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Proprioceptive Sensor Fusion for Quadruped Robot State Estimation

Geoff Fink and Claudio Semini

Abstract— Estimation of a quadruped’s state is fundamen-
tally important to its operation. In this paper we develop a low-
level state estimator for quadrupedal robots that includes atti-
tude, odometry, ground reaction forces, and contact detection.
The state estimator is divided into three parts. First, a nonlinear
observer estimates attitude by fusing inertial measurements.
The attitude estimator is globally exponentially stable and is
able to initialize with large errors in the initial state estimates
whereas a state-of-the-art EKF would diverge. This is practical
for situations when the robot has fallen over and needs to start
from its side. Second, leg odometry is calculated with encoders,
force sensors, and torque sensors in the robot’s joints. Lastly,
the leg odometry and inertial measurements are fused to obtain
linear position and velocity. We experimentally validate the
state estimator using a novel dataset from the HyQ robot. For
the entirety of the experiment the estimated attitude matched
the ground truth data and had a root mean square error
(RMSE) of [2 1 5] deg, the velocity estimates has a RMSE
of [0.11 0.15 0.04] m/s, and the position estimates, which are
unobservable, drifted on average [2 1 8] mm/s.

I. INTRODUCTION

The development of quadruped robotic platforms is an
active area of research in both the public and private
sectors [1]–[4]. The higher degrees of freedom provided by
legs compared to wheels or tracks allow legged robots to
navigate uneven and rough terrain. They are both more
mobile and more versatile. However, with the increased
mechanical complexity comes an increased difficulty in state
estimation and control.

Much of the current literature on state estimation for
mobile robotics has been focused on exteroceptive sensors
for simultaneous localization and mapping (SLAM) [5], [6],
visual odometry [7], [8], visual SLAM [9], and visual-inertial
SLAM [10]–[12]. The goal of these works is to provide
a non-drifting pose for robot navigation at the task level.
However, the main drawbacks of these approaches are the
frequencies and delays in many of the sensors used, e.g.,
cameras and lidars. Furthermore, because they are often
designed to be generic, they do not exploit any quadruped
model or other sensors commonly found on quadrupeds (i.e.,
force and torque sensors).

There is also a less numerous, but growing body of
literature for state estimation of legged robots at the task
level. In [13], [14] the authors proposed an extended Kalman
filter (EKF)-based sensor fusion algorithm combining inertial
measurements, leg odometry, stereo vision, and lidar. In [15]
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Fig. 1. A photo of two HyQ quadruped robots.

the authors proposed an EKF-based sensor fusion algorithm
combining inertial measurements, leg odometry, stereo vi-
sion, and GPS. In [16] the authors proposed an indirect
feedback information filter-based algorithm that fuses IMU,
leg odometry, and stereo vision. Similar to the SLAM
literature these works suffer from the slow update rates of
the aiding sensors, such as lidars and cameras.

Lastly, lower level state estimation using only propriocep-
tive sensors has also been worked on. In [17] the authors
proposed a particle filtering-based sensor fusion algorithm,
but rely on the terrain being known a priori. In [18] and [19]
the authors proposed an observability constrained EKF-based
and an unscented Kalman filter (KF)-based algorithm, re-
spectively. However, these works have no stability guarantees
and suffer from linearization errors. The most similar work to
this work is [2] and [20]. In [20] the author propose simple
state estimators for the pose of a humanoid robot. It also
proposes decoupling the pose estimation into two cascaded
estimators, but does not include a globally exponentially
stable (GES) attitude observer. Next, in [2] the authors
expanded upon [20] and use a nonlinear observer (NLO)
from [21]. However, in the paper few details are given about
state estimation as the paper is concentrated on design and
control of the robot.

The main contributions of this paper are the proposed low-
level state estimator and its experimental validation. We term
the state estimator low-level to match our low-level whole-
body control that uses velocity commands as inputs. The
control requires high-frequency smooth attitude and velocity
estimates. It is not used at a task level for robot naviga-
tion where non-drifting pose and yaw measurements are



necessary. This paper builds upon the novel proprioceptive
sensor dataset collected on board the hydraulically actuated
quadruped HyQ that was presented in a recent confer-
ence [22]. The observer design is inspired by [23] and [21].
When compared to previous work [14], the proposed state
estimator has a guaranteed stability of its error dynamics and
runs at a higher frequency. The attitude observer is GES and
the estimated linear velocity are uniformly bounded. Global
stability for attitude estimators is practical for situations
when the robot has fallen over and needs to start from its
side. The higher frequency and bounded velocity estimates
decrease pose drift. This is important because, as pointed
out in [24], the pose drift in between the high frequency
proprioceptive updates and the low frequency exteroceptive
updates affected the feed-forward torques and thus the overall
execution of a locomotion trajectory for a quadruped robot.

II. MODELLING

In this paper we base our model on the hydraulically
actuated quadruped HyQ [1] as seen in Fig. 1 and 2.
However, the observers are general and can be applied to any
legged robot. We consider a floating base robot with four feet
and three degrees of freedom (DoFs) per leg. The four legs
are labelled left front (LF), right front (RF), left hind (LH),
and right hind (RH). Each leg has three actuated joints: hip
abduction/adduction (HAA), Hip flexion/extension (HFE),
and knee flexion/extension (KFE).

` ∈ L = {LF,RF,LH,RH}
j ∈ J = {HAA,HFE,KFE}
i ∈ I = L× J

A. Kinematics and Dynamics

Assuming that all of the external forces are exerted on the
feet, the dynamics of the robot is

M(x̄)¨̄x+ h(x̄, ˙̄x) = τ̄ (1)

where x̄ =
[
xT ηT qT

]T ∈ R18, x ∈ R3 is the position
of the base, η ∈ R3 is the attitude of the base, q ∈ R12 is the
vector of joint angles of the robot, M ∈ R18×18 is the joint-
space inertia matrix, h is the vector of Coriolis, centrifugal
and gravity forces, τ̄ = (

[
0 τT

]T − JF ) ∈ R18, τ ∈ R12

is the vector of actuated joint torques, J ∈ R18×12 is the
floating base Jacobian, and F ∈ R12 is the vector of external
forces.

To further develop the model, we introduce the following
frames of reference: the body frame B which is located at the
geometric centre of the trunk, the navigation frame N which
is assumed inertial, and the IMU sensor frame S which is
located at the origin of the accelerometer of the IMU that is
mounted onto the trunk of the robot. Additionally, every joint
i ∈ I has a frame Ji located at its centre of rotation. The
pose of each joint frame Ji (i.e., the forward kinematics) is
assumed to be exactly known. The basis of the body frame
are orientated forward, left, and up. We denote the reference
frame of a variable using a right superscript, i.e., xb, xn,
and xs denote x in B, N , and S, respectively.
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Fig. 2. Diagram of HyQ showing the reference frames for the body and
the right legs. The left side is a mirror copy of the right side.

The translational kinematics, translational dynamics, and
rotation kinematics in the navigation frame N are

ẋn = vn (2a)
v̇n = an + gn (2b)

Ṙnb = Rnb S(ωb) (2c)

where xn ∈ R3, vn ∈ R3, an ∈ R3 are the position,
velocity, and acceleration of the base in N , respectively,
Rnb ∈ SO(3) is the rotation matrix from B toN , and ωb is the
angular velocity of the base in B. The skew symmetric matrix
function and its inverse are S() and vex(), respectively, such
that vex(S(x)) = x where x ∈ R3.

B. Sensors

The modelling assumes that the quadruped robot is
equipped with a six axis IMU (three DoF gyroscope and
three DoF accelerometer) on the trunk and that every joint
contains a relative encoder, an absolute encoder, and a force
or torque sensor. No other sensors such as force sensors in
the feet, cameras, nor lidars are required. The accelerometer
measures specific force fss ∈ R3

fss = as + gs (3)

where as ∈ R3 is the acceleration of the body in S and
gs ∈ R3 is the acceleration due to gravity in S. The
gyroscope directly measures angular velocity ωs ∈ R3 in
S. The absolute and relative encoders are used to measure
the joint position qi ∈ R and joint speed q̇i ∈ R, respectively,
in Ji. However, due to the speed and accuracy of the relative
encoder compared to the absolute encoder, the absolute
encoder is only used to measure the initial angle of the joint
qi(t = 0) and then all future joint positions are found using
the relative encoder. The torque sensors in the HAA joints
i ∈ {L×HAA} directly measure torque τi ∈ R3. The force
sensors in the HFE and KFE joints i ∈ {L× {HFE,KFE}}
can be used to calculate τi by using the time-varying cylinder
lever arm ci(q(t)) > 0 ∈ R.

τi =

{
τi i ∈ L× {HAA}
cifi i ∈ L× {HFE,KFE}

(4)



The measured values of the sensors differ from the theoretical
values in that they contain a bias and noise.

x̃ = x+ bx + nx (5)

where x̃, bx, and nx are the measured value, bias, and
noise of x, respectively. All of the biases are assumed to be
constant or slowly time-varying, and all of the noise variables
have zero mean and a Gaussian distribution.

C. Ground Reaction Forces

We solve for the ground reaction forces F` of each leg
` ∈ L using the actuated part of the dynamics in (1).

F` = −α`(JT` (q`))
−1(τ` − h`(x̄`, ˙̄x`)) (6)

F` ∈ R3 ⊂ F is the ground reaction force for ` in B,
J` ∈ R3×3 ⊂ J is the foot Jacobian of `, τ` ∈ R3 ⊂ τ is
the vector of joint torques of ` in Ji, h` ∈ R3 ⊂ h is the
vector of centrifugal, Coriolis, gravity torques of ` in B, and
α` ∈ {0, 1} selects if the foot is on the ground or not. A
threshold of F` is typically used to calculate α`.

α` =

{
1 ||(JT` )−1(τ` − h`)|| > ε

0 otherwise
(7)

where ε > 0 ∈ R is the threshold.

D. Leg Odometry

Assuming that there is no slippage, then the contribution
of each leg ` ∈ L to the overall velocity of the base is

ẋb` = −α`
(
J`(q`)q̇ − ωb × xb`

)
(8)

and the base velocity is

ẋb =
1

ns

L∑
`

ẋb` (9)

where ns =
L∑̀
α` is the number of stance legs.

III. STATE ESTIMATOR

The low-level state estimator includes input from three
proprioceptive sensors: an IMU, encoders, force sensors, and
torque sensors. For reliability and speed no exteroceptive
sensors are used. The state estimator consists of three major
components: an attitude observer, leg odometry, and a sensor
fusion algorithm. An overview of the system can be seen
in Fig. 3.

A. Attitude Observers

Typically in the literature an EKF is used for attitude
estimation, e.g., [13], [15], [16], [19]. For convenience we
provide the equations below. Given the dynamics ẋ =
fx(x, u) and z = hx(x) where x ∈ Rn is the state,
u ∈ Rp is the input, z ∈ Rm is the output, and fx and
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Fig. 3. The low-level state estimator (orange) includes input from three
proprioceptive sensors (blue): an IMU, encoders (ENC), and force and
torque sensors (FTS); and consists of three major blocks: an attitude
observer (AO), leg odometry (LO), and a sensor fusion algorithm (SF). The
AO block includes a nonlinear observer (NLO) and and eXogeneous Kalman
Filter (XKF). The LO block includes the joint state (JS), the kinematic
and dynamic model of the robot (KD), the ground reaction forces model
(GRF), and the leg odometry model. Lastly, the SF block includes a Kalman
filter (KF). Each block (except the sensor input) contains its corresponding
equation number for easy reference.

hx are differentiable functions of the state and input then
the continuous time EKF is

˙̂x = fx +K(z − hx)

Ṗ = FP + PFT −KHP +Q

K = PHTR−1

(10)

where F = ∂fx/∂x|x̂,u, H = ∂hx/∂x|x̂,u, K ∈ Rn×m
is the Kalman gain, P ∈ Rn×n is the covariance matrix,
Q ∈ Rn×n is the process noise and R ∈ Rm×m is the
measurement noise covariance.

For attitude estimation we chose to use a quaternion to
represent the rotation as it does not contain singularities.
Thus, the dynamics is

q̇nb =
1

2

[
0 −(ωb − bb)T

(ωb − bb) −S(ωb − bb)

]
qnb

ḃb = 0

(11)

The state, input and output are x =
[
qT bT

]T ∈ R7,
u = ωb ∈ R3, and z = Rbny

n, respectively, where yn are
a set of k constant references vectors in N .

yb =
[
(yb1)T · · · (ybk)T

]T ∈ R3k

yn =
[
(yn1 )T · · · (ynk )T

]T ∈ R3k

Next, we note that instead of using an additive quaternion
error function, i.e., eq = qnb − q̂nb , which can violate the
quaternion norm constraint, we use a multiplicative error.

eq = (qnb )−1 ⊗ q̂nb

where ⊗ is quaternion multiplication. For more information
the interested reader is referred to [25].

1) Non-linear Observer: Starting in [21] the authors in-
troduced a class of non-linear observers (NLOs) for attitude
estimation that make use of symmetry properties of the group
structure to have strong convergence properties [26]. There



have been many extensions to these works, in particular we
use the observer in [27]. The attitude observer is

˙̂
Rnb = R̂nb S(ωb − b̂b) + σKpJ(R̂nb ) (12a)

˙̂
bb = Proj

(
b̂b,−k vex

(
P
(
R̂bnKpJ(R̂nbs)

)))
(12b)

where Kp ∈ R3×3 is a symmetric positive-definite gain
matrix, k > 0 ∈ R is a scalar gain, σ ≥ 1 ∈ R is a scaling
factor, R̂nbs = sat(R̂ns ), the function sat(X) saturates every
element of X to ±1, Proj is a parameter projection that
ensures that ||b̂|| < Mb, Mb > 0 ∈ R is a constant known
upper bound on the gyro bias, P(X) = 1

2 (X +XT ) for any
square matrix X , and J is the stabilizing injection term

J(R̂nb , t) =

k∑
j=1

(ynj − R̂nb ybj)ybj
T

The observer is GES for all initial conditions assuming there
exists k > 1 non-collinear vector measurements, i.e.,∣∣yni × ynj ∣∣ > 0

where i, j ∈ {1, · · · , k}. Furthermore, if there is only one
measurement the observer is still GES if the following
persistency of excitation (PE) condition holds: If there exist
constants T > 0 ∈ R and γ > 0 ∈ R such that, for all t ≥ 0

t+T∫
t

yn1 (τ)yn1 (τ)T dτ ≥ γI (13)

holds then yn1 is PE. See [27] for proof.
2) eXogeneous Kalman Filter: The eXogeneous Kalman

Filter (XKF) [23] is similar to an EKF in that it linearizes
a nonlinear model about an estimate of the state and then
applies the typical linear time-varying (LTV) KF to the
linearized model. If the estimate is close to the true state
then the filter is near-optimal. However, if the estimate is
not close to the true state the filter can quickly diverge. To
overcome this problem the XKF linearizes about a globally
stable exogenous signal from a NLO. The cascaded structure
maintains the global stability properties from the NLO and
the near-optimal properties from the KF. The observer is

˙̂x = fx + F (x̂− x̆) +K (z − hx −H(x̂− x̆)) (14a)

Ṗ = FP + PFT −KHP +Q (14b)

K = PHTR−1 (14c)

where F = ∂fx/∂x|x̆,u, H = ∂hx/∂x|x̆,u, x̆ ∈ Rn is
the bounded estimate of x from the globally stable NLO.
See [23] for the stability proof.

B. Sensor Fusion

Lastly, the inertial measurements (3) are fused with the
leg odometry (9). The main advantage of decoupling the
attitude from the position and linear velocity is that the
resulting dynamics is LTV, and thus has guaranteed stability
properties. i.e., the filter will not diverge in finite time.

We use a LTV KF with the dynamics (2), the accelerom-
eter (3), and leg odometry (9).

˙̂x = fx +K(z − hx)

Ṗ = FP + PFT −KHP +Q

K = PHTR−1

(15)

where the state x =
[
xnT vnT

]T ∈ R6 is position and
velocity of the base, the input u = (Rnb f

b
s − gn) ∈ R3 is the

acceleration of the base, the measurement z = Rnb x
b
` ∈ R3 is

the leg odometry, K ∈ R6×3 is the Kalman gain, P ∈ R6×6

is the covariance matrix, Q ∈ R6×6 is the process noise and
R ∈ R3×3 is the measurement noise covariance, and

fx =

[
vn

u

]
F =

[
03 I3
03 03

]
H =

[
03 I3

]
and I3 and 03 are the 3× 3 identity matrix and matrix of all
zeros, respectively.

IV. EXPERIMENTAL RESULTS

The experimental platform used to evaluate the proposed
state estimator is the robot HyQ. A photo of HyQ is shown
in Fig. 1 and a model in Fig. 2. HyQ weighs approximately
90 kg depending on its current sensor suite and has twelve
torque-controlled joints powered by hydraulic actuators. The
hydraulic actuators allow the robot to perform powerful
dynamic motions. Detailed mechanical specifications for
HyQ are in [1] and [28]. Using this platform a proprioceptive
sensor dataset was published in [29]. In the “Trot in Lab”
dataset HyQ was manually controlled to trot around the
laboratory. Trotting is difficult for state estimators because of
the dynamic motions, vibrations, and potential foot slippage.
The sequence includes: forward and backwards motion, side-
to-side motion, zig-zags, yaw motion, and a mix of linear and
yaw motion. All of the sensors were recorded at 1000 Hz.
Additionally, a motion capture system (MCS) recorded the
ground truth data with millimetre accuracy at 250 Hz. Further
details on the dataset including the raw data from this
experiment is described in and can be found in [29].

The raw data from the experiment is plotted in Fig. 4 – 7.
Each figure contains a plot with the data for the entire
experiment 0 ≤ t ≤ 300 s and a plot zoomed in at two
seconds of the experiment 30 ≤ t ≤ 32 s. Fig. 4 shows the
specific force (3) measured by the IMU after is has been
rotated from the sensor frame S to the body frame B. The
acceleration due to gravity can been seen in the z-axis, and
we can see that there is more noise in the z-axis caused
by vibrations after the foot impacts with the ground while
trotting. Fig. 5 shows the angular velocity in B. Similarly, we
can see the trunk of the robot is rotating slightly from side-to-
side and back-and-forth as the robot trots. There is relatively
minor yaw rotation in a regular trot unless, of course, the
robot is commanded to turn. Fig. 6 shows the joint position
of the six joints in the front legs. The hind legs have been
omitted due to space constraints. As is expected there is
minor motion in the HAAs; and the HFE and KFE can be
seen following a trotting gait. Fig. 7 shows the measured



ã
b

(m
/s
2

)
-10

0

10

0 100 200 300
t (s)

x

-10

0

10

0 100 200 300
t (s)

y

0

10

20

0 100 200 300
t (s)

z

ã
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using an EKF (orange), a NLO (yellow), and an XKF (purple) versus
the motion capture attitude (blue). When there is a large initial
condition (the robot starting on its side) the EKF diverges whereas
the NLO and XKF converge. The top row shows the full experiment
(0 s ≤ t ≤ 300 s) and the bottom row is zoomed in (30 s ≤ t ≤ 32 s).



forces and torques in the joints. The trotting gait can easily
be seen particularly in the KFE.

The output from the attitude observers in the experiment
is plotted in Fig. 8 – 11. We compare our observer against
the industry standard EKF. In the figures the motion capture
ground truth is plotted in blue, the EKF is plotted in orange,
the NLO is plotted in yellow, and the XKF is plotted in
purple. A typical experiment can be seen in Fig. 8. Both
the robot and the observers are initialized in a horizontal
position. In the figure all of the observer have similar steady
state performance and are all within a couple of degrees of
the motion capture ground truth. The root mean square error
(RMSE) was

[
2 1 5

]T ◦. However, in Fig. 9 the observers
have been initialized with a large initial error and the global
stability of the NLO and XKF become immediately evident.
The EKF diverges and is not able to recover. This experiment
is meant to demonstrate what would happen if the robot were
to fall on its side and it has to re-initialize it state.

Fig. 10 shows the estimation of the ground reaction forces
per leg in the z-direction of the B (6). The foot loading,
unloading, and stance phases along with vibration, noise,
and slippage can be seen in the figure. The shaded region
represents when the foot is in contact with the ground (7).
From the data we can also verify that during the trot each
of the two legs is supporting approximately half the weight
of the robot. After we have calculated when the feet are in
contact with the ground we can calculate the leg odometry.
The raw leg odometry is plotted in Fig. 11 in green. The
bottom row of the figure also is a good example of what
forward velocity of a trot gait looks like.

The output from the sensor fusion in the experiment is
plotted in Fig. 11 – 12. In the figures the raw leg odometry
is plotted in green, the motion capture ground truth is plotted
in blue, and our proposed sensor fusion (KF) is plotted
in purple. The figure shows good performance of both the
velocity and position estimates. The estimated velocity has
a RMSE of

[
0.11 0.15 0.04

]T
m/s, and the estimated

position drifted on average
[
2 1 8

]T
mm/s.

A. Discussion

It is interesting to note that the dataset contains two dif-
ferent IMU’s: the KVH-1775 and the 3DM-GX5-15. While
the noise characteristics of the IMU’s are very different, very
little difference in performance was seen after sensor fusion.
Due to the lack of differences in the state estimates using
the two IMU’s the plots have been omitted for space. The
gyroscope measurements of the KVH are supposed to have
zero bias, however the observers were left free to estimate
the bias. The observers verified the zero bias. The estimated
biases for the experiment were bb =

[
0.0 0.0 0.1

]T ×
10−3 rad/s and bb =

[
0.0 4.3 1.7

]T × 10−3 rad/s for the
KVH and 3DM, respectively.

The calculations for the ground reaction forces involved
the calculation of the vector of Coriolis, centrifugal, and
gravity forces h(x̄, ˙̄x). As an initial pass it was assumed that
the accelerations ẍb = ω̇b = 0. The noise in the variables is
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Fig. 10. The z component of the estimated ground reaction forces
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z in the body frame B of HyQ during a trotting experiment. The

highlighted regions show when the given foot is in stance. The top
row shows the full experiment (0 s ≤ t ≤ 300 s) and the bottom row
is zoomed in (30 s ≤ t ≤ 32 s).
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Fig. 12. The estimated trunk position x̂n in the navigation frame
N of HyQ during a trotting experiment using sensor fusion (purple)
versus the motion capture system (blue).

typically much larger then their effect, but they might make
more of an impact in highly dynamic manoeuvres.

The differences in the observers and the ground truth
of less then two degrees should be ignored as it is within
the error of measurement of the ground truth. Furthermore
the tolerance of the mechanical parts allows for the IMU’s
and motion capture markers to be different by a couple
of degrees. For higher accuracy measurements a different
test platform would have to be developed. However, this
level of accuracy is not necessary nor useful for current
quadruped locomotion strategies. What is important to note
is the attitude observer state estimates did not drift for the
entirety of the five minute experiment. Longer missions could
be useful to measure slower drift.

V. CONCLUSION

In this paper, we developed a low-level state estimator
for quadrupedal robots to estimate pose and velocity of the



base of a quadruped robot using only proprioceptive sensors.
For attitude estimation it includes a nonlinear observer that
is globally exponentially stable. Leg odometry is calculated
using a quadruped model. Lastly, inertial measurements were
fused with leg odometry in a KF. The velocity estimates are
uniformly bounded. We experimentally validated the state
estimator using a novel dataset from the HyQ robot. For
the entirety of the dataset the estimated attitude matched the
ground truth data and did not drift. The attitude has a root
mean square error (RMSE) of

[
2 1 5

]T ◦. The attitude
estimator is able to initialize with large initial conditions
whereas a state-of-the-art EKF would diverge. This is prac-
tical for situations when the robot has fallen over and needs
to start from its side. The velocity estimates has a RMSE
of
[
0.11 0.15 0.04

]T
m/s. The position estimates, which

are unobservable, drifted on average
[
2 1 8

]T
mm/s.

Future works include extending the state estimator to
include further parameter estimation and intra-sensor cali-
bration. Additionally, further datasets will be recorded to
measure the long-term drift of the IMU biases and what
effect it may have on the state estimator.
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