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 A B S T R A C T

Grapevine winter pruning is a labor-intensive and repetitive process that significantly influences grape yield 
and quality at harvest and produced wine. Due to its complexity and repetitive nature, the task demands skilled 
labor that needs to be trained, as in many other agricultural sectors. This paper encompasses an approach that 
targets using a robotic system to perform autonomous grapevine winter pruning using a vision system and 
artificial intelligence. In our previous work, we presented a 2D neural network that segmented images of 
grapevines into 5 different classes of plant organs during their dormant season. In this paper, we expand into 
the third dimension, introducing point clouds into our algorithm. The 3D approach creates instance-segmented 
point clouds using depth images and segmentation masks obtained with our 2D neural network. After the 3D 
reconstruction, the system extracts thickness measurement and uses agronomic knowledge to place pruning 
points for balanced pruning. The study not only delineates the integration of 2D and 3D methods but also 
scrutinizes their efficacy in pruning point identification. The real-world performance of the created system 
was evaluated and statistically analyzed on data collected during field trials in the winter pruning season 
2022/2023, where the system was used in a potted vineyard to prune a set of test vines, where the positive 
success rate is 54.2%. Moreover, as one of the main contributions, the paper underscores a unique facet of 
adaptability, presenting a customizable framework that empowers end-users to fine-tune parameters according 
to the expected balanced pruning. This adaptability extends to variables such as the number of nodes to retain 
on pruned spurs and the preferred cane thickness, encapsulating the versatility of the 3D approach.
1. Introduction

An important task to perform in a vineyard is winter pruning, a 
complex operation that needs to be completed during the dormant 
season (Poni et al., 2016). A balanced winter pruning allows a good 
compromise between remunerative yield and desired grape quality, 
maximizing the grower’s income (Intrieri and Poni, 1995; Poni et al., 
2018). This selective operation requires about 80 to 100 man-hours per 
hectare annually. Table  1 shows an overview of the man-hours needed 
for a list of annual operations in the vineyard. Due to increased skill 
shortages and limited labor availability, automating winter pruning is 
a crucial step to improve efficiency and reduce production costs. Fig. 
1 shows an example of manual pruning and mechanical pre-pruning 
completed by manual follow-up.

The project VINUM, which is a collaborative effort between the 
Istituto Italiano di Tecnologia (IIT) and the Università Cattolica del 
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Sacro Cuore in Piacenza (UCSC), has been focussing on automating 
the process of spur winter pruning for vertically shoot positioned (VSP) 
grapevines. This ongoing collaboration has been dedicated to develop-
ing innovative solutions for automating and streamlining the winter 
pruning operation. Over the past few years, the VINUM project has 
progressed in advancing automation technologies specifically tailored 
for grapevine spur winter pruning.

1.1. Context of the study

This study targets the automation of the winter pruning operation 
by integrating a mobile platform and a robotic arm capable of working 
in the vineyard. To achieve the best pruning decisions, i.e., to detect the 
correct point to cut, it is important to understand the structure of the 
pruning regions, and the plant organs that compose it. AI algorithms 
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Fig. 1. Example of manual pruning (left) and mechanical pre-pruning (right). Manual follow-up is still needed after the mechanical pre-pruning.
Table 1
Labor demand in hours per hectare for the annual vineyard management. Guyot* refers to Guyot + Mechanical Harvesting, and Spur pruned cordon** corresponds to Spur pruned 
cordon + Mechanical harvesting + Pre-pruning. The targeted type of plant for this work, highlighted in bold, is the spur pruned cordon, and winter pruning is the second most 
expensive operation, with the first being harvesting.
Source: (Table adapted from Gatti et al. (2011a,b)).
 Guyot Guyot* Spur pruned cordon Spur pruned cordon** 
 Fertilization 1 1 1 1  
 Weeding 2 2 2 2  
 Mowing 2–3 2–3 2–3 2–3  
 Plant protection (spray) 10–15 10–15 10–15 10–15  
 Desuckering 5 5 5 5  
 Shoot thinning 30 30 50 50  
 Shoot positioning 2–4 2–4 2–4 2–4  
 Trimming 2–4 2–4 2–4 2–4  
 Leaf removal – – 5 5  
 Harvest 140 2–4 150 2–4  
 Winter Pruning (Including cane stripping) 100 100 80 –  
 Pre-pruning followed by hand-finishing – – – 25  
 Cane positioning 20 20 – –  
 Total 324 188 319 118  
such as deep learning and other machine learning techniques have 
successfully demonstrated how they can overcome the limitations of 
classical computer vision. As shown in recent works, machine learning 
algorithms can be successfully applied to grapevine structure estima-
tion and pruning (Häring et al., 2024; Gentilhomme et al., 2023; 
Botterill et al., 2017; Silwal et al., 2022).

The structure of a pruning region of grapevines subjected to spur 
pruning can be seen in Fig.  2, along with the identified grapevine 
organs and the correct pruning points. Each class corresponds to a 
different visible organ during the winter season: the cordon is the oldest 
permanent structure of the grapevine canopy; the arm is an at least 
three-year-old wood coming off the cordon; the spur is a two-year-old 
wood, and the canes are dormant shoots that generally appear vertically 
in response to vertical shoot positioning from the previous season (Poni 
et al., 2023). The cane has multiple instances of nodes, the points where 
shoots may grow in the future. In the context of a pruning region, the
basal cane is the dormant shoot located closest to the cordon.

The most desirable spur, regarding physiological and enological 
purposes, requires specific characteristics in terms of well-mature wood 
related color, hardness, wood-to-pith ratio, internode length, rounded 
internode cross-section, and an average diameter of about 7 mm (Tassie 
and Freeman., 1992). The selection of pruning points on grapevines is 
based on agronomic knowledge and may vary depending on the eno-
logical objective; it aims to regulate the number, length, and position 
of each spur to optimize canopy growth, grape quality and yield in the 
next season.

1.2. Related work

According to the literature, several computer vision and  AI ap-
proaches have been tested and applied in agriculture. This section gives 
an overview of the most relevant works and their limitations.
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The authors in Esser et al. (2023) present a robotic system equipped 
with laser and camera sensors for high-resolution in-field plant scan-
ning. The main contributions stated by the authors are the mobile 
robot, the methods to deal with outdoor lighting and localization, and 
a comparison between laser scanners and cameras. Both systems have 
positive and negative points regarding the precision of the laser scanner 
system versus the photo camera capture system. The authors concluded 
that both systems complement each other.

The authors (You et al., 2023) introduce a framework for the recon-
struction of apple tree topology that can be used in tree pruning, using 
only RGB information in real-time. The experimental validation demon-
strates that the setup can generate primary branch models with an 
accuracy of 4–5 mm and secondary branch models with an orientation 
accuracy of 15 degrees relative to the ground truth model.

Shifting our focus onto grapevines now, authors in Santos et al. 
(2020) present a new public dataset with grape clusters annotated in 
300 images and a new annotation with interactive image segmentation 
to generate object masks, identifying background and occluding fore-
ground pixels using scribbles. It has images, bounding boxes, and masks 
and an evaluation of two state-of-the-art methods for object detection, 
object segmentation, and a fruit counting methodology. The presented 
dataset is not exploitable for winter pruning due to the presence of 
grapes and leaves, being more suitable for summer pruning.

The authors of Häring et al. (2024) target the creation of an AI-
based augmented reality system that provides pruning suggestions for 
a ‘‘gentle pruning’’ strategy, presenting three main contributions: a 
dataset of dormant grapevines, an approach to generate the pruning 
suggestions using a smartphone video and a mobile augmented reality 
application to see the pruning suggestions. This approach does not con-
sider an evaluation of the cane diameter or other metrics for balanced 
pruning. 
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Fig. 2. Semi-schematic representation of a grapevine pruning region, illustrating the 
five grapevine organs: Cordon, Arm, Spur, Cane, and Node. The black lines indicate 
the desired pruning points. The basal cane is the cane closest to the cordon. The color 
overlay for each organ is created with data annotation created by agronomic experts. 
(Image captured in Università Cattolica del Sacro Cuore in Piacenza.).

In Gentilhomme et al. (2023), the authors introduce ViNet, a net-
work designed to identify nodes within a grapevine plant and re-
construct the plant’s structure. The study also introduces the 3D2Cut 
dataset, offering annotated data containing node information and syn-
thetic backgrounds. The approach employs a stacked hourglass net-
work to reconstruct grapevine structure, encompassing node locations, 
branch types, and interconnections. The drawback of a similar ap-
proach is that it requires a controlled environment with the use of a 
static background.

One of the main issues in recognizing grapevine organs is the 
occlusion of nodes at certain camera angles (Guadagna et al., 2023). 
With this in mind, a natural step is the emulation of a human that tilts 
and moves its head to obtain a different angle over the grapevine. One 
way to merge the visual information from multiple points of view is via 
3D point clouds.

Regarding 3D point clouds applied to grapevine metric extraction, 
it is worth mentioning the relevant work of Williams et al. (2023). The 
authors have implemented a system that allows the 3D reconstruction 
of cane pruned grapevines for extracting several quantifiable metrics 
used to evaluate the quality of canes. These metrics are the diameter, 
orientation, length, position, visible health (if there is visible disease or 
damage), internode length, and node count. It uses a pair of UR5 robot 
arms on each side of the grapevine, each with a stereo camera system 
and a hardware trigger that synchronizes the images for accurate stereo 
matching. The work focused on 3D reconstruction without pruning 
or an underlying data structure that would allow the generation of 
pruning points.

Authors in Botterill et al. (2017) present a robotic system for 
automating grapevine winter pruning. Using a mobile platform with 
trinocular stereo cameras that envelop the grapevine, the system cap-
tures images of the vines while a computer vision system constructs 
3 
simplified 3D models. A support vector machine (SVM) based system 
decides which canes to prune, and a six-degree-of-freedom robot arm 
executes the cuts. The integrated system is tested in the vineyard, 
showing initial trials of unbalanced pruning. The use of AI to directly 
decide where to place the pruning points can be seen as a limitation 
since the pruning for a specific grapevine variety may not be the same 
for other varieties and/or different agronomic purposes.

The authors state that the system has reliability issues related to 
cable tangling, connection failures, and cameras losing calibration. A 
limitation can be seen in the controlled environment, where the system 
envelops the entire plant with a structure that keeps out natural light 
and illuminates it with synthetic uniform light.

Bumblebee (Silwal et al., 2022) is a prototype of an autonomous 
robotic system that performs winter pruning, introducing some novel-
ties on several systems: camera, perception, manipulation, navigation, 
and robotic platform. The proposed system targets vigorous Concord
(Vitis labrusca) grapevines trained to bilateral cordon with an average 
cordon height of 1.8 m. As stated by the authors, the complex vines 
structures were simplified by manually pre-pruning with a machine. 
Furthermore, the study adopted a simplified spur pruning rule to only 
retain 4 buds per cane. The authors reported an average pruning 
accuracy of 87% for a down-selected subset of canes. The pre-pruning 
resulted in 40% overpruned canes (less than the desired 4 buds left on 
the cane) and 25% already exactly pruned canes (4 buds). The subset 
of the remaining 35% resulted in prunable canes that were used in 
their study. The authors also mention lessons learned, such as the need 
for a secondary camera system to reduce occlusion, which brings such 
problems as the constant recalibration and manual tuning of parameters 
to achieve real-time point cloud processing. Lastly, one of the stated 
limitations is the need for ‘‘advanced sensing capabilities to assess cane 
health and vine size for balanced pruning’’.

1.3. Contributions

In our previous work (Fernandes et al., 2021), we present a three-
class neural network capable of detecting and segmenting images of 
grapevines during their dormant season, into cane, node, and cordon 
organs. It also introduced proof-of-concept pruning points. These points 
are placed between every node along the cane organs that are detected 
and connected to a cordon and are obtained via a plant graph model 
created based on the detected organs.

In Guadagna et al. (2023), we present an evolution to the neural 
network, which segments images of grapevines during their dormant 
season into five classes of plant organs: cordons, arms, spurs, canes and 
nodes.

In this work, we propose a system for autonomous winter pruning 
of vineyards with grapevines trained to spur-pruned cordons. A 3D 
reconstruction algorithm combined with a ruleset based on agronomic 
background detects the correct pruning points, while a robotic arm is 
controlled to execute the cut.

This work uses and improves upon our previous works by using the 
mentioned 5-class neural network, along with the plant graph model.

In particular, to address the limitation of the current state of the art 
introduced above, the contributions are:

• Spur-pruned grapevine 3D reconstruction via Point clouds with 
instance segmentation, leading to a 3D plant graph model;

• Implementation of customizable pipeline for balanced pruning 
point generation on 3D plant graph models;

• Experimental field trials for grapevine winter pruning of the 
methods introduced in this paper.

The remainder of the paper is organized as follows: Section 2 
describes the algorithm that creates the grapevine’s 3D model and 
how the pruning points are generated following agronomical criteria. 
Section 3 presents the material and methods. Section 4 presents the 
experimental setup and results. Section 5 discusses the achieved results 
and the limitations of our approach. Finally, Section 6 presents the 
conclusions and possible future works.
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Fig. 3. Example of a final point cloud. The colors represent the individual classes, with 
purple representing the cordon, green the arm, red the spur, orange the cane, and blue 
the node.

2. Point cloud creation & pruning point generation

Perception systems face different difficulties in outdoor environ-
ments, such as shadow effects, varying light conditions, occlusions, 
and reflections, making it challenging to understand the entire plant 
structure from a single perspective. Therefore, collecting and fusing 
information from different perspectives is suitable for dealing with 
the mentioned difficulties. In this sense, we merge the segmented 
instances from the neural network at every collected view to obtain 
a 3D representation of the grapevine. Fig.  3 presents an example of a 
merged point cloud created by the system, with purple representing the 
cordon, green the arm, red the spur, orange the cane, and blue the node 
(see Section 2.5).

To create the point clouds, we employ a data structure that includes 
the following components: a timestamp, an RGB image, a depth image, 
and the transformation between the camera and a fixed point in the 
world. These components are synchronized in time. The process begins 
by applying a segmentation neural network to the first RGB image. 
The output from the network then undergoes further processing. First, 
within the segmentation masks domain, several tasks are executed. 
Initially, overlapping masks of the same class are merged to simplify the 
output, thereby reducing the number of resulting masks. Second, areas 
of the mask considered too small and indicative of errors are removed. 
Finally, the depth image is subject to processing. It is filtered using 
all the segmentation masks, with any value in the depth image falling 
outside a segmentation mask set to zero. Since we are filtering the depth 
image based on the segmentation information, we ensure that the point 
cloud created by the system only contains points that are also classified 
by the neural network. The camera position and orientation are then 
changed by moving the robotic arm, as explained in Section 3.3.1.

2.1. ICP & pose graph optimization

The segmentation merge is a process performed on the data, as 
mentioned above, in which the captured data instances are processed 
in a way that allows them to be merged into a single point cloud or 
discarded. Utilizing depth information, we project visual data into a 
point cloud. By incorporating the transformation information between 
the camera and the world, we determine the point cloud’s spatial 
relationship to the world. Since we have a matching between the 
depth image and the color image, it is possible to create a relationship 
between the color image, the object segmentation, the depth image, and 
the camera’s position in the world. With this related data, it is possible 
to build a point cloud that only includes the grapevine and each point 
the object class belongs to.

We first calibrated the intrinsic camera parameters using the ‘‘Dy-
namic Calibration Tool’’ from Intel RealSense. Then, we mounted the 
camera on the robotic arm and calibrated the extrinsic camera param-
eters using the ‘‘Hand-Eye Calibration’’ package from MoveIt (Coleman 
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Fig. 4. Illustrative example of the point selection process, where each color represents 
a different view, the points in black belong to the first view, and every other random 
color represents subsequent iterations.

et al., 2014). In this sense, it is possible to project a colored point cloud 
referenced to the camera frame using the intrinsic camera parameters 
and depth information. Consequently, we can transform the colored 
point cloud to the arm base using the extrinsic camera parameters 
and the arm kinematics. This process is repeated for every captured 
frame to obtain a ‘‘global’’ point cloud of the plant. However, due to 
system imprecisions, whether on the camera or robot side or changes 
in the world, the alignment of point clouds may deviate, making it 
challenging to overlap multiple point clouds accurately.

To address this misalignment issue, we use a two-step strategy 
consisting of a local optimization to find an approximate homogeneous 
transformation between frames one and two and successively until 
closing the loop, and then a global optimization (pose graph opti-
mization) is run on the closed loop to refined the locally optimized 
transformations from the previous step. To address this, we use a ‘‘pose 
graph’’ structure to achieve optimal point cloud overlap using the open-
source library Open3D (Zhou et al., 2018). The pose graph consists 
of nodes representing individual point clouds and links indicating the 
transformations between these nodes. A circular graph needs to be 
formed to optimize the pose graph; in other words, a graph that consists 
of a closed chain connecting all the vertices. To achieve this, we employ 
the Point-to-Plane Iterative Closest Point (ICP) algorithm, Chen and 
Medioni (1992), to calculate the transformations between different 
point cloud nodes.

A pairwise calculation between all the point clouds is typically done 
to build the pose graph. The main issue is that the complexity of the 
pairwise registration is quadratic (𝑂(𝑛2)). Due to the large quantity of 
data acquired over scanning, a simplified approach to building the pose 
graph was created.

We execute the following steps to add nodes to the pose graph: The 
first point cloud is added by default and serves as the ‘‘root’’ node. 
Starting from the second point cloud, we check the overlap between 
the current and last point clouds in the graph, using the ICP algorithm 
to determine the fitness metric. If the fitness exceeds 50%, indicating 
substantial overlap, the current point cloud is added to the pose graph. 
If not, the current point cloud is discarded, and we move on to the next 
point cloud and continue the process.

By only creating a closed loop, the complexity of the pairwise regis-
tration becomes linear (𝑂(𝑛)), with the drawback being that additional 
checks are needed to understand if all point clouds are fully aligned.

An optimization process is executed after adding all possible point 
clouds to the pose graph. This process brings all point clouds closer to 
the root point cloud, improving their overall fitness.

2.2. Point selection-based point cloud merging

After obtaining the optimized pose graph containing all the match-
ing point clouds, the next step is to merge them based on segmentation 
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information. To accomplish this, we create several lists that store essen-
tial information for each point. These lists include point coordinates, 
class, class probability, and node probability, and they are collectively 
called the final point lists.

The selection of the points that make up the merged point cloud is 
essential to avoid duplicated information. This is caused by the fact that 
a single point can be seen from multiple points of view. By selecting the 
points where the neural network is more confident in the result, we can 
ensure that we have the best available information in a space-efficient 
manner.

The point selection is executed iteratively, using the vertices of 
the optimized pose graph. The first element, the root node of the 
pose graph, is used as the base of the point cloud. The information 
in this element, the data structure mentioned in the introduction to 
Section 2, is converted into several point clouds, creating one with 
color information, a second with class information, a third with prob-
ability information, and the last with node probability information. 
These point clouds, for performance reasons, are downsampled via 
voxelization to 1 mm.

By creating these four different point clouds, we have the various 
types of information mapped against the depth information. These 
point clouds are converted into five separate lists named positions,
colors, classes, probabilities, and node probabilities. With the first element 
of the pose graph being used as a base for the final point cloud, the 
initial lists contain all the points in the element. Starting with the 
second iteration, it is first checked if the normal of the translation lies 
within a threshold (see Section 2.1). If beyond the threshold, it means 
that the instance is not correctly aligned with the rest of the vertices 
and is discarded.

If it is inside the threshold, a filter based on the point-to-point 
distance is used, where points are divided into two: points not present 
in the final point list and those already present. The points that are 
not present are added to the final point lists. For the present points, 
we check if the new probability the neural network inference provides 
is higher than the current one. If it is higher, we replace the existing 
point information with the new information; else, we discard the new 
information. This process ensures that the final point cloud contains 
the most probable information for each point. An example of the final 
point cloud can be seen in Fig.  4. While the system can see the adjacent 
pruning regions, it only considers the target pruning region in the 
pruning point generation.

2.3. Point clustering

Once we have obtained the final point lists through merging, the 
next step is to organize the points into distinct instances using a 
clustering method. This allows us to differentiate different objects of 
the same class in the final created point cloud.

Two methods were tested, DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise) (Ester et al., 1996) from the Open3D 
library (Zhou et al., 2018) and HDBSCAN (Hierarchical Density-Based 
Spatial Clustering) (Malzer and Baum, 2020).

DBSCAN relies on two parameters: eps controls the distance to 
neighbors for forming a cluster, and min_points specifies the minimum 
number of points required to create a cluster. With the parameter eps, it 
is possible to define how close the points are for them to be considered a 
single cluster. However, this leads to information being deleted because 
specific points are not associated with a cluster, for example, in areas 
where the list of points is more sparse.

HDBSCAN is an enhanced version of DBSCAN that only requires the
min_points parameter. It automatically adapts the eps value based on the 
data distribution, which allows the clustering to be more adapted to the 
created point cloud. The adaptability based on the data distribution led 
to the selection of HDBSCAN as a clustering method.

By clustering the points, we can identify different instances of 
organs and generate individual point clouds for each organ instance. 
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Table 2
Types of pruning cuts considered in the study.
 Cut type Description  
 Base-bud cut The base-bud is kept while the remaining (upper) part is 

removed.
 

 Spur cut The first N nodes of the basal cane are left, while the 
rest of it is removed. The spur parent organ is cut above 
the basal cane if it is not a new pruning region.

 

 Replacement 
cut

The first N nodes of the basal cane are left, while the 
rest of it is removed. The arm parent organ is cut above 
the basal cane.

 

Table 3
Relationships between the different types of organs.
 Parent organ type Children organs types 
 Cordon Arm, Spur, Cane  
 Arm Spur, Cane  
 Spur Cane  
 Cane Node  

This step is crucial as it enables us to analyze each organ separately, 
facilitating estimations such as organ thickness, orientation, and posi-
tion relative to the rest of the plant. These estimates provide valuable 
information for deciding which parts of the plant to retain or remove.

2.4. Plant graph creation

After the creation of the segmentation instances described above, 
the last step is creating the plant graph structure similar to the one 
introduced in our previous approach (Fernandes et al., 2021).

The graph structure is tree-shaped, considering the cordon instances 
as the root node and the node instances as the leaf nodes. This al-
lows the skeletonization of the detected organs and keeps track of 
information used for the pruning point generation algorithm. The 
significant difference between our previous implementation and the 
current version is the adaptation from the 2D into the 3D domain.

The organs are correlated to each other as defined in Table  3, where 
the cordon connects to arms, spurs and canes, the arm connects to spurs
and canes, the spur connects to canes, and the cane contains nodes.

To understand if the organs are connected, we check if there is sig-
nificant proximity to the parent organ. This is achieved by calculating 
the percentage of points of the child organ that are closer than 1 mm 
to the parent organ.

2.5. Agronomic pruning point generation

In this paper, we will focus on the following three main types of 
cuts: base-bud cut, spur cut, and replacement cut. These operations 
normally involve making two physical cuts on the pruning region. The 
corresponding cuts are described in Table  2.

The base-bud cut is performed above the base bud and removes the 
old spur.

The replacement cut involves two physical cuts: first, the replace-
ment cane is shortened to the desired count node. Second, the removal 
of the old spur and arm of the pruning region.

The most common pruning cut in grapevines trained to a VSP spur 
pruned cordon is the Spur cut, where the first physical cut is placed 
above the 𝑁th count node of the basal cane, and the second physical 
cut removes the old spur. The number of count nodes to be kept is 
a parameter that can be adjusted depending on grapevine variety, 
balance, and target yield (Tassie and Freeman., 1992; Poni et al., 2004).

With this knowledge, we can process the generated point clouds and 
plant graph structure into pruning points that the system is expected to 
prune. This follows a simplified ruleset, targeting a pruning region, as 
described next.
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Fig. 5. Pruning decision flowchart used by the system.
Our algorithm detects pruning points using a threshold value for 
cane thickness (too-thin dormant shoots are removed) and the number 
of retained nodes on the next year’s spur. Despite the development of 
a customizable system, we are currently setting the thickness threshold 
to 7 mm (Tassie and Freeman., 1992) and the number of nodes to two 
for spur cut and replacement cut, while only one node is retained in case 
of base-bud cut.

We begin by counting the number of canes in the pruning region, 
which can usually go from one up to three.

If there is only one cane, we measure its thickness. If it is thinner 
than 7 mm, we perform a base-bud cut, keeping only one node. If it is 
thicker than 7 mm, we perform a spur cut, retaining two nodes.

If there are two canes, we start evaluating the thickness of the lowest 
cane. If it is thinner than 7 mm, we perform a base-bud cut on that cane 
and move to the next cane, applying the rule already introduced for a 
spur region with one cane. If the lower cane is thicker than 7 mm, we 
perform a spur cut, retaining the first two nodes and removing the rest 
of the pruning region.

Finally, in the presence of three canes, if the lowest cane is thicker 
than 7 mm, we perform a replacement cut, keeping the first two nodes 
and removing the rest of the pruning region. If, instead, it is thinner 
than 7 mm, we perform a base-bud cut on that cane, shortening it to 
one node and processing the rest of the pruning region following the 
behavior presented above for the two-canes case. Fig.  5 shows in a 
schematic way the decision process taken by the system.

2.6. Pruning point generation

As mentioned above, the presented algorithm requires extracting a 
few metrics among the possibilities, thanks to a 3D model of the plant: 
6 
the number of canes in a pruning region, cane thickness, and their 
location.

While the number of canes and their location are directly obtained 
from the 3D model, the cane thickness has to be calculated. For our 
currently implemented estimation, we divided the cane into 20 vertical 
segments, and for each of them, we compute the Euclidean distance 
between the lateral edges. Distances considered outliers were elimi-
nated, and the remaining values averaged for the final cane thickness 
estimation. The left part of Fig.  6 shows an example of the estimation 
procedure.

One of the main contributions and major advantages of the proposed 
system is the flexibility to customize the pruning parameters. End 
users can therefore adjust various parameters to meet their specific 
requirements. For instance, parameters such as the number of retained 
nodes, desired cane thickness can easily be modified in response to 
varietal differences, vineyard vigor, yield targets, etc.

For now, the pruning points are placed at the middle point of the 
line created by the elements being considered for the pruning. For 
example, when cutting a cane, the elements being considered are the 
desired count node and the node above it, with the pruning point placed 
on the midpoint between the two nodes.

In another example, for a pruning point placed on a spur, the 
elements being considered are the two canes, where the pruning point 
is placed on the midpoint between the lower extremities of the two 
canes. A visual explanation can be seen in Fig.  6.

3. Material & methods

3.1. Robot prototype

The mobile manipulator robot used for this study was a Robotnik 
Summit XL four-wheeled robot with a Kinova Gen3 arm with seven 
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Fig. 6. The figure on the left demonstrates the thickness estimation of a cane. The 
multiple colors are the twenty subdivisions made of the cane, with the spheres 
corresponding to the extremities of the corresponding color segment. The black spheres 
correspond to the center of the segment. The thickness value of a segment is given by 
the Euclidean distance between the two extremities. The figure on the right shows the 
pruning point placement; the blue markers represent the pruning point, and the red 
spheres show the considered organ points. The red spheres are located in the nodes’ 
center for the upper pruning point. For the lower pruning point, the red spheres are 
placed in the lower extremity of the segmented area of the two canes of the pruning 
region.

degrees of freedom (DoF), as can be seen in Fig.  7. The pruning end 
effector consists of electric shears and an off-the-shelf, low-cost RGB-D 
camera (Intel RealSense D405). This mobile manipulator is agile and 
suitable for outdoor environments. The current version of the pruning 
end effector was designed to simplify the depth camera calibration by 
placing the camera in line with the arm end effector mount. Moving 
the shears partially underneath and parallel to the last link of the arm 
allows the tip of the shears to be closer to the arm end effector mount, 
which benefits the overall dexterity of the robot arm.

3.2. Execution pipeline

The execution pipeline, shown in Fig.  8, starts by deploying the 
robotic manipulator and performing the block ‘‘Identify Pruning Re-
gions’’ using the neural network (Guadagna et al., 2023). It selects 
the inferences that are spurs or arms since these make up the pruning 
regions (see Section 1.1 for more details on the plant organ classes).

The robotic manipulator then approaches the first detected pruning 
region and executes the block ‘‘Plan movement for pruning region 
scan’’, which corresponds to the task described in Section 3.3.1, and 
while the manipulator is moving, the system captures data for the 
point cloud creation module, represented by the blocks related to the 
activation and deactivation of ‘‘Data Capture Worker’’.

After finishing the movement, the captured data is processed in the 
green section of the pipeline, named ‘‘Segmented Point Cloud’’, where 
the individual blocks are described in Section 2.

After creating the segmented point cloud, the system follows the 
logic presented in the yellow section of the pipeline, named ‘‘Pruning’’. 
The system first plans an arm movement that brings the shears to the 
pruning point, then executes the motion, performs the cutting, and 
repeats these actions as long as pruning points are available. When no 
more pruning points are available, the task is considered finished, and 
the robot moves to the next available pruning region.
7 
3.3. Arm planning and movement

This section explains the arm motion planning and movements. 
MoveIt Task Constructor (MTC) (Görner et al., 2019) is a framework 
that simplifies the process of planning, executing, and monitoring 
complex manipulation tasks for robots, by providing a high-level inter-
face for task planning and execution. Our pruning pipeline uses three 
different tasks. The first task scans a pruning region to acquire the 
information needed to capture the data to build the point cloud, see 
Fig.  9. The second task, shown in Fig.  10, uses a pruning point and 
plans a movement that allows the engagement of the pruning shears in 
the desired point. The third task entails only disengaging from the plant 
and moving to a known arm configuration, such as the fold position, 
where the arm is folded on top of the mobile robot safely, allowing the 
mobile robot to move without damaging the robot arm.

Each task will be more thoroughly explained in the following sub-
sections, but they share some parameters; for example, their cost func-
tion is not a metric of time but rather a metric of how much the end 
effector moved. This way, the MTC plan selector uses movements that 
are close to the plant, preventing undesired movements away from the 
plant. The selection process for the generated plan is also common to 
the tasks, where we select the plan with the lowest cost by sorting the 
valid plans by cost and discarding the invalid plans.

3.3.1. Task N◦1 - Plan to scan
This task creates a plan that scans the selected pruning region. The 

scanning motion, which can be seen in Fig.  9 involves the following 
poses: The robotic arm initially orients itself toward the designated 
pruning area and executes a specific motion pattern centered around 
the target object within the image. This motion comprises a sequence 
of distinct poses involving rotational adjustments. In other words, the 
goal is to keep the camera always at the same distance from the plant 
while acquiring images from different points of view. It achieves this by 
performing rotations on the end effector, that keeps the target pruning 
region in the center of the image.

Using the positions presented in Fig.  9, the motion in position 1, 
in front of the spur. The motion commences with a diagonal right-up 
rotation to reach point 2 and continues to point 7 with a yaw rotation. 
The robot pitches downwards from point 7 to 8, followed by a yaw 
rotation from point 8 toward point 13. Then, the robot pitches upwards 
toward point 14 and finishes the movement with a left-down rotation, 
arriving at point 15.

Considering that Cartesian planning can sometimes fail in more 
complicated motions, MoveIt Task Constructor allows the usage of
Alternatives, which enables the planning with multiple types of plan-
ners, where in this case, it plans using the Cartesian planner, joint 
interpolation planner, and sampling planner. By using these planners 
in parallel and selecting the one with the lowest cost, the final motion 
plan has a combined lower cost, where the cost metric corresponds to 
the smallest joint movement. In short, Cartesian planning is used with 
desired positions and orientations of the end effector using Cartesian 
coordinate space (𝑋, 𝑌 ,𝑍). Joint interpolation planning involves spec-
ifying the desired positions for each robot arm joint. The planner then 
computes a trajectory that smoothly interpolates between the initial 
and final joint configurations. Finally, the sampling planner randomly 
samples configurations and constructs a graph or tree connecting the 
sampled configurations to find feasible paths for a robot to move from 
its initial state to the goal state. It is important to note that while the 
robot is performing this scanning motion, it is capturing images for 3D 
point cloud reconstruction. This image capture occurs once per second.
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Fig. 7. Robotnik’s Summit XL wheeled robot with Kinova Gen3 seven DoF manipulator arm with pruning shears as end effector. The left side of the figure shows the complete 
platform, and the right side of the figure presents a labeled CAD rendering of the robot.
Fig. 8. Pipeline of the system execution loop, from the initial navigation step up to the cutting. The colored blocks on the top left named ‘‘Processing’’ and ‘‘Movement’’ act as a 
legend for the rest of the blocks of the figure.
Fig. 9. The image shows in a schematical way the motion pattern taken by the 
scanning motion. It is important to notice that positions 1 and 15, along with positions 
2 and 14, are the same positions and that positions 1 and 15 are located between 
positions 10 and 11.

3.3.2. Task N◦2 - Plan to cut
Plan to Cut is the task used to plan a movement to a pruning point, 

as seen in Fig.  10. It receives the pruning point we desire to prune, 
which is a point rather than a pose due to the fact that from the vision 
side of the system, there is an abstraction of the used arm and end 
effector.

The difference between a point and a pose in this situation is the fact 
that a point sets the end-effector position to given (𝑋, 𝑌 ,𝑍) coordinates, 
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and a pose additionally specifies an orientation, normally in quaternion 
format (𝑋, 𝑌 ,𝑍,𝑊 ).

This abstraction allows us to use the same concepts the grasping 
research community uses. This is because pruning can be considered 
as a grasping task, from the robotic point of view; instead of grasping, 
we cut the intended target. In this sense, we explore the availability of 
the plant’s 3D model to not only find the correct pruning point but to 
constrain the manipulator’s motion while pruning; in this regard, the 
algorithm finds the motion to engage the shears in the desired pruning 
location avoiding any collision with the plant. To add the 3D plant 
model to the planning scene, we provide the created point cloud to 
MoveIt’s 3D perception module, which is responsible for updating an 
occupancy map based on Octomap (Hornung et al. 2013). The latter is 
used for collision avoidance. Due to the need to validate the feasibility 
of the end of the motion, the plan is calculated inversely from the 
execution. With this, the first thing this task does is to verify via the 
inverse kinematics if the end effector, or, more specifically, the center 
point of the shear blades, can be inserted into the provided pruning 
point. This discards the positions of the end effector that either touch 
the plant or try to approach the pruning point from the opposite side 
of the plant. These end effector poses are obtained by searching around 
the provided point, with an angular delta around the three coordinate 
frames, X, Y  and Z, and by using code from MTC related to grasping 
tasks. After finding valid pruning poses, the planner is configured to 
drive the manipulator toward the pruning location and executes a final 
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Fig. 10. Task plan to cut in parts, where the ghosts are positions where the robot will 
pass. The robot starts its motion in position 1, it then moves to position 2, which acts 
as the pre-engagement position. From position 2 the robot starts its linear approach to 
the pruning point, finishing the movement in position 3.

translation to avoid any collision while the manipulator tries to engage 
the plant. This is first planned with Cartesian planning, which falls into 
joint interpolation if the former fails. The last part plans the motion 
from the current state of the arm to the position of the beginning of 
the relative engagement movement.

3.3.3. Task N◦3 - Plan back
This task, shown in Fig.  11, uses as input a set of joint positions, 

which are generally the joint positions when the robotic arm is moved 
to the detection position or is folded on top of the robot, where the 
former is used for moving to the next pruning point or next pruning 
region and the latter to stow the arm during platform navigation. 
The task comprises two phases, where a relative movement is done 
backward, in a range of 5 to 15 cm, selected by the motion planner, 
followed by the motion to the provided joint positions.

4. Pruning experiments and results

The vision pipeline and pruning point selection explained in the 
previous sections were tested in the winter 2022/2023 season, using 
the robot platform presented in Section 3.1.

4.1. Experimental setup

The tests were executed on six mature potted grapevines at the 
Università Cattolica del Sacro Cuore in Piacenza (Italy) for a total of 
24 available pruning regions. As reported by Guadagna et al. (2023), 
the vines were aligned in NE-SW oriented row, trained to a spur-pruned 
cordon since 2017 with five 2-node spurs and a vine spacing of 0.9 m. 
Some of the plants used in the experimental validation were pruned in 
the previous season by an earlier version of our pruning system without 
assessing the correctness of the cuts. Other plants were pruned by hand. 
Since some of the robot-cut plants have been incorrectly pruned, some 
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Fig. 11. Task plan back in parts, where the ghosts are positions where the robot will 
pass. The motion starts in position 1 where the robot disengages from the pruning 
point, moving linearly toward position 2. The robot then moves toward position 3, 
returning to the detection position.

of the evaluated pruning regions are considered more complex than 
usual.

The execution process is the same as presented in Section 3.2. It is 
important to note that even though the system can also perceive the 
neighboring pruning regions, we only consider the pruning points that 
affect the scanned pruning region.

4.2. Experimental results overview

The experimental results for our system are split into three dif-
ferent components, the first addressing the split between used and 
discarded images for the point cloud 3D reconstruction (Section 4.3), 
the second component targeting the system’s detection capabilities 
(Section 4.4), and the last component evaluating the calculated pruning 
points (Section 4.5).

4.3. Point cloud merging results

As presented in Section 2.1, the system captures a stream of images 
that are converted into point clouds that are used to create the 3D 
reconstructions. Table  4 presents the data usage related to the recon-
struction process, with the mean and standard deviation for the number 
of images used to create the merged point clouds. These values are the 
number of images that were captured, the images that were not matched
during the pose graph creation, the images that were discarded during 
the point cloud reconstruction due to their transformations, the number 
of used images for the reconstruction process. The last row contains the 
mean and standard deviation of the number of points of the merged 
point clouds.



M. Fernandes et al. Computers and Electronics in Agriculture 237 (2025) 110589 
Table 4
Point cloud reconstruction data usage, per pruning region, considering the mean and 
standard deviation of the number of images for each processing step. The merged point 
cloud presents the same metrics but for points.
 Mean SD  
 Captured 61.6 7.18  
 Not matched 12.75 11.90  
 Discarded 11.2 7.18  
 Used 37.6 12.83  
 Merged point cloud size 40 724.76 8860.66 

Table 5
Point cloud detection results, cane detection evaluation, where the incorrect clustering
entails canes incorrectly merged into one instance. In one case of incorrect clustering 
in this situation, the cane was merged into an adjacent pruning region, where this 
evaluation only targets the scanned pruning region, leading to the odd number of 
incorrect clusters. This situation can be seen in Fig.  15.
 Canes Percentage 
 Correct detection 49 79.2%  
 Incorrect clustering 5 7.27%  
 Missed detection 1 1.82%  
 Total 55 100%  

Table 6
Point cloud detection results, where the cane detection is evaluated per pruning region. 
By evaluating per pruning region, we can understand how the cane detection affects the 
resulting pruning point generation. The entire pruning region is classified as incorrect 
clustering or missed detection, regardless of which cane lead to that classification.
 Pruning regions Percentage 
 Correct detection 19 79.2%  
 Incorrect clustering 4 16.7%  
 Missed detection 1 4.2%  
 Total 24 100%  

4.4. Point cloud detection results

Taking the created point cloud reconstructions, we are evaluating 
the accuracy of the detection, targeting the relevant organs for winter 
pruning, i.e., the canes and the nodes. Tables  5, 6, 7 and 8 present the 
results for the detections related to the canes, canes per pruning region,
nodes, and nodes per cane respectively.

The classification of the detections of these organs can be split 
into three possible conditions, correct detection, incorrect clustering, and
missed detection.

• The correct detection categorizes the detection as correct and 
matching the ground truth.

• The incorrect clustering categorizes the result as positive detection 
of the organ, but an incorrect clustering, merging two separate 
instances into just one.

• The missed detection states that the organ was not seen or was 
classified as the wrong class.

Table  5 shows the results related to cane detection, and Table  6 
contextualizes the cane detection results per pruning region, where 
each pruning region has two to three canes. Although our algorithm 
also considers the existence of pruning regions with just one cane, there 
are no pruning regions of that type in our data.

Table  7 presents the results related to the node detection in a 
global manner, with Table  8 contextualizing these results with their 
corresponding cane type.

We standardize the maximum number of nodes to three for this eval-
uation since the correct pruning points are placed between the second 
and third nodes, according to the metrics established in Section 2.5.

To better understand the previous tables, we calculate several eval-
uation metrics, Precision, Recall, and F1-Score, summarized in Table  9, 
using the following equations adapted to our evaluation categories: 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (1)
(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔)
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Table 7
Point cloud detection results, node detection evaluation. Incorrect clustering entails 
pairs of nodes that were merged into one instance. This evaluation considers the ground 
truth quantity of canes (55).
 Node Percentage 
 Correct detection 123 79.2%  
 Incorrect clustering 26 7.27%  
 Missed detection 16 1.82%  
 Total 165 100%  

Table 8
Point cloud detection results, node detection evaluation per cane type (Basal, Distal or 
Replacement). This evaluation considers the ground truth quantity of canes (55).
 Basal Distal Replacement Total Percentage 
 Correct detection 17 12 3 32 58.2%  
 Incorrect clustering 4 7 2 13 23.6%  
 Missed detection 3 5 2 10 18.2%  
 Total 24 24 7 55 100%  

Table 9
Performance metrics (Precision, Recall, and F1-score) comparing different categories: 
Canes and nodes. The results are calculated using Eqs. (1), (2), and (3). It distinguishes 
between the general performance of cane and node classes, along with their specific 
evaluation, with canes being evaluated per pruning region (PR) and the nodes being 
evaluated per cane type, basal, distal, and replacement.
 Precision Recall F1-Score 
 Canes 90% 98% 94.2%  
 Canes per pruning region 82.6% 95% 88.3%  
 Nodes 82.6% 88.5% 85.4%  
 Nodes per basal canes 81% 85% 82.9%  
 Nodes per distal canes 63.2% 70.6% 66.7%  
 Nodes per replacement canes 60% 60% 60%  

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

(3)

In Eq. (2), the total number of elements is relative to the specific 
class being evaluated, the canes or the nodes.

4.5. Pruning point generation results

The pruning points obtained by the method described in Section 2.5 
are compared with the correct cut type (Table  2) that an expert pruner 
would apply. We evaluate if the selected cut type is correct and if the 
selected locations of the physical cuts are correct.

These results are classified into the following different classes:
correct cut, incorrect length, incorrect cane thickness estimation, incorrect 
cut.

• The correct cut, as the name implies, is an agronomically correct 
pruning performed on the pruning region, see Fig.  12.

• The incorrect length is related to a correct cut, but with the error of 
improper shortening of the cane. In these cases, the system always 
kept three instead of two nodes, underestimating the quantity of
nodes in the cane.

• The incorrect cane thickness estimation happens when the spur is 
set from a worse cane while the correct cane is removed.

• The incorrect cut  is where the system misclassifies the cut type of 
a pruning region, leading to wrong pruning points.

Table  10 contains the quantitative results obtained by the system 
in the field tests, along with the information on whether the obtained 
case can be fixed by additional manual pruning. Note that the number 
of pruning regions does not correspond to the number of physical cuts 
since some of the cases, such as the spur cut or the base-bud cut imply 
performing two physical cuts, as mentioned in Section 2.5.
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Fig. 12. Example of correctly generated pruning points, with the expert evaluation on the left side of the image, with the plant designation ID on the top left and the cut type 
designation on the bottom left, in this case, Spur cut. The right image shows the point cloud output, with the blue markers representing the expected cuts.
Table 10
Results obtained by the system during the 2022/2023 pruning season, along with 
information on whether additional manual pruning can fix the case.
 Pruning regions Percentage Can be fixed? 
 Correct cut 9 37.5% No need  
 Incorrect length 4 16.7% Yes  
 Incorrect cane thickness
estimation

6 25.0% No  

 Incorrect cut 5 20.8% No  
 Total 25 100%  

Table 11
Statistical analysis pruning point evaluation results using a bootstrap Confidence 
Interval (CI) of 95%.
 Class Samples Proportion Lower CI Upper CI CI width 
 Correct cut 9 37.5% 20% 58% 38%  
 Incorrect length 4 16.67% 4% 33% 29%  
 Incorrect cane
thickness estimation

6 25% 8% 41% 33%  

 Incorrect cut 5 20% 4% 38% 34%  

Due to the low amount of pruning regions evaluated, an additional 
statistical evaluation is presented in Table  11, using a bootstrap confi-
dence interval of 95%. From the presented table, we can see that the 
quantity of samples from the statistical analysis is low, leading to a 
high width between the bounds of the confidence intervals. The need 
to test the system in a higher quantity of pruning regions emerges. Due 
to the selected confidence interval, we are 95% confident that the true 
proportion of the correct cuts is located between 20% and 58%. The 
higher this proportion, the lower the other classes’ proportions are since 
they are mutually exclusive.

Several conclusions can be drawn from the results that explain what 
caused those wrong results.

In the case of incorrect length (Table  10), all instances in this class 
are canes with three instead of two nodes. Too long canes can be 
corrected via additional manual pruning. Although this did not occur 
in this study, an incorrect length can also be the result of too severe 
pruning that leads to shorter spurs and, therefore, in a lower bud 
load than desired. In both cases, the incorrect length estimation of a 
spur will result in an array of undesired conditions, such as wrong 
bud load per vine and bud distribution per pruning region, leading 
to undesired plant responses the next season, including unbalanced 
bud-burst ratio, vegetative gradients, and variable shoot vigor. This 
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information is shown on Table  7, where the number of basal canes that 
had incorrect clustering match with the cases that have incorrect length
(see Fig.  13).

Regarding the incorrect cane thickness estimation, these instances 
correspond to an incorrect estimation of cane thickness.

Lastly, the incorrect cut, are pruning points that are wrong, due to 
incorrect processing of the pruning region. An example can be seen in 
Fig.  15 where canes from adjacent pruning regions are merged into one.

5. Discussion

In this section we discuss the achieved results and we highlight the 
limitations of our approach.

Due to overly conservative collision constraints in the arm planning 
algorithm, the autonomous system could not perform any of the spur 
cuts. For these cuts, the operator was manually guiding the robot end 
effector to the pruning location proposed by the algorithm.

Considering the qualitative evaluation of the results, the positive 
success rate, including both entirely correct cuts and incorrect length cuts
that can be fixed, was 54.2%.

To provide context to the related work in the field of automated 
winter pruning of grapevines, a comparison to the most relevant works 
is needed. Both (Botterill et al., 2017) and Silwal et al. (2022), and 
our work target pruning of grapevines, however using different imaging 
techniques, using different platforms, and most importantly, different 
grapevine varieties (Sauvignon Blanc, Concord, Sangiovese), training 
systems (cane pruning, bilateral cordon on high-wire sprawl canopies, 
spur pruning on hedge trained vines).

Botterill et al. (2017) uses AI to place the pruning points, selecting 
two long canes to keep and two canes that are shortened at 10 cm. 
While Silwal et al. (2022) achieves an 87% accuracy, it is worth 
highlighting that their approach uses a simple rule of keeping four 
nodes per cane and their study only treated a subset of canes considered 
prunable after a pre-pruning operation. In contrast, the results we 
present go a step further by providing an additional understanding of 
grapevine physiology, using measurements obtained from the plant to 
make decisions, and following customizable parameters that can be 
tuned according to enological objectives.

By analyzing the wrong cuts and the reason that led to the incorrect 
evaluation, the system can be improved, where we evaluate each 
erroneous class.

Starting with the incorrect length class, we can identify that the prob-
lem in these specific cases is either the wrong clustering (Section 2.3) of 
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Fig. 13. Example of an incorrect length cut, with the expert evaluation on the left side of the image, with the plant designation on the top left, with the cut type designation on 
the bottom left, in this case, Replacement Cut. The right image shows the point cloud output, with the blue markers representing the expected cuts.
Fig. 14. Example of an incorrect cane thickness estimation cut, with the expert evaluation on the left side of the image, with the plant ID on the top left, with the cut type 
designation on the bottom left, in this case, Base Bud Cut and Spur Cut. In this example, the overestimation of the thickness of the replacement cane leads to the system (wrongly) 
performing a replacement cut.
nodes close to the base of the cane. This leads to the false identification 
of two nodes as just one instance or the nonidentification of one of the 
present nodes, making the system think that it is pruning between nodes
2 and 3, while it is pruning between nodes 3 and 4.

We consider the main issue that causes incorrect cane thickness 
estimation is the error of the camera itself, which has a depth estimation 
error of 2% at a distance of 50 cm (according to the datasheet). This 
causes the system to have issues with estimating the thickness of the 
canes, leading to several cases of performing the wrong cut altogether. 
Using the same error of 2% at the normal range of operation of 30 cm 
corresponds to an error of +∕− 6 mm. However, as part of a selective 
task the canes are one of the organs that need to be measured to decide 
if they are meant to be kept or removed from the plant, where we keep 
12 
the canes thicker than 7 mm. In the specific situation of the presented 
results, the six incorrect cane thickness estimation cases were caused by 
the inaccurate cane thickness estimation, which was done by keeping a 
cane thinner than seven millimeters and pruning the rest of the region. 
An example of this case can be seen in Fig.  14. Unfortunately, during 
the execution of these field trials, we did not capture ground truth data 
from the evaluated grapevine pruning regions that allow a qualitative 
evaluation of the thickness measurements. With this information, a 
future study on mitigating or removing this estimation error is needed, 
either by further calibration or changing how the thickness estimation 
is done.

For the incorrect cut, this case can be seen as the failure of one 
or multiple parts of the system, where the detection, clustering, or 
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Fig. 15. Example of an incorrect cut type, with the expert evaluation on the left side of the image, with the plant ID on the top left, with the cut type designation on the bottom 
left, in this case, Spur cut. This cut, in particular, is also an example of an incorrect clustering of a cane, with the yellow bounding box representing the two incorrectly merged 
canes.
estimation components failed. This leads to incorrect detections, such 
as cane segments being detected as part of the spur or arm and spur
segments having conflicting matches, or canes from adjacent pruning 
regions (Fig.  15) being merged together.

6. Conclusions

This paper presented an automated winter pruning system that 
uses a simplified robotic platform equipped with a robotic arm, prun-
ing shears, and a depth camera. The presented system performed 
automated winter pruning in the winter season 2022/2023, using a 
parametrized approach that aims at the implementation of sophis-
ticated pruning criteria, leading to a balanced pruning. The main 
strength of this system over the current state of the art in grapevine 
winter pruning is the step further we take by providing an additional 
understanding of grapevine physiology, using measurements obtained 
from the plant to make pruning decisions, and following customizable 
parameters that can be tuned according to enological objectives. In 
particular, in order to compensate for camera occlusions, we introduced 
a 3D reconstruction algorithm of the spur region, by merging 2D 
segmented images. We tested our approach on 24 pruning regions of 
six mature potted grapevines; we have evaluated the accuracy of the 3D 
reconstruction (number of identified canes and nodes) and the correct 
identification of the pruning points. We presented a statistical analysis 
to compensate for the low amount of evaluated pruning regions.

To achieve a fully automated pruning platform, several aspects of 
the systems need to be improved, such as autonomous navigation in 
the vineyard, arm manipulation, safe end-effector engagement, and 
improvements in grapevine reconstruction, recognition, and interpre-
tation.

Future work will address the currently low sample quantity by 
incorporating more comprehensive testing, targeting a higher quantity 
of pruning regions. In addition, to improve the thickness estimation 
process, methods such as Brown et al. (2024) will be evaluated. We 
also consider that the data captured from each trial can be improved 
by having ground truth measurements of the pruning regions, which 
will allow the evaluation of our 3D reconstruction, including, for 
example, the cane thickness estimation. Additionally, improvements 
in the clustering method are required to address the issue of wrongly 
clustered organs. Finally, the over-conservative collision constraints in 
the robot arm planning algorithm need to be solved to allow the system 
to autonomously prune the entire grapevine.
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