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Abstract—Locomotion over soft terrain remains a challenging problem for legged robots. Most of the work done on state
estimation for legged robots is designed for rigid contacts, and does not take into account the physical parameters of the
terrain. That said, this letter answers the following questions: how and why does soft terrain affect state estimation for
legged robots? To do so, we utilized a state estimator that fuses IMU measurements with leg odometry that is designed
with rigid contact assumptions. We experimentally validated the state estimator with the HyQ robot trotting over both soft
and rigid terrain. We demonstrate that soft terrain negatively affects state estimation for legged robots, and that the state
estimates have a noticeable drift over soft terrain compared to rigid terrain.

Index Terms—State Estimation, Legged Robots, Soft Contacts

I. INTRODUCTION

Quadruped robots are advancing towards being fully autonomous as
can be seen by their recent development in research and industry, and
their remarkable agile capabilities [1]–[3]. This demands quadruped
robots to be robust while traversing a wide variety of unexplored
complex non-flat terrain. The terrain may not just vary in geometry,
but also in its physical properties such as terrain impedance or
friction. Reliable state estimation is a major aspect for the success
of the deployment of quadruped robots because most locomotion
planners and control strategies rely on an accurate estimate of the
pose and velocity of the robot. Furthermore, reliable state estimation
is essential, not only for locomotion (low-level state estimation), but
also for autonomous navigation and inspection tasks that are emerging
applications for quadruped robots (task-level state estimation).

To date, most of the work done on state estimation for legged robots
are based on filters that fuse multiple sensor modalities. These sensor
modalities mainly include high frequency inertial measurements and
kinematic measurements (e.g., leg odometry), as well as other low
frequency modalities (e.g., cameras and lidars) to correct the drift.

For instance, an extended Kalman filter (EKF)-based sensor fusion
algorithm has been proposed by [4] that fuses IMU measurements, leg
odometry, stereo vision, and lidar. In [5], a similar algorithm has been
proposed that fuses IMU measurements, leg odometry, stereo vision,
and GPS. In [2], a nonlinear observer that fuses IMU measurements
and leg odometry has been proposed. In [6], a state estimator fuses
a globally exponentially stable (GES) nonlinear attitude observer
based on IMU measurements with leg odometry to provide bounded
velocity estimates. The global stability is important for cases when
the robot may have fallen over whereas typical EKF-based works
may diverge. The bounded velocity estimates help to decrease drift
in the unobservable position estimates. Finally, an approach similar
to [6] has been proposed in [7]. This approach proposed an invariant
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Fig. 1. HyQ traversing multiple terrains of different compliances.

EKF-based sensor fusion algorithm that includes IMU measurements,
contact sensor dynamics, and leg odometry.

The aforementioned state estimators are shown to be reliable on stiff
terrain. Yet, over soft terrain (as shown in Fig. 1), the performance
of these state estimators starts to decline. Over soft terrain, the
state estimator has difficulties determining when a foot is in contact
with the ground. For instance, the state estimator has difficulties
determining if the foot is in the air, if the foot is applying more force
than the terrain (terrain compression), if the terrain itself is applying
more force than the foot (terrain expansion), or if the foot and the
terrain are applying the same force (rigid terrain). This results in
a large position estimate drift, and it was reported in our previous
work [8] where we noted that we encountered difficulties because
of state estimation over soft terrain. Apart from our previous work,
other works also mention that state estimation over soft terrain is
a challenging task, e.g., [9], [10]. Yet, to the authors’ knowledge,
literature has not yet discussed the question on how soft terrain
affects the state estimation.

The contributions of this work are the experimental analysis and
formal study on: the effects of soft terrain on state estimation, the
reasons behind these effects, and simple ways to improve state
estimation. This letter is building upon our previous work on soft
terrain adaptation [8] and on state estimation [6].

The rest of this letter is organized as follows: Section II describes
the robot model, the onboard sensors, and how to estimate the ground
reaction forces (GRFs) acting on the robot. Section III explains the
state estimator used in this letter, and how to estimate the base
velocity of the robot using leg odometry. Section IV details the
results of our experiment and demonstrates how soft terrain affects
state estimation. Finally, Section V presents our conclusions.
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II. MODELING, SENSING, AND ESTIMATING

In this letter, we consider the quadruped robot HyQ [11] shown
in Fig. 1. Each leg has three actuated joints. Despite experimenting
on a specific platform, the problem is generic in nature and it applies
equally to any legged robot. Furthermore, by using the 90 kg HyQ
robot, a heavy and strong platform, we are exciting more dynamics.

We introduce the following reference frames: the body frame B
which is located at the geometric center of the trunk (robot torso),
and the navigation frameN which is assumed inertial (world frame).
The basis of the body frame are orientated forward, left, and up. To
simplify notation, the IMU is located such that the accelerometer
measurements are directly measured in B.
Kinematics and Dynamics. Assuming that all of the external forces
are exerted on the feet, the dynamics of the robot is

M ( x̄) ¨̄x + h( x̄, ˙̄x) = τ̄ (1)

where x̄ =
[
xT ηT qT

]T
∈ R18 is the generalized robot states,

˙̄x ∈ R18 is the corresponding generalized velocities, ¨̄x ∈ R18 is the
corresponding generalized accelerations, x ∈ R3 is the position of
the base, η ∈ R3 is the attitude of the base, q ∈ R12 is the vector
of joint angles of the robot, M ∈ R18×18 is the joint-space inertia
matrix, h is the vector of Coriolis, centrifugal and gravity forces,
τ̄ = (

[
0 τT

]T
− JF) ∈ R18, τ ∈ R12 is the vector of actuated joint

torques, J ∈ R18×12 is the floating base Jacobian, and F ∈ R12 is the
vector of external forces (i.e., GRFs).

We solve for the GRFs F` of each leg ` using the actuated part
of the dynamics in (1).

F` = −α` (JT
` (q` ))−1(τ` − h` ( x̄`, ˙̄x` )) (2)

F` ∈ R
3 ⊂ F is the GRFs for ` inB, J` ∈ R3×3 ⊂ J is the foot Jacobian

of `, τ` ∈ R3 ⊂ τ is the vector of joint torques of `, h` ∈ R
3 ⊂ h is

the vector of centrifugal, Coriolis, gravity torques of ` in B, and
α` ∈ {0, 1} selects if the foot is on the ground or not. A threshold
of F` is typically used to calculate α` .

α` =



1 | |(JT
` )−1(τ` − h` ) | | > ε

0 otherwise
(3)

where ε > 0 ∈ R is the threshold.
Assumption 1: There exists a force threshold ε that determines if

the foot is in contact with the environment.
The translational and rotational kinematics, and the translational

dynamics of the robot as a single rigid body in N are

ẋn = vn v̇n = an + gn Ṙn
b = Rn

bS(ωb ) (4)

where xn ∈ R3, vn ∈ R3, an ∈ R3 are the position, velocity, and
acceleration of the base inN , respectively, Rn

b
∈ SO(3) is the rotation

matrix from B to N , and ωb is the angular velocity of the base in
B. The skew symmetric matrix function is S().
Sensors. The modeling assumes that the quadruped robot is equipped
with a six-axis IMU on the trunk (3 Degrees of Freedom (DoFs)
gyroscope and 3 DoFs accelerometer), and that every joint contains
an encoder and a torque sensor. The accelerometer measures specific
force f b

s ∈ R
3

f b
s = ab + gb (5)

where ab ∈ R3 is the acceleration of the body in B and gb ∈ R3 is
the acceleration due to gravity in B. The gyroscope directly measures
angular velocity ωb ∈ R3 in B. The encoders are used to measure

the joint position qi ∈ R and joint speed q̇i ∈ R. The pose of each
joint (i.e., the forward kinematics) is assumed to be exactly known.
The torque sensors in the joints directly measure torque τi ∈ R.

The measured values of all of the sensors differ from the theoretical
values in that they contain a bias and noise: x̃ = x+bx+nx where x̃, bx ,
and nx are the measured value, bias, and noise of x, respectively. All
of the biases are assumed to be constant or slowly time-varying, and
all of the noise variables have zero mean and a Gaussian distribution.

III. STATE ESTIMATOR

To compare the effect of different terrains, we use the state-of-the-
art low-level state estimator from [6]. It includes input from three
proprioceptive sensors: an IMU, encoders, and torque sensors. For
reliability and speed no exteroceptive sensors are used. The state
estimator consists of three major components: an attitude observer,
leg odometry, and a sensor fusion algorithm.
Non-linear Attitude Observer. Typically in the quadruped robot
literature an EKF is used for attitude estimation, e.g., [4], [5], [12].
However, our attitude observer [6] is GES, and it consists of a
non-linear observer (NLO) [13] and an eXogeneous Kalman Filter
(XKF) [14]. The NLO is

˙̂Rn
b = R̂n

bS(ωb − b̂b ) + σKp Js (R̂n
b )

˙̂bb = Proj
(
b̂b,−k vex

(
P

(
R̂nT
bs Kp Js (R̂n

b )
)))

Js (R̂n
b ) =

k∑
j=1

(ynj − R̂n
b y

b
j )ybj

T

(6)

where Kp ∈ R
3×3 is a symmetric positive-definite gain matrix, k >

0 ∈ R is a scalar gain, σ ≥ 1 ∈ R is a scaling factor, R̂n
bs
= sat(R̂n

b
),

the function sat(X ) saturates every element of X to ±1, Proj is a
parameter projection that ensures that | |b̂| | < Mb , Mb > 0 ∈ R is a
constant known upper bound on the gyro bias, P(X ) = 1

2 (X + XT )
for any square matrix X , and Js is the stabilizing injection term.
The observer is GES for all initial conditions assuming there exists
k > 1 non-collinear vector measurements, i.e., ���y

n
i × ynj

��� > 0 where
i, j ∈ {1, · · · , k}. Furthermore, if there is only one measurement the
observer is still GES if the following persistency of excitation (PE)
condition holds: if there exist constants T > 0 ∈ R and γ > 0 ∈ R
such that, for all t ≥ 0,

∫ t+T

t yn1 (τ)yn1 (τ)T dτ ≥ γI holds then yn1 is
PE. See [13] for proof.

The XKF [14] is similar to an EKF in that it linearizes a nonlinear
model about an estimate of the state and then applies the typical
linear time-varying (LTV) Kalman filter (KF) to the linearized model.
If the estimate is close to the true state then the filter is near-optimal.
However, if the estimate is not close to the true state, the filter
can quickly diverge. To overcome this problem, the XKF linearizes
about a globally stable exogenous signal from a NLO. The cascaded
structure maintains the global stability properties from the NLO and
the near-optimal properties from the KF. The observer is

˙̂x = f x + C( x̂ − x̆) + K (z − hx − H ( x̂ − x̆))

Ṗ = CP + PCT − K HP +Q

K = PHT R−1

(7)

where C = ∂ f x/∂x | x̆,u , H = ∂hx/∂x | x̆,u , x̆ ∈ Rn is the bounded
estimate of x from the globally stable NLO. See [14] for the stability
proof.
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Leg Odometry. Leg odometry computes the overall base velocity ẋb

of the robot by combining the contribution of each foot velocity ẋb
` .

Each leg ` only contributes to the leg odometry when it is in contact α` .
Thus, we calculate the overall base velocity ẋb as

ẋb
` = −α`

(
J` (q` )q̇ − ωb × xb

`

)
ẋb =

1
ns

∑
`

ẋb
` (8)

where ns =
∑̀
α` is the number of stance legs.

Assumption 2: The leg odometry assumes that the robot is always
in rigid contact with the terrain. This implies that the stance feet do
not move in N , there is no slippage, the terrain does not expand or
compress, and the robot does not jump or fly.
Sensor Fusion. Lastly, the inertial measurements (5) are fused with
the leg odometry (8). The main advantage of decoupling the attitude
from the position and linear velocity is that the resulting dynamics
is LTV, and thus has guaranteed stability properties. i.e., the filter
will not diverge in finite time.

We use a LTV KF with the dynamics (4), the accelerometer (5),
and leg odometry (8).

˙̂x = f x + K (z − hx )

Ṗ = CP + PCT − K HP +Q

K = PHT R−1

(9)

where the state x =
[
xnT vnT

]T
∈ R6 is position and velocity of

the base, the input u = (Rn
b

f b
s − g

n ) ∈ R3 is the acceleration of the
base, the measurement z = Rn

b
xb
` ∈ R

3 is the leg odometry, K ∈ R6×3

is the Kalman gain, P ∈ R6×6 is the covariance matrix, Q ∈ R6×6 is
the process noise and R ∈ R3×3 is the measurement noise covariance,
and

f x =
[
vn

u

]
C =

[
03 I3

03 03

]
H =

[
03 I3

]

and I3 and 03 are the 3 × 3 identity matrix and matrix of all zeros,
respectively.

IV. EXPERIMENTAL RESULTS

To analyze the differences in state estimation between rigid and soft
terrain, we used HyQ and our state estimator. HyQ has twelve torque-
controlled joints powered by hydraulic actuators. HyQ has three
types of on board proprioceptive sensors: joint encoders, force/torque
sensors, and IMUs. Every joint has an absolute and a relative encoder
to measure the joint angle and speed. The absolute encoder (AMS
Programmable Magnetic Rotary Encoder - AS5045) measures the
joint angle when the robot is first turned on, while the relative encoder
(Avago Ultra Miniature, High Resolution Incremental Encoder -
AEDA-3300-TE1) measures how far the joint has moved at every
epoch. Every joint contains a force or torque sensor. Two joints have
a load cell (Burster Subminiature Load Cell - 8417-6005) and one
joint has a custom designed torque sensor based on strain-gauges.
In the trunk of the robot there is a fibre optic-based, military grade
KVH 1775 IMU.

We used the state estimator (6)-(9) on the Soft Trot in Place and the
Rigid Trot in Place dataset from the dataset published in [15]. HyQ
was manually controlled to trot on a foam block of 160×120×20 cm,
and on a rigid ground. An indentation test of the foam shows the
foam has an average stiffness of 2400 N/m. All of the sensors were

ã
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(a) Rigid Terrain
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Fig. 2. The z component of the measured specific force ãb
z (top),

and the the estimated ground reaction forces f̂ b
z (bottom), in the body

frame B of HyQ during a trotting experiment. The highlighted regions
show when the given foot is in stance, and the feet are denoted as
left-front (LF), right-front (RF), left-hind (LH), and right-hind (RH).

recorded at 1000 Hz. A motion capture system (MCS) recorded the
ground truth data with millimetre accuracy at 250 Hz.

The experiments confirmed our original hypothesis that soft terrain
negatively impacts state estimation and also allowed us to investigate
why. It is important to note that rigid versus soft terrain had no impact
on the attitude estimation. For space reasons, all attitude plots have
been omitted.

The first distinct difference between soft and rigid terrain is the
specific force measurement of the body as seen in Fig. 2. On the rigid
terrain there are large impacts and then vibrations every time a foot
touches down. Whereas the soft terrain damped out these vibrations.
Next, on the soft terrain more prolonged periods of positive and
negative acceleration can be seen. This acceleration can also be seen
in the plots of the GRFs in Fig. 2 where the GRFs on the soft terrain
are more continuous when compared to the rigid terrain. In other
words, there are longer loading and unloading phases.

The most important differences between soft and rigid terrain are
seen in the velocity and position estimates as shown in Fig. 3. We
can see that the leg odometry has large erroneous peaks in z velocity
at both touch-down and lift-off. These peaks in velocities can then be
seen in the position estimates as a drift. On the other hand, the x and y

position estimates are quite accurate and only have a slow drift.
In the figures, we can also see multiple of the state estimators

assumptions being broken. First, there does not exist a constant ε that
can describe when the foot is in contact with the ground, which is
contradicting Assumption 1. The contact ε is no longer binary (i.e.,
supporting/not-supporting the weight of the robot), but the contact
is now a continuous value with varying amounts of the robot’s
weight being supported and sometimes even pushed. When trying to
use the previous simple model, the contact ignores a large portion
of the loading and unloading phase. Furthermore, it often chatters
rapidly between contact/non-contact when the force is close to ε .
Second, the foot is moving for almost the entire contact (i.e., non-
zero acceleration) on soft terrain as shown in Fig. 2. This contradicts
Assumption 2 that the foot velocity is zero when in contact. Third,
(8) is broken. It assumes that all of the velocity (and all of the
acceleration) is a result of the GRFs, but not all of the acceleration
due to gravity is being accounted for. Hence, the robot appears to
drift up and away from the ground.

There are a few simple ways to try to improve the estimates of
this or other similar state estimators. The first is to tune ε in (3). By
increasing ε there would be less erroneous velocity, but in doing so
it would also ignore part of the leg odometry. In general, on a planar
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Fig. 3. The estimated trunk position x̂n (top), and the estimated trunk velocity v̂n (middle and bottom), in the navigation frame N of HyQ during
a trotting experiment using sensor fusion (purple) versus the raw leg odometry (green), and the motion capture system (blue). The first two rows
show the full experiment (0 ≤ t ≤ 300) s and the bottom row is zoomed in (30 ≤ t ≤ 32) s.

surface, a reduced drift in the z direction comes at the cost of an
increased error in the x and y directions. A second method could be
to have an adaptive velocity bias for the leg odometry. However, the
bias is not constant and it depends on both the gait and the terrain.
Thus, the problem of estimating the body velocity of the robot using
leg odometry remains open.

V. CONCLUSIONS

In this letter, we present an experimental validation and a formal
study on the influence of soft terrain on state estimation for legged
robots. We utilized a state-of-the-art state estimator that fuses IMU
measurements with leg odometry. We experimentally analyzed the
differences between soft and rigid terrain using our state estimator
and a dataset of the HyQ robot. That said, we report three main
outcomes. First, we showed that soft terrain results in a larger drift
in the position estimates, and larger errors in the velocity estimates
compared to rigid terrain. These problems are caused by the broken
legged odometry contact assumptions on soft terrain. Second, we also
showed that over soft terrain, the contact with the terrain is no longer
binary and it often chatters rapidly between contact and non-contact.
Third, we showed that soft terrain affects many states besides the
robot pose. This includes the contact state and the GRFs which
are essential for the control of legged robots. Future works include
extending the state estimator to incorporate the terrain impedance
in the leg odometry model. Additionally, further datasets will be
recorded to investigate the long-term drift in the forward and lateral
directions.
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