforce joint kinematic con-
straints as function of the joint accelerations (i.e. q̈jmin

< q̈j <
q̈jmax ). We select them via the matrix Cj :

dj < Cju < d̄j , Cj =
[
0n×6 In×n 0n×nst

]
(16)

dj = q̈jmin(qj), d̄j = q̈jmax(qj) (17)

such that q̈jmin(qj) and q̈jmax(qj) are the upper/lower bounds
on accelerations. These bounds should be recomputed at each
control loop. They are set in order to make the joint to reach
the end-stop at a zero velocity in a time interval ∆t = 10dt,
where dt is the loop duration. For instance, if the joint is at a
distance qjmax − qj from the end-stop with a velocity q̇j , the
deceleration to cover this distance in a time interval ∆t, and
approach the end-stop with zero velocity, will be:

q̈jmin,max = − 2

∆t2
(qjmin,max − qj −∆t q̇j) (18)

D. Torque computation
We map the optimal solution u∗ =

[
q̈∗ F ∗

grf

]
obtained

by solving (7), into desired joint torques τ∗d ∈ Rn using the
actuated part of the dynamics equation of the robot as:

τ∗d = M̄j q̈j
∗ + h̄j − JTst,jF ∗

grf (19)

III. PASSIVITY ANALYSIS

The overall system consists of the WBC, the robot and the
environment. This system is said to be passive if all these
components, and their interconnections are passive [16]. If the
robot and the environment are passive, and the controller is
proven to be passive, then the overall system is passive [21].
A system (with input u and output y) is said to be passive if
there exists a storage function S that is bounded from below
and its derivative Ṡ is less than or equal to its supply rate
(s = yTu). In this context, we define the total energy stored
in the controller to be the candidate storage function for the
controller S = V . The rest of this section is devoted to analyze
the passivity of the overall system.

Assumption 2: A feasible solution exists for the QP in (7)
in which the motion tasks are achieved. Moreover, we do not
consider the feed-forward terms in (4a) and (5) leaving this to
future developments.

We start by defining the velocity error at the joints and at
the stance feet to be ∆q̇j = q̇j,d − q̇j , and ∆vst = vst,d −
vst, respectively. We also define the desired feet forces Fd =
[FTst,d F

T
sw,d]T such that, by following the sign convention in

Fig. 1, the mapping between Fd and Wcom,d is expressed as8:

Wcom,d = −JTcomFd, (20)

while mapping between Fd and τj is expressed as9

τ = JTj Fd. (21)

8Since we are analyzing the passivity of the controller, we are interested in
the forces exerted by the robot on the environment rather than the forces
exerted by the environment on the robot. Hence the mapping in (20) is
negative.

9Assuming a perfect low level torque control tracking (i.e., τd = τ ).
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By defining ∇Vcom = ∇Vcom,K +∇Vcom,ḡ and recalling (20),
we rewrite (4a) under Assumption 2 as:

∇Vcom = Wcom,d −Dcom∆vcom (22a)
= −JTcomFd −Dcom∆vcom. (22b)

A. Analysis

The overall energy in the whole-body controller is the one
stored in the virtual impedance at the CoM and the potential
energy due to gravity compensation (Vcom), and the energy
stored in the virtual impedances at the swing feet (Vsw) 10:

V = Vcom + Vsw. (23)

The time derivatives are11:

V̇ = V̇com + V̇sw = ∆vTcom∇Vcom + ∆vTsw∇Vsw. (24)

Recalling (5) and (22b), (24) yields:

V̇ = ∆vTcom(−JTcomFd −Dcom∆vcom) +

∆vTsw(Fsw,d −Dsw∆vsw)). (25)

We regroup V̇ in terms of the non-damping terms V̇1 and
damping terms V̇2 yielding:

V̇1 = −∆vTcomJ
T
comFd + ∆vTswFsw,d (26a)

V̇2 = −∆vTcomDcom∆vcom −∆vTswDsw∆vsw. (26b)

We rewrite (3b) in terms of ∆vcom, ∆v and ∆q̇j as:

∆v = Jcom∆vcom + Jj∆q̇j (27a)
∆vTcomJ

T
com = −∆q̇Tj J

T
j + ∆vT . (27b)

Plugging, (27b) in (26a) yields12:

V̇1 = ∆q̇Tj J
T
j Fd −∆vTFd + ∆vTswFsw,d (28a)

= ∆q̇Tj J
T
j Fd −∆vTstFst,d. (28b)

Plugging (21) and into (28b) yields:

V̇1 = ∆q̇Tj τ −∆vTstFst,d. (29)

Under Assumption 1, (29) yields:

V̇1 = ∆q̇Tj τ . (30)

Thus, V̇ could be rewritten as:

V̇ = ∆q̇Tj τ −∆vTcomDcom∆vcom −∆vTswDsw∆vsw. (31)

10In this analysis we use the formulation (5).
11The time derivative of an arbitrary storage function V̇ (∆x(t)) that is a

function of ∆x(t) could be written as V̇ = d
dt

∆xT (t) · ∂
∂∆x(t)

V that is
written for short as V̇ = ∆vT∇V .

12From the definition of v and Fd, we get vTFd = vTstFst,d +vTswFsw,d.

B. Proof

Under Assumption 2, the designed WBC is an impedance
control with gravity compensation that, similar to a PD+ [18],
defines a map of (q̇j − q̇j,d) 7→ −τ 13. This controller is
passive if V is bounded from below and V̇ ≤ ∆q̇Tj τ . Since V
consists of positive definite potentials that resemble Cartesian
stiffnesses at the CoM and the swing leg(s), and under the
assumption the gravitational potential is bounded from below
(see [22]), V is also bounded from below. Additionally,
recalling (31) proves that the controller is indeed passive; thus,
the overall system is passive.

IV. IMPLEMENTATION DETAILS

This section describes some pragmatic details that we found
crucial in the implementation on the real platform.
A. Stance task

Uncertainties in estimating the terrain’s normal direction
and friction coefficient could result in slippage. This can lead
to considerable motion of the stance feet with possible loss
of stability. To avoid this, a joint impedance feedback loop
could be run in parallel to the WBC, at the price of losing
the capability of optimizing the GRFs. A cleaner solution
is to incorporate, in the optimization, Cartesian impedances
specifically designed to keep the relative distance among the
stance feet constant (we denote it stance task).

The stance task has an influence only when there is an
anomalous motion in the stance feet, retaining the possibility
to freely optimize for GRFs in normal situations. This can be
achieved by re-formulating the stance condition in (10) as a
desired stance feet acceleration v̇st,d as:

v̇st,d = Kst(x̂st − xst)−Dstvst. (32)

This term is added to bst (in (10)) as bst = −J̇stq̇ + ẍdfst
where x̂st is a sample of the foot position at the touchdown
(expressed in the world frame).
B. Constraint Softening

Adding slack variables to an optimization problem is com-
monly done to avoid infeasible solutions, by allowing a certain
degree of constraint violation. Infeasibility can occur when
hard constraints are conflicting with each other, which can be
the case in our QP. Hence, some of the equalities/inequalities
in (7) should be relaxed if they are in conflict.

We decided not to introduce slacks in the torque constraints
(Section II-C6) or the dynamics (Section II-C2) keeping them
as hard constraints, since torque constraints and physical
consistency should never be violated. On the other hand it
is important to allow a certain level of relaxation for the
swing tasks in Section II-C4 that could be violated if the joint
kinematic limits are reached14.

To relax the constraints of the swing task, first, we augment
the decision variables ũ = [uT εT ]T ∈ R6+n+k+nsw with the
vector of slack variables ε ∈ Rnsw where we introduce a slack

13Note that q̇j − q̇j,d = −∆q̇j. Thus, the controller with the map (q̇j −
q̇j,d) 7→ −τ has a supply rate of ∆q̇Tj τ .

14Using slacks in friction constraints did not result in significant improve-
ments.
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variable for each direction of the swing tasks. Then, we replace
the equality constraint Aswu+ bsw = 0 of the swing tasks, by
two inequality constraints:

−ε ≤ Aswũ+ bsw ≤ ε
ε ≥ 0. (33)

The first inequality in (33) restricts the solution to a bounded
region around the original constraint while the second one
ensures that the slack variables remain non-negative. To make
sure that there is a constraint violation only when the con-
straints are conflicting, we minimize the norm of the slack
vector adding a regularization term α‖ε‖2 to (7a) with a high
weight α.

To reduce the computational complexity, we could have
introduced a single slack for each swing task (rather than one
for each direction). However, this could create coupling errors
in the tracking. For instance, since the Hip Flexion-Extension
(HFE) joint (see Fig. 1) mainly acts in the XZ plane, if
it reaches its joint limit, only that plane should be affected
leaving the Y direction unaffected. A single slack couples the
three directions causing tracking errors also in the Y direction.
Conversely, using multiple slacks, only the directions the HFE
acts upon, will be affected.

V. RESULTS

In this section we validate the capabilities of the con-
troller under various terrain conditions and locomotion gaits.
The WBC and torque control loops run in real-time threads
at 250 Hz and 1 kHz, respectively. We set the gains for
the swing tasks to Ksw = diag(2000, 2000, 2000) and
Dsw = diag(20, 20, 20), while for the trunk task we set
Kx = diag(2000, 2000, 2000) Dx = diag(400, 400, 400) and
Kθ = diag(1000, 1000, 1000) Dθ = diag(200, 200, 200).
These values proved to be working in both simulation and real
experiments. The results are collected in the accompanying
video15. Additionally, in experimental trials, we also included
a low gain joint-space attractor (PD controller) for the swing
task, since imprecise torque tracking of the knee joints (due to
the low inertia) produce control instabilities in an operational
space implementation (e.g. the one in Section II-C4).

A. Constraint Softening through Slack Variables

In Fig. 2 we artificially incremented the lower limit of
the LH-HFE joint. When the limit is hit, the bound on the
joint acceleration (18) produces a desired torque command
that stops its motion. This “naturally” clamps the actual joint
position to the limit (bottom-left plot) and influences the foot
tracking mainly along the X and Z directions.

Computational time: the solution of the QP takes between
90-110µs on a Intel i5 machine without the slacks variables.
After augmenting the problem with the slack variables and
its constraints, it increases 30 % on average (120-150µs).
However it still remains suitable for real-time implementation
(250 Hz).

15https://youtu.be/Lg3V_juoE1w

Fig. 2: Simulation. Effect of (kinematic limits) slacks variables on
foot tracking. The upper-left/right and bottom-left plots show the
tracking of the desired foot position (LH leg) in X , Y and Z,
respectively. Bottom-right plot depicts the joint limits (black line) and
the actual position (blue line) of the HFE joint. The red shaded area
underlines that when the slack increases, the HFE joint is properly
clamped.

B. Friction Constraints and Bounded Slippage
We evaluated in simulation the controller performance

against inaccurate friction coefficient estimates µ, which define
incorrectly the friction cone constraints in the WBC. In the
accompanying video, we show an example where the robot
crawls at 0.11 m/s on a slippery floor (µ = 0.4) while we set
the friction coefficient to µ = 1.0 in the WBC, to emulate an
estimation error. Simulation results support the fact that foot
slippage remains bounded by the action of the stance task
(Section IV-A). If we gradually correct µ the slippage events
completely disappear; allowing an increase of forward velocity
up to 0.16 m/s.

C. Torque Limits and Load Redistribution
We analyzed in simulation the effect of adding an artificial

torque limit, in our WBC. This helps us to derive controllers
that are robust against joint damages. Figure 3 shows a
reduction of the torque limits down to 26 Nm in the Left-
Front (LF)-KFE joint and the load redistribution among the
other joints (HAA and HFE) of the LF leg. Indeed, while the
KFE joint torque is clamped, the HFE is loaded more (lower
plot). This load redistribution did not affect the trunk motion
and it demonstrates how the controller exploits the torque
redundancy by finding a new load distribution. We carried out
also intensive experimental validation in various challenging
terrains. Slopes increase the probability of reaching torque
limits because of the more demanding kinematic configura-
tions. Indeed, in Fig. 4, the robot reached three times the
torque limits (red shaded areas). Crossing this terrain would
not be possible without enforcing the torque limits as hard
constraints.
D. Different Torque Regularization Schemes

By setting different regularizations in (7a) [13], we can
either choose to maximize the robustness to uncertainties in
the friction parameters (e.g. GRFs closer to the friction cone
normals) or to minimize the joint torques16. In the latter

16Setting the weighting matrix Rkk = JstSTRτSJTst where: Rkk is the
sub-block of R that regularizes for GRFs variables in (7) and S selects the
actuation joints.

https://youtu.be/Lg3V_juoE1w
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Fig. 3: Simulation. Effect of introducing an artificial torque limit on
the KFE joint of the LF leg during a typical crawl. The shaded area
represents the swing phase of the leg while the unshaded part is the
stance phase. We reduced the torque limit down to 26 Nm (black
line, upper plot), and as a consequence, the HFE torque is increased
by the controller (bottom plot).

Fig. 4: Real experiments. Reaching the torque limits on the RF-HFE
joint while climbing up and down two ramps. The HyQ robot reached
three times its torque limits (red shaded areas). The real torque (blue
line) is tracking the desired one (not shown) computed from our
whole-body controller while satisfying the joint limits (black line).
The torque limits are time-varying due to the joint mechanism.

case, for instance, we could encourage the controller to use a
particular joint by increasing its corresponding weight. If we
gradually increase the weight of the Knee Flexion-Extension
(KFE) joints (see accompanying video), the effect of torque
regularization becomes visible because the GRFs are no longer
vertical. Indeed the GRFs start to point toward the knee axis
in order to reduce its torque command.

E. Comparison with Previous Controller (Quasi-Static)

We compare our whole-body controller (dynamic) against
a centroidal-based controller (quasi-static) [13]. As metric we
use the l2-norm for the linear ex and angular eθ tracking errors
of the trunk task. If we increase linearly the forward speed
from 0.04 m/s to 0.15 m/s, the tracking error is reduced approx-
imately by 50 % in comparison to the quasi-static controller
(Fig. 5). This is due to the fact that our WBC computes both
joint accelerations and contact forces, which allows a proper
mapping of torque commands (inverse dynamics). Indeed this
results in better accuracy in the execution of more dynamic
motions.

F. Disturbance Rejection against Unstable Foothold

We encoded compliance tracking of the CoM task through
a virtual impedance. Friction cone constraints help to instan-
taneously keep the robot’s balance whenever a tracking error
happens due to, for instance, an unstable foothold. Furthermore

Fig. 5: Simulation. Comparison of tracking errors for the trunk task
of a quasi-static controller [13] against our whole-body controller
(dynamic). l2-norms of linear and angular errors are shown in the
top and bottom figures. Note that the errors are reset to zero at each
step due to re-planning [20].

Fig. 6: Real experiments. Disturbance rejection against unstable
foothold that occurs when a stepping-stone rolled under the RF leg
at t = 6.5 s. The controller lost tracking of the CoM height, however,
the friction cone constraints keep instantaneously the robot’s balance.
Indeed a good tracking of the horizontal motion of the CoM is
obtained. Note that the red shaded area depicts the moments of the
disturbance rejection.

joint constraints (positions and torques) guarantee feasibility
of the computed torque commands. Figure 6 shows how
the controller compliantly tracks the desired CoM trajectory
during an unstable footstep (a rolling stepping-stone) that
occurs at t = 6.5 s (experiments results from [23]). This
creates tracking errors on the CoM height, yet, good tracking
performance is kept for the horizontal CoM motion, due to the
friction cone constraints that maintained the robot’s balance
along the entire locomotion.

G. Locomotion over Slopes

These experiments have been performed with online terrain
mapping [20]. Both the terrain mapping and the whole-body
controller make use of a drift-free state estimation algorithm to
obtain the body state. The friction cone constraints of the con-
troller are described given the real terrain normals provided by
an onboard mapping algorithm17. The friction coefficient has
been conservatively set to 0.7 for all the experiments. Figure 7
shows different snapshots of various challenging terrain used
to evaluate our controller. The centroidal trajectory, gait and
footholds are computed simultaneously as described in [4].

17The controller action can be greatly improved by setting the real terrain
normal (under each foot) rather than using a default value for all the feet.
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Fig. 7: Snapshots of experimental trials to evaluate our whole-body
control and the online terrain mapping. Left column: crossing a 22 cm
gap with a 7 cm step. Right column: traversing two ramps with a
15 cm gap between them.

Fig. 8: Real experiments. Roll and pitch tracking performance while
climbing up a ramp with a trotting gait. Although there is under-
actuation the controller can still track roll and pitch motions.

H. Tracking Performance with Different Gaits

The quadrupedal trotting gait is difficult to control because
the robot uses only two legs at the time to achieve the tracking
of the desired CoM motion and of the trunk orientation. Figure
8 depicts the roll and pitch tracking for climbing up a ramp
during a trotting gait. Although a trot is an under-actuated gait,
our controller can still track the desired orientation. Moreover,
in these cases, the orientation error is always below 0.2 rad.

VI. CONCLUSION

This paper presented an experimental validation of our
passive WBC. Compared to our previous work [13], the
presented WBC enables higher dynamic motions thanks to
the use of the full dynamics of the robot. Although similar
controllers have been proposed in the literature (e.g. [6, 8, 5]),
we validated our locomotion controller on HyQ over a wide
range of challenging terrain (slopes, gaps, stairs, etc.), using
different gaits (crawl and trot). Additionally, we have ana-
lyzed the controller capabilities against 1) inaccurate friction
coefficient estimation, 2) unstable footholds, 3) changes in the
regularization scheme and 4) the load redistribution under re-
strictive torque limits. Extensive experimental results validated
the controller performance together with the online terrain
mapping and the state estimation. Moreover, we demonstrated
experimentally the superiority of our WBC compared to a
quasi-static control scheme [13].
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