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This paper presents novel datasets of the hydraulically actuated robot HyQ’s proprioceptive sen-

sors. All of the datasets include absolute and relative joint encoders, joint force and torque sensors,
and MEMS-based and fibre optic-based inertial measurement units (IMUs). Additionally, a mo-

tion capture system recorded the ground truth data with millimetre accuracy. In the datasets HyQ

was manually controlled to trot in place or move around the laboratory. The sequence includes:
forward and backwards motion, side-to-side motion, zig-zags, yaw motion, and a mix of linear and

yaw motion. Additionally, there is motion on both rigid and soft terrain. All of the datasets are at

least five minutes long and one dataset is thirty minutes long. The aim of these datasets is to test,
evaluate, and compare different algorithms for state estimation using only proprioceptive sensors.

To aid in the development of new state estimation algorithms for soft terrain there are datasets

comparing rigid to soft terrain. Lastly, the extra long endurance trot dataset is for examining the
problem of long-term attitude estimation drift.

The datasets can be downloaded from https://www.doi.org/10.21227/4vxz-xw05.
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1. Introduction

Quadruped robots are gaining increasing attention in numerous research areas.1–4 They are

advantageous when compared to wheeled or tracked robots in that they are more versa-

tile and can navigate uneven and rough terrain easier. They are able to achieve this by

having more degrees of freedom. However, these new abilities come coupled with increased

mechanical complexity and increased difficulty in state estimation and control.

The state of a robot is a set of quantities that describes pertinent information about

the robot. Typically, for a mobile robot the state will include the position and velocity.

Furthermore, it can include information such as forces, torques, centre of masses, or even

3D maps. State estimation is the problem of estimating the state of a robot from sensor data

and models. The difficulty of state estimation is often underestimated. Controlling a robot

can be relatively easy if the pose of the robot and a map of the environment are known.

However, there are no sensors that can directly measure these variables, and the sensors

that can partially measure them are corrupted with noise. Further details regarding state

estimation for mobile robotics can be found in Ref. 5 and Ref. 6.

The literature on state estimation for mobile robotics can be divided into different task-

levels. Much of the current literature has been focused on exteroceptive sensors for simul-

taneous localization and mapping (SLAM),7 visual odometry,8 visual SLAM,9 and visual-

inertial SLAM.10–12 The goal of these works is to provide a non-drifting pose for the task

of robot navigation, however, the main drawbacks of these approaches are the frequencies

and delays in many of the sensors used, e.g., cameras and lidars. There is also a less nu-

merous, but growing body of literature for state estimation of legged robots for the task of

locomotion.13–16 Similar to the SLAM literature these works suffer from the slow update

rates of the aiding sensors, such as lidars and cameras. Lastly, there is also literature for

lower level state estimation using only proprioceptive sensors.2,17–20 Ref. 20 uses datasets
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Fig. 1. A photo of two HyQ quadruped robots.

from this paper.

There are many difficulties in comparing results from attitude state estimators across dif-

ferent platforms. The obvious obstacle is the hardware: different sensor accuracies, different

sensor frequencies, different dynamics, different actuation, different locomotion strategies,

and different operating environments can have large impacts on the quality of the state

estimate. Apart from the hardware, the software also affects the estimate. Different imple-

mentations of the same algorithm can cause large numeric errors in floating point math;

the processor speed and operating system choice can cause large time-varying delays in the

sensors readings. Lastly, even on two identical platforms different sensor calibrations may

also have a large impact on state estimation. Errors in the transformation from the sensor

frame S to the body frame B can cause divergence of some sensor fusion algorithms. To

help overcome these difficulties, one of the goals of this work is an attempt to standardize

and share datasets for quadruped robots similar to what is currently being done in the

visual-inertial SLAM community.21–24

There are two main solutions to overcome these problems of comparing datasets: stan-

dardized benchmarks and standardized datasets. Multiple benchmarks to compare odom-

etry and state estimator algorithms have been proposed for visual-inertial odometry and

SLAM.21,22,25 Many of these tools can be directly applied to quadruped odometry. Sim-

ilarly, many datasets have been published for visual and visual-inertial odometry.23,24,26

However, these datasets do not contain the typical sensors that are present in quadrupeds,

i.e., force and torque sensors; absolute and relative joint encoders. To the best of the au-

thors’ knowledge similar datasets for quadruped robots that contain proprioceptive sensors

do not exist in the public domain.

This paper is an extension of a field report presented at a recent workshop conference.27

The main contribution of this paper is a novel dataset collected on board the hydraulically

actuated quadruped HyQ.1 The dataset contains all of HyQ’s proprioceptive sensors running

at high frequencies in multiple scenarios. Furthermore, it was collected in a laboratory that

has millimetre accurate position ground truth.

2. Experimental Setup

The experimental platform for these dataset is the robot HyQ. HyQ weighs approximately

90 kg depending on its current sensor suite and has twelve torque-controlled joints powered

by hydraulic actuators. The hydraulic actuators allow the robot to perform powerful dynamic

motions. Detailed mechanical specifications for HyQ are in Ref. 1 and Ref. 28. In this section

we highlight some of the relevant geometric parameters of the legs and the joints that are
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Fig. 2. Diagram of HyQ showing the geometric parameters, the reference frame of the body B = {x, y, z},
and the basis of the joints {xi, yi, zi} where i = {0, 1, 2} = {HAA,HFE,KFE}. The left side is a mirror

copy of the right side. The parameters are defined in Table 1.

necessary for calculating kinematics of the robot.

We consider a floating base robot with four feet and three DoFs per leg. The four legs

are labelled left front (LF), right front (RF), left hind (LH), and right hind (RH). Each leg

has three actuated joints: hip abduction/adduction (HAA), Hip flexion/extension (HFE),

and knee flexion/extension (KFE).

` ∈ L = {LF,RF,LH,RH}
j ∈ J = {HAA,HFE,KFE}
i ∈ I = L× J

Also labelled in the figure are the lengths between each joint. The body frame B of the robot

is located at the geometric centre of the four HAA joints and is orientated such that the x,

y, z axes are pointing forward, left, and up, respectively. The geometric parameters of HyQ

are in Table 1.

There are three important types of proprioceptive sensors on board HyQ: joint encoders,

force/torque sensors, and IMUs. Each joint contains an absolute and relative encoder to

measure the joint angle. The absolute encoder (AMS Programmable Magnetic Rotary En-

coder - AS5045) is used to measure the joint position when the robot is first turned on.

Next, the relative encoder (Avago Ultra Miniature, High Resolution Incremental Encoder

- AED-3300-TE1) is used to measure how far the joint has moved at every epoch. Also,

every joint contains a force or torque sensor. In both the KFE and the HFE there is a load

cell (Burster Subminiature Load Cell - 8417-6005 ) and the HAA has a custom designed

torque sensor based on strain-gauges and is similar to Ref. 29. In the trunk of the robot

there are two IMUs: a military grade fibre optic KVH-1775 and a MEMS-based high-end

consumer grade Lord MicroStrain 3DM-GX5-15. One of the goals of this dataset is to pro-

vide an opportunity for researchers to compare the two IMUs using state-of-the-art state

estimation algorithms to determine how much the increased accuracy affects drift and if the

accuracy is worth the extra cost, size, and weight. All of the sensors are rigidly attached

to HyQ with the exception of the 3DM-GX5-15. It has been mounted on top of a 6 mm

thick Sorbothane vibration isolation pad as suggested by the manufacture. We note that

this is not necessary for the fibre optic IMU. The basis vectors of the GX4 sensor frame

are orientated forward, right, and down; and the basis vectors of the KVH sensor frame are

orientated right, forward, and down. To measure the ground truth pose of the robot the lab

is equipped with a motion capture system (MCS). In particular we use a mix of Vicon T10

and Vero 2 cameras. A summary of the proprioceptive sensors on board HyQ are in Table 2.



Table 1. Geometric parameters of the legs and joint kinematics.

Location Parameter Value Units

trunk (dtl dth dttw) (1000 180 340) mm

(dfh dlr) (747 414) mm

dtbw 85 mm

α 30 ◦

leg l0 80 mm

l1 350 mm

l2 346 mm

l3 20 mm

HAA q0 -70 ≤ q0 ≤ 25 ◦

HFE (left) q1 -50 ≤ q1 ≤ 70 ◦

HFE (right) q1 -70 ≤ q1 ≤ 50 ◦

KFE (front) q2 -140 ≤ q2 ≤ -20 ◦

KFE (back) q2 20 ≤ q2 ≤ 140 ◦

Table 2. Technical specifications of the proprioceptive sensors.

Encoders

AMS Rotary Encoder Avago Encoder

Resolution 4096 80000 cpr

Accuracy ±0.5 ±0.5 deg

Max. Speed 153 1950 rpm

Max. Sampling Freq. 10 650 kHz

Force/Torque Sensors

Burster Load Cell IIT-DLS Torque Sensor

Range ±5000 ±200 N, Nm

Inertial Measurement Units (IMUs)

KVH 1775 IMU Microstrain GX5

Technology Fibre optics MEMS -

Gyroscope

Input Limit 490 300 deg/sec

Typical Bias Instability 0.05 8 deg/hr

Random Walk 0.7 18 deg

hr
√

Hz

Bandwidth 440 250 Hz

Max. Sampling Freq. 5000 4000 Hz

Accelerometer

Input Limit ±10 ±8 g

Typical Bias Instability 0.05 0.04 mg

Random Walk 120 25 µg√
Hz

Bandwidth 200 225 Hz

Max. Sampling Freq. 5000 1000 Hz

Table 3. Comparison of datasets

Dur. Distance Speed

t sum(|∆p|) sum(∆p) mean(|∆p|/ dt) max(|∆p|/ dt) std(|∆p|/ dt)
Name (s) (m) (m) (m/s) (m/s) (cm/s)

Trot in Place 349 (24 8 7) (0.0 0.1 0.0) (0.1 0.0 0.0) (0.4 0.2 0.1) (5 2 2)

Trot in Lab 1 374 (36 72 9) (0.1 0.3 0.0) (0.1 0.2 0.0) (0.7 0.7 0.4) (10 16 3)

Trot in Lab 2 344 (36 64 10) (0.1 0.5 0.0) (0.1 0.2 0.0) (0.7 0.9 0.4) (10 16 3)

Rigid Trot in Place 326 (14 18 9) (0.0 0.2 0.0) (0.0 0.1 0.0) (0.5 0.3 0.2) (3 4 2)

Soft Trot in Place 322 (16 16 10) (0.1 0.2 0.0) (0,0 0.0 0,0) (0.2 0.2 0.1) (3 3 2)

Endurance Trot 1817 (69 113 54) (0.0 0.0 0.0) (0.0 0.1 0.0) (0.3 0.4 0.2) (3 4 2)



The first step in using any sensor is proper calibration. The force and torque sensors on

board HyQ have external calibrations performed by the manufacturer before being installed.

The absolute joint encoders must be calibrated after they are installed to a known angle.

For this purpose we use a calibration frame that forces all of the legs into the position

q0 = q1 = 0◦ and q2 = 90◦. The IMUs are also factory calibrated and do not have a

specific offline calibration procedure, however, online bias states should be estimated, e.g.,

see Ref. 30. The last calibration procedure of importance is the (constant) transformations

between the body frame, the IMU sensor frames, and the Vicon marker frame. For both of

the IMUs the mounting position of the sensor is known in CAD except for an offset to the

GX5 from the Sorbothane vibration isolation pad. The transformation to the Vicon marker

frame is less accurate as it is a 3D printed plastic part with a higher tolerance.

The low level software framework runs on an Intel Intense PC 3 with Ubuntu 16 that

has been compiled with a real-time kernel patch. The communication between all of the

sensors and the actuators is based on EtherCAT. The master is programmed using SOEM.

The slaves use an EtherCAT controller connected to a microcontroller. This architecture

provides a high speed, low latency, and low jitter environment.

3. Datasets

The raw data from all of the datasets described in this paper can be found on the IEEE

DataPort Platform31 with the following DOI: 10.21227/4vxz-xw05. Each of the datasets was

recorded on the quadruped robot HyQ indoors at the Dynamic Legged Systems laboratory

located at the Istituto Italiano di Tecnologia (IIT) in Genoa, Italy. The aim of these datasets

is to test state estimation using only proprioceptive sensors. For ground truth the lab is

equipped with a MCS that records the pose of the robot with millimetre accuracy. Each of

the datasets comprises of the raw sensor data of all the sensors listed in Table 2 recorded

at 1000 Hz and the MCS ground truth recorded at 250 Hz. The data is provided in both

comma-separated values and Matlab file format. The data from the sensors and the data

from MCS are on two distinct clocks. For convenience a plot of each of the sensors is provided

online along side the numerical data.

HyQ has the ability to perform many dynamic gaits, for these datasets we chose to record

trotting data as it is representative of a typical quadruped mission. In the Trot in Place

dataset HyQ had to trot in place for more than five minutes. Occasional small corrections

were given if HyQ drifted from its original position. In the Trot in Lab 1 & 2 datasets

HyQ was manually controlled by a joypad to trot around the laboratory. The sequence

includes: forward and backwards motion, side-to-side motion, zig-zags, yaw motion, and a

mix of linear, and yaw motion. Both datasets were also at least five minutes long. Soft

terrain is a known problem for state estimators as it violate the common used assumption

in leg odometry that the feet are static while in contact with the ground.32 To aid in the

development of new state estimation algorithms for soft terrain there are the datasets Rigid

Trot in Place and Soft Trot in Place. In the Soft Trot in Place HyQ is trotting on a foam

block of 160× 120× 20 cm. An indentation test of the foam shows the foam has an average

stiffness of 2400 N/m. Lastly, to be able to see the slow drift in the IMU over a typical

mission length, we recorded 30 minutes of trot data in the Endurance Trot dataset. The two

jumps in the yaw at approximately 600 s an 1100 s are manual corrections sent via a remote

control to the quadruped when it started to drift too far in one direction. It should be noted

that there is a small gap in the ground truth data at approximately 1700 s for 39 s.

We plot a subset of the dataset in Fig. 3–Fig. 7 due to space restrictions. Plots of all of

the datasets are available online alongside the raw data. Fig. 3 and Fig. 4 show the joint

positions and forces measured during the Trot in Place dataset. Fig. 5 shows the angular

https://www.doi.org/10.21227/4vxz-xw05
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Fig. 3. The measured joint positions q in the Trot
in Place dataset.
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Fig. 4. The measured joint force f and torque τ
in the Trot in Place dataset.
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velocity and specific force measured by the KVH IMU during the same dataset. Fig. 3–Fig. 5

contain both an overview of the entire experiment and a zoomed in section at the one minute

mark to more clearly view the signal. A summary of the datasets is shown in Table 3.

4. Discussion

One of the important tasks of state estimation using proprioceptive sensors is attitude

estimation. The simplest method to calculate attitude is to integrate the angular velocity

starting at a known value. Note that we expect this value to drift due to the noise in the

sensors and from bias instability. Furthermore, this value is a worst case scenario as it does

not include sensor fusion nor known noise characteristics. However, it does provide a base

comparison for the two IMUs used for the datasets. A comparison of the attitude provided by

the ground truth (Vicon) and the estimated attitude via integration of the angular velocity

by both IMUs is shown in Fig. 7. In the plot we denote the orientation using the XYZ Euler

angles η = [φ, θ, ψ]T . We expect this slow drift of both IMUs to decrease after sensor fusion.

The plots also help demonstrate the difficulty in attitude estimation when there are large

impacts and vibrations.

Another important topic in state estimation is the assumption of rigid terrain. In Fig. 6

we highlight some of the differences measured by the force sensors, torque sensors, and

accelerometers when trotting on rigid terrain versus soft terrain. As can be seen through

the KFE, the loading and unloading phases are a lot smoother on soft terrain. The robot’s

feet no longer have zero velocity while in contact with the ground. Further research in state

estimation for quadrupeds is required to increase robustness and then to finally improve

their autonomy.

5. Conclusion

In this work we presented novel datasets collected on board the hydraulically actuated

quadruped HyQ. The datasets contain all of HyQ’s proprioceptive sensors running at high

frequencies for variety of scenarios. Additionally, the datasets contain precise ground truth

data. We believe that these datasets will be highly useful to all researchers working on state

estimation for quadruped robots and attitude estimation in general. Future work includes

expanding the dataset to include more gaits and different terrains. Furthermore, we will use

these datasets to benchmark our future state estimation algorithms.
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24. O. Lamarre, O. Limoyo, F. Marić and J. Kelly, International Journal of Robotics Research 0,
1 (2020).

25. J. Delmerico and D. Scaramuzza, A benchmark comparison of monocular visual-inertial odome-
try algorithms for flying robots, in IEEE International Conference on Robotics and Automation
(ICRA), (Brisbane, Australia, 2018).

26. A. Geiger, P. Lenz, C. Stiller and R. Urtasun, International Journal of Robotics Research 32,
1231 (2013).

27. G. Fink and C. Semini, Proprioceptive sensor dataset for quadrupeds, in Workshop on Visual-
Inertial Navigation: Challenges and Applications, (Macao, China, 2019).

28. C. Semini, HyQ - design and development of a hydraulically actuated quadruped robot, PhD
thesis, University of Genoa and Italian Institute of Technology (IIT), (Genoa, Italy, 2010).

29. H. Khan, M. D’Imperio, F. Cannella, D. G. Caldwell, A. Cuschieri and C. Semini, Sensors 17,
1 (2017).

30. R. Mahony, T. Hamel and J. Pflimlin, IEEE Trans. Autom. Control 53, 1203(June 2008).
31. G. Fink, Proprioceptive Sensor Dataset for Quadruped Robots (IEEE Dataport, 2019).
32. S. Fahmi, M. Focchi, A. Radulescu, G. Fink, V. Barasuol and C. Semini, IEEE Transactions

on Robotics 36, 443(April 2020).


