
Heuristic Planning for Rough Terrain Locomotion in Presence of
External Disturbances and Variable Perception Quality

Michele Focchi1 Romeo Orsolino1 Marco Camurri1,2

Victor Barasuol1 Carlos Mastalli1,3 Darwin G. Caldwell1 Claudio Semini1

Abstract— The quality of visual feedback can vary signif-
icantly on a legged robot meant to traverse unknown and
unstructured terrains. The map of the environment, acquired
with online state-of-the-art algorithms, often degrades after a
few steps, due to sensing inaccuracies, slippage and unexpected
disturbances. If a locomotion algorithm is not designed to
deal with this degradation, its planned trajectories might end-
up to be inconsistent in reality. In this work, we propose a
heuristic-based planning approach that enables a quadruped
robot to successfully traverse a significantly rough terrain
(e.g. stones up to 10 cm of diameter), in absence of visual
feedback. When available, the approach allows also to leverage
the visual feedback (e.g. to enhance the stepping strategy)
in multiple ways, according to the quality of the 3D map.
The proposed framework also includes reflexes, triggered in
specific situations, and the possibility to estimate online an
unknown time-varying disturbance and compensate for it. We
demonstrate the effectiveness of the approach with experiments
performed on our quadruped robot HyQ (85 kg), traversing
different terrains, such as: ramps, rocks, bricks, pallets and
stairs. We also demonstrate the capability to estimate and
compensate for external disturbances by showing the robot
walking up a ramp while pulling a cart attached to its back.

I. INTRODUCTION

Legged robots are mainly designed to traverse unstructured
environments, which are often demanding in terms of torques
and speeds. Trajectory optimization [1]–[5] can be used
to generate dynamically stable body motions, taking into
account: robot dynamics, kinematic limits, leg reachability
for motion generation and foothold selection. In particular,
motion planning enables the necessary anticipative behaviors
to address appropriately the terrain. These include: obstacle
avoidance, foothold selection, contact force generation for
optimal body motion and goal-driven navigation (e.g. [3],
[6]). Furthermore, when the flat terrain assumption is no
longer valid, a 3D/2.5D map of the environment is required,
to appropriately address uneven terrain morphology, through
optimization.

Despite the considerable efforts and recent advances in this
field [3], [4], [7], [8], optimal planning that takes into account
terrain conditions is still far from being executed online
on a real platform, due to the computational complexity
involved in the optimization. These optimization problems
are strongly nonlinear, prone to local minima, and require

1Dynamic Legged Systems lab, Istituto Italiano di Tecnologia, Genova, Italy.
Email: {michele.focchi, romeo.orsolino, victor.barasuol, darwin.caldwell,
claudio.semini}@iit.it.
2Oxford Robotics Institute, University of Oxford, Oxford, UK.
Email: mcamurri@robots.ox.ac.uk.
3LAAS-CNRS, Toulouse, France. Email: carlos.mastalli@laas.fr

a significant amount of computation time to be solved
[7]. Some improvements have been recently achieved by
computing convex approximations of the terrain [5] or the
dynamics [8].

Most of these approaches optimize for a whole time
horizon and then execute the motion in an “open loop”
fashion, rather than optimizing online. Depending on the
complexity of terrains and gaits, Aceituno et al. [5] managed
to reduce the computation time (for a locomotion cycle) in
a range between 0.5 s and 1.5 s, while the approach by
Ponton et al. [8] requires 0.8 s to 5 s to optimize for a 10 s
horizon. Therefore, it is still not possible to optimize online
and perform replanning (e.g. through a Model Predictive
Control (MPC) strategy).

We believe that replanning is a crucial feature to intrin-
sically cope with the problem of error accumulation in real
scenarios. These errors can be caused by delays, inaccuracy
of the 3D map, unforeseen events (external pushes, slippages,
rock falling), or dynamically changing and deformable ter-
rains (e.g. rolling stones, mud, etc.).

The sources of errors in locomotion are many: a prema-
ture/delayed touchdown due to a change in the terrain incli-
nation, external disturbances, wrong terrain detection. Other
source of errors include: tracking delays in the controller,
sensor calibration errors, filtering delays, offsets, structure
compliance, unmodeled friction and modeling errors in gen-
eral. These errors can make the actual robot state diverge
from the original plan. Moreover, in the prospect of tele-
operated robots, the user might want to modify the robot
velocity during locomotion, and this should be reflected in a
prompt change in the motion plan.

As mentioned, a significant source of errors can come
from non-modeled disturbances, such as external pushes. A
possible solution to this particular issue is implementing a
disturbance observer [9]. Englsberger et al. [10] proposed a
Momentum Based Disturbance Observer (MBDO) for pure
linear force disturbances. In his thesis, Rotella and et al. [11],
implemented an external wrench estimator for a humanoid
robot, based on an Extended Kalman Filter. Besides that, he
was also compensating for the estimated wrench in an inverse
dynamics controller. However the experimental tests on the
real robot were limited to a static load, acting on the legs
while performing a switch of contact between the two feet.
In a separated experiment, he also tested against impulsive
disturbance without any contact change. We extend this work
by presenting a MBDO capable of estimating both linear
and angular components of external disturbance wrenches, of

mailto:michele.focchi@iit.it
mailto:romeo.orsolino@iit.it
mailto:victor.barasuol@iit.it
mailto:darwin.caldwell@iit.it
mailto:claudio.semini@iit.it
mailto:mcamurri@robots.ox.ac.uk
mailto:carlos.mastalli@laas.fr

variable amplitude, applied on the robot during the execution
of a walk.

Even though a disturbance observer can improve the track-
ing against external disturbances, online replanning is still
required for rough terrain locomotion, because it constitutes
the basic mechanism to adapt to the terrain (terrain adap-
tation), promptly recover from planning errors and handle
environmental changes, while simultaneously accommodate
for the user set-point. In particular, the planning horizon
should be large enough to execute the necessary anticipative
body motions, but at the same time the replanning frequency
should be high enough to mitigate the accumulation of errors.

Bledt et al. [12] implemented online replanning, by in-
troducing a policy-regularized model-predictive control (PR-
MPC) for gait generation, where a heuristic policy provides
additional information for the solution of the MPC problem.
The authors found that regularizing the optimization with
a policy it improves the cost landscapes and decreases
the computation time. However, this work has not been
demonstrated experimentally.

A MPC-based approach has been successfully imple-
mented for a real humanoid in the past. In his seminal work,
Wieber [13] addressed the problem of strong perturbations
and tracking errors, yet limiting the application to flat ter-
rains.

In the quadruped domain, Cheetah 2 has shown run-
ning/jumping motions over challenging terrains using a MPC
controller [14]. More recently, Bellicoso et al. [15], [16]
implemented a 1-step replanning strategy, based on Zero
Moment Point (ZMP) optimization, on the quadruped robot
ANYmal.

Most vision-based approaches [3], [6], [17] require reason-
ably accurate 3D maps of the environment [18]. However,
the accuracy of a 3D map strongly depends on reliable state
estimation [19]–[21], which involves complex sensor fusion
algorithms (inertial, odometry, LiDAR, cameras). Typically,
these algorithms involve the fusion of high-frequency pro-
prioceptive estimates from inertial and leg odometry [19],
with low-frequency pose correction from visual odometry
[22]. The proprioceptive estimate (and, indirectly, the pose
correction) can be jeopardized by unforeseen events such as:
slippage, unstable footholds, terrain deformation, and com-
pliance of the mechanical structure. For the above reasons,
we envision different locomotion layers, according to the
quality of the perception feedback available, as depicted in
Fig. 1.

At the bottom layer we have a blind reactive strategy,
always active. This strategy does not require any vision
feedback. The layer mainly contains basic terrain adaptation
mechanisms and reflex strategies. Motion primitives are
triggered to override the planner in situations where the robot
could be damaged (e.g. stumbling).

In cases when the vision feedback is denied (e.g. foggy,
smoky, poorly lit areas), a reactive strategy is preferred [23],
[24]. On the other hand, when a degraded visual feedback
is available, this can still be usefully exploited for 1-step
horizon planning (middle block in Fig. 1) [25]. When the

Optimization based planning
with input from vision

Vision based stepping

Blind locomotion layer

Degradation
of the visual

feedback

Fig. 1. Locomotion layers for different quality of the visual feedback.
The bottom layer is purely reactive (blind) locomotion. The vision-based
stepping allows the robot to quickly adapt to local terrain conditions. Then,
the motion planning provides the level of anticipation needed in locomotion
over challenging terrain.

vision feedback is instead reliable, it can be used for more
sophisticated terrain assessment [26], [27].

In this work, we present a motion control framework for
rough terrain locomotion. The terrain adaptation and the
mitigation of tracking errors is achieved through a 1-step
online replanning strategy, which can work either blindly or
with visual feedback.

This work builds upon a previously presented statically
stable crawl gait [28], where the main focus was on whole-
body control. Hereby, our focus is mainly on the capa-
bility to adapt to rough terrains during locomotion. We
incorporate a number of features to increase the robustness
of the locomotion, such as slip detection and two reflex
strategies, previously presented in [29], [30]. The reflexes
are automatically enabled to address specific situations such
as: loss of mobility (in cases of abrupt terrain changes, see
height reflex in [29]) and unforeseen frontal impacts (see step
reflex in [30]).

A. Contribution

The main contributions of this article are experimental:
• We show that with the proposed approach the Hy-

draulically actuated Quadruped (HyQ) robot [31] can
successfully negotiate different types of terrain tem-
plates (ramps, debris, stairs, steps), some of them with
a significant roughness1 (Fig. 2). The size of the stones
are up to 12 cm (diameter) that is about 26% of the
retractable leg length. We also applied this strategy,
with little variations (see Section VII-B), to the task
of climbing up and down industrial-size stairs (14cm
x 48cm), also performing 90◦ turns while climbing the
stairs in simulation.

• We validate experimentally our MBDO for quadrupedal
locomotion. We are able to compensate for the dis-
turbances online and in close-loop during locomotion.
Additionally, while planning the trajectories, we also
consider the shift of the ZMP due to the estimated
external disturbance. We show HyQ walking up a 22◦

inclined ramp, while pulling a 12 kg wheelbarrow at-
tached to his back with a rope. The wheelbarrow is
also impulsively loaded up to 15 kg of extra payload,
incrementally added during the experiment. The robot
is able to crawl robustly on a flat terrain while leaning

1See accompaning video of rough terrain experiments: https://
youtu.be/_7ud4zIt-Gw

https://youtu.be/_7ud4zIt-Gw
https://youtu.be/_7ud4zIt-Gw

Fig. 2. HyQ crawling on a rough terrain playground: (left) lateral and (right)
frontal view. Our locomotion framework can deal with moving rocks and
various terrain elevation changes.

against a constant horizontal pulling force of 75 N. To
the authors knowledge, this is the first time such tasks
are executed on a real quadruped platform.

• As a marginal contribution, we introduce a smart terrain
estimation algorithm, which improves the state-of-the-
art terrain estimation and adaptation of [15]. This is par-
ticularly beneficial in some specific situations (e.g. when
one stance foot is considerably far from the plane fitted
by the other three stance feet).

B. Echord++

This work is part of the Echord++ HyQ-REAL exper-
iment, where novel quadrupedal locomotion strategies are
being developed to be used on newly designed hydraulic
robots. At the time of writing this manuscript, the HyQ-
REAL robot was not yet fully assembled. Therefore, the
framework is demonstrated on its predecessor version, HyQ.
The major improvements of HyQ-REAL over HyQ are: more
powerful actuators, full power autonomy (no tethers), greater
range of motion, self-righting capabilities, fully enclosed
chassis. The presented software framework can be easily
run on both platforms, thanks to the kinematics/dynamics
software abstraction layer presented in [32].

C. Outline

The remainder of this paper is detailed as follows. In Sec-
tion II we briefly present our statically stable gait framework;
Sections III and IV, detail the body motion and swing motion
phases of the gait, respectively; Section IV is particularly
focused on the different stepping strategies, depending on
the presence of a visual feedback; Section V describes the
reactive modules for robust rough terrain locomotion; in
Section VI, we present an improved terrain estimator; Section
VII shows a strategy for stair climbing based on the proposed
framework; in Section VIII, we describe the implementation
of our disturbance observer; in section IX we address the
conclusions.

II. LOCOMOTION FRAMEWORK OVERVIEW

In this section, we briefly illustrate our statically stable
crawling framework, (previously presented in [28]), enriched
with additional features specific for rough terrain locomotion.
Fig. 3 shows the block diagram of the framework. The

core module is a state machine (see [28] for details) which
orchestrates two temporized/event-driven locomotion phases:
the swing phase, and the body motion phase. In the former,
the robot has three legs in stance, while in the latter it has
four legs in stance.

During the body motion phase, the robot Center of Mass
(CoM) is shifted onto the future support triangle, (opposite
to the next swing leg, in accordance to a user-defined foot
sequence). As default footstep sequence we use: RH, RF,
LH, LF2.

The CoM trajectory is generated after the terrain inclina-
tion is estimated (see Section III). At each touchdown, the
inclination is updated by fitting a plane through the actual
stance feet positions. When the terrain is uneven (and the
feet are not coplanar), an average plane is found.

The swing phase is a swing-over motion, followed by a
linear searching motion (see Section IV) that terminates with
a haptic touchdown. The haptic touchdown ensures that the
swing motion does not stop in a prescheduled way; instead,
the leg keeps extending until a new touchdown is established.

When a contact is detected (either by thresholding the
Ground Reaction Force (GRF), or directly via a foot contact
sensor [33], [34]), the touchdown is established. A searching
motion with haptic touchdown is a key ingredient to achieve
robust terrain adaptation. Indeed, haptic touchdown is im-
portant to mitigate the effect of tracking errors, because it
allows to trigger the stance only when the contact is truly
stable. This is important whenever there is a discrepancy
between the plan and the real world. This typically happens
when a vision feedback is used to select the foothold (see
Section IV-B), because the accuracy of a height map is
typically in the order of centimeters [27], [35].

The vision feedback can be also used to estimate the
direction of the normal of the terrain under the foot, in
order to set the searching, or reaching, motion direction. Both
the body and the swing trajectories are generated as quintic
polynomials.

The body trajectory is always expressed in the terrain
frame, which is aligned to the terrain plane (see Fig. 4 (left)).
The terrain frame has the Z-axis normal to the terrain plane,
while the X-axis is a projection of the X-axis of the base
on the terrain plane, and the Y -axis is chosen to form a
right hand side system of coordinates. The swing trajectory is
expressed in the swing frame, which can be either coincident
with the terrain frame (section IV-A) or set independently for
each foot (section IV-B), depending on the stepping strategy
adopted.

The Whole Body Control module (also known as Trunk
Controller [28]) computes the torques required to control
the position of the robot CoM and the orientation of the
trunk. At the same time, it redistributes the weight among
the stance legs (cst) and ensures that friction constraints are
not violated.

The Trunk Controller action can be improved by setting
the real terrain normal (under each foot) obtained from a 3D

2LH, LF, RH and RF stands for Left-Hind, Left-Front, Right-Hind and
Righ-Front legs, respectively.

gait seq.

+

+

Fig. 3. Block diagram of the crawl locomotion framework. The crawl state machine (orange block) is further detailed in Fig. 5. Please refer to Appendix
B for a description of the main symbols shown in this figure.

world
frame

Terrain
frame

Horizontal
frame

Base
frame

Fig. 4. (left) Definition of the relevant reference frames and of the terrain
plane (light blue) used in the locomotion framework and (right) computation
of the target ψ tg for the robot yaw.

map [27], rather than using a default value for all the feet
(e.g. the normal to the terrain plane). This is particularly
important to avoid slippage when the terrain shape differs
significantly from a plane.

To address unpredictable events (e.g. limit slippage on
an unknown surface, whenever the optimized force is out
of the real (unknown) friction cone), we implemented an
impedance controller at the joint level [36]3 in parallel to the
whole-body controller. The impedance controller computes
the feedback joint torques τ f b ∈ Rn (where for HyQ n =
12 is the number of active joints) to track reference joint
trajectories (qd

j , q̇d
j ∈ Rn).

The sum of the output of the Trunk Controller τd
f f ∈ Rn

and of the impedance controller τd
pd ∈ Rn form the torque

reference τd ∈ Rn for the low level torque controller. If the
model is accurate, the largest term typically comes from the
Trunk Controller.

Note that the impedance controller should receive position

3Without any loss of generality, the same controller can be implemented
at the foot level. However, to avoid non collocation problems due to leg
compliance, it is safer to close the loop at the joint level.

and velocity set-points that are consistent with the body
motion, to prevent conflicts with the Trunk Controller. To
achieve this, we map the CoM motion into feet motion
(see Section III) to provide the correspondent joint refer-
ences qd

j , q̇d
j .

III. BODY MOTION PHASE

When traversing a rough terrain, unstable footholds
(e.g. stones rolling under the feet), tracking errors, slippage
and estimation errors can create deviations from the origi-
nal motion plan. These deviations require some corrective
actions in order to achieve terrain adaptation. In our frame-
work, these actions are taken both at the beginning of swing
and body motion phases. The body motion phase starts with a
foot touchdown and ends when the next foot in the sequence
is lifted off the ground. After each touchdown event, we
compute the target for the CoM position xtg

com and the body
orientation Φtg from the actual robot state. This feature
prevents error accumulation and, together with the haptic
touchdown, constitutes the core of the terrain adaptation
feature.

To avoid hitting kinematic limits, the robot’s orientation
should be adapted to match the terrain shape. Indeed, some
footholds can only be reached by tilting the base. On the
other hand, constraining the base to a given orientation
restricts the range of achievable motions.

We parametrize the trajectory for the trunk orientation with
Euler angles4 Φd(t) = [φ(t), θ(t), ψ(t)] (i.e. roll, pitch and
yaw respectively). The trajectories are defined by quintic 3D
polynomials connecting the actual robot orientation (at the
beginning of the phase, namely the touchdown) Φd(0) =
[φtd ,θtd ,ψtd] with the desired orientation Φd(Tmb) = Φtg =
[φ tg,θ tg,ψ tg], where Tmb is the duration of the move body
phase. To match the inclination of the terrain, the target roll

4This is a reasonable choice because the robot is unlikely to reach
singularity (i.e. 90◦ pitch).

max

1s

Start

1s

+

Height map

1s

Fig. 5. Logic diagram of the crawl state machine. The yellow rectangles represent the states, the red arrows represent the transitions while the blue
boxes represent the actions associated to the transitions. Blocks marked with 1s (1-shot) are event-driven and perform a single computation, while the other
blocks (marked with the spiral) are called every loop. Please refer to Appendix B for a short description of the main symbols shown in this figure.

and pitch are set equal to the orientation of the terrain plane
that was updated at the touchdown (φ tg = φt ,θ

tg = θt).
The target yaw ψ tg is computed to align the trunk with
an average line vavg from the ipsi-lateral5 legs (see Fig. 4
(right)). This is somewhat similar to a heading controller
that makes sure that the trunk “follows” the motion of the
feet (the feet motion is driven by the desired velocity from
the user).

Similarly to the angular case, the CoM trajectory is
initialized with the actual position of the CoM6, while the
target xtg

com can be computed with different stability criteria
(e.g. ZMP-based [1] or wrench-based [37], [38]). Henceforth,
the vectors are expressed in the world (fixed) frame W ,
unless otherwise specified.

Since the crawl does not involve highly dynamic motions,
a heuristic static stability criterion can also be used and
in particular, our strategy consists in making sure that the
projection of the CoM target xtg

comp always lies inside the
future support triangle [28]. The robustness (in terms of
stability margin) can be regulated by setting the projected
CoM target at a distance d, on the support plane, from the
middle point of the segment connecting the diagonal feet
(see Fig. 6 (right)). We define the robot height hr ∈ R as the
distance between the CoM and the terrain plane (see Fig. 4
(left)). This is computed by averaging the actual positions of

5Belonging to the same side of the body.
6We found experimentally that using the desired feet position instead of

the actual one to compute the CoM target would make the robot’s height
gradually decrease.

the feet bx f i in contact with the ground (stance feet):

hr = eT
z

1
cst

cst

∑
i=1

tRb(bx fi + bxcom) (1)

where cst is the number of stance feet, bxcom ∈ R3 is the
CoM offset with respect to the base origin, tRb ∈ SO(3)
maps vectors from base to the terrain frame and ez ∈ R3

selects the Z component of 3D vectors. In general, the robot
height should be kept constant (or it could vary with the
cosine of the terrain pitch θt on ramps) during locomotion.
If the above-mentioned heuristics is used for planning, the
CoM target xtg

com can be obtained by adding the height vector
expressed in the world frame hrnt (where nt is the normal
to the terrain) to the projection xtg

comp coming from the
heuristics.

Note that, on an inclined terrain, to have the CoM above
the desired projection and the distance of the CoM from the
terrain plane equal to hr, the following scaling should be
applied (see Fig. 6 (left)):

cos(α) = eT
z nt (2)

xtg
com = xtg

comp +
hr

cos(α)
ez

where α is the angle between the unit vectors ez and nt .
Now, similarly to the orientation case, we build a quintic

polynomial xd
com(t) to connect the actual CoM at the begin-

ning of the motion phase (namely at the touchdown) xcom,td
to the computed target xtg

com.
To determine the 6 parameters of each quintic, in addi-

tion to the initial/final positions, we force the initial/final
velocities and accelerations to zero, both for CoM and Euler

swing
leg

com
target

Fig. 6. Heuristic generation of the CoM target. (left) planning on inclined
terrain, (right) the future support polygon is depicted in light blue while the
projection xtg

comp of the com target on the polygon is a red dot.

angles. This ensures static stability7 and implies that the
robot’s trunk does not move when one leg is lifted from
the ground (i.e. during the swing phase).

Alternatively, if a wrench-based optimization is used, as
in [37], the robot height should be constrained (e.g. to be
constant) and the CoM X ,Y trajectory will be a result of the
optimization.

As mentioned in the previous section, it is convenient to
provide desired joint positions (for the stance legs) that are
consistent with the body motion. We first map the body
motion into feet motion. This mapping is linear in the
velocity domain and can be computed independently for each
stance foot i as:

ẋd
fi [k] = −ẋd

com[k] − ω[k] ×
(

xd
fi [k − 1] − xcom([k]

)
(3)

where the desired position of the foot xd
fi [k − 1] at the

previous controller loop is used. Then, xd
fi [k] is obtained by

integrating the velocity ẋd
fi [k] (e.g. with a trapezoidal rule).

Afterwards, we compute the corresponding desired joint
positions qi ∈ R3 through inverse kinematics: qi = IK(x fi)
and the joint velocities as:

q̇d
i = J(qi)

−1ẋ fi (4)

where Ji ∈ R3×3 is the Jacobian of foot i8.

IV. SWING PHASE

The swing phase of a leg starts with the foot liftoff and
ends with the foot touchdown. The obvious goal of the
leg’s swing phase is to establish a new foothold. Then, an
interaction force drives the robot’s trunk towards the desired
direction. The swing phase has two main objectives: 1)
attaining enough clearance to overcome potential obstacles
(so as to avoid stumbling) and 2) achieving a stable contact.

A. Heuristic Stepping

In this section, we illustrate the heuristic stepping strategy
we use for blind locomotion. The goal is to select the

7Statically stable gaits are convenient for locomotion in dangerous
environments (e.g. nuclear decommissioning missions) because the motion
can be stopped at any time. However, without loss of generality, the final
velocity can be set to any other arbitrary value other than zero.

8Note that we performed a simple inversion since in our robot we have
point feet and 3 Degree of Freedom (DoF) per leg, thus the Jacobian matrix
is squared.

footholds to track a desired speed from the user when no
map of the surroundings is available.

First, we compute the default step length (for the swing
leg) from the desired linear and heading velocities vr

xy ∈
R2, ψ̇r ∈ R. For sake of simplicity, only in this section the
vectors are expressed in the horizontal frame H 9 (instead of
the world frame W), unless otherwise specified. Expressing
the default step in a horizontal frame allows to formulate
the swing motion independently from the orientation of both
terrain and trunk.

The swing trajectory consists of a parametric curve,
whose four main parameters are: the linear foot displacement
∆Lx0,∆Ly0, the angular foot displacement ∆H0 (see Fig. 7),
and the default swing duration Tsw. These quantities can be
computed from the nonlinear mapping F(·):[

∆Lx0 ∆Ly0 ∆H0 Tsw
]
= F(vr

xy, ψ̇
r) (5)

F(·) makes sure that the step lenght increments linearly
with the desired velocity, but only at low speeds (see
compute step length block in Fig. 5). When the step length
approaches the maximum value, the cycle time Tcycle (sum
of swing and stance time of each leg) is decreased, and the
stepping frequency fs = 1/Tcycle is increased accordingly
to avoid hitting the kinematic limits. For instance, for the X
component, we can use the following equation:

A =
2∆Lmax

x0
π

(6)

G =
∆Ltr

x0
∆Lmax

x0 vtr
(7)

∆Lx0 = A · arctan(Gvr
x) (8)

where ∆Lmax
x0 is the maximum allowable step length in the X

direction.
According to Eq. (8), ∆Lx0 linearly increases with velocity

up to the transition point ∆Ltr
x0, which corresponds to the

user-defined value vtr. Then, the step length is increased
sub-linearly with velocity (because the stepping frequency is
also increased), up to the saturation point ∆Lmax

x0 . After this
point, only the frequency increases. Similar computations
are performed for ∆Ly0 and ∆H0. Since it is possible to set
different values for heading and linear speed, the cycle time
(and so the stepping frequency) is adjusted to the minimum
coming from the three velocity components:

Tcycle = min

(
∆Lx0

vr
x

,
∆Ly0

vr
y

,
∆H0

ψ̇r

)
(9)

When a new value of Tcycle is computed, the dura-
tions of the body and swing trajectories are recomputed
as Tmb = (Tcycle − Tlu)D and Tsw = (Tcycle − Tlu)(1 − D)
respectively, according to the duty factor D [39].

The variable Tlu represents the cumulative duration of
the load/unload phases. As explained in [28], we remark

9The horizontal frame H is the reference frame that shares the same
origin and yaw value with the base frame but is aligned (in pitch and roll)
to the world frame, hence horizontal (see Fig 4 (left)).

Fig. 7. Vector definitions for the heuristic stepping strategy. Red arrows
represent the desired linear velocity vr

xy and the linear component ∆Lxy0 of
the default step. In blue is the desired heading velocity ψ̇r and the angular
component ∆Lh0 of the default step ∆L̄xy0 that is in black. The offset to
increase/decrease the stance size is in green, The step about the foot ∆Lxy
is depicted in brown.

that a load/unload phase at the touchdown/liftoff events is
important to avoid torque discontinuities. In particular, a
load phase at the touchdown allows the Trunk Controller
to redistribute smoothly the load on all the legs. At the same
time, it ensures that the GRF always stay inside the friction
cones, thus reducing the possibility of slippage.

Note that a heading displacement ∆H0 can be converted
into a X ,Y displacement of the foot, as shown in Fig. 7, by:

∆Lh0 = Exy
[
0 0 ∆H0

]T × xhip (10)

where xhip ∈ R3 is the vector from the origin of the base
frame to the hip of the swinging leg, and Exy ∈ R2×3 selects
the X ,Y components. Then, the default step becomes:

∆L̄xy0 = ∆Lxy0 + ∆Lh0. (11)

Note that we defined the default step about the hip
rather than the foot position (see Fig. 7). This is crucial to
avoid inconvenient kinematic configurations while walking
(e.g. stretched or “crouched” configuration), thus degener-
ating the support polygon. Indeed, if we refer each step to
the previous foot position, an anticipated/delayed touchdown
would produce unexpected step lengths. This would make the
stance feet closer/farther over time10.

Since the swing polynomial is defined at the foot level,
we have to determine the step ∆Lxy ∈ R2 from ∆L̄xy0, to
express it about the actual foot position:

∆Lxy = ∆L̄xy0 + Exy(offxy + xhip − x f), (12)

where offxy is a parameter to adjust the average size of the
stance polygon.

In delicate situations, it might be useful to walk with
the feet more outward to increase locomotion stability at

10As a matter of fact, if the support polygon shrinks, the robustness
decreases. In particular, CoM tracking errors and external pushes can move
the ZMP very close to the boundary of the support polygon. This would
result in a situation where not all the contact feet are “pushing” on the
ground (e.g. the robot starts tipping about the line connecting two feet).

Real
terrain

searching
motion

Base
frame

apex

terrain
frame

swing
frame

support
polygon

terrain
plane

swing
plane

Fig. 8. Swing frame and terrain frame definition for the heuristic-based
stepping strategy used in blind locomotion. The terrain presents a decrease
in elevation, haptically handled by the searching motion.

the price of a bigger demanded torque at the Hip Abduc-
tion/Adduction (HAA) joint.

As a final step, it is convenient to express the swing motion
in the swing plane (see Fig. 8)11. This means we need to
express the above quantities in the swing frame S12.

We set quintic 3D polynomials p(t) ∈ R3 of duration Tsw,
where the X , Y components go from (0,0) to s∆Lxy, while
for the Z component we set two polynomials such that the
swing trajectory passes by an intermediate apex point at a
time Tswχ . At the apex, the Z component is equal to the
step height s∆Lz and χ ∈ [0,1] represents the apex ratio that
can be adjusted to change the apex location (see Fig. 8).
Hence, the swing foot reference trajectory is computed from
the actual foot position at the instant of liftoff to the desired
foothold as:

xd
fsw
(t̄) = x fsw,lo + p(t̄), (13)

where t̄ ∈
[
0 Tsw

]
, Tsw is the swing duration, and the final

target is defined as xtg
fsw

= x fsw,lo + p(Tsw).
Remark: the swing frame (unless specified) is always

aligned with the terrain frame. Consequently, we have an
initial retraction along the normal to the terrain plane (thus
avoiding possible trapping or stumbling of the foot), while
the step is performed along the terrain plane. A swing motion
expressed in this way allows to adjust the step clearance
simply with the step height s∆Lz. This parameter regulates
the maximum retraction from the terrain (apex point). In
general, the apex is located in the middle of the swing, but it
can be parametrized to shape differently the swing trajectory.

Definition: Searching motion. A haptic triggering of the
touchdown allows to accommodate the shape of the terrain
by stopping the swing motion either before of after the foot
reaches the target xtg

fsw
.

11We call the swing plane the plane passing though the X-Z axes of the
swing frame.

12The swing frame, in general, is aligned with the terrain frame unless
a vision based stepping strategy is used. In this case, the swing frame is
computed independently for each foot (as explained in Section IV-B) from
the visual input.

If the touchdown is deemed to happen after the target
is reached, the trajectory is continued with a leg extension
movement that we name searching motion: the swing foot
keeps moving linearly along the direction of the terrain
plane normal nt (see Fig. 8) until it touches the ground or
eventually reaches the workspace (WS) limit. In this way,
the stance is triggered in any case. To avoid mobility loss, a
height reflex can be enabled to aid the search motion with
the other stance legs (see section V-B).

B. Vision Based Stepping

The terrain plane is a very coarse approximation of the
terrain. If a vision feedback is available, it is advisable to
exploit this information, which allows to:

1) compute the target foothold on the actual terrain rather
than on its planar approximation (see Fig. IV-B). This
allows to increase the overall swing clearance (cf.
blind stepping in Fig. 8 with vision based stepping
in Fig. IV-B).

2) set a different swing frame for each foot instead of
having the swing frame always coincident to the terrain
frame. This enables the swing on different planes per
each leg (essential for climbing though difficult terrain
configurations such as V-shaped walls [28]).

Base
frame

swing
frame

actual
foot

position

terrain
frame

corrected
foothold

Real
terrain

heuristic
foothold

Fig. 9. Swing frame definition for the vision-based stepping strategy. Blue
and red shaded area represent the swing in the heuristic and the vision-
based cases, respectively. In this case the terrain elevation is higher than
the foot location at the liftoff and the target foot-hold (blue dot) computed
with heuristics, is corrected by vision (red dot) to lay on the real terrain.
The swing frame is also adjusted accordingly.

To implement the first point, we first compute a step (along
the terrain plane) using the heuristic-based stepping strategy.
This is meant to realize the user velocity. Then, the height
map of the terrain is queried at the target location, and the
Z component of the target is corrected to have it on the real
terrain (X ,Y components remain unchanged):

x̃tg
z = H

(
Exyxtg

fsw

)
(14)

where Exy ∈ R2×3 selects the X,Y components, and H(·)
is a function that queries the terrain elevation for a certain

(X,Y) location on the X-Y plane13.
As a final step, we compute the Z axis âswz of the swing

frame such that its X axis âswx is aligned with the segment
connecting the actual foot position to the corrected foothold
x̃tg

fsw
(see Fig 10):

aswz = (x̃tg
fsw
− x fsw) × (wRbey),

âswz =
aswz

‖aswz‖
, (15)

âswy = âswz × ex,

âswx = âswy × âswz ,

where the ˆ(·) represents unit vectors and ex,ey are the base
frame axes expressed in the world frame. This correction
allows for more clearance around the actual terrain during
the swing motion and reduces the chances of stumbling.

The first consequence is that the swing frame is no longer
aligned with the terrain frame, and the swing trajectory is
laying on the plane âswx/âswz .

Additionally, if the normal nr of the actual terrain is
available from the visual feedback [27], we can exploit it to
further correct the swing plane, in order to have the swing-
down tangent to that normal. This is particularly useful when
the robot has to step on a laterally slanted surface (e.g. like
in [28]).

In our experience, however, we noticed that on the sagittal
direction, maximizing clearance has more priority. Therefore,
we remove the component of nr along the X axis computed
in Eq. (15) (âv

swz = nr − âT
swx nr)âswx) and use as the new

swing Z axis. The new vision-corrected Z-axis of the swing
frame becomes nrp (see Fig. 10), while the other axes should
be recomputed accordingly as in Eq. (15).

C. Clearance Optimization

If the quality of the map is good enough, the apex (point of
maximum clearance) and the step height s∆Lz can be adjusted
in accordance with the point of maximum asperity of the
terrain, so as to maximize clearance. To some extent, this
can be considered a simple adaptation of the swing to the
terrain shape. First, we take a slice of the map and evaluate
the height of the terrain on the line segment of direction b̂
connecting the actual foot location with the target x̃tg

fsw
(see

Fig. 11). With a discretization of N points, we then follow
the steps below:

1) sk = x̃tg
fsw

k
N

+ x̃ fi

(
1 − k

N

)
, k = 1...N,

2) hk = H(Exysk),

3) δk = P+(hk − eT
z sk), (16)

4) δ
⊥
k =

∥∥∥[0 0 δk
]T − ([0 0 δk

]
b̂
)

b̂
∥∥∥ ,

5)
[

s∆Lz kmax
]
= max

k
δ
⊥
k ,

13Being the map expressed in a (fixed) world frame, it is necessary to
apply appropriate kinematic conversions to this frame before evaluating the
map.

swing X

swing X

Fig. 10. Vision based adjustment of the target foothold Z coordinate. Top
and lateral views of the swing plane on a slanted terrain.

where 1) is a discretization of the line segment; 2) is the
evaluation of the height map on the discretized points; 3)
P+(·) : R → R is a function that sets negatives values to
zero; in 4) we project the δk onto the swing Z axis, getting
δ⊥k ; in 5) we set the step height s∆L fsw as the maximum value
among the δ⊥k where kmax is its index. Finally, the apex can
be set to kmax/N. This reshapes the swing in a conservative
way, by adjusting the apex according to the terrain feature.

D. Time Rescheduling

In our state-machine-based framework, a change in lo-
comotion speed corresponds to changing the duration of
the swing/body phases. However, to change speed promptly
(without waiting until the end of the current phase) it is
necessary to reschedule the polynomials of the active phase
(swing or body motion). As a consequence, we compute a
new duration T

′
f (where Tf is the previous duration). Setting

a new duration for a (previously designed) polynomial is
equivalent to finding the initial point of a new polynomial
that: 1) has the new duration T

′
f and 2) is passing through

the same point at the moment of the rescheduling. We know
that a quintic polynomial can be expressed as:

p(t) = aT
µ(t), ṗ(t) = aT

µ̇(t), p̈(t) = aT
µ̈(t) (17)

where:

aT =
[
a5 a4 a3 a2 a1 a0

]
, (18)

µ(t) =
[
t5 t4 t3 t2 t 1

]
,

µ̇(t) =
[
5t4 4t3 3t2 2t 1 0

]
,

µ̈(t) =
[
20t3 12t2 6t 2 0 0

]
.

height map

apex modified (65%)
step height modified
no impact

apex 50%
default step height
impact

Z

Z

height map

height map
swing
frame

Z1-2

3

4-5

Fig. 11. Clearance optimization. The grey dot represents the actual foot
location at liftoff, the blue dot the foot target while the red dot the apex
location. The numbers in the red rectangles are related to the steps in
Eq. (16).

Setting the initial/final boundary conditions for po-
sition, velocity and acceleration: p0 = aT µ(0), ṗ0 =
aT µ̇(0), p̈0 = aT µ̈(0), p f = aT µ(Tf), ṗ f = aT µ̇(Tf),
p̈ f = aT µ̈(Tf) is equivalent to solving a linear system of
6 equations that allows us to find the ai parameters:

a0 = p0, (19)
a1 = ṗ0,

a2 = 0.5 p̈0,

a3 =
1

2T 3
f

[
20p f − 20p0 + Tf (−12 ṗ0 − 8 ṗ f) + T 2

f (−3p̈0 + p̈ f)
]
,

a4 =
1

2T 4
f

[
30p0 − 30p f + Tf (16ṗ0 + 14 ṗ f) + T 2

f (3ṗ0 − 2ṗ f)
]
,

a5 =
1

2T 5
f

[
12p f − 12p0 + Tf (−6 ṗ0 − 6 ṗ f) + T 2

f (−p̈0 + p̈ f)
]
,

with a similar criterion, to ensure continuity in the position,
we can compute the new initial point p′0 such that:

a′µ(t̄) = p(t̄), (20)

where t̄ is the time elapsed (from 0) at the moment of the
rescheduling, and a′ are the coefficient of the new polynomial
of duration T

′
f . Then, collecting p0 from all the parameters

in Eq. (19), we can obtain a closed form expression for it:

0

0.05

0.1

0 0.5 1 1.5
0

0.05

0.1

Fig. 12. Time rescheduling. The original trajectory (blue) at t̄ = 0.5s is
rescheduled into a new trajectory (red) of duration of (Upper plot) 0.7s or
(lower plot) 1.5s.

β1 =
1

2T 3
f

[
20p f + Tf (−12ṗ0 − 8ṗ f) + T 2

f (−3 p̈0 + p̈ f)
]
,

β2 =
1

2T 4
f

[
−30p f + Tf (16ṗ0 + 14 ṗ f) + T 2

f (3ṗ0 − 2ṗ f)
]
,

β3 =
1

2T 5
f

[
12p f + Tf (−6ṗ0 − 6ṗ f) + T 2

f (−p̈0 + p̈ f)
]
,

β4 = 1 − 10T 3
f t̄3 + 15T 4

f t̄4 − 6T 5
f t̄5,

p0 =
1
β4

[
p(t̄) − a1t̄ + a2t̄2 + β1t̄3 + β2t̄4 + β3t̄5

]
(21)

Now, exploiting Eq. (21) for the computation of p0, the
new polynomial parameters can be recomputed as in Eq. (18)
while keeping the other boundary conditions unchanged. This
will result in a polynomial that continues from t̄ with a new
duration T

′
f .

In Fig. 12, we show an example of time rescheduling
happening at 0.5s, where the duration of an original trajec-
tory Tf = 1s is reduced to T

′
f = 0.7s (fast scheduling) or

increased to T
′
f = 1.5s (slower scheduling).

V. REACTIVE BEHAVIORS

In this section, we briefly describe the framework’s re-
active modules for robust locomotion. These modules im-
plement strategies to mitigate the negative effects of unpre-
dictable events, such as: 1) slippage (Section V-A); 2) loss of
mobility (Section V-B); 3) frontal impacts (see Section V-C)
and 4) unexpected contacts (e.g. shin collisions, see Section
V-D).

A. Slip Detection

The causes of slippage during locomotion can be divided
into three categories: 1) wrong estimation of the terrain
normal; 2) wrong estimation of the friction coefficient; 3)
external disturbances.

In our previous work [24], we addressed the first and
the second categories. In particular, we proposed a slippage
detection algorithm which estimates online the friction co-
efficient and the normal to the terrain. After the estimation,
the coefficient were passed to the whole-body controller (see
slip detection and recovery module in Fig. 3).

terrain plane

predicted foothold

stable
foothold

reflex
triggerable
area

original
trajectory

reflex
modified
trajectory

frontal
impact
range

grf

Fig. 13. Step Reflex. In shaded blue the original trajectory while in shaded
red is the modification due to the reflex. The red cone, shows the range of
GRF that are eligible as frontal impacts. Out of this cone the GRF will be
used to trigger the stance. Area of possible activation along the trajectory,
is depicted with stripes.

Concerning the third category, an external push can create
a loss of contact. This can cause a sudden inwards motion
of the foot. For instance, the trunk controller can create
internal forces, depending on the regularization used. When
there is loss of contact, these internal forces can make the
foot move away from the desired position, leading to large
tracking error and catastrophic loss of balance. Thanks to the
impedance controller (a PD running in parallel to the Trunk
Controller), the tracking error will be limited, and it will be
recovered at the next replanning stage (see Section III).

B. Height Reflex

The height reflex is a motion generation strategy for all
the robot’s feet. It redistributes the swing motion onto the
stance legs, with the final effect of “lowering” the trunk to
assist the foothold searching motion.

The height reflex is useful when the robot is facing consid-
erable changes in the terrain elevation (e.g. stepping down
from a high platform) [29]. In such situations, the swing
leg can lose mobility, causing issues during the subsequent
steps (e.g. walking with excessively stretched legs). For this
reason, the height reflex is most likely to be activated when
stepping down.

C. Step Reflex

The step reflex [30] is a local elevation recovery strategy,
triggered in cases of frontal impacts with an obstacle during
the swing up phase.

This reflex is key in cases of visual deprivation (e.g. smoky
areas or thick vegetation): it allows the robot to overcome
an obstacle and establish a stable foothold at the same time,
without stumbling.

Since the step reflex can be enabled only during the
swing phase, it is important to set its duration Trfx to stop
concurrently with the end of the default swing duration:

Trfx = Tsw − t̄, (22)

where t̄ is the time elapsed from the beginning of the swing
until the moment the reflex is triggered (the searching motion
will be still possible to accommodate for further errors).

The angle of retraction αrfx (see Fig. 13) depends on the
distance rx (along the swing X axis âswx of the swing frame)
already covered by the swing foot:

rx = âT
swx(x

d
fsw
(t̄) − xd

fsw
(0)), (23)

and the reflex maximum vertical retraction rz:

αrfx = atan2(rz,rx).

The maximum vertical retraction rz is an input parameter
related to the step height and the roughness of the terrain.
Note that the step reflex is also conveniently generated in the
swing frame.

The reflex can be triggered only when the impact is frontal
(GRF in the purple cone of Fig. 13), and only during the
swing up phase (e.g. before the apex point). The reason for
these constraints is twofold:

1) a force from a frontal impact is larger (and pointing
downwards) if the impact occurs in the swing up phase;
in contrast, it is lower (and pointing upwards) in the
swing down phase. Therefore, a small and upward
force would cause an increment of false positives for
a regular touchdown detection.

2) the time available for a reflex after the swing apex
is more limited and would require significantly higher
accelerations to be executed.

Missed reflex: If a frontal impact is detected in the swing
down phase, the reflex is not triggered immediately, but it is
scheduled for the beginning of the next swing phase.

The accompanying video14 shows a simulation where the
robot performs a blind stair ascent, using the heuristic-based
stepping strategy as described in Section IV-A). Even if the
swing leg stumbles against the step, the robot is still able to
climb the stairs, thanks to the step reflex. In contrast, when
the step reflex is disabled, the robot gets stuck.

Remark: the reflex is omni-directional and depends on the
desired locomotion speed. For instance, if the robot walks
sideways, the step will be triggered along the swing-plane,
which will be oriented laterally.

D. Shin Collision

The foot might not be the only point of contact with the
terrain. For certain configurations, the shin of a quadruped
robot can collide as well (as shown in this simulation 15).
Since contact forces directly influence the dynamics of the
robot, we take this into account in the trunk controller,
i.e. with an appropriate weight redistribution after updating
the number and location of the contact points. The detection
of the contact point location can be done either with a
dedicated sensor or an estimation algorithm. On the same
line, the contact points are updated during the generation of
body trajectories.

14Step reflex video: https://www.youtube.com/watch?v=
_7ud4zIt-Gw&t=2m33s

15Shin coll. video: https://www.youtube.com/watch?v=
_7ud4zIt-Gw&t=4m04s

E. Experimental Results

In this section, we present the experiments carried out on
our robotic platform HyQ, to show the effectiveness of the
proposed reactive behaviors framework in addressing rough
terrain locomotion. All the experiments have been carried
out on HyQ, a 85 kg, fully-torque controlled, hydraulically
actuated quadruped robot [40].

HyQ is equipped with a variety of sensors16, including:
precision joint encoders, force/torque sensors, a depth camera
(Asus Xtion), a combined (stereo and LiDAR) vision sensor
(MultiSense SL), and a tactical grade Inertial Measurement
Unit (KVH 1775).

The size of HyQ is 1.0 m × 0.5 m × 0.98 m (L × W ×
H). The leg’s length ranges from 0.339 m to 0.789 m and the
hip-to-hip distance is 0.75 m.

HyQ has two onboard computers: a real-time compliant
(Xenomai-Linux) used for locomotion and a non-RT machine
to process vision data. The RT PC processes the low-
level controller (hydraulic actuator controller) at 1 kHz and
communicates with sensors and actuators through EtherCAT.
Additionally, this PC runs the high-level controller at 250 Hz
and the state estimation at 500 Hz. The non-RT PC processes
the exteroceptive sensors to generate a 2.5-D terrain map
[42] with 4 cm resolution and 3 m × 3 m size, surrounding
the robot.

The template terrain used for the experiments is shown in
Fig. 2. It is composed by: 1) ascending ramp; 2) a step-
wise elevation change; 3) area with big stones (diameter
up to 12 cm); 4) another step-wise elevation change; 5) a
descending ramp with random bricks. Walking on stones and
bricks is challenging from the locomotion point of view: the
stones can collapse or roll away, causing a loss of balance, if
specific strategies are not implemented. This video17 shows
the robot successfully traversing the template terrain. The ter-
rain adaptation capabilities (e.g. haptic feedback, searching
motion) are mostly demonstrated when the robot is walking
on rocks. The changes in elevation (where the height reflex
is triggered) prevents the swing leg from losing mobility.

The importance of replanning is particularly evident dur-
ing the stair descent, where the robot steps on bricks rolling
away under a foothold. The pitch error caused by the rolling
bricks is recovered in the next step. Since the crawl is
statically stable, the robot can move in extremely cluttered
environments, almost at ground level. In the last scene of
the video, we show a simulation with the second generation
of our robots, HyQ2Max [43]. Thanks to its increased range
of motion with respect to HyQ, this robot is able to crawl
with a very low desired body height and is thus able to walk
through 45 cm wide duct.

VI. TERRAIN ESTIMATION

The terrain estimation module (see Fig. 3) estimates the
terrain plane, which is a linear approximation of the terrain
enclosed by the stance feet.

16For a complete description of the sensor setup, see [41], Chapter 3
17Rough terrain experiments:

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=0m10s

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=2m33s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=2m33s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=4m04s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=4m04s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=0m10s

The inclination of the terrain plane (φt ,θt) is updated at
each touchdown event (e.g. a when a foot is “sampling” the
terrain). Typically, this is done by fitting a plane through
the stance feet and computing the principal directions of the
matrix containing the feet positions. The fitting plane can be
found in two ways:
• Vertical Fit: it minimizes the “distance” along the

vertical component, between the fitting plane (Π : ax +
by + cz + d = 0) and the set of points represented by
the feet position;

• Affine Fit: it minimizes the Euclidean distance (along
the terrain plane normal) between the feet and the plane.

In the first case, we have to solve a linear system, while the
second is an eigenvalue problem.

A. Vertical Fit

The “vertical” distance can be minimized by setting the c
coefficient to be equal to 1 and solve a linear system for the
x =

[
a b d

]
parameters:

x = A#b, (24)

where the positions of the stance feet have been collected in:

A =

x f1x x f1y 1
x f2x x f2y 1
x f3x x f3y 1
x f4x x f4y 1

 , b =

−x f1z

−x f2z

−x f3z

−x f4z

 . (25)

and where [·]# is the Moore-Penrose pseudoinverse operator.
Then, the normal to the terrain plane nt and the correspond-
ding roll/pitch angles φt ,θt (in ZYX convention), can be
obtained as18:

nt =
[
a b 1

]T
/‖
[
a b 1

]
‖,

θt = atan(ntx/ntz), (26)
φt = atan(−nty sin(θt)/ntx).

B. Affine Fit

In the affine case, we first need to reduce the feet samples
by subtracting their average x̄ (belonging to the fitting plane):

R =

xT

f1 − x̄T

xT
f2 − x̄T

xT
f3 − x̄T

xT
f4 − x̄T

 , x̄ =
1
4

4

∑
i=1

x fi . (27)

The principal directions of this set of samples are the
eigenvectors of RT R:

[
V D

]
= eig

(
RT R

)
nt = S1V (28)

where V is the matrix of the eigenvectors and D the diagonal
matrix of the eigenvalues of RT R.

18Note that the normal vector [a,b,1] should be normalized for the
computation of φt ,θt .

We can obtain the terrain normal nt by extracting the first
column from the eigenvector matrix (e.g. the eigenvector
associated to the smallest eigenvalue). Then, similarly to the
vertical fit case, Eq. (26) can be applied to find the terrain
parameters. Note that the result is slightly different from the
vertical fit case. Indeed, in the affine fit case, we minimize the
Euclidean distance, while in the vertical fit case we minimize
the distance along the z direction. On the other hand, the two
approaches give the same result if the feet are coplanar.

It is noteworthy that the affine approach does not provide
meaningful results when RT R is rank deficient. However, this
happens only when (at least) three feet are aligned, which is
a very unlikely situation.

C. Correction for Rough Terrain

There are some situations where just fitting an average
plane is not the ideal thing to do during a statically stable
motion. For instance, when the robot has three feet on the
ground and one on a pallet, the average (fitting) plane is not
horizontal. In this case, moving the CoM projection along the
terrain plane (to enter in the support triangle) results in an
inconvenient “up and down” motion. This happens because
the robot tries to follow the orientation of the terrain plane
with its torso. In this case, it would be preferable to keep the
posture horizontal until at least two feet are on the pallet.

In this section, we propose a more robust implementation
of the terrain estimation strategy, which allows to address
these particular situations. The idea is to have the terrain
plane fitting the subset of the stance feet that are closer to
be coplanar. In this case, the influence of the “outlier” foot
(e.g. the one on the pallet) would be reduced. For more
dynamic gaits, where the CoM trajectory is not planned
(e.g. like trotting [23]), a low-pass filtering of the terrain
estimate would be sufficient to mitigate the effect of the
outliers. However, since the crawl makes heavily use of the
terrain plane to change the pose of the robot, a different
strategy has be adopted.

A preliminary step (after computing the terrain normal nt
as in Section VI-A) is to compute the norm of the least
square errors vector. This can be easily done by exploiting
the matrix computed in Eq. (25): eLS = ‖Ax − b‖2. If eLS
(Least Square error) is bigger than a certain (user defined)
threshold, it means that the feet are not coplanar, and nt
should be corrected.

First, we compute the normal vectors in common to all
the combinations of two adjacent edges (li, l j), (sorted in
Counter Clock Wise (CCW) order, see Fig. 14):

ni j = li × l j (i, j) ∈ C, (29)

where C is the set of all the combinations of two adjacent
edges (sorted in CCW order). In our case, C has 4 elements.
Since any couple of (intersecting or parallel) lines defines a
plane, we associate each normal ni j to one support triangle
(e.g. two edges of the support polygon, see Fig. 14 (left)).

The corrected terrain normal is a weighted average of ni j,
where the weights are inversely proportional to the distance

-0.8

-0.6

0.5

-0.4

-0.2

Z
Y 0

0.5

X
0-0.5-0.5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 14. Smart height correction. (Left) the blue arrow represent the
corrected normal while the grey arrow the not corrected one (computed
with the affine fit method). In this case the corrected normal is almost
coincident to one of the red arrows representing the normals ni j to the
triangles defined by three stance feet; (right) weight function (W) of the
angular distance (e.g. cosine) w.r.t ntold .

of each normal ni j from the terrain plane normal, computed
at the previous touchdown event ntold

.

cos(αi j) = nT
told

ni j. (30)

We compute the weight wi j associated to each normal
ni j through the nonlinear function W (·) ∈ R → R (Fig. 14
(right)), in accordance to its angular distance from ntold

.

W (x) = 1/(1 + s(x − 1)p) ,

wk = W (cos(αi j)), (31)

where k is the index of the i j − th element of the set C; and
s is a sensitivity factor proportional to the LS error eLS.

According to Eq. (31), the normals closer to ntold (e.g. co-
sine close to 1) are assigned a bigger weight (the weight
is bounded to 1 by construction of W (·)). The exponent p
allows us to adjust the degree of nonlinearity of W (·) and
the degree of correction (in our case p = 2 was sufficient).

Since the normals ni j are directly affected by the position
of their corresponding feet on the pallet, a weighted average
of the normals (with weights inversely proportional to the
distance from the previous estimation) allows to naturally
reduce the influence of the “outlier” foot. This discourages
the terrain estimator from modifying too much the previous
estimate when a foot position is far away from the previous
fitting plane.

Note that, since we are aiming at “averaging” orienta-
tions, we need to perform a Spherical Linear intERPolation
(SLERP) using geodesic curves [44] (see Appendix A).

D. Experimental Results

The terrain estimation video19 shows how the smart ter-
rain estimator improves locomotion by removing undesired
up/down motions.

With reference to our initial example, as long as the robot
has one foot on the pallet, the normal is closer to the one
provided by the other stance feet — which in turn are closer

19Terrain estimation video: https://www.youtube.com/watch?
v=_7ud4zIt-Gw&t=5m01s

to the previous estimation with all the feet on the flat ground
(see Fig. 14).

When the robot steps with the two lateral feet on the pallet,
the fitting error eLS is reduced (the feet are more coplanar)
and an inclined terrain plane is estimated.

The approach can address situations with non coplanar
feet (e.g. support has a “diamond” shape, shown later in
the video). In this case, the terms from the feet on the
pallet cancel each other, keeping the previous terrain plane
estimate unchanged, which is the desirable behavior. For the
single pallet example, we have eLS = 0.02 (for the “dia-
mond” shape eLS = 0.031), therefore we set the threshold
of intervention for the terrain correction to 0.002.

Since we want a stronger correction when the LS error
increases, we make the sensitivity factor s of the function
W (·) proportional to eLS.

VII. STAIR CLIMBING

Stair climbing is an essential skill in the for a legged robot.
Indeed, a versatile legged robot should be able to address
both unstructured and structured environments, such as the
one we can find in a disaster scenario.

The problem of stair climbing can be addressed through
foothold planning, to avoid collisions with the step edges.
An optimization taking into account the full kinematic of
the robot could possibly solve the problem, but it is currently
hard to be performed online.

Moreover, as previously mentioned, a full optimization
approach that plans for a whole staircase is prone to tracking
errors, which might eventually end up in missing a step and
fall.

An alternative strategy is to conservatively select the
foothold in the middle of the step (depth-wise). However,
depending on the inclination of the stairs and on the step-
size, the robot can end up in inconvenient configurations
from the kinematic point of view (e.g. with degeneration of
the support triangle and associated loss of mobility).

In the case of HyQ, the kinematic limits at the Hip-
Flexion-Extension joints (i.e. hip joints rotating around the
Y -axis, see [40]) are likely to be hit during the body motion
phase20.

According to our experience, keeping the joint posture as
close as possible to the default configuration21 it improves
mobility, and is an important factor for the robustness of
locomotion. Our heuristic approach, rather than avoiding po-
tentially dangerous situations (e.g. missed steps, collisions),
aims to be robust enough to cope with them.

In particular, we show that our vision-based stepping
approach, with minor modifications (see section VII-B), is
sufficient to successfully climb up/down industrial-size stairs.

20We adopt a “telescopic strut” strategy as in [45], which means that,
on an inclined terrain, the vector between each stance foot and the
corresponding hip aiming to be maintained parallel to gravity. On one hand,
this improves the margin for a static equilibrium. On the other hand, for high
stair inclinations, it can result in bigger joint motions, where the kinematic
limits are most likely hit.

21As the one shown in Fig. 2 (left), where the joints are in the middle of
their range of motion

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=5m01s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=5m01s

Fig. 15. Comparison of KBB and KBF configurations during stair climbing.
In the KBF while climbing up the GRF point against the direction of motion
making the robot get stuck.

In case the vision based swing strategy is not sufficient to
avoid frontal impacts (e.g. against one step), the step reflex is
triggered to achieve a stable foothold and prevent the robot
from getting stuck.

A. Influence of the knee configuration

The probability of “getting stuck” when climbing stairs
depends on the knee configuration (bent backwards or for-
ward). In particular, when the leg has a Knee Bent Backward
(KBB) configuration, it is more prone to have shin collision
when climbing downstairs. Conversely, a Knee Bent Forward
(KBF) configuration increases the risk of shin collision when
climbing upstairs. These are important aspects for the design
of robots that are expected to climb stairs.

Note that the contact forces at the shin are in the direction
of motion when the configuration is KBB and the robot is
climbing downstairs, whereas they point against the motion
with the KBF configuration and the robot climbs upstairs
(see Fig. 15). In the former case we might have slippage,
but the robot eventually moves forward, while in the latter
case the robot might get stuck or fall backwards, unless these
situation are properly dealt with (see Section V-D).

B. Stair locomotion mode

The stair locomotion mode can be triggered either by
the user or by a dedicated stair detection algorithm [46].
It consists in the activation of three features (relevant for the
task of climbing stairs) on top of the vision-based stepping
strategy:

1) Rescheduling of the gait sequence: the kinematic
configurations that cause mobility loss are undesired.
To avoid them, it is important to climb stairs with both
front feet (or back feet) on the same step. Specifically,
the next foot target is checked at each touchdown
(i.e. before the move body phase). If this is on a
different height than the foot on the opposite side, we
perform a rescheduling of the gait sequence.
For instance, if the last swing foot was the right
front (RF) then, according to our default configuration
(RH,RF,LH,LF)22 the next leg to swing would be
the LH. However, if the left-front (LF) foot is on a
different height (e.g. still on the previous step), the

22This sequence is the one animals employ that reduces the backward
motions [47].

whole sequence is rescheduled to move the LF instead.
The same applies for the back feet.

2) Conservative stepping: taking inspiration from the
ideas presented in [25], this module corrects the foot
location to step far away from an edge. The terrain
flatness is checked along the direction of motion and
the foothold is corrected (along the swing plane) in
order to place it in a more conservative location
(i.e. away from the step edge).

3) Clearance optimization: this feature (presented in
Section IV-C) is useful to avoid the chance of stum-
bling against the step’s edge. It adjusts the swing apex
and the step height to maximize the clearance from the
step.

C. Experimental Results

We successfully applied the reactive modules of our frame-
work to the problem of climbing up (and down) stairs, in
simulation, with our quadruped robot, HyQ23. In the video,
we show that HyQ is able to climb up and down industrial
size stairs (step raise 14 cm) and climbing up a staircase with
a 90◦ turn.

The approach is generic enough to be used also with
irregular stair patterns (different step raise) and turning stairs.
The user provides only a reference speed and heading.

In the simulation video we show the advantage of activat-
ing the stair locomotion mode and the importance of using
a vision based stepping strategy.

In the 90◦ staircase, we demonstrate omni-directional
capability of our statically stable approach, which allows to
move backwards on the staircase.

VIII. MOMENTUM BASED DISTURBANCE OBSERVER

A significant source of error might come from unmodeled
disturbances, such as an external push. Specifically, in the
case of a model-based controller (e.g. our Whole Body
controller [28]), inaccurate model parameters cause a wrong
prediction of the joint torques. This shifts the responsibil-
ity of the control to the feedback-based controllers, thus
increasing tracking errors and delays. However, if a proper
identification is carried out offline, these model inaccuracies
are mainly restricted to the trunk. Indeed, in the case of our
quadruped robot, the leg inertia does not change significantly,
but the trunk parameters are instead strongly dependent on
robot payload (e.g. a backpack, an additional computer,
different sets of cameras for perception, etc.).

In [48], we presented a recursive strategy which performs
online payload identification to estimate the new CoM posi-
tion of the robot’s trunk. The updated model is then used
for a more accurate inversion of the dynamics [3], [28].
Even though this approach is effective to detect constant
payload changes, it is not convenient to estimate time-
varying unknown external forces, which might change both
in direction and intensity. Indeed, this kind of disturbances

23Stair climb video:
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=7m13s

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=7m13s

Attachment point Attachment point

Fig. 16. Use cases for load estimation: (left) the robot is pulling a cart,
(right) the robot is pulling up a payload.

can dramatically increase the tracking errors and jeopardize
the locomotion, unless they are compensated online.

In the following, we mention two scenarios where an ex-
ternal disturbance observer is useful: 1) the robot is required
to pull a cart or a load (e.g. with some delicate material
inside); and 2) the robot is requested to pull up a payload
from underneath with a hoist mounted on the torso (see 16).

In this section, we present a MBDO able to estimate an
external wrench (e.g. cumulative effect of all the disturbance
forces and moments). We also show how this wrench is
compensated during the locomotion, thus improving tracking
accuracy and locomotion stability.

Our approach builds on top of the one described in [10],
which is designed to estimate an external linear force acting
on the robot base. We extended this work to the angular case,
estimating the full wrench at the CoM.

Since our robot has a non negligible angular dynamics,
estimating only a linear force has limited effectiveness.
Unless the force is applied at the CoM, the application
point, then the moment about the CoM must be worked
out. Our approach is more general as it does not require
the application point to estimate the full wrench.

The idea underlying the estimation is that any external
wrench24 Wext ∈ R6 has an influence on the centroidal
momentum (i.e. linear and angular momentum at the CoM)
[50].

We observe that the discrepancy between the predicted
(centroidal) spatial momentum ĥ(t) ∈ R6, based on known
forces (e.g. gravity and GRF), and the measured one h(t),
based on proprioceptive estimation of the CoM twist25, in
absence of modeling errors is caused only by an external
wrench Wext

26. We can exploit this fact to design an observer.
To obtain a prediction of ĥ(t) =

[
p̂G(t) k̂G(t)

]
, we ex-

ploit the centroidal dynamics (e.g. Newton-Euler equations)

24Henceforth, for simplicity, we talk about coordinate vectors and not
spatial vectors, that is why Wext ∈ R6 rather than Wext ∈ F6 [49]

25The twist (i.e. 6D spatial velocity) is usually computed by a state
estimator, which merges Inertial Measurement Unit (imu), encoder and
force/torque sensors [19].

26It is well known that it is impossible to distinguish between a CoM
offset and an external wrench [11]. Therefore our starting assumption is that
there are no modeling errors (i.e. a preliminary trunk CoM identification has
been carried out previously using [48]).

[50]:

ˆ̇pG(t) = mg +
c

∑
i=1

fi(t)︸ ︷︷ ︸
fknown

+ f̂ext(t)

ˆ̇kG(t) =
c

∑
i=1

(x fi(t) − xc(t)) × fi(t)︸ ︷︷ ︸
τknown

+τ̂ext(t)
(32)

where ˆ̇pG(t) ∈ R3 and ˆ̇kG(t) ∈ R3 are the linear and angu-
lar momentum rate, respectively; Ŵext(t) =

[
f̂ext(t) τ̂ext(t)

]
is a prediction of the wrench disturbance at time t, expressed
at the CoM point.

Starting from an initial measure of the momentum h0 =[
pG0 kG0

]
=
[
mẋcom(0) Icom(0)ω(0)

]
, we can get the

predicted ĥ(t), at a given time t, by integration of Eq. (32):

p̂G(t) = p0 +

∫ t
0
(
mg + ∑

cst
i=1 fi(t) + f̂ext(t)

)
dt

k̂G(t) = k0 +
∫ t

0(∑
cst
i=1(x fi(t) − xcom(t)) × fi(t)+

τ̂ext(t))dt
(33)

Then, the discrepancy between the measured and the
predicted momentum can be used to estimate the external
wrench disturbance, leading to the following observer set of
equations:{

f̂ext(t) = Glin (mẋcom(t) − p̂G(t))
τ̂ext(t) = Gang

(
Icom(t)ω(t) − k̂G(t)

) (34)

where the gains Glin,Gang ∈ R3×3 are user-defined positive
definite matrices, which describe the observer’s dynamics,
and Icom(t) ∈ R3×3 is the rotational inertia of the robot (as
a rigid body) computed at time t. On the other hand, Eq. (32)
can be rewritten using spatial algebra [49], considering the
whole robot as a rigid body:

ḣ =
d
dt
(Īcomv) = Īcomv̇ + v × Īcomv = Wknown + Ŵext

(35)
where v =

[
ẋcom ω

]
∈ R6 is the measured CoM twist

composed of CoM linear velocity and robot angular ve-
locity (for simplicity of notation, we omit henceforth the
dependency on t); Īcom ∈ R6×6 is the composite rigid body
inertia (expressed in an inertial frame attached to the CoM),
evaluated at each loop at the actual configuration of the robot;
Wknown =

[
fknown τknown

]
is the wrench due to contacts

and gravity.
Using Eq. (35), it is possible to formulate a wrench

observer where the nonlinear term v × Īcomv is compensated:

{
Īv̂ = Ī0v0 +

∫ t
0
(
Wknown + Ŵext − v × Īcomv

)
dt

Ŵext = GĪ (v − v̂)
(36)

where G = diag(Glin,Gang) ∈ R6×6 is the observer gain
matrix.

At each control loop, after the estimation step, we perform
online compensation of the estimated disturbance wrench

Fig. 17. Diagram for the computation of the ZMP due to external
disturbances. Left and right figures show different values of ∆xcomxy for
different external disturbances.

Ŵext in the whole-body Trunk Controller [28] (see Fig. 3):

W d = Wvm + Wg − Ŵext (37)

where W d ∈ R6 is the desired wrench (expressed at the
CoM), mapped to desired joint torques by the Trunk Con-
troller; Wg,Wvm ∈ R6 are the gravity compensation wrench
and the virtual model attractor (which tracks a desired CoM
trajectory) wrench, respectively.

A. ZMP compensation

Compensating for the external wrench is not sufficient to
achieve stable locomotion. During a static crawl, the accel-
erations are typically small, and the ZMP mostly coincides
with the projection of the CoM on the support polygon.
However, this does not hold if an external disturbance is
present. In this case, the ZMP can be shifted. If this is
not properly accounted for in the body motion planning, the
locomotion stability might be at risk.

Knowing that the ZMP is the point on the support polygon
(or, better, the line) where the tangential moments nullify, the
shift ∆xcom can be estimated by computing the equilibrium
of moments about this point (see Fig. 17):

(xcom − xzmp)︸ ︷︷ ︸
∆xcom

×(mg + fext) + τext = 0 (38)

where ∆xcom is the vector going from the ZMP to the CoM27.
Rewriting Eq. (38) in an explicit form28, we get [51]:

{
∆xcomx = 1

fextz−mg

[
fextx(xcomz − xzmpz) + τexty

]
∆xcomy = 1

fextz−mg

[
fexty(xcomz − xzmpz) − τextx

] (39)

then, the new target computed at the beginning of the base
motion will account for this term:

xtg
comx,y = xtg

comx,y + ∆xcomx,y (40)

27Note that only gravity and the external wrench have an influence on
∆xcomx,y , because the resultant of the GRF passes through the ZMP point,
by definition.

28Note that computing this equations as ∆xcom = [mg + fext]×τext where
[·]× is the skew symmetric operator associated to the cross product, returns
inaccurate results because [·]× is rank deficient.

-200

0

200

-200

0

200

0 5 10 15 20
-200

0

200

Fig. 18. Simulated estimation of a time-varying external force.

B. Stability Issues

Any observer/state feedback arrangement can lead to some
stability issues if the gains are not set properly (e.g. by sep-
aration principle). We did not carried out a system stability
analysis, since a proper evaluation of the stability region (and
an improved implementation taking care of this aspects) is
an ongoing work and it is out of the scope of this paper.
However, we noticed that there are some combinations of
gains for which the system becomes unstable.

In the experiments, we decided to be conservative and
set lower gains than in simulation. We also did not see a
significant improvement in using the implementation Eq. (36)
instead of Eq. (34).

C. Simulations

To evaluate the quality of the estimation, we inject in
simulation a known disturbance: a pure force to the back of
the robot (with application point bxp =

[
−0.6,0.0,0.08

]
m,

expressed in the base frame), while the robot is standing
still. Specifically, we generate a time-varying perturbation
force fext with random stepwise changes both in magni-
tude (between 40 N and 200 N) and direction, with additive
white Gaussian noise n ∈ N (0,20)N. The gains used in
the observer are the following: Gang = diag(100,100,100),
Gang = diag(10,10,10).

The result of the estimation is shown in Fig. 18: the
estimator is able to follow promptly the step changes with
the gains set, while a small filtering effect of the noise is
given by the observer dynamics.

To evaluate the effectiveness of the compensation, we
observe that an external force not properly compensated
(e.g. by the Trunk Controller) results in GRF which differ
from the desired ones (outputs of the optimization), even in
absence of modeling errors. This can create slippages and
loss of contact, as shown in the accompanying video29.

Therefore, a good metric to assess the effectiveness of the
compensation is the norm of the GRF tracking error ‖ f‖.

Figure 19 shows that the compensation improves signifi-
cantly the GRF tracking by almost two orders of magnitude.

The video also shows a simulation of the robot pulling
a wheelbarrow, illustrating the GRF (green arrows) and the

29MBDO simulations: https://www.youtube.com/watch?v=
_7ud4zIt-Gw&t=9m15s

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=9m15s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=9m15s

Time [s]
0 5 10 15 20

kf
k

[N
]

0

50

100

150

Fig. 19. Norm of tracking error the with (red) and without (blue)
compensation of the external wrench.

Fig. 20. HyQ quadruped robot pulling a wheelbarrow (of 12 kg) loaded
with 15 kg of additional weight. The total vertical force acting on the robot
is about 13.5 kg. The cart is attached to the robot through a rope.

location of the ZMP (purple sphere). In the simulation the
robot “leans forward”, compensating for the offset in the
ZMP created by the pulling force, while the back legs are
more loaded (i.e. with larger GRF) with respect to the front
ones, due to the weight of the wheelbarrow.

D. Experimental Results

To demonstrate the effectiveness of our approach, we
designed several test scenarios in which the robot is walk-
ing and compensating a time-varying disturbance force30.
In all the experiments, we set the gains to Glin =
diag(10,10,10), Gang = diag(1,1,1).

Experiment 1 - Pulling a Wheelbarrow: pulling a wheel-
barrow on a ramp is an interestings experimental scenario
for our MBDO.

This task poses several challenges: 1) the wheelbarrow
attached with a rope (intermittent unilateral pull constraint)

30MBDO experiments: https://www.youtube.com/watch?v=
_7ud4zIt-Gw&t=9m53s

creates a disturbance force which has a constant vertical
component (to counteract wheelbarrow gravity) and a time-
varying component (due to horizontal accelerations); 2) The
motion of the wheel barrow results in potential unload of the
rope that causes discontinuity in the force; 3) a walking gait
involves a mutable contact condition, implying that the com-
pensation force must be exerted by different legs at different
times, without discontinuitiess. 4) the additional loading of
the wheelbarrow is done impulsively; 5) walking on a ramp
shrinks the support polygon and reduces the stability margin,
requiring a high accuracy in the estimation/compensation
pipeline.

The accompanying video shows the robot walking on
a ramp while pulling a 12 kg wheelbarrow. We performed
different trials, with the disturbance wrench compensation
enabled, adding 10 kg and 5 kg supplementary weights (on
top of the wheelbarrow), in different stages of the walk.
Being the total weight of 27 kg equally shared between the
robot and the wheels of the cart, we estimate the total load
to be 13.5 kg. With the compensation enabled, the robot is
able to smoothly climb the ramp while dragging this extra
weight. Without the compensation, the robot was struggling
to maintain the support polygon even with 5 kg of extra
weight (for a total load of approximately 8.5 kg hanging from
the robot). With 15 kg it was unable to climb the ramp.

-200

-100

0

100

0 10 20 30 40

-100

0

100

Fig. 21. Wheelbarrow experiments. Estimated wrench in real experiments
while the robot carries out a wheelbarrow on rough terrain, (upper plot)
linear part (lower plot) the angular one. The two vertical lines represent the
moments where the 1-st (10 kg) and 2-nd (5 kg) load were applied.

Figure 21 shows the components of the estimated wrench.
As expected, the most relevant ones are fextx , which is time
varying, and fextz , which is mostly the constant and vertical
component of the disturbance force. Note how the vertical
component fextz changes when two different loads are added
to the wheelbarrow. The wheelbarrow is attached to the back
of the robot, hence it also exerts a constant negative moment
around the Y direction.

Since the interaction force with the wheelbarrow is un-
known, again the GRF tracking is the only metric available to
assess the quality of the compensation. Figure 22 shows the
pitch variation (upper plot) while walking first horizontally
and then up the slope. The GRF tracking for the LH leg is
also shown (lower plot). Thanks to the compensation, the

https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=9m53s
https://www.youtube.com/watch?v=_7ud4zIt-Gw&t=9m53s

tracking error is always below 40 N for the Z component
(about 5 % of the total robot’s weight) and 20 N for the X
component.

Experiment 2 - Leaning Against a Pulling Force: In this
experiment, a 15 kg load is attached to the back of the
robot with a rope. An intermediate pulley transforms the
gravitational load into a horizontal force. This test allows
to evaluate the effectiveness of the estimation/compensation
pipeline in presence of disturbance forces mostly horizontal.
In the experiments, the robot is able to pull 15 kg when
walking with the compensation enabled. When the estimation
is disabled, the controller accumulates errors and suffers
from instability. Figure 24 shows that the only significant
component in the estimated wrench is along the X direction
(horizontal). The force increases, while the robot walks,
because the load is pulled up gradually (see video), until it
reaches the steady value of 75 N (i.e. the 15 kg load halved
by the pulley

). The RViz visualization in the accompanying video
shows that the GRF have a constant component along the
X direction (e.g. pointing forward) to compensate for the
backward pulling force. At the same time, when the com-
pensation is active, the ZMP is shifted forward.

IX. CONCLUSIONS

In this work we addressed the problem of locomotion
on rough terrain. We proposed a 1-step receeding horizon
heuristic planning strategy that can work with variable levels
of exteroceptive feedbacks.

When no exteroceptive perception is available (and no
map of the environment is given to the robot) the locomo-
tion framework presented in this paper is still capable of
traversing challenging terrains. This is possible thanks to its
capability to blindly adapt to the terrain, mainly because of
the 1-step re-planning and of the haptic touchdown.

When a map of the surrounding world is available, the
proposed locomotion framework can exploit this information
by including the actual terrain height and orientation in
the planning, thus decreasing the chances of stumbling and

-0.3

-0.2

-0.1

0

0.1

0 10 20 30 40 50

0

200

400

600

Fig. 22. Wheelbarrow experiments: (upper plot) trunk pitch angle and
(lower plot) tracking of the Z component of the GRF of the LH leg, while
the robot carries the wheelbarrow on ramp.

Fig. 23. HyQ quadruped robot dragging a 75N horizontal disturbance force
(15 kg load on a pulley) to testing the performances of the MBDO.

-200

-100

0

100

0 10 20 30 40
-100

0

100

Fig. 24. Curling experiments. Estimated wrench: (upper plot) linear
part, the load is mainly along the X component (horizontal) (lower plot)
angular part, all the moments are oscillating around zero, showing that the
interaction force direction is passing close to the CoM.

allowing to traverse more difficult situations (e.g. climbing
stairs).

With the proposed approach we were able to achieve
several experimental results, such as traversing a template
rough terrain made of ramps, debris and stairs. We have
also shown our quadruped walking while compensating for
external time-varying disturbance forces caused by a load up
to 15 kg, using the MBDO that we proposed. All these tasks
where performed with the same locomotion strategy that we
presented in this paper.
Future works involve an extensive analysis of the stability of
the MBDO, considering its interactions with the Trunk Con-
troller loop. Based on these results, we intend to implement
improved observer that maximizes the stability region. Our
future research directions also include extending the naviga-
tion capabilities of HyQ to more complex environments made
of rolling stones and big size obstacles (>12 cm diameter).
For these scenarios, we envision the need to develop a
shin collision detection algorithm capable of kino-dynamic
proprioception using a foot-switch sensor [34]. Finally, we
plan to carry out extensive stair climbing experiments with
the proposed approach.

APPENDIX A

This appendix shows how to compute the weighted aver-
age of N orientation vectors.

Because finite rotations do not sum up as vectors do, it
is not possible to apply ordinary laws of vector arithmetic
to them. Specifically, the task of averaging orientations
(described in the algorithm 1 written in pseudo-code) is
equivalent to average points on a sphere, where the line is
replaced with a spherical geodesic (arc of a circle)31.

Algorithm 1 compute geodesic average
1: w1 ← 1
2: n̄ ← n1
3: for k = 2 to N do
4: θk = acos(dot(n̄,nk))

5: θ̄k = θk

k−1
∑

p=1
wp

k
∑

p=1
wp

6: n̄ ← rotate nk towards n̄ by angle θ̄k
7: end for

The iterative procedure illustrated above is generic and
can be used to obtain the average of N directional vectors
nk, even though at each iteration we are only able to directly
compute the average of two. After the initialization, at each
loop the actual average n̄ is updated with the next normal
nk. To do so, we first compute the angle θk between nk and
the actual average n̄. Then we scale this angle, according to
the (accumulated) weight of n̄. Finally, nk is rotated by the
scaled angle θ̂ toward n̄ and the result is assigned back to
n̄.

APPENDIX B

List of the main symbols used throughout the paper:
Symbol Description
xcom ∈ R3 coordinates of the CoM of the robot
x f i, ẋ f i ∈ R3 positions and velocities of the ith foot
fi ∈ R3 contact forces of the ith stance foot
n number of active joints of the robot
qd

j , q̇
d
j ∈ Rn joint reference positions and velocities

τd
f f ∈ Rn feedforward torque command

τd
pd ∈ Rn impedance torque command

τd ∈ Rn total reference torque command
φ roll angle of the robot’s trunk
θ pitch angle of the robot’s trunk
ψ yaw angle of the robot’s trunk
Φ = [φ ,θ ,ψ] actual orient. of the robot’s trunk
Φd = [φ d ,θ d ,ψd] desired orient. of the robot’s trunk
Φd(0) = Φ des. orient. at the start of the move base
Φtg target orient. at the end of the move base
xtg

com target CoM position of the trunk
xtg

comp projection of xtg
com on the terrain plane

hr robot’s height
fext ,τext external disturbance force and torque

31The geodesic distance is the length of the shortest curve lying on the
sphere connecting the two points.

ACKNOWLEDGEMENT

This work was supported by Istituto Italiano di Tecnologia
(IIT), with additional funding from the European Union’s
Seventh Framework Programme for research, technological
development and demonstration under grant agreement no.
601116 as part of the ECHORD++ (The European Coordi-
nation Hub for Open Robotics Development) project under
the experiment called HyQ-REAL.

REFERENCES

[1] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, pp. 794–807, Aug 2008.

[2] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli,
“Evaluating Direct Transcription and Nonlinear Optimization Methods
for Robot Motion Planning,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 946–953, 2016.

[3] C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon,
J. Buchli, D. G. Caldwell, and C. Semini, “Trajectory and foothold
optimization using low-dimensional models for rough terrain locomo-
tion,” in IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[4] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait
and Trajectory Optimization for Legged Systems through Phase-
based End-Effector Parameterization,” IEEE Robotics and Automation
Letters, pp. 1–1, 2018.

[5] B. Aceituno-Cabezas, C. Mastalli, D. Hongkai, M. Focchi, A. Rad-
ulescu, D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernando-
Lopez, and C. Semini, “Simultaneous Contact, Gait and Motion
Planning for Robust Multi-Legged Locomotion via Mixed-Integer
Convex Optimization,” IEEE Robotics and Automation Letters, pp. 1–
8, 2018.

[6] C. Mastalli, A. W. Winkler, I. Havoutis, D. G. Caldwell, and C. Semini,
“On-line and On-board Planning and Perception for Quadrupedal
Locomotion,” in IEEE International Conference on Technologies for
Practical Robot Applications (TEPRA), 2015.

[7] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization,” 2016 IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2016), 2016.

[8] B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti,
“On Time Optimisation of Centroidal Momentum Dynamics,”
https://arxiv.org/abs/1709.09265, 2017.

[9] B. J. Stephens, “State estimation for force-controlled humanoid bal-
ance using simple models in the presence of modeling error,” in
2011 IEEE International Conference on Robotics and Automation,
pp. 3994–3999, May 2011.

[10] J. Englsberger, G. Mesesan, and C. Ott, “Smooth trajectory generation
and push-recovery based on divergent component of motion,” in IEEE
International Conference on Intelligent Robots and Systems (IROS),
pp. 4560–4567, September 2017.

[11] N. Rotella, “Estimation-based control for humanoid robots,” in PhD
Thesis, University of Southern California (USC), 2018.

[12] G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the MIT
cheetah,” IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4102–4109, 2017.

[13] P.-B. Wieber, “Trajectory Free Linear Model Predictive Control for
Stable Walking in the Presence of Strong Perturbations Trajectory Free
Linear Model Predictive Control for Stable Walking in the Presence
of Strong Perturbations,” IEEE-RAS International Conference on Hu-
manoid Robots, 2006.

[14] H.-W. Park, P. Wensing, and S. Kim, “Online Planning for
Autonomous Running Jumps Over Obstacles in High-Speed
Quadrupeds,” Robotics: Science and Systems XI, 2015.

[15] C. D. Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and M. Hut-
ter, “Perception-less terrain adaptation through whole body control
and hierarchical optimization,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pp. 558–564, Nov
2016.

[16] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic Locomotion and Whole-Body Control for
Quadrupedal Robots,” IEEE/RSJ Intenational Conference on Intelli-
gent Robots and Systems (IROS), pp. 3359–3365, 2017.

[17] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[18] M. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,
and R. Tedrake, “Continuous humanoid locomotion over uneven
terrain using stereo fusion,” in 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pp. 881–888, nov
2015.

[19] M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D. G.
Caldwell, and C. Semini, “Probabilistic Contact Estimation and Impact
Detection for State Estimation of Quadruped Robots,” IEEE Robotics
and Automation Letters, vol. 2, pp. 1023–1030, apr 2017.

[20] M. Bloesch, M. Hutter, M. H. Hoepflinger, C. Gehring,
C. David Remy, and R. Siegwart, “State estimation for legged
robots: Consistent fusion of leg kinematics and IMU,” vol. 8,
pp. 17–24, MIT Press Journals, 2013.

[21] X. Xinjilefu, S. Feng, W. Huang, and C. G. Atkeson, “Decoupled
state estimation for humanoids using full-body dynamics,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
pp. 195–201, May 2014.

[22] S. Nobili, M. Camurri, V. Barasuol, M. Focchi, D. Caldwell, C. Sem-
ini, and M. Fallon, “Heterogeneous Sensor Fusion for Accurate
State Estimation of Dynamic Legged Robots,” Robotics: Science and
Systems XIII, 2017.

[23] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and
D. G. Caldwell, “A reactive controller framework for quadrupedal
locomotion on challenging terrain,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 2554–2561, 2013.

[24] M. Focchi, V. Barasuol, M. Frigerio, D. G. Caldwell, and C. Semini,
“Slip Detection and Recovery for Quadruped Robots,” vol. 3, pp. 185–
199, Cham: Springer Proceedings in Advanced Robotics, 2018.

[25] V. Barasuol, M. Camurri, S. Bazeille, D. Caldwell, and C. Semini, “Re-
active trotting with foot placement corrections through visual pattern
classification,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 10 2015.

[26] D. Belter and P. Skrzypczyński, “Rough terrain mapping and classi-
fication for foothold selection in a walking robot,” Journal of Field
Robotics, vol. 28, no. 4, pp. 497–528, 2011.

[27] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Motion planning for quadrupedal locomotion: coupled planning,
terrain mapping and whole-body control,” HAL id: hal-01673438v2,
2018.

[28] M. Focchi, A. Del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell,
and C. Semini, “High-slope terrain locomotion for torque-controlled
quadruped robots,” Autonomous Robots, vol. 41, no. 1, pp. 259–272,
2017.

[29] M. Focchi, R. Featherstone, R. Orsolino, D. G. Caldwell, and C. Sem-
ini, “Viscosity-based height reflex for workspace augmentation for
quadrupedal locomotion on rough terrain,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017.

[30] M. Focchi, V. Barasuol, I. Havoutis, J. Buchli, C. Semini, and
D. G. Caldwell, “Local reflex generation for obstacle negotiation
in quadrupedal locomotion,” in Int. Conf. on Climbing and Walking
Robots (CLAWAR), 2013.

[31] C. Semini, N. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. Caldwell, “Design of HyQ – a Hydraulically and Electrically
Actuated Quadruped Robot,” J. of Systems and Control Eng., 2011.

[32] M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini, “RobCoGen:
a code generator for efficient kinematics and dynamics of articulated
robots, based on Domain Specific Languages,” vol. 7, no. 1, pp. 36–54,
2016.

[33] A. S. Tar, G. G. Cserey, and J. Veres, May 2014. Patent N. WO
2013072712 A1.

[34] Y. Gao, C. Semini, M. Focchi, and D. G. Caldwell, February 2018.
Patent N. IT 102018000002407.

[35] A. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell,
and C. Semini, “Planning and execution of dynamic whole-body
locomotion for a hydraulic quadruped on challenging terrain,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2015.

[36] T. Boaventura, J. Buchli, C. Semini, and D. G. Caldwell, “Model-based
hydraulic impedance control for dynamic robots,” IEEE Transactions
on Robotics, vol. 31, pp. 1324–1336, Dec 2015.

[37] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and
C. Semini, “Application of Wrench based Feasibility Analysis to the

Online Trajectory Optimization of Legged Robots,” IEEE Robotics
and Automation Letters (RA-L), 2018.

[38] H. Audren and A. Kheddar, “3D robust stability polyhedron in multi-
contact,” Submitted to IEEE Transactions On Robotics (TRO), 2017.

[39] R. M. Alexander, Principles of animal locomotion. Princeton Univer-
sity Press, 2003.

[40] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of hyq - a hydraulically and electrically
actuated quadruped robot,” IMechE Part I: Journal of Systems and
Control Engineering, vol. 225, no. 6, pp. 831–849, 2011.

[41] M. Camurri, Multisensory State Estimation and Mapping on Dynamic
Quadruperd Robots. PhD thesis, Istituto Italiano di Tecnologia (IIT)
and Universiy of Genoa, 2017. http://iit-dlslab.github.
io/papers/camurri17phd.pdf.

[42] P. Fankhauser and M. Hutter, “A Universal Grid Map Library:
Implementation and Use Case for Rough Terrain Navigation,” in
Robot Operating System (ROS) – The Complete Reference (Volume
1) (A. Koubaa, ed.), ch. 5, Springer, 2016.

[43] C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao,
and D. G. Caldwell, “Design of the hydraulically-actuated, torque-
controlled quadruped robot hyq2max,” IEEE/ASME Transactions on
Mechatronics, vol. PP, no. 99, pp. 1–1, 2016.

[44] C. Gramkow, “On averaging rotations,” Journal of Mathematical
Imaging and Vision, vol. 15, no. 1-2, pp. 7–16, 2001.

[45] C. Gehring, S. Coros, M. Hutler, C. Dario Bellicoso, H. Heijnen,
R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger,
and R. Siegwart, “Practice Makes Perfect: An Optimization-Based
Approach to Controlling Agile Motions for a Quadruped Robot,” IEEE
Robotics and Automation Magazine, vol. 23, no. 1, pp. 34–43, 2016.

[46] S. Oßwald, J. S. Gutmann, A. Hornung, and M. Bennewitz, “From 3d
point clouds to climbing stairs: A comparison of plane segmentation
approaches for humanoids,” in 2011 11th IEEE-RAS International
Conference on Humanoid Robots, pp. 93–98, Oct 2011.

[47] D. Pongas, M. Mistry, and S. Schaal, “A Robust Quadruped Walking
Gait for Traversing Rough Terrain,” in Proceedings 2007 IEEE In-
ternational Conference on Robotics and Automation, pp. 1474–1479,
April 2007.

[48] G. Tournois, M. Focchi, A. Del Prete, R. Orsolino, D. G. Caldwell,
and C. Semini, “Online payload identification for quadruped robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017.

[49] R. Featherstone, “Rigid Body Dynamics Algorithms,” Springer US,
Boston, MA, 2008.

[50] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, pp. 161–176, Oct 2013.

[51] M. B. Popovic, A. Goswami, and H. Herr, “Ground reference points
in legged locomotion: Definitions, biological trajectories and control
implications,” The International Journal of Robotics Research, vol. 24,
no. 12, pp. 1013–1032, 2005.

http://iit-dlslab.github.io/papers/camurri17phd.pdf
http://iit-dlslab.github.io/papers/camurri17phd.pdf

	I Introduction
	I-A Contribution
	I-B Echord++
	I-C Outline

	II Locomotion Framework Overview
	III Body Motion Phase
	IV Swing phase
	IV-A Heuristic Stepping
	IV-B Vision Based Stepping
	IV-C Clearance Optimization
	IV-D Time Rescheduling

	V Reactive Behaviors
	V-A Slip Detection
	V-B Height Reflex
	V-C Step Reflex
	V-D Shin Collision
	V-E Experimental Results

	VI Terrain Estimation
	VI-A Vertical Fit
	VI-B Affine Fit
	VI-C Correction for Rough Terrain
	VI-D Experimental Results

	VII Stair climbing
	VII-A Influence of the knee configuration
	VII-B Stair locomotion mode
	VII-C Experimental Results

	VIII Momentum Based Disturbance Observer
	VIII-A ZMP compensation
	VIII-B Stability Issues
	VIII-C Simulations
	VIII-D Experimental Results

	IX Conclusions
	References

