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ViTAL: Vision-Based Terrain-Aware
Locomotion for Legged Robots
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Abstract—This article focuses on vision-based planning strate-
gies for legged robots that separate locomotion planning into
foothold selection and pose adaptation. Current pose adaptation
strategies optimize the robot’s body pose relative to given footholds.
If these footholds are not reached, the robot may end up in a
state with no reachable safe footholds. Therefore, we present a
vision-based terrain-aware locomotion (ViTAL) strategy that con-
sists of novel pose adaptation and foothold selection algorithms.
ViTAL introduces a different paradigm in pose adaptation that
does not optimize the body pose relative to given footholds, but
the body pose that maximizes the chances of the legs in reaching
safe footholds. ViTAL plans footholds and poses based on skills
that characterize the robot’s capabilities and its terrain awareness.
We use the 90-kg HyQ and 140-kg HyQReal quadruped robots
to validate ViTAL and show that they are able to climb various
obstacles, including stairs, gaps, and rough terrains, at different
speeds and gaits. We compare ViTAL with a baseline strategy that
selects the robot pose based on given selected footholds and show
that ViTAL outperforms the baseline.

Index Terms—Legged robots, optimization and optimal control,
visual learning, whole-body motion planning and control.

NOMENCLATURE

F Set of safe footholds.
nsf Number of safe footholds.
CNN Convolutional neural network.
FC Foot trajectory collision.
FEC Foothold evaluation criteria.
HyQ Hydraulically actuated quadruped.
KF Kinematic feasibility.
LC Leg collision.
MPC Model-predictive control.
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RCF Reactive controller framework.
RL Reinforcement learning.
TAL Terrain-aware locomotion.
TBR Terrain-based body reference.
TO Trajectory optimization.
TR Terrain roughness.
VFA Vision-based foothold adaptation.
ViTAL Vision-based terrain-aware locomotion.
VPA Vision-based pose adaptation.
WBC Whole-body controller.

I. INTRODUCTION

L EGGED robots have shown remarkable agile capabilities
in academia [1], [2], [3], [4], [5], [6] and industry [7], [8],

[9]. Yet, to accomplish breakthroughs in dynamic whole-body
locomotion, and to robustly traverse unexplored environments,
legged robots have to be terrain aware. TAL implies that the
robot is capable of taking decisions based on the terrain [10]. The
decisions can be in planning, control, or in state estimation, and
the terrain may vary in its geometry and physical properties [11],
[12], [13], [14], [15], [16], [17], [18], [19]. TAL allows the
robot to use its onboard sensors to perceive its surroundings
and act accordingly. This work is on vision-based terrain-aware
locomotion (ViTAL) planning strategies that plan the robot’s
motion (body and feet) based on the terrain information that
is acquired using vision (see Fig. 1).

A. Related Work—Vision-Based Locomotion Planning

Vision-based locomotion planning can either be coupled
or decoupled. The coupled approach jointly plans the body pose
and footholds in a single algorithm. The decoupled approach
independently plans the body pose and footholds in separate
algorithms. The challenge in the coupled approach is that it
is computationally expensive to solve in real time. Because of
this, the decoupled approach tends to be more practical since
the high-dimensional planning problem is split into multiple
low-dimensional problems. This also makes the locomotion
planning problem more tractable. However, this raises an issue
with the decoupled approach because the plans may conflict
with each other since they are planned separately. Note that both
the approaches could be solved using optimization, learning, or
heuristic methods.

TO is one way to deal with coupled vision-based locomotion
planning. By casting locomotion planning as an optimal control

1552-3098 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IIT - Istituto Italiano di Tecnologia. Downloaded on May 23,2023 at 14:35:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0892-7359
https://orcid.org/0000-0002-3134-0281
https://orcid.org/0000-0002-2822-9216
https://orcid.org/0000-0002-3034-4686
mailto:sfahmi@mit.edu
mailto:victor.barasuol@iit.it
mailto:victor.barasuol@iit.it
mailto:claudio.semini@iit.it
https://doi.org/10.1109/TRO.2022.3222958


886 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

Fig. 1. (a)–(c) HyQ and HyQReal quadruped robots climbing stairs using
ViTAL.

problem, TO methods can optimize the robot’s motion while
taking into account the terrain information [20], [21], [22],
[23], [24]. The locomotion planner can generate trajectories that
prevent the robot from slipping or colliding with the terrain
by encoding the terrain’s shape and friction properties in the
optimization problem [24]. TO methods can also include a
model of the terrain as a cost map in the optimization problem
and generate the robot’s trajectories based on that [25]. TO
methods provide guarantees on the optimality and feasibility
of the devised motions, albeit being computationally expensive;
performing these optimizations in real time is still a challenge. To
overcome this issue, TO approaches often implement hierarchi-
cal (decoupled) approaches. Instead of decoupling the plan into
body pose and footholds, the hierarchical approaches decouple
the plan into short- and long-horizon plans [26], [27]. In addition,
other work relies on varying the model complexity to overcome
the computational issue with TO [28].

RL methods mitigate the computational burden of TO meth-
ods by training function approximators that learn the locomotion
plan [29], [30], [31], [32], [33], [34], [35]. Once trained, an RL
policy can generate body pose and foothold sequences based
on proprioceptive and/or visual information. Yet, RL methods
may require tedious learning (large amounts of data and training
time) given its high-dimensional state representations.

As explained earlier, decoupled locomotion planning can mit-
igate the problems of TO and RL by separating the locomotion

plan into feet planning and body planning [36], [37], [38], [39],
[40], [41]. Thus, one can develop a more refined and tractable
algorithm for every module separately. In this article, planning
the feet motion (foothold locations) is called foothold selection,
and planning the body motion is called pose adaptation.

B. Related Work—Foothold Selection and Pose Adaptation

Foothold selection strategies choose the best footholds based
on the terrain information and the robot’s capabilities. Early
work on foothold selection was presented by Kolter et al. [42]
and Kalakrishnan et al. [43], where both the approaches relied
on motion capture systems and an expert user to select (label)
the footholds. These works were then extended in [44] using
unsupervised learning, onboard sensors, and considered the ter-
rain information such as the TR (to avoid edges and corners) and
friction (to avoid slippage). Then, Barasuol et al. [45] extended
the aforementioned work by selecting footholds that considers
not only the terrain morphology, but also LCs with the terrain.
Further improvements in foothold selection strategies added
other evaluation criteria such as the robot’s kinematic limits.
These strategies use optimization [37], [46], [47], supervised
learning [38], [48], [49], RL [1], [17], or heuristic [50] methods.

Similar to foothold selection, pose adaptation strategies opti-
mize the robot’s body pose based on the terrain information and
the robot’s capabilities. An early work on VPA was presented
in [36]. The goal was to find the optimal pose that maximizes
the reachability of given selected footholds, avoid collisions with
the terrain, and maintain static stability. The given footholds are
based on a foothold selection algorithm that considers the terrain
geometry. Another approach was presented in [51] that finds
the optimal body elevation and inclination given the selected
footholds, and the robot location in the map. The pose opti-
mizer maximizes different margins that increase the kinematic
reachability of the legs and static stability and avoids terrain
collisions. This approach was then extended in [52] with an
improved version of the kinematic margins. A similar approach
was presented in [37], where the goal was to find an optimal pose
that can maximize the reachability of given selected footholds.
The reachability term is accounted for in the cost function of
the optimizer by penalizing the difference between the default
foothold position and the selected one. The work in [39] builds
on top of the pose optimizer of [37] to adapt the pose of the
robot in confined spaces using 3-D terrain maps. This is done
using a hierarchical approach that first samples body poses that
allows the robot to navigate through confined spaces and, then,
smooths these poses using a gradient descent method that is then
augmented with the pose optimizer of [37]. The work presented
in [53] generates vision-based pose references that also rely
on given selected footholds to estimate the orientation of the
terrain and send it as a pose reference. Alongside the orientation
reference, the body height reference is set at a constant vertical
distance (parallel to gravity) from the center of the approximated
plane that fits through the selected footholds.

The aforementioned pose adaptation strategies focus on find-
ing one optimal solution based on given footholds; footholds
have to be first selected and given to the optimizer. Despite
selecting footholds that are safe, there are no guarantees on what
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would happen during execution if the footholds are not reached
or if the robot deviates from its planned motion. If any of these
cases happen, the robot might end up in a pose where no safe
footholds can be reached. This would, in turn, compromise the
safety and performance of the robot. Even if the strategy can
replan, reaching a safe pose might not be possible if the robot is
already in an unsafe state.

C. Proposed Approach

We propose ViTAL, an online whole-body locomotion plan-
ning strategy that consists of a foothold selection and a pose
adaptation algorithm. The foothold selection algorithm used in
this article is an extension of the VFA algorithm of the previous
work done by Villarreal et al. [38] and Esteban et al. [49]. Most
importantly, we propose a novel VPA algorithm that introduces
a different paradigm to overcome the drawbacks of the state-of-
the-art pose adaptation methods. Instead of finding body poses
that are optimal for given footholds, we propose finding body
poses that maximize the chances of reaching safe footholds in
the first place. Hence, we are interested in putting the robot in a
state in which if it deviates from its planned motion, the robot
remains around a set of footholds that are still reachable and
safe. The notion of safety emerges from skills that characterize
the robot’s capabilities.

ViTAL plans footholds and body poses by sharing the same
robot skills (both for the VPA and the VFA). These skills charac-
terize what the robot is capable of doing. The skills include, but
are not limited to the robot’s ability to avoid edges, corners, or
gaps (TR), the robot’s ability to remain within the workspace of
the legs during the swing and stance phases (kinematic limits),
and the robot’s ability to avoid colliding with the terrain (LC).
These skills are denoted by FEC. Evaluating the FEC is usually
computationally expensive. Thus, to incorporate the FEC in
ViTAL, we rely on approximating them with CNNs that are
trained via supervised learning. This allows us to continuously
adapt both the footholds and the body pose. The VFA and
the VPA are decoupled and can run at a different update rate.
However, they are nonhierarchical, run in parallel, and share
the same knowledge of the robot skills (the FEC). By that, we
overcome the limitations that result from hierarchical planners,
as mentioned in [39], where high-level plans may conflict with
the low-level ones causing a different robot behavior.

The VPA utilizes the FEC to approximate a function that
provides the number of safe footholds for the legs. Using this
function, we cast a pose optimizer that solves a nonlinear opti-
mization problem that maximizes the number of safe footholds
for all the legs subject to constraints added to the robot pose. The
pose optimizer is a key element in the VPA since it adds safety
layers and constraints to the learning part of our approach. This
makes our approach more tractable, which mitigates the issues
that might arise from end-to-end policies in RL methods.

D. Contributions

ViTAL mitigates the abovementioned conflicts that exist in
other decoupled planners [37], [39], [41], [46]. This is because
both the VPA and the VFA share the same skills encoded in

the FEC. In other words, the VPA and the VFA will not plan
body poses and footholds that may conflict with each other
because both the planners share the same logic. In this article,
the formulation of the VPA allows ViTAL to reason about
the leg’s capabilities and the terrain information. However, the
formulation of the VPA could be further augmented by other
body-specific skills. For instance, the VPA could be reformu-
lated to reason about the body collisions with the environment
similar to the work in [41] and [54]. The paradigm of the FEC can
also be further augmented to consider other skills. We envision
that some skills are best encoded via heuristics, while others are
well suited through optimization. For this reason, the FEC can
also handle optimization-based foothold objectives such as the
ones in [46].

Following the recent impressive results in RL-based locomo-
tion controllers, we envision ViTAL to be inserted as a module
into such control frameworks. To elaborate, current RL-based
locomotion controllers [1], [29], [31], [33] are of a single
network; the RL framework is a single policy that maps the
observations (proprioceptive and exteroceptive) to the actions.
This may be challenging since it requires careful reward shaping,
and generalizing to new tasks or different sensors (observations)
makes the problem harder [55]. For this reason, and similar
to [55], we envision that ViTAL can be utilized as a planner
for RL controllers where the RL controller will act as a reactive
controller that then receives guided (planned) commands in a
form of optimal poses and footholds from ViTAL.

ViTAL differs from TO and optimization-based methods in
several aspects. The FEC is designed to independently evaluate
every skill (criterion). Thus, one criterion can be optimization
based, while other could be using logic or heuristics. Because of
this, ViTAL is not restricted by solving an optimization problem
that handles all the skills at once. Another difference between
ViTAL and TO is in the way the body poses are optimized. In
TO, the optimization problem optimizes a single pose to follow
a certain trajectory. The VPA in ViTAL optimizes for the body
poses that maximizes the chances of the legs in reaching safe
footholds. In other words, the VPA finds a body pose that would
put the robot in a configuration where the legs have the maximum
possible number of safe footholds. In fact, this paradigm that
the VPA of ViTAL introduces may also be encoded in TO.
In addition, TO often finds body poses that consider the leg’s
workspace, but to the best of the authors’ knowledge, there
is no TO method that finds body poses that consider the legs’
collision with the terrain and the feasibility of the swinging legs’
trajectory.

To that end, the contributions of this article are as follows:
1) ViTAL, an online vision-based locomotion planning

strategy that simultaneously plans body poses and
footholds based on the shared knowledge of robot skills
(the FEC);

2) an extension of our previous work on the VFA algorithm
for foothold selection that considers the robot’s body twist
and the gait parameters;

3) a novel pose adaptation algorithm called the VPA that finds
the body pose that maximizes the number of safe footholds
for the robot’s legs.
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II. FOOTHOLD EVALUATION CRITERIA

The FEC are main the building block for the VFA and the
VPA. The FEC are sets of skills that evaluate footholds within
heightmaps. The skills include the robot’s ability to assess the
terrain’s geometry, avoid LCs, and avoid reaching kinematic
limits. The FEC can be model based as in this work and [36]
and [38], or using optimization techniques as in [37] and [46].
The FEC of this work extends the criteria used in our previous
work [38], [45], [49].

The FEC takes a tuple T as an input, evaluates it based on
multiple criteria, and outputs a Boolean matrix μsafe. The input
tuple T is defined as

T = (H, zh, vb, α) (1)

where H ∈ Rhx×hy is the heightmap of dimensions hx and hy ,
zh ∈ R is the hip height of the leg (in the world frame), vb ∈ R6

is the base twist, and α are the gait parameters (step length, step
frequency, duty factor, and time remaining till touchdown). The
heightmap H is extracted from the terrain elevation map and is
oriented with respect to the horizontal frame of the robot [56].
The horizontal frame coincides with the base frame of the robot,
and its xy plane is perpendicular to the gravity vector. Each
cell (pixel) of H denotes the terrain height that corresponds to
the location of this cell in the terrain map. Each cell of H also
corresponds to a candidate foothold pc ∈ R3 for the robot.

In this article, we only consider the following FEC: TR, LC,
KF, and FC. Each criterion C outputs a Boolean matrix μC .
Once all of the criteria are evaluated, the final output μsafe is
the elementwise logical AND (∧) of all the criteria. The output
matrix μsafe ∈ Rhx×hy is a Boolean matrix with the same size as
the input heightmap H . μsafe indicates the candidate footholds
(elements in the heightmap H) that are safe. An element in the
matrix μsafe that is true corresponds to a candidate foothold pc
in the heightmap H that is safe. The output of the FEC is

μsafe = μTR ∧ μLC ∧ μKF ∧ μFC. (2)

An overview of the criteria used in this article is shown in
Fig. 2(a) and is detailed as follows.

1) Terrain roughness: This criterion checks edges or corners
in the heightmap that are unsafe for the robot to step on. For
each candidate foothold pc inH , we evaluate the mean and
standard deviation of the slope relative to its neighboring
footholds and put a threshold that defines whether a pc is
safe or not. Footholds above this threshold are discarded.

2) Leg collision: This criterion selects footholds that do
not result in LC with the terrain during the entire gait
cycle (from liftoff, during swinging, touchdown, and till
the next liftoff). To do so, we create a bounding region
around the leg configuration that corresponds to the can-
didate foothold pc and the current hip location. Then, we
check if the bounding region collides with the terrain (the
heightmap) by measuring the closest distance between
them. If this distance is lower than a certain value, then
the candidate foothold is discarded.

3) Kinematic feasibility: This criterion selects footholds that
are kinematically feasible. It checks whether a candidate

foothold pc will result in a trajectory that remains within
the workspace of the leg during the entire gait cycle. To
do so, we check if the candidate foothold pc is within the
workspace of the leg during touchdown and next liftoff.
Also, we check if the trajectory of the foot from the liftoff
position plo till the touchdown position at the candidate
foothold pc is within the workspace of the leg. In the initial
implementation in [38], this criterion was only evaluated
during touchdown. In this article, we consider this criterion
during the entire leg step cycle.

4) Foot trajectory collision: This criterion selects footholds
that do not result in FC with the terrain. It checks whether
the foot swing trajectory corresponding to a candidate
foothold pc is going to collide with the terrain or not. If
the swing trajectory collides with the terrain, the candidate
foothold pc is discarded.

Remark 1: There are three main sources of uncertainty that
can affect the foothold placement [45]. These sources of uncer-
tainty are due to trajectory tracking errors, foothold prediction
errors, and drifts in the map. To allow for a degree of uncertainty,
after computingμsafe, candidate footholds that are within a radius
of unsafe footholds are also discarded. This is similar to the
erosion operation in image processing.

Remark 2: The initial implementation of the FEC in [38] only
considered the heightmap H as an input; the other inputs of the
tuple T in (1) were kept constant. This had a few disadvantages
that we reported in [49] where we extended the work of [38] by
considering the linear body heading velocity. In this article, we
build upon that by considering the full body twist vb and the gait
parameters α as expressed by T in (1).

III. VISION-BASED FOOTHOLD ADAPTATION

The VFA evaluates the FEC to select the optimal foothold
for each leg [38], [45], [49]. The VFA has three main stages, as
shown in Fig. 2(b): heightmap extraction, foothold evaluation,
and trajectory adjustment.

1) Heightmap extraction: Using the current robot states and
gait parameters, we estimate the touchdown position of
the swinging foot in the world frame, as detailed in [38].
This is denoted as the nominal foothold pn ∈ R3. Then,
we extract a heightmap Hvfa that is centered around pn.

2) Foothold evaluation: After extracting the heightmap, we
compute the optimal foothold p∗ ∈ R3 for each leg. We
denote this by foothold evaluation, which is the mapping

g(Tvfa) : Tvfa → p∗ (3)

that takes an input tuple Tvfa that is defined as

Tvfa = (Hvfa, zh, vb, α, pn). (4)

Once we evaluate the FEC in (2), from all of the safe candi-
date footholds inμsafe, we select the optimal foothold p∗ as
the one that is closest to the nominal foothold pn. The aim
is to minimize the deviation from the original trajectory
and, thus, results in a less disturbed or aggressive motion.
An overview of the foothold evaluation stage is shown
in Fig. 3, where the tuple T of the FEC in (1) is extracted
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Fig. 2. Overview of ViTAL. Illustrations are not to scale. (a) FEC: LC, KF, and FC. (b) VFA pipeline. First, we extract the heightmap Hvfa around the nominal
foothold pn. Then, we evaluate the heightmap either using the exact evaluation g(Tvfa) or using the CNN as an approximation ĝ(Tvfa). Once the optimal foothold
p∗ is selected, the swing trajectory is adjusted. (c) VPA pipeline. First, we extract the heightmap Hvpa for all the legs. The heightmaps are centered around the
projection of the leg hip locations. Then, we evaluate the FEC to compute F̄ for all the hip heights of all the legs (pose evaluation). Then, we approximate a
continuous function F̂ from F̄ (function approximation). The pose optimizer finds the pose that maximizes F̂ for all of the legs (pose optimization). (d) Our
locomotion framework. ViTAL consists of the VPA and the VFA algorithms. Both the algorithms rely on the robot skills which we denote by the FEC. τd are the
desired joint torques that are sent to the robot.
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Fig. 3. Overview of the foothold evaluation stage in the VFA algorithm and
the pose evaluation stage in the VPA algorithm.

from the VFA tuple Tvfa in (4) to compute μsafe. Then,
using pn and μsafe, we extract p∗ as the safe foothold that
is closest to pn.

3) Trajectory adjustment: The leg’s swinging trajectory is
adjusted once p∗ is computed.

Remark 3: To compute the foothold evaluation, one can
directly apply the exact mapping g(Tvfa). Yet, computing the
foothold evaluation leads to evaluating the FEC, which is gen-
erally computationally expensive. Thus, to speed up the compu-
tation and to continuously run the VFA online, we train a CNN
to approximate the foothold evaluation ĝ(Tvfa) using supervised
learning. Once trained, the VFA can then be executed online
using the CNN. The CNN architecture of the foothold evaluation
is explained in Appendix A.

IV. VISION-BASED POSE ADAPTATION

The VPA generates pose references that maximize the chances
of the legs to reach safe footholds. This means that the robot
pose has to be aware of what the legs are capable of and adapt
accordingly. Therefore, the goal of the VPA is to adapt the robot
pose based on the same set of skills in the FEC used by the VFA.

A. Definitions and Notations

1) Number of Safe Footholds: As explained earlier, the FEC
takes a tuple T as an input and outputs the matrix μsafe. Based
on that, let us define the number of safe footholds (nsf )

nsf := cardinal ({e ∈ μsafe : e = 1}) (5)

as the number of true elements in the Boolean matrix μsafe.
2) Set of Safe Footholds: Consider a set of tuples T where

each element Ti ∈ T is a tuple defined as

Ti = (H, zhi
, vb, α) (6)

and zhi
∈ Z is a hip height element in the set of hip heights Z

(in the world frame). All the tuple elements Ti ∈ T share the
same heightmap H , body twist vb and gait parameters α.

Evaluating the FEC in (2) for every Ti ∈ T that corresponds
to zhi

∈ Z and computing the cardinal in (5) yields nsf,i for
every Ti. This yields the set of safe footholds (F), which is a set
containing the number of safe footholds nsf that are evaluated
based on the FEC given the set of tuples T that corresponds to
the set of hip heights Z but shares the same heightmapH , body
twist vb, and gait parameters α.

B. From the Set of Safe Footholds to Pose Evaluation

The set of safe footholds F is one of the building blocks of
the VPA. To compute F , we compute the input tuple Tvpa

Tvpa = (Hvpa, vb, α) (7)

that we then augment with the hip heights zhi
in the hip heights

set Z yielding the set of tuples T . Then, we evaluate the
FEC in (2) for every Ti ∈ T and compute the cardinal in (5).
This can be expressed by the mapping

gvpa(Tvpa) : Tvpa → F (8)

which is referred to as pose evaluation. We can express F as

F = {nsf,i = gvpa,i(Ti) ∀Ti ∈ T }. (9)

Remark 4: Since Z is an infinite continuous set, so is F ,
which is not numerically feasible to compute. Hence, we sample
a finite set Z̄ ofNzh samples of hip heights that results in a finite
set of safe footholds F̄ . To use the set of safe footholds in an
optimization problem, we need a continuous function. Thus,
after we compute F̄ , we estimate a continuous function F̂ as
explained next.

An overview of the pose evaluation is shown in Fig. 3, where
the tupleTvpa in (7) is augmented with the hip heights zhi

from Z̄
to construct the FEC tuples Ti in (6). For every tuple Ti, we
evaluate the FEC using (2) and compute nsf,i in (5) using the
mapping in (8). Finally, the set F̄ includes all the elements nsf,i

as in (9).

C. VPA Formulation

The VPA has four main stages, as shown in Fig. 2(c): 1)
heightmap extraction that is similar to the VFA; 2) pose evalua-
tion where we compute F̄ ; 3) function approximation where we
estimate F̂ from F̄ ; and 4) pose optimization where the optimal
body pose is computed.

1) Heightmap extraction: We extract one heightmapHvpa per
leg that is centered around the projection of the leg’s hip
location in the terrain map (proj.(ph) instead of pn).

2) Pose evaluation: After extracting the heightmaps, we com-
pute F̄ from the mapping in (8) of the pose evaluation.
In the pose evaluation, the FEC are evaluated for all hip
heights in Z̄ given the input tuple Tvpa, as shown in Fig. 3.

3) Function approximation: In this stage, we estimate the
continuous function F̂ from F̄ , as explained in Remark 4.
This is done by training a parameterized model of the
inputs Ti ∈ T̄ and the outputs nsf,i ∈ F̄ . The result is the
function (model) F̂ that is parameterized by the model
parametersw. The function approximation is detailed later
in this section.
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4) Pose optimization: Evaluating the FEC and approximating
it with the function F̂ , introduces a metric that represents
the possible number of safe footholds for every leg. Based
on this, the goal of the pose optimizer is to find the optimal
pose that will maximize the number of safe footholds for
every leg (maximize F̂) while ensuring robustness. The
pose optimizer is detailed later in this section.

Remark 5: Similar to Remark 3, one can directly apply the
exact evaluation gvpa(Tvpa) for a given Tvpa. Yet, since this is
computationally expensive, we rely on approximating the evalu-
ation ĝvpa(Tvpa) using a CNN. In fact, the learning part is applied
to both the pose evaluation and the function approximation. This
means that the pose optimization is running online, outside the
CNN. The CNN architecture of the pose evaluation is explained
in Appendix A.

D. Function Approximation

The goal of the function approximation is to approximate
the set of safe footholds F from the discrete set F̄ computed
in the pose evaluation stage. This is done to provide the pose
optimizer with a continuous function. Given a dataset (Z̄, F̄)
of hip heights zhi

∈ Z̄ and number of safe footholds nsf,i ∈ Z̄ ,
the function approximation estimates a function F̂(zhi

, w) that
is parameterized by the weights w. Once the weights w are
computed, the function estimate F̂(zhi

, w) is then reconstructed
and sent to the pose optimizer.

It is important to choose a function F̂ that can accurately
represent the nature of the number of safe footholds. The num-
ber of safe footholds approaches zero when the hip heights
approach 0 or ∞. Thus, we want a function that fades to
zero at the extremes (Gaussian-like functions) and captures any
asymmetry or flatness in the distribution. Hence, we use radial
basis functions of Gaussians. With that in mind, we are looking
for the weights w

w = arg minS(w) (10)

that minimize the cost S(w)

S(w) =

Nh∑
i=1

(nsf,i − F̂(zhi
, w))2 (11)

which is the sum of the squared residuals of nsf,i and F̂(zhi
, w).

Nh is the number of samples (the number of the finite set of
hip heights). The function F̂(zhi

, w) is the regression model
(the approximation of F) that is parameterized by w. The
function F̂(zhi

, w) is the weighted sum of the basis functions

F̂(zhi
, w) =

E∑
e=1

we · g(zhi
,Σe, ce) (12)

where w ∈ RE , and E is the number of basis functions. The
basis function is a radial basis function of Gaussian functions

g(zhi
,Σe, ce) = exp(−0.5(zhi

− ce)
TΣ−1

e (zhi
− ce)) (13)

where Σe and ce are the parameters of the Gaussian function.
Since the function model in (12) is linear in the parameters, the
weights of the function approximation can be solved analytically

using least squares. In this article, we keep the parameters of
the Gaussians (Σ and c) fixed. Hence, the function F̂ is only
parameterized by w. For more information on regression with
radial basis functions, refer to [57] and Appendix B.

E. Pose Optimization

The pose optimizer finds the robot’s body pose u that max-
imizes the number of safe footholds for all the legs. This is
casted as a nonlinear optimization problem. The notion of safe
footholds is provided by the function F̂(zh, w) that maps a hip
height zh to a number of safe foothold nsf and is parameterized
byw. Since the pose optimizer is solving for the body pose u, the
function F̂(zh) should be encoded using the body pose rather
than the hip heights (F̂ = F̂(zh(u))). This is done by estimating
the hip height as a function of the body pose (zh = zh(u)), as
shown in Appendix C.

F. Single-Horizon Pose Optimization

The pose optimization problem is formulated as

maximize
u=[zb,β,γ]

C(F̂l(zhl
(zb, β, γ))) ∀l ∈ Nl (14)

subject to umin ≤ u ≤ umax (15)

Δumin ≤ Δu ≤ Δumax (16)

whereu = [zb, β, γ] ∈ R3 are the decision variables (robot body
pose) consisting of the robot height, roll and pitch, respectively,
C is the cost function, F̂l is F̂ for every leg l where Nl = 4 is
the number of legs, zhl

∈ R is the hip height of the leg l, and
umin and umax are the lower and upper bounds of the decision
variables, respectively. Δu = u− uk−1 is the numerical differ-
ence of u, where uk−1 is the output of u at the previous instant,
and Δumin and Δumax are the lower and upper bounds of Δu,
respectively. We can rewrite (16) as

Δumin + uk−1 ≤ u ≤ Δumax + uk−1. (17)

The cost function in (14) maximizes F̂ for all of the legs. We
designed several types of cost functions, as detailed next. The
constraints in (15) and (16) ensure that the decision variables
and their variations are bounded.

G. Cost Functions

A standard cost function can be the sum of the squares of F̂l

for all of the legs

Csum =

Nl=4∑
l=1

‖F̂l(zhl
)‖2Q (18)

where another option could be the product of the squares of F̂l

for all of the legs

Cprod =

Nl=4∏
l=1

‖F̂l(zhl
)‖2Q. (19)

The key difference between an additive cost Csum and a mul-
tiplicative cost Cprod is that the latter puts equal weighting for
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each F̂l. This is important since we do not want the optimizer to
find a pose that maximizes F̂ for one leg while compromising
the other leg(s). One can also define the cost

Cint =

Nl=4∑
l=1

∥∥∥∥∥
∫ zhl

+m

zhl
−m

F̂l(zhl
) dzhl

∥∥∥∥∥
2

Q

(20)

which is the sum of squared integrals that can be numerically
approximated as
∫ zhl

+m

zhl
−m

F̂l(zhl
) dzhl

≈ m · (F̂l(zhl
−m) + F̂l(zhl

+m))

(21)
yielding

Cint =

Nl=4∑
l=1

∥∥∥m · (F̂l(zhl
−m) + F̂l(zhl

+m))
∥∥∥2
Q
. (22)

In this cost option, we do not find the pose that maximizes F̂ .
Instead, we want to find the pose that maximizes the area around
F̂ that is defined by the margin m. Using Cint is important since
it adds robustness in case there is any error in the pose tracking
during execution. Because of possible tracking errors during
execution, the robot might end up in the pose u∗ ±m instead
of u∗. If we use Cint as a cost function, the optimizer will find
poses that maximize the number of safe footholds not just for u∗

but within a vicinity of m. More details on the use of Cint as a
cost function in the pose optimization of the VPA can be found
in Appendix D.

H. Receding-Horizon Pose Optimization

Adapting the robot’s pose during dynamic locomotion re-
quires reasoning about what is ahead of the robot: the robot
should not just consider its current state but also future ones.
For that, we extend the pose optimizer to consider the current
and future states of the robot in a receding horizon manner.
To formulate the receding horizon pose optimizer, instead of
considering F̂l ∀ l ∈ Nl in the single horizon case, the pose
optimizer will consider F̂l,j ∀ l ∈ Nl, j ∈ Nh, where Nh is
the receding horizon number. We compute F̂l,j in the same
way explained in the pose evaluation stage. More details on
computing F̂l,j can be found in Appendix E.

The receding horizon pose optimization problem is

maximize
u=[uT

1 ,...,uT
Nh

]

Nh∑
j=1

Cj(F̂l,j(zhl,j
(uj)))

+

Nh−1∑
j=1

‖uj − uj+1‖

∀l ∈ Nl, j ∈ Nh (23)

subject to umin ≤ u ≤ umax (24)

Δumin ≤ Δu ≤ Δumax (25)

where u = [uT1 , . . . , u
T
j , . . . , u

T
Nh

] ∈ R3Nh are the decision
variables during the entire receding horizon Nh. Each vari-
ableuj = [zb,j , βj , γj ] ∈ R3 is the optimal pose of the horizon j.

The first term in (23) is the sum of the cost functions Cj during
the entire horizon (∀j ∈ Nh). The cost Cj can be any of the
aforementioned cost functions. The second term in (23) penal-
izes the deviation between two consecutive optimal poses within
the receding horizon (uj and uj+1). The second term is added so
that each optimal pose uj is also taking into account the optimal
pose of the upcoming sequence uj+1 (to connect the solutions
in a smooth way). Similar to the single horizon pose optimizer,
umin and umax are the lower and upper bounds of the decision
variables, respectively. Furthermore, Δu denotes the numerical
difference ofu, whileΔumin andΔumax are the lower and upper
bounds ofΔu, respectively. Note that the constraints of the single
horizon and the receding horizon are of different dimensions.

V. SYSTEM OVERVIEW

Our locomotion framework that is shown in Fig. 2(d) is
based on the RCF [56]. ViTAL complements the RCF with an
exteroceptive terrain-aware layer composed of the VFA and the
VPA. ViTAL takes the robot states, the terrain map, and user
commands as inputs and sends out the selected footholds and
body pose to the RCF (perceptive) layer. The RCF takes the
robot states and the references from ViTAL and uses them inside
a motion generation and a motion control block. The motion
generation block generates the trajectories of the leg and the
body and adjusts them with the reflexes from [56], [58]. The legs
and body references from the motion generation block are sent
to the motion control block. The motion control block consists of
a WBC [59] that generates desired torques that are tracked via a
low-level torque controller [60] and sent to the robot’s joints. The
framework also includes a state estimation block that feeds back
the robot states to each of the aforementioned layers [61]. More
implementation details on ViTAL and the entire framework are
in Appendix F.

We demonstrate ViTAL on the 90-kg HyQ and the 140-kg
HyQReal quadruped robots. Each leg of the two robots has
three degrees of freedom (three actuated joints). The torques and
angles of the 12 joints of both the robots are directly measured.
The bodies of HyQ and HyQReal have a tactical-grade inertial
measurement unit (IMU) (KVH 1775). More information on
HyQReal and HyQ can be found in [3] and [62], respectively.

We noticed a significant drift in the states of the robots in
experiment. To tackle this issue, the state estimator fused the
data from a motion capture system and the IMU. This reduced
the drift in the base states of the robots albeit not eliminating
it completely. Improving the state estimation is an ongoing
work and is out of the scope of this article. We used the grid
map interface [63] to get the terrain map in simulation. Ow-
ing to the issues with state estimation on the real robots, we
constructed the grid map before the experiments and used the
motion capture system to locate the map with respect to the
robot.
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Fig. 4. HyQ climbing stairs in simulation. (a) Full scenario. (b) Robot pitches
up to allow for safe footholds for the front legs. (c) Robot lifts up the hind hips to
avoid hind LCs with the step. (d) Robot pitches down to allow for safe footholds
for the front legs. (e) Robot lowers the hind hips to allow for safe footholds for
the legs when stepping down.

VI. RESULTS

We evaluate ViTAL on HyQ and HyQReal. We consider all
the FEC mentioned earlier for the VFA and the VPA. We use the
receding horizon pose optimizer of (25) and the sum of squared
integral of (22). We choose stair climbing as an application
for ViTAL. Climbing stairs is challenging for HyQ due to its
limited leg workspace in the sagittal plane. Videos associated
with the upcoming results can be found in the supplementary
materials and [64]. Finally, an analysis of the accuracy of
the CNNs and the computational time of ViTAL can be found
in Appendixes G and H, respectively.

A. Climbing Stairs (Simulation)

We carried out multiple simulations where HyQ is climbing
the stairs shown in Fig. 4. Each step has a rise of 10 cm and a
go of 25 cm. HyQ is commanded to trot with a desired forward
velocity of 0.2 m/s using the VPA and the VFA. Fig. 4 shows
screenshots of one simulation run, and Video 1 shows three
simulation runs.

Fig. 4 shows the ability of the VPA in adapting the robot pose
to increase the chances of the legs to succeed in finding a safe
foothold. In Fig. 4(b), HyQ raised its body and pitched upward
so that the front hips are raised to increase the workspace of the
front legs when stepping up. In Fig. 4(c), HyQ raised its body
and pitched downward so that the hind hips are raised. This is
done for two reasons: first, to have a larger clearance between

Fig. 5. Climbing stairs: a more complex scenario. Top: Overlaid screenshots
of HyQ climbing stairs. Bottom: the optimal height and corresponding pitch
(presented by the arrows) and the foot trajectories of LF and RH legs.

the hind legs and the obstacle and, thus, avoid LC with the edge
of the stairs; second, to increase the workspace of the hind legs
when stepping up and, thus, avoid reaching the workspace limits
and collisions along the foot swing trajectory. In Fig. 4(d), HyQ
lowered its body and pitched downward so that the front hips
are lowered. This is done for two reasons: first, to increase the
workspace of the front legs when stepping down and, thus, avoid.
reaching the workspace limits; second, to have a larger clearance
between the front legs and the obstacle and, thus, avoid LCs.
In Fig. 4(e), HyQ lowered its hind hips to increase the hind legs’
workspace when stepping down.

Throughout these simulations, the robot continuously adapted
its body pose and its feet to find the best tradeoff between
increasing the KF and avoiding trajectory and LC. This can be
seen in Video 1, where the robot’s legs and the corresponding
feet trajectories never collided with the terrain. The robot took
multiple steps around the same foot location before stepping
over an obstacle. The reason behind this is that the robot waited
for the VPA to change the pose and allow for safe footholds, and
then, the VFA took the decision of stepping over the obstacle.

We carried out another scenario where HyQ is climbing the
stairs setup in Fig. 5, where each step has a rise of 10 cm and a
go of 25 cm. HyQ is commanded to trot with a desired forward
velocity of 0.2 m/s using ViTAL. The results are reported
in Fig. 5 and Video 2. Fig. 5 shows the robot’s height and pitch
based on the VPA and the corresponding feet trajectories of
the LF leg and the RH leg based on the VFA. HyQ’s behavior
was similar to the previous section: it accomplished the task
without collisions or reaching workspace limits.

B. Climbing Stairs (Experiments)

To validate ViTAL in experiments, we created three sets of
experiments using the setups shown in Fig. 1. Each step has a
rise of 10 cm and a go of 28 cm.
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Fig. 6. HyQ and HyQReal climbing stairs in the experiment. (a)–(f) HyQ crawling over with 0.1-m/s commanded forward velocity. (g)–(l) HyQ trotting over
with 0.25-m/s commanded forward velocity. (m)–(r) HyQReal crawling over with 0.2-m/s commanded forward velocity.

In the first set of experiments, HyQ is commanded to crawl
over the setups in Fig. 1(a) and (b) with a desired forward
velocity of 0.1 m/s using the VPA and the VFA. Fig. 6(a)–(f)
shows screenshots of one trial. Video 3 shows HyQ climbing
back and forth the setup in Fig. 1(b) five times. Video 4 shows
HyQ climbing the setup shown in Fig. 1(a), which is reported
in Fig. 7. Fig. 7 shows the robot’s height and pitch based on

the VPA, and the corresponding feet trajectories of the left-front
(LF) leg and the right-hind (RH) leg based on the VFA. This
set of experiments confirms that ViTAL is effective on the real
platform. The robot managed to accomplish the task without
collisions or reaching workspace limits.

In the second set of experiments, HyQ is commanded to
trot over the setup in Fig. 1(b) with a desired forward velocity
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Fig. 7. HyQ climbing stairs in the experiment. The figure shows the optimal
height and corresponding pitch (presented by the arrows) based on the VPA, and
the foot trajectories of the LF and RH legs based on the VFA.

TABLE I
MEAN ABSOLUTE TRACKING ERRORS OF THE BODY PITCH β AND HEIGHT zb

OF HYQ AND HYQREAL USING VITAL IN THE EXPERIMENTS DETAILED IN

SECTION VI-B AND IN FIG. 1

of 0.25 m/s using the VPA and the VFA. Fig. 6(g)–(l) shows
separate screenshots of this trial. Video 5 shows three trials of
HyQ climbing the same setup. This set of experiments shows
that ViTAL can handle different gaits.

Finally, in the third set of experiments, HyQReal is com-
manded to crawl over the setup in Fig. 1(c) with a desired forward
velocity of 0.2 m/s using the VPA and the VFA. The results are
reported in Fig. 6(m)–(r) that shows screenshots of this trial.
Video 6 shows HyQReal climbing this stair setup [see Fig. 1(c)].
This set of experiments shows that ViTAL can work on different
legged platforms.

The tracking performance of these three sets of experiments
is shown in Table I. The table shows the mean absolute tracking
errors of the body pitch β and height zb of HyQ and HyQReal.

C. Climbing Stairs With Different Forward Velocities

We evaluate the performance of HyQ under different com-
manded velocities using ViTAL. We carried out a series of
simulations using the stairs setup shown in Fig. 5. HyQ is
commanded to trot at four different forward velocities: 0.2 m/s,
0.3 m/s, 0.4 m/s, and 0.5 m/s. The results are reported in Fig. 8
and in Video 7. In addition, the tracking performance of these
series of simulations at the four different forward velocities is
shown in Table II. The table shows the mean absolute tracking
errors of the body pitchβ and height zb of HyQ at the correspond-
ing commanded forward velocity. Fig. 8 shows the numerical
differences Δzb and Δγ and the tracking errors of the body
height and pitch, respectively.

HyQ was able to climb the stairs terrain under different
commanded velocities. However, as the commanded velocity
increases, HyQ started having faster (abrupt) changes in the body

Fig. 8. HyQ’s performance using ViTAL under different commanded veloc-
ities. The top two plots show the numerical difference of the body height and
pitch (Δzb and Δγ), and the bottom two plots show the tracking errors of the
body height and pitch.

TABLE II
MEAN ABSOLUTE TRACKING ERRORS OF THE BODY PITCH β AND HEIGHT zb

OF HYQ USING VITAL IN SIMULATION WITH DIFFERENT FORWARD

VELOCITIES AS DETAILED IN SECTION VI-C AND FIG. 8

pose, as shown in the top two plots of Fig. 8. As a result, the
height and pitch tracking errors increase proportionally to the
commanded speed, as shown in the bottom two plots of Fig. 8.
This can also be seen in Table II, where the mean absolute
tracking errors of the pitch and height increase proportionally to
the commanded speed.

Similarly to HyQ, we evaluate ViTAL on HyQReal and
commanded it to trot with five different forward velocities:
0.2 m/s, 0.3 m/s, 0.4 m/s, 0.5 m/s, and 0.75 m/s. We report
this simulation in Video 8 where we show that ViTAL is robot
independent. Yet, since the workspace of HyQReal is larger than
HyQ, this scenario was more feasible to traverse for HyQReal.
Thus, HyQReal was able to reach a higher commanded velocity
than the ones reported for HyQ.

D. Comparing the VPA With a Baseline (Experiments)

We compare the VPA with another VPA strategy: the
TBR [38]. The TBR generates pose references based on the
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Fig. 9. Difference between the VPA and the TBR in six experiments (three
each). (a) Number of safe footholds corresponding to the robot pose. (b) and (c)
Body height and pitch tracking errors, respectively. Circles (o) and crosses (x)
are successful and failed trials, respectively. Unlike the VPA, the TBR failed to
climb the stairs because the TBR resulted in almost no safe footholds for the
four legs to reach.

footholds selected by the VFA. The TBR fits a plane that passes
through the given selected footholds and sets the orientation
of this plane as a body orientation reference to the robot. The
elevation reference of the TBR is a constant distance from the
center of the approximated plane that passes through the selected
footholds. We chose the TBR instead of an optimization-based
strategy since the latter does not provide references that are fast
enough with respect to the VPA.

Using the stairs setup in Fig. 1(a), we conducted six exper-
imental trials: three with the VPA and three with the TBR.
All trials were with the VFA. In all the trials, HyQ is com-
manded to crawl with a desired forward velocity of 0.1 m/s.
The results are reported in Fig. 9 and Video 9. Fig. 9(a)
shows the number of safe footholds corresponding to the
robot pose from the VPA and the TBR. The robot height
and pitch tracking errors are shown in Fig. 9(b) and (c),
respectively.

As shown in Video 9, HyQ failed to climb the stairs with
the TBR, while it succeeded with the VPA. This is because,
unlike the VPA, the TBR does not aim to put the robot in
a pose that maximizes the chances of the legs to succeed in
finding safe footholds. As shown in Fig. 9(a), the number of
safe footholds from using the TBR was below the ones from
using the VPA. During critical periods when the robot was
around 0 m in the x-direction, the number of safe footholds
from using the TBR almost reached zero. The low number of

Fig. 10. Difference between the VPA and the TBR in six simulations (three
each). (a) Number of safe footholds corresponding to the robot pose. (b) and (c)
Body height and pitch tracking errors, respectively. Circles (o) and crosses (x)
are successful and failed trials, respectively. Unlike the VPA, the TBR failed to
climb the stairs because the TBR resulted in almost no safe footholds for the
four legs to reach.

safe footholds for the TBR compared to the VPA is reflected in
the tracking of the robot height and pitch, as shown in Fig. 9(b)
and (c), where the tracking errors from the TBR were higher than
the VPA.

The difference between the VPA and the TBR can be further
explained in Video 9. When the TBR is used, the robot is
adapting its pose given the selected foothold. However, if the
selected foothold is not reached, or if there is a high tracking
error, the robot reaches a body pose that results in a smaller
number of safe footholds. Thus, the feet end up colliding with the
terrain, and hence, the robot falls. On the other hand, the VPA is
able to put the robot in a pose that maximizes the number of safe
footholds. As a result, the feet found alternative safe footholds
to select from, which resulted in no collision, and succeeded in
climbing the stairs. The VPA optimizes for the number of safe
footholds. Thus, if there is a variation around the optimal pose
(tracking error), the VFA still finds more footholds to step on,
which is not the case with the TBR.

E. Comparing the VPA With a Baseline (Simulation)

Similar to experiments, and using the stairs setup in Fig. 5, we
compare the VPA with the TBR. We conducted six simulations:
three with the VPA and three with the TBR. All the trials were
with the VFA. In all the trials, HyQ is commanded to trot with
a 0.2-m/s desired forward velocity. The results are reported
in Fig. 10 and Video 10. Fig. 10(a) shows the number of safe
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(a)

(b)

(c)

Fig. 11. HyQ climbing gapped stairs. (a) Screenshots of HyQ climbing the
setup. (b) Robot’s height and pitch based on the VPA, and the corresponding
feet trajectories of the LF and RH legs based on the VFA. (c) Number of safe
footholds using the VPA and the TBR.

footholds corresponding to the robot pose from the VPA, and
the TBR. The tracking errors of the robot height and pitch are
shown in Fig. 10(b) and (c), respectively. These trials show
that HyQ failed to climb the stairs using the TBR, while it
succeeded using the VPA.

F. Climbing Stairs With Gaps

We show HyQ’s capabilities of climbing stairs with gaps using
ViTAL, and we compare the VPA with the TBR. In this scenario,
HyQ is commanded to trot at 0.4 m/s. Fig. 11(a) shows overlaid
screenshots of the simulation and the used setup. Fig. 11(b)
shows the robot’s height and pitch based on the VPA, and the
corresponding feet trajectories of the LF leg and the RH leg based
on the VFA, and Fig. 11(c) shows the number of safe footholds
using the VPA and the TBR. Because of ViTAL, HyQ was able

Fig. 12. Pose optimization: single versus receding horizons. (a) Number
of safe footholds. (b) Variation (numerical difference) of the robot’s height.
(c) Variation (numerical difference) of the robot’s pitch. (d) Tracking error of
the robot’s height.

to climb the stairs with gaps while continuously adapting its pose
and feet. Furthermore, the number of safe footholds from using
the TBR is always lower than from using the VPA, which shows
that indeed the VPA outperforms the TBR. Video 11 shows the
output of this simulation using ViTAL.

G. Pose Optimization: Single Versus Receding Horizons

To analyze the differences between the receding horizon and
the single horizon in pose optimization, we use the stairs setup
in Fig. 5 with a commanded forward velocity of 0.4 m/s and
report the outcome in Fig. 12 and Video 12. The main advantage
of using a receding horizon instead of a single horizon is that
the pose optimization can consider future decisions. Thus, if
the robot is trotting at higher velocities, the pose optimizer can
adapt the robot’s pose beforehand. This can result in a better
adaptation strategy with less variations in the generated optimal
pose. Thus, we analyze the two approaches by taking a look at
the variations in the body pose

źb =
Δzb
Δxb

and γ́ =
Δγ

Δxb
(26)

where źb and γ́ are the numerical differences (variations) of the
robot height zb and pitch γ with respect to the robot forward
position xb, respectively.

Fig. 12 reports the differences between the two cases. The
number of safe footholds is shown in Fig. 12(a). The variations
in źb and γ́ are shown in Fig. 12(b) and (c), respectively. Finally,
the tracking error of the robot’s height is shown in Fig. 12(d).
As shown in Fig. 12, the receding horizon resulted in less
variations in the body pose compared to the single horizon. This
resulted in a smaller tracking error for the receding horizon in
the body height, which resulted in slightly larger number of safe
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Fig. 13. Pose optimization: Csum versus Cint. The shaded areas are the en-
velopes of the number of safe footholds. The lines are the thicknesses (errors)
between these envelopes.

footholds. All in all, the receding horizon reduces variations in
the desired trajectories, which improves the trajectory tracking
response.

The differences between the receding and single horizon in the
pose optimization can also be noticed in Video 12. In the case of
a single horizon, the robot was struggling while climbing up the
stairs but was able to recover and accomplish the task. However,
using the receding horizon, the robot was able to adapt its pose
in time, thus resulting in safer footholds that allowed the robot
to accomplish the task.

H. Pose Optimization: Csum Versus Cint

To analyze the differences between Csum and Cint in the pose
optimization, we use the stairs setup in Fig. 5 with a commanded
forward velocity of 0.4 m/s and report the outcome in Fig. 13.
The main advantage of using Cint over Csum is that Cint will
result in a pose that does not just maximize the number of safe
footholds for all of the legs, but also ensures that the number
of safe footholds of the poses around the optimal pose is still
high. To compare the two cost functions, we take a look at the
number of safe footholds. In particular, we evaluate the number
of safe footholds corresponding to the optimal pose and the poses
around it with a margin ofm = 0.025 m. Thus, in Fig. 13, we plot
the envelope (shaded area) between F̂(u∗ +m) and F̂(u∗ −m)
for both the cases and the thickness between these envelopes
which we refer to as error

error = |F̂(u∗ +m)− F̂(u∗ −m)|. (27)

As shown in Fig. 13, the envelope of the number of safe footholds
resulting from Cint is almost always encapsulated by Csum. The
thickness (error) of the number of safe footholds resulting from
using Cint is always smaller than Csum. This means that any
variation of m in the optimal pose will be less critical if Cint

is used compared to Csum.

Fig. 14. HyQ traversing rough terrain and climbing stairs sideways. (a) and
(b) HyQ traversing rough terrain with and without ViTAL, respectively. (c) and
(d) HyQ climbing stairs while yawing (commanding the yaw rate) using ViTAL.
(e) and (f) HyQ climbing stairs sideways using ViTAL.

I. Locomotion Over Rough Terrain

We evaluate the performance of HyQ in traversing rough
terrain, as shown in Fig. 14(a) and (b) and in Video 13. We
conducted two simulations: one with ViTAL and thus with
exteroceptive and proprioceptive reactions [see Fig. 14(a)], and
another without ViTAL and thus only with proprioceptive reac-
tions [see Fig. 14(b)]. HyQ was commanded to traverse the rough
terrain with a forward velocity of 0.2 m/s. No hyperparameters’
retuning or CNNs’ retraining were needed.

As shown in Video 13, HyQ was able to successfully traverse
the terrain in both the cases. With ViTAL, HyQ collided less
with the terrain and continuously adapted its footholds over
the small cobblestones. Without ViTAL, HyQ traversed the
rough terrain, yet, with significantly more effort. In addition,
without ViTAL, HyQ continuously collided with the terrain, and
in some incidents, the feet got stuck. For this reason, we had to
retune the gait parameters and increase the step height to reduce
these incidents. The robot’s feet also kept slipping since the feet
were always close to edges and corners.

J. Climbing Stairs With Different Commands

Instead of commanding only forward velocities as in the pre-
vious sections, we command HyQ to climb the stairs with ViTAL
while yawing (commanding the yaw rate), as shown in Video 14
and Fig. 14(c) and (d), and to climb stairs laterally, as shown
in Video 15 and Fig. 14(e) and (f). Climbing stairs sideways
is more challenging than facing the stairs since the range of
motion of the robot’s roll orientation is more restricted versus
the pitch orientation. That said, because of ViTAL, HyQ was still
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able to climb these stairs in both the cases, as shown in videos
14 and 15.

VII. CONCLUSION

In this article, we presented ViTAL, which is an online vision-
based locomotion planning strategy. ViTAL consists of the VPA
for pose adaptation and the VFA for foothold selection. The VPA
introduces a different paradigm to current state-of-the-art pose
adaptation strategies. The VPA finds body poses that maximize
the chances of the legs to succeed in reaching safe footholds. This
notion of success emerges from the robot’s skills. These skills are
encapsulated in the FEC that include (but are not limited to) the
TR, KF, LC, and FC. The VFA is a foothold selection algorithm
that continuously adapts the robot’s trajectory based on the FEC.
The VFA algorithm of this work extends our previous work
in [38] and [49] as well as the state of the art [37], [46]. Since
the computation of the FEC is usually expensive, we rely on
approximating these criteria with CNNs.

The robot’s skills and the notion of success provided by the
FEC allowed the VPA to generate body poses that maximize
the chances of success in reaching safe footholds. This resulted
in body poses that are aware of the terrain and aware of what
the robot and its legs can do. For that reason, the VPA was able
to generate body poses that give a better chance for the VFA
to select safe footholds. As a result, because of ViTAL, HyQ
and HyQReal were able to traverse multiple terrains with var-
ious forward velocities and different gaits without colliding or
reaching workspace limits. The terrains included stairs, gaps,
and rough terrains, and the commanded velocities varied from
0.2 to 0.75 m/s. The VPA outperformed other strategies for pose
adaptation. We compared VPA with the TBR, which is another
VPA strategy, and showed that indeed the VPA puts the robot in a
pose that provides the feet with higher number of safe footholds.
Because of this, the VPA made our robots succeed in various
scenarios where the TBR failed.

VIII. LIMITATIONS AND FUTURE WORK

One issue that we faced during experiment was in tracking
the motion of the robot, especially for HyQReal. We were using
a WBC for motion tracking. We believe that the motion tracking
and our strategy can be improved by using a MPC alongside
the WBC. Similarly, instead of using a model-based controller
(MPC or WBC), we hypothesize that an RL-based controller can
also improve the robustness and reliability of the overall robot
behavior.

As explained in Section V, one other key limitation was
regarding the perception system. State estimation introduced a
significant drift that caused a major noise and drift in the terrain
map. Albeit not being a limitation to the suggested approach, we
plan on improving the state estimation and perception system
of HyQ and HyQReal to allow us to test ViTAL in the wild.

The pose optimization problem of the VPA does not rea-
son about the robot’s dynamics. This did not prevent HyQ
and HyQReal from achieving dynamic locomotion while
traversing challenging terrains at high speeds. However, we
believe that incorporating the robot’s dynamics into ViTAL may
result in a better overall performance. That said, we believe

that in the future, the VPA should also reason about the robot’s
dynamics. For instance, one can augment the FEC with another
criterion that ensures that the selected footholds are dynamically
feasible by the robot.

In addition, in the future, we plan to extend the VPA of ViTAL
to not only send pose references, but also reason about the robot’s
body twist. We also plan to augment the robot skills to not only
consider FEC, but also skills that are tailored to the robot pose.
Finally, in this article, ViTAL considered heightmaps that are
2.5-D maps. In the future, we plan to consider full 3-D maps
that will enable ViTAL to reason about navigating in confined
space (inspired by [39]).

APPENDIX A
CNN APPROXIMATION IN THE VFA AND THE VPA

In the VFA, the foothold evaluation stage is approxi-
mated with a CNN [65], as explained in Remark 3. The
CNN approximates the mapping between Tvfa and p∗. The
heightmapHvfa in Tvfa passes through three convolutional layers
with 5× 5 kernels, 2× 2 padding, leaky rectified linear unit
(Leaky ReLU) activation [66], and2× 2max-pooling operation.
The resulted one-dimensional feature vector is concatenated
with the rest of the variables in the tuple Tvfa, namely, zh, vb, α,
and pn. This new vector passes through two fully connected lay-
ers with Leaky ReLU and softmax activations. The parameters of
the CNN are optimized to minimize the cross-entropy loss [67]
of classifying a candidate foothold location as optimal p∗.

In the VPA, the pose evaluation and the function approxima-
tion are approximated with a CNN, as explained in Remark 5.
The CNN infers the weights w of F̂ given Tvpa (the mapping
between Tvpa and w). The heightmap Hvpa ∈ R33×33 passes
through three convolutional layers with 5× 5 kernels, 2× 2
padding, Leaky ReLU activation, and 2× 2 max-pooling opera-
tion. The body velocities vb pass through a fully connected layer
with Leaky ReLU activation that is then concatenated with the
one-dimensional feature vector obtained from the heightmap.
This new vector passes through two fully connected layers with
Leaky ReLU and linear activations. The parameters of this CNN
are optimized to minimize the mean squared error loss between
the number of safe footholds nsf predicted by F̂(zh, w) and
F̂(zh, ŵ), where ŵ are the function parameters approximated
by the CNN.

For both the CNNs, we used the Adam optimizer [68] with
a learning rate of 0.001, and we used a validation-based early
stopping using a 9-to-1 proportion to reduce overfitting. The
datasets required for training this CNNs are collected by running
simulated terrain scenarios that consist of bars, gaps, stairs, and
rocks. In this article, we considered a 33× 33 heightmap with
a resolution of 0.02 m (Hvfa, Hvpa ∈ R33×33).

APPENDIX B
DETAILS ON THE FUNCTION APPROXIMATION OF THE VPA

As explained in Section IV-D, the function F̂(zhi
, w)

F̂(zhi
, w) =

E∑
e=1

we · g(zhi
,Σe, ce) (28)
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Fig. 15. Illustration of the function approximation of the VPA.

is defined as the weighted sum of Gaussian basis functions

g(zhi
,Σe, ce) = exp(−0.5(zhi

− ce)
TΣ−1

e (zhi
− ce)). (29)

The parametersΣe and ce are the widths and centers of the Gaus-
sian function ge (see [57, Sec. 3.1]). In the literature, ce is usually
referred to as the mean or the expected value, and Σe as the
standard deviation. The regression algorithm should predict the
weights we and the parameters Σe and ce. To reduce the dimen-
sionality of the problem, as explained in Section IV-D, and in [57,
Sec. 4.1], we decided to fix the values of the parameters of the
Gaussian functionsΣe and ce. In detail, the centers ce are spaced
equidistantly within the bounds of the hip heights zhi

, and the
widths are determined by the value at which the Gaussian func-
tions intersect. That way, the regression algorithm only outputs
the weightswe. Fig. 15 shows an example of the function approx-
imation. In this example, the bounds of the hip heights zhi

are
0.2 and 0.8 m. Assuming a number of basis functionsE = 3, the
centers ce are then chosen to be equidistant within the bounds,
and thus, the centers ce are 0.2, 0.3, and 0.8 m. By choosing the
Gaussian functions to intersect at 0.5, the widths Σe are 0.13.

APPENDIX C
REPRESENTING THE HIP HEIGHTS IN TERMS OF THE BODY

POSE

To represent the hip heights in terms of the body pose, we first
write the forward kinematics of the robot’s hips

pWhi
= pWb + RW

b pbhi
(30)

where pWhi
∈ R3 is the position of the hip of the ith leg in the

world frame, pWb ∈ R3 is the position of the robot’s base in
the world frame, RW

b ∈ SO(3) is the rotation matrix mapping
vectors from the base frame to the world frame, and pbhi

∈ R3 is
the position of the hip of the ith leg in the base frame. The
rotation matrixRW

b is a representation of the Euler angles of the
robot’s base with sequence of roll β, pitch γ, and yawψ (Cardan
angles) [69]. The variable pbhi

is obtained from the computer-
aided design of the robot. Expanding (30) yields

⎡
⎢⎢⎣
xWhi

yWhi

zWhi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
xWb

yWb

zWb

⎤
⎥⎥⎦+Rw

b (β, γ, ψ)

⎡
⎢⎢⎣
xbhi

ybhi

zbhi

⎤
⎥⎥⎦ (31)

Fig. 16. Using the sum of squared integrals as a cost function in the pose
optimization of the VPA. The two curves represent F̂l. The x-axis is the hip
height and the y-axis is nsf . The figure shows two optimal poses: u∗

1 that is
from using Csum or Cprod, and u∗

2 that is from using Cint.

=

⎡
⎢⎢⎣
xWb

yWb

zWb

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
· · · · · · · · ·
· · · · · · · · ·
−sγ cγ sβ cγ cβ

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xbhi

ybhi

zbhi

⎤
⎥⎥⎦ (32)

where s and c are sine and cosine of the angles, respectively.
Since we are interested only in the hip heights, the z-component
(third row) of (32) yields

zWhi
= zWb − xbhi

sγ + ybhi
cγsβ + zbhi

cγcβ. (33)

APPENDIX D
DETAILS ON USING THE SUM OF SQUARED INTEGRALS AS A

COST FUNCTION IN THE POSE OPTIMIZATION PROBLEM OF

THE VPA

Using Cint as a cost function can be motivated by taking Fig. 16
as an example. In this figure, there are two curves that
represent F̂l, where the horizontal axis is the hip height and the
vertical axis represent nsf . The figure shows two optimal poses
where u∗1 is the optimal pose using the cost functions Csum or
Cprod that only maximize for F̂l, and u∗2 is the optimal pose using
the cost function Cint. As shown in the figure, if Csum or Cprod is
used, the optimal pose will be u∗1, which is indeed the one that
results in the maximum F̂l. However, if there is a tracking error
ofm (thus the robot reaches u∗1 ±m), the robot might end up in
the pose u∗1 ±m that results in a small number of safe footholds.
Using Cint will take into account the safe footholds within a
margin m. This might result in a pose that does not yield the
maximum number of safe footholds, but it will result in a safer
foothold in case the robot pose has any tracking errors. Note that
using the sum of squared integralsCint as a cost function is similar
to smoothing F̂l with respect to the hip height (a moving average
smoothing). Using a smoothing function Cs may take the form

Cs =
Nl=4∑
l=1

∥∥∥∥∥
1

2ε

ε∑
i=−ε

F̂l(zhl
+ i)

∥∥∥∥∥
2

Q

. (34)

APPENDIX E
DEFINING THE RECEDING HORIZON

In the receding horizon, there is a tuple Tvpa,j for every jth
horizon that is defined as

Tvpa,j = (Hvpa,j , vb, α) (35)
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hence sharing the same body twist vb and gait parameters α
but a different heightmap Hvpa,j . For every leg, a heightmap
of horizon j + 1 is overlapping with the previous horizon’s j
heightmap. This overlap has a magnitude of Δh taking the same
direction as the body velocity ẋb. Without loss of generality, we
chose the magnitude of the overlap to be half of the diagonal size
of the heightmap in this work. To sum up, we first gather Tvpa,j

that share the same vb and α, but a different Hvpa,j . Then, we
evaluate Tvpa,j and approximate the output using the function
approximation yielding F̂j that is sent to the optimizer for all of
the legs.

APPENDIX F
MISCELLANEOUS SETTINGS

In this article, all the simulations were conducted on an Intel
Core i7 quad-core CPU, and all experiments were running on
an onboard Intel Core i7 quad-core CPU where state estima-
tion, mapping, and controls were running. The RCF (including
the WBC) runs at 250 Hz, the low-level controller runs at
1000 Hz, the state estimator runs at 333 Hz, and the mapping
algorithm runs at 20 Hz. The VPA and the VFA run asyn-
chronously at the maximum possible update rate.

ViTAL is implemented in Python. The CNNs are imple-
mented in PyTorch [70]. As explained in Appendix A, in
this article, we considered a 33× 33 heightmap with a res-
olution of 0.02 m (Hvfa, Hvpa ∈ R33×33). The finite set Z̄
consisted of a hip height range between 0.2 and 0.8 m
with a resolution of 0.02 m yielding Nzh = 31 samples. The
number of radial basis functions used in the function ap-
proximation was E = 30. The pose optimization problem is
solved with a trust-region interior point method [71], [72],
which is a nonlinear optimization problem solver that we
solved using SciPy [73]. The bounds of the pose optimiza-
tion problem umin and umax are [0.2m,−0.35 rad,−0.35 rad],
and [0.8m, 0.35 rad, 0.35 rad], respectively. We used a receding
horizon of Nh = 2 with a map overlap of half the size of the
heightmap. For a heightmap of a size of 33× 33 and a resolution
of 0.02 m, the map overlap Δh is 0.33 m. We used Gazebo [74]
for the simulations and ROS for communication.

APPENDIX G
ESTIMATION ACCURACY

We compare the estimation accuracy of the VFA by com-
paring the output of the foothold evaluation stage (explained
in Section III) given the same input tuple Tvfa. That is to say,
we compare the estimation accuracy of the VFA by comparing
ĝ(Tvfa) versus g(Tvfa) (see Remark 3). To do so, once trained,
we generated a dataset of 4401 samples from randomly sampled
heightmaps for every leg. This analysis was done on HyQ.
As explained in Section III, from all of the safe candidate
footholds in μsafe, the VFA chooses the optimal foothold to be
the one closest to the nominal foothold. Thus, to fairly analyze
the estimation accuracy of the VFA, we present three main
measures: perfect match being the amount of samples where
ĝ(Tvfa) outputted the exact value of g(Tvfa), safe footholds, being
the amount of samples where ĝ(Tvfa) did not output the exact

value of g(Tvfa), but rather a foothold that is safe but not closest
to the nominal foothold, and mean distance, being the average
distance of the estimated optimal foothold from ĝ(Tvfa) relative
to the exact foothold from g(Tvfa). These measures are presented
as the mean of all legs. Based on that, the perfect match measure
is 74.0%. Thus, 74% of ĝ(Tvfa) perfectly matched g(Tvfa). The
safe footholds measure is 93.7%. Thus, 93.7% of ĝ(Tvfa) were
deemed safe. Finally, the mean distance of the estimated optimal
foothold from ĝ(Tvfa) relative to the exact foothold from g(Tvfa)
is 0.02 m. This means that, on average, ĝ(Tvfa) yielded optimal
footholds that are 0.02 m far from the optimal foothold from
g(Tvfa). Note that the radius of HyQ’s foot and the resolution of
the heightmap are 0.02 m, which means that the average distance
measure is still acceptable especially since we account for this
value in the uncertainty margin, as explained in Remark 1.

Similar to the VFA, we compare the accuracy of VPA by
comparing the output of the pose evaluation stage (explained in
Section IV-C) given the same input tuple Tvfa. That is to say, we
compare the estimation accuracy of the VPA by comparing F̄
versus F̂ (see Remarks 4 and 5). To do so, we ran one simulation
using the stairs setup shown in Fig. 5 on HyQ and gathered the
input tuple Tvfa. Then, we ran the VPA offline, once with the
exact evaluation (yielding F̄) and once with the approximate
one (yielding F̂).

Based on this simulation run, the mean values of the ex-
act and the approximate evaluations are mean(F̄) = 1370 and
mean(F̂) = 1322, respectively. This yields an estimation accu-
racy mean(F̂)/mean(F̄) of 96.5%.

APPENDIX H
COMPUTATIONAL ANALYSIS

To analyze the computational time of the VFA and the VPA,
we ran one simulation using the stairs setup shown in Fig. 5
on HyQ to gather the input tuples of the VFA and the VPA, Tvfa

and Tvpa, respectively. Then, we ran both the algorithms offline,
once with the exact evaluation and once using the CNNs, and
collected the time it took to run both the algorithms (all stages
included). The mean and standard deviation of the time taken to
compute the exact and the CNN-approximated VFA (per leg) al-
gorithms are 7.5 ms± 1 ms, and 3.5 ms± 1 ms, respectively. The
mean and standard deviation of the time taken to compute the
exact and the CNN-approximated VPA algorithms are 720 ms
±68 ms, and 180 ms ± 60 ms, respectively. Hence, the VFA and
the VPA can run at roughly 280 and 5 Hz, respectively. This also
shows that the CNNs can speed up the evaluation of the VFA
and the VPA up to four times and two times, respectively.

Note that it takes longer to compute the VFA of this work
versus our previous work [38]. This is because the VFA of this
work considers more inputs than in our previous work, and thus,
the size of the CNN is larger. As can be seen, the VPA runs at
a relatively lower update rate compared to the VFA. We believe
that this is not an issue since the VFA runs at the legs level,
while the VPA runs as the body level, which means that the legs
experience faster dynamics than the body.

During simulations and experiments, the CNNs were running
on a CPU. A significant amount of computational time can be
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reduced if we run the CNNs of the VFA and the VPA on a GPU.
Likewise, a significant amount of computational time can be
reduced if a different pose optimization solver is used. However,
both the suggestions are beyond the scope of this article and are
left as a future work.
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