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Impedance control is a well-established technique to
control interaction forces in robotics. However, real imple-
mentations of impedance control with an inner loop may suf-
fer from several limitations. In particular, the viable range of
stable stiffness and damping values can be strongly affected
by the bandwidth of the inner control loops (e.g. a torque
loop) as well as by the filtering and sampling frequency. This
paper provides an extensive analysis on how these aspects in-
fluence the stability region of impedance parameters as well
as the passivity of the system. This will be supported by both
simulations and experimental data. Moreover, a methodol-
ogy for designing joint impedance controllers based on an
inner torque loop and a positive velocity feedback loop will
be presented. The goal of the velocity feedback is to increase
(given the constraints to preserve stability) the bandwidth of
the torque loop without the need of a complex controller.
Keywords Impedance control, torque control, passivity and
stability analysis;

1 Introduction
Until recently, the majority of legged robots employed

high-gain (stiff) position feedback control [1]. However, this
approach is unsuitable when a robot is in contact with un-
structured real-world environment, as the controller would
try to satisfy the position goal at all costs [2]. Instead, for
such scenarios, a force/torque control in joint or end-effector
space is desirable.

For a legged robot, force control can be useful in both
the swing and stance phase. During stance, it allows to con-
trol the ground impact forces, with the purpose to improve
balance capabilities. During the swing phase, it plays a cru-
cial role in providing to the robot’s leg the compliance neces-
sary to negotiate unperceived obstacles, while still ensuring a
good position tracking by using rigid body inverse dynamics.
Interaction forces can be regulated in two ways: passively

and actively. Passive methods are those in which physical
compliant elements are included between the robot and the
environment to limit the interaction forces (e.g. a passive
spring in series elastic actuators [3], [4]). On the other hand
active compliance is achieved through the active control of
joints (position or torque) using feedback measurements of
joint torques [5]. This can emulate a virtual compliance both
at the joint as well as at the end-effector/foot level.

A major benefit of active compliance is its ability to
change the dynamic characteristics (e.g. stiffness and damp-
ing) in real-time. Hence, legged robots can take advan-
tage of active compliance to adapt the leg stiffness to swing
and stance phases, or to the surface properties [6]. Many
methods to actively control compliance at the end-effector
have been developed, such as impedance control [7], oper-
ational space control [8], hybrid force-control [9], and vir-
tual model control [10]. Impedance control, in particular,
allows the dynamic characteristics at the robot interaction
port (e.g. the end-effector) to be specified by regulating the
dynamic relationship between forces and positions (mechan-
ical impedance). Despite impedance is of primary impor-
tance to achieve dynamically stable robot locomotion, only
recently an exhaustive research has been carried out, on the
MIT Cheetah robot, to find which impedance parameters are
suitable for locomotion [11]. However, an analysis that in-
vestigates if these parameters are realizable is still missing.

In the past, impedance control algorithms were limited
by the controller bandwidth, which was set by the computa-
tional power and actuator dynamics. That was one of the
reasons for the introduction of passive elements in series
with the actuator [12], which have intrinsically unlimited
bandwidth. However, recent advances in both computer and
actuator performance, made active compliance feasible for
highly-dynamic applications [13, 14]. Nevertheless, many
aspects, still create stability issues on impedance control.
For instance, the range of stable stiffness and dampings that
can be virtually created (Z-width [15], where Z stands for



impedance [16]) can be limited by filtering, sampling fre-
quency, and also by the bandwidth of inner control loops (e.g.
a torque loop).

A common practice in designing nested loop control
systems is to maximize the bandwidth of the innermost
loop [17]. However, maximizing the inner loop controller
bandwidth is not always the best strategy. When the
outer impedance loop is closed, designing the inner loop to
have the highest possible bandwidth reduces the range of
impedance parameters for which the whole system is stable,
as demonstrated later in this work. Therefore, a trade-off
must be found between: having a high bandwidth to ensure
good torque and impedance tracking, and keeping the band-
width low to increase the range of stable impedance values.
Other aspects that directly influence the stability region are
the sampling frequency and filtering [18]. Their effect is to
introduce delays into the control loop, and their influence
will also be investigated in this work. To ensure closed-loop
stability during interactions with the environment or other
systems, the controller must be designed to ensure the sys-
tem behaves passively at the interaction port [19], [20]. From
the passivity property, asymptotic stability can always be en-
sured: both in free motion as well as when the robot is in
contact with any type of environment (which is usually pas-
sive). Physical compliant elements and rigid bodies are pas-
sive by nature. However, when the compliant behavior is
emulated by an actuator, the controller gains set the system
passivity. In this work it will be shown that passivity can also
be a restrictive condition to select impedance parameters.

Related works. The published literature about active
compliance is vast. A brief review on the issues that af-
fect the performance of force controlled robots can be found
in [21]. Stability analysis and performance specifications
for compliance control was first introduced by Kazerooni
et al. [22] for a manipulator whose model had bounded
uncertainty. Lawrence in [23] considers the non-ideal,
practical effects of computation and communication delays
on impedance control and finds some stability boundaries.
However, his analysis was in continuous time and it is not
necessarily valid for discrete time systems. Indeed sampling
is not completely equivalent to time delays because when
sampling there are additional zeros that do not appear in con-
tinuous time.

Regarding controllers based on passivity, Albu-Schaffer
et al. in [20] implemented a full state controller for joint
or Cartesian impedance with passive capabilities. The con-
troller is not passive itself but it is together with the motor
dynamics. The torque feedback shapes the rotor inertia of
the motors to a desired value. More recently Buerger and
Hogan [24] have revisited the problem of designing con-
trollers for physically interactive robots. For a 1 DoF sys-
tem, they reformulated the problem as a robust stability prob-
lem based on mu-synthesis (structured singular values) and
loop shaping methods. The approach provides improvements
in robot performance compared to traditional passive con-
trollers. In [25] stiffness and impedance control concepts
were used for robot-aided rehabilitation. New stability con-
ditions were proposed using Lyapunov approach and based

on the relationship between the dynamics of the robot and
its energy. In [26] Yasrebi et al. carried out a time-domain
passivity analysis of the Z-width diagram. This led to the
design of a new haptic controller which extended the range
of stable impedance parameters (Z- width) by means of an
acceleration feedback. The analysis was carried out for one
joint using passivity theory in the frequency domain.

The main contribution of this work, is a methodology to
analyze (based on an accurate model) stability and passivity
of a gearbox driven actuator (plus load) system. The analysis
takes into account all the non-idealities present in real im-
plementation of an impedance controller, namely: actuator
dynamics, discrete implementation, filtering, nested loops.
This allows to find the impedance ”stability regions” which
represent the impedance parameters that can be rendered in
a stable way. Simulations and experimental data show how
the above-mentioned non-idealities influence the stability re-
gions as well as the passivity of the system. The study is
carried out for the adduction/adduction (HAA) joint of the
HyQ [27] robot (see Fig. 1), where impedance control was
implemented with an inner torque loop [28]. However, the
underlying ideas are valid for any electric actuator moving
a load with a gearbox reduction. In the bigger picture, the
stability regions are the basis to develop a gain scheduler (in
the low-level control layer) which is able to adapt the band-
width of the inner torque loop according to the impedance
parameters set by the user.

Fig. 1: HyQ robot

This paper is structured as follows: the mathematical
model of the system is introduced in Section 2 followed by a
description of the control system implementation in Section
3. The stability issues associated with real implementation
of an impedance controller are analysed, both in simulations
and experimentally, in Section 4. A brief assessment about
passivity for the system is then given in Section 5. Finally,
Section 6 discusses the results and future works.



2 System description and mathematical model
The studies and experiments presented in this work are

all conducted on HyQ [27]. HyQ is a fully torque-controlled
quadruped robot with a mix of hydraulic and electric actua-
tion for each leg: two hydraulic joints on the sagittal plane
(hip HFE and knee KFE flexion-extension) and one electric
joint moving in the traversal plane (hip adduction-abduction
HAA, Fig.2 on the left). This paper focuses on modeling and
control of the electric joint, which consists of a DC brush-
less motor (Emoteq HT2301) and a harmonic drive gearbox
(CSD-25-100). The leg is attached to the gearbox output via
an interface consisting of 6 parallel pins (evenly distributed
on a circle around the axis of rotation) that enable easy dis-
mounting (see Fig. 3). This interface represents a small in-
termediate rotational inertia (JL1) placed before the inertia
represented by the leg (JL2) in the transmission train.
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Fig. 2: HyQ Leg. Lateral (left) and frontal (right) view. The figures
show the definition of the joints and their angles, as well as the
coordinate frame.

Normally, this type of assembly is modelled by two
second order differential equations coupled via the gearbox
transmission flexibility [29]. However, after performing sev-
eral open loop tests using chirp signals, an anti-resonance
was detected for the link velocity (see the frequency response
of the link velocity to a chirp input voltage in Fig. 4).

Since a model with two inertia and one spring cannot
capture this behavior, a more complex model with three in-
ertia coupled by springs was used, as shown in the schematic
in Fig. 5 where Khd and Kp are the stiffness related to the
gearbox and the leg flexibility, respectively. Joint position
and torque are measured by an encoder and a torque sensor.
Due to the topology depicted in Fig. 3 the position encoder
measures the angle of the intermediate inertia JL1 while the
link velocity is measured by averaging first order differences
(4 samples) of the position encoder (averaging filter). In ad-
dition a strain gage based torque sensor is mounted at the
output of the harmonic drive. No filter is implemented on the
torque signal because it would introduce delays in the con-
trol action. According to this model, the Laplace transforms
of the differential equations that describe the linearized dy-
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Fig. 3: Cross-section of the mechanical assembly of the electric
joint. The intermediate inertia JL1 represents the part that interfaces
the leg with the gearbox output.
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Fig. 4: Frequency response of the link velocity θ̇L1 to a chirp input
voltage at the HAA motor, experimentally obtained with an uncon-
strained HyQ leg.
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Fig. 5: Motor drive system with torsional load, schematic for the 3
mass-2 spring model.

namics of the load and of the electric motor are:
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where Im, θm denote the motor current and motor posi-
tion; θL1 and θL2 are the intermediate inertia and leg posi-
tions; Vm is the motor voltage; Tf r is the friction torque in
the harmonic drive and Tdist is an external disturbance torque
applied to the leg. All other symbols and parameter values
are given in Table 1. A block diagram that illustrates the
relationships between the state variables is depicted in Fig.
6. Since the rotational inertia of the leg JL2 varies with the
configuration of the joints HFE and KFE, the table includes
also upper and lower bounds for the leg inertia. In particular
the fact that the leg can retract or extend results in different
mass distributions around the hip abduction-adduction axis.
Namely, the inertia is higher when the leg is extended and
lower when it is retracted. Gravity has also an effect on the
load dynamics, that, when linearized, behaves as a rotational
spring KL2. The stiffness of this ”gravity spring” is also de-
pendent on the leg configuration and is reported in Table 1
for an extended and retracted leg configuration.

3 Controller Design
This section explains the design of the control system.

The controller architecture is shown in Fig. 7 where an inner
positive velocity feedback loop is followed by a torque loop
controller and finally an outer impedance (position) loop.
Specifications for the impedance loop vary depending on the
gait, for example a trotting gait frequency is around 2 Hz for
HyQ that has a mass of 75 kg. The specifications for the per-
formance will depend on the type of locomotion gait and the
gains of the impedance loop will vary in a specified range.
The inner torque loop and the velocity feedback loop must
be designed to be consistent with these requirements.

3.1 Positive feedback velocity compensation
One difficulty in the design of the torque loop controller

is that the load dynamics may introduce severe limitations in
the closed loop performance of the torque loop. This prob-
lem has been largely overlooked since in many cases the load
dynamics are ignored in the analysis. In this subsection a
positive velocity feedback (velocity compensation) is intro-
duced to address these limitations and improve the torque
bandwidth. To exhibit the above-mentioned limitations, first
of all, the system response has been considered after clos-
ing the inner velocity feedback loop. The torque transmitted
to the load is measured by the torque sensor and can be ex-
pressed as:

Tl = (Khd + sDhd)

(
θm

N
−θL1

)
(2)

From Eqn. (1), Eqn. (2) and Fig. 7, closing the velocity
loop (without considering the averaging filter for the sake of
simplicity), the transfer function from the motor voltage to
the torque is given by (cf. eq. 3.24, ch. 4, pag. 45 in [30] for
complete derivation):

Table 1: Model variables

Name Model Parameters Value
Jm Rotor + gearbox inertia (D) 5.72 ·10−5kgm2

Khd Gearbox stiffness (I) 8.077 ·103Nm/rad
Dhd Gearbox damping (I) 16.56 Nms/rad
Bm Visc. frict. rotor (I) 0.0015 Nms/rad
JL1 Interm. inertia (I) 1 ·10−4 kgm2

BL1 Visc. frict. of inertia JL1 (I) 0 Nms/rad

JL2 Leg inertia (C)
0.439 kgm2 (ext.)
0.129 kgm2 (ret.)

BL2 Visc. frict. of inertia JL2 (I) 0.756 Nms/rad

KL2
Linear stiffness 11.2 Nm/rad (ext.)
due to gravity 7.17 Nm/rad (ret.)

Kp Leg stiffness (I) 1.923·103Nm/rad
Dp Leg damping (I) 7.56 Nms/rad
L Coil inductance (D) 2.02·10−3H
R Coil resistance (D) 3.32 Ω

kt Motor torque constant (D) 0.19 Nm/A
kw Motor speed constant (D) 0.19 Nms/rad
N Gear ratio (D) 100

Name State variables Unit
θm Ang. pos. of the rotor rad
θL1 Ang. pos. of the intermediate inertia rad
θL2 Ang. pos. of the leg rad
Im Motor current A

Name Inputs Unit
Vm Motor voltage V
VmVC Vel. comp. voltage V
Tdist Ext. dist. torque (load side) Nm
Tf r Frict. dist. torque (motor side) Nm

Name Outputs Unit
Tl Load torque Nm

Name Controller Gains
Pt Torque controller prop. gain
It Torque controller integral gain
β Gain of the PI torque controller
α Velocity compensation (scalar) gain

Name Transfer functions
PIt(z) PI torque controller
Gt(s) TF between Vm and Tl

VCgain TF of velocity compensation
GtVC(s) TF between Vm and Tl after vel. comp.

GtVC =
kt(Dhds+Khd)p1

N(p1q1 +(q2−VCgains)q3)
(3)
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Fig. 6: Block diagram representing Eqn. (1) that describes the linearized dynamics of the electric motor and of the load. Vm is the voltage
input, Tf r the harmonic-drive disturbance torque, Tdist is an external disturbance torque coming from the load side, θm is the motor position,
θL1 and θL2 the positions of the intermediate and leg inertia, respectively.
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Fig. 7: Block diagram of the velocity compensated system with inner torque loop (PI, orange block) outer impedance loop (PD, green
blocks). The velocity compensation term (VmVC) is added to the output (VmPI) of the torque controller.

where:

p1 = (JL2s2 +BL2s+KL2)(JL1s2 +BL1s)

+
[
(JL2s2 +BL2s+KL2)+(JL1s2 +BL1s)

]
(Dps+Kp)

q1 = (Ls+R)
(

Jms2 +Bms+
(Dhds+Khd)

N2

)
+ ktkws

q2 =
N
kt
(Ls+R)(Jms2 +Bms)+Nkws

q3 =
kt

N
(JL2s2 +BL2s+Dps+Kp +KL2)(Dhds+Khd)

Observe that the transmission zeros in Eqn. (3) intro-
duced by the polynomial p1 depend entirely on the load dy-
namics, that is the load connected at the output of the har-
monic drive. When the damping coefficients BL1 and BL2 are
small, as is usually the case, some of these transmission zeros
are very close to the stability region boundary. In the case of
continuous time systems the boundary is the imaginary axis
and in the case of discrete time systems this is the unit circle.
Notice that the zeros may be real or complex depending on
the value of the stiffness KL2. These zeros impose limitations
in the achievable closed loop bandwidth when using a simple
proportional and integral torque controller. This is because
the controller pole, located at the origin, will be attracted to-
wards the transmission zeros becoming the dominant pole of
the system, thus limiting the closed loop bandwidth of the
torque loop unless very high gains are used in the torque
controller. In most cases the torque loop gain will have a
finite gain margin and therefore the controller gain cannot be
made sufficiently large. This is more pronounced in digital

control where the gain margin is likely to be much lower than
the gain margin for a continuous time system. The effect of
the velocity compensation is that these unwanted transmis-
sion zeros (polynomial p1) can be cancelled if the velocity
feedback gain is chosen as VCgain = q2/s so that the term
q2−VCgains in the denominator of Eqn. (3) is equal to zero.

VCgain =
N
kt
(Ls+R)(Jms+Bm)+Nkw (4)

The implementation of the compensator requires deriva-
tives of the velocity signal that is often prone to quantization
errors. Since this derivative is likely to be noisy the com-
pensator has to be approximated by adding suitable filters
which would add delay. An alternative solution is to use a
simplified velocity compensation as presented in [31] which
is obtained by discarding the derivative terms from Eqn. (4):

VCgain =
αN
kt

(RBm + ktkw) α > 0 (5)

This simplified velocity compensation is obtained by
setting L = 0 and Jm = 0. This means we are neglecting
both the electrical dynamics and the acceleration term, which
would introduce noise in the system. α is introduced as
an adjustable parameter. Therefore, with Eqn. (5), an ex-
act cancellation of the transmission zeros p1 is generally not
possible. Nevertheless, even though an exact cancellation



is not possible, an improvement in the closed loop torque
bandwidth can be achieved. To understand when and how
this is possible, consider the velocity compensation given
by Eqn. (5). For the parameter values given in Table 1
and setting KL2 = 0, the polynomial p1 has four real roots
z4 < z3 < z2 < z1 = 0. The transfer function (3) also has a
pole at zero. This is an unobservable pole and therefore it
cancels out with the zero z1. The second zero z2 is the clos-
est to the imaginary axis and limits the torque bandwidth that
can be achieved with a PI torque controller. Indeed, as α in-
creases one real pole in Eqn. (3) moves towards the stability
boundary along the real axis and at some point it will become
identical to z2. The value of the gain α for which this hap-
pens, is the ideal value required for cancelling out unwanted
zero z2. In this particular case, z2 varies as a function of the
leg inertia. Hence, it may be difficult to completely cancel
out this zero for all leg configurations with a fixed value for
α . However, as long as the pole in Eqn. (3) is placed to the
right of the zero z2 then the bandwidth limitation introduced
by this zero is avoided (cf. section 3.5.3, ch. 4, pag. 46
in [30]). When KL2 6= 0 then the roots of p1, which are clos-
est to the imaginary axis, are complex (z1 and z2 are complex
conjugate). As α increases two poles in Eqn. (3) will move
towards the imaginary axis as a complex conjugate pair but
there is no value of α that will completely cancel out the
unwanted zeros z1 and z2. In this case the velocity compen-
sation will not be as effective as for the case where KL2 = 0.
Nevertheless, it still results in an improvement of the achiev-
able closed loop torque bandwidth as shown in Fig. 8.
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Fig. 8: Simulation. Unit torque step responses with KL2 = 0 (up-
per plot) and KL2 = 11.2Nm/rad (lower plot) for different velocity
compensation gains α = 0.94 (Solid line) and α = 0 (dashed line).
An extended leg inertia (JL2 = 0.439 kgm2) has been considered.
The use of velocity compensation significantly reduces the response
time.

Similar results can be established after discretization of
the continuous time system. A final remark is that an alter-
native to overcome the limitations imposed by the unwanted

zeros is to consider more complex controllers, for example
a double integrator PII controller, or designs based on loop
shaping control which introduce additional poles and zeros.
The disadvantage is that tuning these complex controllers
cannot be done without a good model for the system.

3.2 Torque controller design
In this section the design of a PI torque controller is con-

sidered. An integrator is included in the controller structure
to remove steady state errors when tracking constant torque
inputs or when constant disturbances arise. The integrator is
implemented in discrete time using the backward euler ap-
proximation. This controller is a lag compensator that has
one zero and one pole. The analysis and design are carried
out in discrete time because sampling introduces noticeable
differences in comparison to the continuous time case. For
example the system can become non-minimum phase even if
the underlying continuous time is of minimum phase (non-
minimum phase systems are more difficult to control). The
equation of the PI controller is given by:

PIt(z) = Pt + It
zTs

z−1
= (Pt + ItTs)

(z− Pt

Pt + ItTs
)

z−1
(6)

where z is the Z-transform variable and Ts = 1ms is the
sampling time interval; Pt and It are the proportional and in-
tegral gains to be determined. We remark that small sampling
time intervals, on one hand, improve the disturbance rejec-
tion properties of the closed loop system. However, as the
sampling time interval decreases, the effects of quantization
noise in the encoders become more prominent, especially
when computing velocities from position measurements us-
ing simple first order differences. In addition, small sampling
time intervals can introduce non-minimum phase behavior in
the sampled system which is more difficult to control. The
selected sampling time of 1 ms is a trade-off among all these
aspects. At the actual encoder resolution (80000 count/rev),
the smallest velocity that can be measured with 1 ms sam-
pling time interval, is 0.0125 rad/s.

Traditionally, the design of an inner loop controller is
carried out with the aim of maximizing the closed loop band-
width of the inner loop. However, one of the first difficulties
is how to measure the bandwidth of the torque loop. The
closed loop torque bandwidth for an unconstrained system,
for example when the leg is moving freely in the air, is very
different from the case when the system is in contact with
the ground and depends on the ground stiffness (soft versus
hard). In fact, assuming that gravity is fully compensated
(this means KL2 = 0), the free leg motion with the torque
loop closed is not internally stable (as was shown in the pre-
vious section there is a pole-zero cancellation on the stabil-
ity boundary). Further, it is not obvious that maximizing the
bandwidth of the torque loop is always consistent with the
specifications for the outer impedance loop. In the approach
presented in this paper it was decided to design the controller



gains so that the torque loop gain has a phase margin larger
than 30◦ and a gain margin larger than 12 dB for the upper
and lower bounds of JL2 and KL2 and with a velocity com-
pensation gain α = 0.94. This would result in a satisfactory
response. In addition, the closed loop torque response was
required to be stable for all values of the velocity compen-
sation gain α between zero and one (but the gain and phase
margins can be less than 12 dB or 30 degrees, respectively).
A set of controller gains satisfying the given specifications is
found by using the Matlab SISOtool.

Pt = 0.382β It = 18β 25 > β > 0 (7)

Changing the gain β only affects the gain of the controller
but the controller zero remains fixed. This gives ample free-
dom to investigate the effects of increasing the torque loop
gain β and hence increasing the closed loop torque band-
width when the outer loop specifications are considered. We
must remark that, when defining the torque bandwidth, we
consider that the system is free to move in the air. Then the
bandwidth is the frequency where the torque amplitude de-
creases by -3 dB respect to the reference.

3.2.1 Harmonic drive torque ripple compensation
One drawback of using a harmonic drive gearbox is that

it introduces torque ripples (Tf r in (1)). The problem is re-
lated to the working principle of the gearbox that is based
on the motion of an elliptic element (wave generator). This
motion creates torque fluctuation with a fundamental fre-
quency which is twice the wave generator angular velocity.
While this disturbance is normally neglected in position con-
trol schemes, because it is passively filtered out by the in-
ertia of the system, conversely it has a detrimental effect on
torque control and creates vibrations and wearing of the com-
ponents. A way to mitigate this problem is to add a lead/lag
compensator (notch) in series to the PI controller in order to
add enough phase lead at the resonance of the transfer func-
tion between Tf r and Tl where the ripple is more prominent,
as illustrated in section 3.7, ch. 4, pag.50 in [30].

3.3 Impedance control
An impedance controller is added as an outer loop as

shown in Fig. 7. The controller gains Pgain and Dgain repre-
sent the stiffness and damping for the joint. The output Tlre f
of the controller provides the reference torque for the inner
loop:

Tlre f = Pgain(θL1re f −θL1)−Dgainθ̇L1 (8)

while θL1re f is the desired trajectory for the joint position.
The term involving the link velocity feedback is imple-
mented using an averaging filter to reduce the effects of en-
coder quantization. TID (see Fig. 7) is an external compen-
sation torque (e.g. inverse dynamics) that can be added to
remove the effects of gravity and inertia (and thus reduce po-
sition tracking errors):

TID = (JL1 + JL2)θ̈L2re f +mglcomsin(θL2) (9)

where lcom is the distance of the leg center of mass from the
joint axis. For HyQ, a range of values for the impedance
loop gains that is considered to be sufficient for walking,
trotting and running tasks is Pgain ∈ [1,2000]Nm/rad and
Dgain ∈ [1,50]Nms/rad.

4 Stability regions
The analysis here is limited to the abduction-adduction

electric joint of HyQ with a variable load inertia that depends
on the configuration of the leg joints. In particular, given a
range of impedance parameters, Pgain and Dgain, this analy-
sis will assess how the region of closed loop stability is af-
fected by varying the torque controller gain (β ), the velocity
compensation gain (α), the number of samples used in the
averaging filter (Nav) and the sampling time (Ts).

The analysis has been performed by varying the stiffness
Pgain between 1 and 20000 Nm/rad and the damping Dgain
between 1 and 50. The upper-bound for the stiffness was
chosen such that we could determine the boundary for the
stability and passivity regions and is way beyond the maxi-
mum value used in locomotion. The stability of the overall
system is determined by computing the closed loop eigen-
values and checking that they are inside the unit circle. In
addition, when closed loop stability is attained, the region
where the phase margin is less than 30 degrees can be deter-
mined. These calculations were carried out in Matlab using
the mathematical model presented in Section 2. The results
are displayed in Figs. 9, 10, 11 and 12 where the white area
corresponds to the stable region; light grey is a stable region
with a phase margin of less than 30 degrees and the dark
area is the unstable region. In the analysis all the regions
have been computed for the leg in stretched configuration
JL2 = 0.439 kgm2 unless it is otherwise stated. Fig. 9 shows
that as the torque controller gain increases, the unstable re-
gion for low stiffness and damping decreases but the unsta-
ble region for large stiffness and/or large damping increases.
This clearly illustrates that increasing the torque loop band-
width may not be consistent with the (stability) requirements
for the outer impedance loop. This can be explained if we
consider that for any given system and controller architec-
ture, there is a limit on the maximum loop gain that can be
achieved, beyond which stability is not ensured and perfor-
mance degrades. In a nested architecture both loops con-
tribute to the loop gain. If the loop gain contribution from
the torque loop increases (e.g. the gain β increases), then the
contribution from the impedance loop should reduce other-
wise closed loop stability would be lost. From Figs. 10 (a),
(b) and (c) it is clear that increasing the velocity compen-
sation gain results in an increasing instability region. Once
more this gives further evidence that as the torque loop band-
width increases, the outer loop may become unstable. The
effects of increasing the number of samples (Nav) in the ve-
locity averaging filter are shown in Fig. 11. Averaging a
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Fig. 9: Stability regions varying the torque controller gain β (with α = 0.94, Nav = 4 and Ts = 1ms). White area corresponds to the stable
region; light grey is a stable region with a phase margin of less than 30 degrees and the dark area is the unstable region. Crosses and
squares denote unstable and stable experimental points respectively.
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(d) α = 1.2

Fig. 10: Stability regions varying the velocity compensation gain α (with β = 1, Nav = 4 and Ts = 1ms). White area corresponds to the
stable region; light grey is a stable region with a phase margin of less than 30 degrees and the dark area is the unstable region. Crosses and
squares denote unstable and stable experimental points respectively.
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Fig. 11: Stability regions varying number of samples Nav of the link velocity filter (with β = 1, α = 0.94 and Ts = 1ms). White area
corresponds to the stable region; light grey is a stable region with a phase margin of less than 30 degrees and the dark area is the unstable
region. Crosses and squares denote unstable and stable experimental points respectively.
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(d) JL2 = 0.129 kgm2

Fig. 12: (a),(b),(c) Stability regions varying the sampling times Ts (with β = 1, Nav = 4, α = 0.94). (d) Stability region for retracted leg
(lower inertia) JL2 = 0.129 kgm2 (with β = 1, α = 0.94, Nav = 4 and Ts = 1ms). White area corresponds to the stable region; light grey is
a stable region with a phase margin of less than 30 degrees and the dark area is the unstable region. Crosses and squares denote unstable
and stable experimental points respectively.



large number of samples enlarges the instability region for
low stiffness values but the unstable region for high stiffness
and low damping decreases in size. Figure 12 clearly shows
that for a large sampling time interval the region for instabil-
ity is the largest both for low and high damping and stiffness.
The region where the phase margin is less than 30 degrees
also increases as the sampling time increases. For low leg in-
ertia configuration in Fig. 12 (d) the instability region for low
damping and low stiffness increases but the unstable region
decreases for low damping and large stiffness. The region
with a phase margin smaller than 30 degrees is also larger
for the low inertia configuration.

To determine the stability regions experimentally is not
an easy task because it would involve a vey large number of
experiments. Even only finding the stability boundaries is
not a simple task. Several experimental tests were carried
out to validate the analytical results predicted by the model.
The adopted methodology was to start from values Pgain and
Dgain well inside the stable region and change the parame-
ters in small steps until the instability was triggered. This
enabled us to get a rough idea of the stability boundary. The
experimental results are displayed in Fig. 9, 10, 11 and 12,
where crosses and squares denote unstable and stable points
respectively. With the exception of Fig. 9(c) and 9 (d), over-
all the experimental tests are consistent with the analytical
calculations. Fig. 9 (b), 10 (a), 10 (b) and 11 (b) are fully
in agreement with the theoretical results. For test points near
the stability boundaries inconsistencies are present suggest-
ing that the model lacks accuracy from a quantitative point
of view but qualitatively it is correct. The experimental re-
sults shown in Fig. 9 (c) and 9 (d) are quite different from
the expected outcome. Even though a precise explanation
is currently not available, the authors have several possible
hypothesis for these discrepancies: the experimental set-up
might have reached some limiting conditions, which inval-
idate the linear analysis (for example by generating motor
voltages that exceed the capabilities of the motor drive elec-
tronics, or by generating reference torques that exceed the
range of the torque sensor). Their investigation is part of fu-
ture work.

5 Passivity analysis
Another question of interest is whether the closed loop

system remains stable when it interacts with a passive envi-
ronment. It is well-known that a strictly passive system, con-
nected to any passive environment, is necessarily stable [32].
Thus, since most terrain surfaces are passive, to ensure a sta-
ble contact with the environment also the robot joints have to
be passive. This section therefore analyzes the main factors
that influence passivity. Stating that a system is passive, is
equivalent to saying that the system is intrinsically dissipa-
tive. This is not always the case when compliance is obtained
actively, where the compliant behavior is emulated by con-
trolled actuators. In this case, the controller gains can destroy
passivity. The requirement to ensure this type of stability for
the robot interacting with the environment is the following:
the port of interaction between the system and the environ-

ment, i.e. the driving port impedance, has to be passive. For
linear time invariant systems this is a necessary and suffi-
cient condition, but it is only a sufficient condition for non-
linear systems. Let Z(s) denote the driving port impedance
transfer function. Then Z(s) is passive if and only if it is pos-
itive real [33]. In [16] and [34] it has been shown that this is
equivalent to:

1. Z(s) has no poles in ℜ(s)> 0;
2. the phase of Z(s) lies between -90 and 90 degrees.

For sampled data control systems, Colgate [16] has sug-
gested an approximate method based on computing the cor-
responding discrete time transfer function Z(z), assuming
that the port of interaction is also sampled. The phase of Z(z)
is computed and corrected by subtracting ωTs/2 rad, where
Ts is the sampling time interval. Although many studies have
been carried out for analyzing the passivity of sampled-data
systems [35], there is still a lack of information about the
influence of the closed-loop torque control bandwidth on
the combinations of stiffness and damping that can be pas-
sively rendered (in the field of haptics called Z-width) [16].
Therefore, this section will show that the torque loop per-
formance plays an important role in determining the range
of passively achievable impedance values. The discrete time
transfer function Z(z) (impedance) has been computed from
the link velocity θ̇L1 to the load disturbance Tdist . The trans-
fer function has been computed for two cases: one for the
torque loop (with velocity compensation) and one for the
system after closing the outer impedance loop. Then the
above-mentioned phase correction is applied to include the
fact that the system is sampled. In the approach presented in
this paper the analysis of passivity has been done by varying
several parameters to have a better understanding of their in-
fluence: the gain of the PI torque controller (by varying the
gain β in Eqn. (7)), the velocity compensation gain α , the
sampling time Ts, and the number of samples Nav of the aver-
aging filter of the link velocity. For each set of parameters the
analysis was performed by first checking the stability of Z(z)
and then verifying that the corrected phase of Z(z) was in
the range ±90◦ for frequencies up to the Nyquist frequency.
If these conditions are not satisfied then Z(z) is not passive
for the particular set of parameter values. The results of this
analysis are summarized in Table 2. In this table the nom-
inal set of parameters are: α = 0.94, Nav = 4 samples, leg
inertia JL2 = 0.439 kgm2, Pt = 0.38 and It = 18. The overall
(impedance + torque loop) system is always passive for low
impedances Pgain = 200 Dgain = 10 while passivity might
be destroyed when the torque controller gain β (and so the
torque bandwidth) increases or the sampling frequency de-
creases. In particular it can be noticed that when the torque
gain is larger than or equal to 4 the closed loop system with
the impedance loop becomes unstable. This is a clear in-
dication that increasing the bandwidth of the torque loop is
not always consistent with the requirements of the position
loop. When only the torque loop is closed the system is al-
most never passive except for low values of α . The table
shows that the velocity compensation is the key parameter
affecting the passivity if the torque loop alone is considered.



Table 2: Passivity

Torque Imp. loop Imp. loop
loop Pgain = 200 P = 20000

Dgain = 10 D = 50
β = 1 No Yes Yes
β = 0.5 No Yes No
β = 2 No Yes No
β = 4 No Yes Unstable
β = 6 No Yes Unstable
α = 0 Yes Yes Yes
α = 0.5 Yes Yes Yes
Ts = 4 ·10−3[s] No Yes No
Ts = 2 ·10−3[s] No Yes No
Ts = 0.5 ·10−3[s] No Yes Yes
Averag. Nav = 1 No Yes Yes
Averag. Nav = 10 No Yes Yes
Averag.Nav = 20 No Yes Yes
Averag. Nav = 50 No Yes Yes
Low leg Inertia
(ret.) JL2 = 0.129
kgm2

No Yes Yes

In particular when the amount of velocity compensation in-
creases, the inner torque loop becomes not passive and there-
fore the torque control system alone can become unstable
when the leg interacts with some environments. Further anal-
ysis showed that the system (without closing the impedance
loop) becomes unstable if the leg is in contact with an envi-
ronment with a stiffness KL2 between 72 Nm/rad and 3500
Nm/rad. This has been verified with experimental tests us-
ing the test setup depicted in Fig. 13 by commanding a leg
motion to have an impact against a physical spring. This
spring is positioned in order to create a certain stiffness KL2.
Figure 14 shows the phase of Z(z) when only the torque loop
is closed (β = 1 and α = 0.94) and when both the torque and
the impedance loops are closed (Pgain = 200, Dgain = 10).
The curves illustrate that, in the case of the torque loop alone,
the phase of Z(z) exceeds 90 degrees between 10 and 50
rad/s, indicating the loss of passivity, while, when the outer
loop is closed, the phase always remains within±90 degrees,
demonstrating that the passivity property is ensured as indi-
cated in Table 2.

6 Conclusions and future work
This paper presented a methodology for designing joint

impedance controllers based on an inner torque loop and a
positive velocity feedback loop. In particular, it was shown
that the positive velocity feedback can be used to increase the
closed loop bandwidth of the torque loop without the need of
a complex controller. It has been demonstrated that besides
the sampling frequency and filtering, the bandwidth of the
torque loop has a strong influence on the range of impedance
parameters (Z-width) that exhibit a passive and/or stable be-
havior. Indeed, larger inner loop bandwidth can be benefi-

Fig. 13: Experimental setup for passivity tests. The rotational stiff-
ness KL2 is obtained by positioning a linear spring at a certain dis-
tance from the HAA axis.
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Fig. 14: Simulation. Phase plot of the driving port impedance Z(z)
when only the torque loop is closed (β = 1 and α = 0.94) (red
plot) and when both the torque and the impedance loops are closed
(Pgain = 200, Dgain = 10) (blue plot). The black line shows the limit
of 90 degrees.

cial for disturbance rejection and to improve the tracking of
the impedance (enlarge the range of frequencies for which
the desired impedance is emulated by the system) but, at
the same time, it can reduce the region of stable impedance
parameters. This fact can limit the performance and versa-
tility of a robot. Thus, the highest possible bandwidth for
the torque loop might not be the best solution for all situa-
tions. It is therefore important to find a balance between the
torque loop requirements (e.g. to have a good torque track-
ing) and the stability/passivity specifications of the overall
system. Furthermore, it has become evident that, even for
simple controllers, the design problem is challenging and
that there are competing trade-offs to consider when select-



ing the controller gains.
This suggests that there is a need for a problem formu-

lation that can encompass the design objectives in a more
systematic and generic framework. There are a number of
areas that need further research and are left for future work.
Adaptive schemes (e.g. gain scheduling) can be developed to
modify the torque controller gains to satisfy the constraints
of stability/passivity given by the desired impedance param-
eters specified by the system designer. The torque gains can
also be modified depending on the load inertia variations that
is changing with the leg configuration. In addition, vary-
ing the location of the PI torque controller zero can provide
improvements in performance. The torque controller archi-
tecture can also be enhanced to reduce the effects of torque
ripples arising in the gear transmission system (drive jitter).
Since increasing the torque controller gain has been shown
to be detrimental, this option for mitigating the drive jitter
can be discarded and more different solutions must be found.
Finally, there is a need to develop strategies to quantify the
range of impedances that are required for specific tasks. At
present there are some guidelines that only provide qualita-
tive results, for example a high stiffness (Pgain) is specified
when there is contact with a compliant environment and the
positioning accuracy is important. On the other hand, a low
stiffness is used to maintain small contact forces or when the
environment is stiff. Similarly, large damping values (Dgain)
are needed to reduce vibrations or to quickly dissipate en-
ergy. Future work also encompasses an extension of the
methodology presented in this paper to include multi-degree
of freedom systems.
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