
ALPINE: a climbing robot for operations in mountain environments

Michele Focchia,g,∗, Andrea Del Preteb, Daniele Fontanellic, Marco Fregod, Angelika Peere, Luigi Palopolif

aDipartimento di Ingegneria and Scienza dell’Informazione (DISI), University of Trento, via Sommarive 9, 38123, Trento, Italy
bDipartimento di Ingegneria Industriale (DII), University of Trento, via Sommarive 9, 38123, Trento, Italy
cDipartimento di Ingegneria Industriale (DII), University of Trento, via Sommarive 9, 38123, Trento, Italy
dFaculty of Engineering, Free University of Bozen-Bolzano, via Volta 13/A, 39100, Bolzano-Bozen, Italy
eFaculty of Engineering, Free University of Bozen-Bolzano, via Volta 13/A, 39100, Bolzano-Bozen, Italy

fDipartimento di Ingegneria and Scienza dell’Informazione (DISI), University of Trento, via Sommarive 9, 38123, Trento, Italy
gDynamic Legged Systems, Istituto Italiano di Tecnologia (IIT), Genova, via San Quirico 19d, 16163, Genova, Italy

Abstract

Mountain slopes are perfect examples of harsh environments in which humans are required to perform difficult and
dangerous operations such as removing unstable boulders, dangerous vegetation or deploying safety nets. A good
replacement for human intervention can be offered by climbing robots. The different solutions existing in the literature
are not up to the task for the difficulty of the requirements (navigation, heavy payloads, flexibility in the execution of
the tasks). In this paper, we propose a robotic platform that can fill this gap. Our solution is based on a robot that
hangs on ropes, and uses a retractable leg to jump away from the mountain walls. Our package of mechanical solutions,
along with the algorithms developed for motion planning and control, delivers swift navigation on irregular and steep
slopes, the possibility to overcome or travel around significant natural barriers, and the ability to carry heavy payloads
and execute complex tasks. In the paper, we give a full account of our main design and algorithmic choices and show
the feasibility of the solution through a large number of physically simulated scenarios.

Keywords: Planning, Control, Climbing Robot, Trajectory optimization

Supplementary Material

� Video of experimental results is available at:
https://youtu.be/FqsREaoe-28

� Code available at:
https://github.com/mfocchi/climbing robots2
(with source code used to generate all the figures in
Section 6).

1. Introduction

Mountain environments are extremely vulnerable to
climate change and often subject to landslides, floods and
avalanches. Such ruinous events endanger a large number
of economic activities (first and foremost tourism and agri-
culture) and put at risk the very survival of small towns
and villages. Any realistic strategy to counter these risks
is necessarily based on constant monitoring and on regu-
lar maintenance operations on the mountains slopes. Such

∗Corresponding author
Email addresses: michele.focchi@unitn.it (Michele Focchi),

andrea.delprete@unitn.it (Andrea Del Prete),
daniele.fontanelli@unitn.it (Daniele Fontanelli),
marco.frego@unibz.it (Marco Frego), angelika.peer@unibz.it
(Angelika Peer), luigi.palopoli@unitn.it (Luigi Palopoli)

activities include detaching from the mountain walls dan-
gerous boulders (a.k.a. scaling), loosing potentially un-
stable shrubs and bushes, and deploying landslide protec-
tion networks. The interested areas are often difficult to
reach and maintenance activities are typically performed
manually by highly trained human operators. These tasks
are challenging and inherently unsafe due to the presence
of unstable rocks in the operation area. As it frequently
happens, a dangerous human activity in harsh scenarios
provides strong motivations for the development of ad-hoc
robotics solutions, which in our case take the shape of
climbing robots. A climbing robot is endowed with a pack-
age of technical solutions that enable its navigation along
difficult and unstable mountain slopes and the execution
of complex tasks, such as rock stability assessment, set-
ting anchors in the rock, and scaling loose or dangerous
boulders.
Related work. The ability of climbing robots to move
on vertical surfaces [1] naturally discloses a wide range
of opportunities in application areas such as glass clean-
ing of tall buildings, pipeline maintenance or infrastruc-
ture inspection, such as bridges. In this regard, [2] evalu-
ates various solutions to the problem of automating bridge
inspection and maintenance tasks using robotic systems.
Compared to the application of flying robots for inspection
tasks [3], the use of climbing robots holds the promise of
longer mission durations and more accurate operations.

Preprint submitted to Robotics and Autonomous Systems January 30, 2025

https://youtu.be/FqsREaoe-28
https://github.com/mfocchi/climbing_robots2

A first family of robots in this context are walking
climbing robots that are often bio-inspired [4] and have
been popular in the last three decades. An example is the
Stickybot [5], a gecko-inspired robot with adhesive struc-
ture under its toes to hold itself on any kind of surface.
Others again took inspiration from the flexible claws of
wasps or flies [4]. Such wall-crawling solutions, although
fascinating in their design principles, have not made in-
roads into the market. Their main limitation is the risk of
accidental falls, possibly caused by strong wind and/or by
the surface condition (e.g., the feet could slip away from
the slope in conditions of wet and irregular terrain). The
same problems determine strong limits on the payload that
these robots can carry.

A different family of solutions is based on hybrid fly-
ing/climbing robots, i.e., robots that can fly and that, at
the same time can land on, adhere to and ascend vertical
surfaces. An example of this kind is Scamp [6], which
uses a propeller to stick to the wall. Caros (Climbing
Aerial RObot System) [7] is a fairly conventional quadro-
tor equipped with four wheels and capable of transitioning
from the ground to the wall. Its rotors are tilt-controlled,
hence their thrust is used to generate aerodynamic ad-
hesion to stick to the wall. The limitation is that the
robot can only “slide” on the surface and cannot overcome
obstacles. Hybrid propeller-wheeled wall-climbing robots
achieve vertical locomotion with wheels by pushing the
robot body against the wall using the thrust force of the
propellers [8, 9]. Because they can maintain a constant dis-
tance to the wall (differently from UAVs), they can capture
high quality images of structures for failure/ defect detec-
tion. This simplifies the estimation of crack length and
width [10]. They can also perform periodic infrastructure
health monitoring by performing a hammering test [11].
However, the reduced payload is a strong limitation for
the execution of different maintenance tasks.

A third family is given by climbing robots attached to
ropes. They are developed for different reasons, ranging
from automated cameras hanging over a stadium for dy-
namic recordings [12], to windows cleaning robots, cranes
and other support systems [13, 14], rovers for cave explo-
rations on other planets [15]. The main differences are the
positions of the anchor points where the ropes are fixed,
which depends on the application. The reachable space
of the robot is defined by the number and the position
of the attachment points of the cables. Most results in-
volve fixed extrema for all ropes (one or more) [16], and
the control is done with non standard optimisation tech-
niques, that combine optimal control or MPC and simpli-
fication steps like linearisation, because of the presence of
kinematic loops and high nonlinearities in the model. On
the other hand, if one end of the ropes is free, the robot
will swing and other positioning methods should be en-
visaged: in fact, the tension is not bilateral. Examples
of this family of solution are given by robots hanging on
ropes [17, 18, 19] (hanging robots) and are credited with
the potential to address the problem of payload limits. In

addition, a robot hanging on ropes can potentially explore
large areas, with limited power consumption and with a
remarkable speed. An example of a hanging robots with
high technology readiness level are BladeBUG [18] and
Aerone [19] robots, which can inspect, diagnose, repair,
and clean wind turbine blades. Although well engineered,
these robots can only operate on surfaces with a regu-
lar geometry (e.g., wind turbine blades). Furthermore,
they moves with a low speed, due to the crawling motion
along the blades. Another example is the Axel/DuAxel
robot [20]a rover for space exploration that moves by reel-
ing/unreeling its built-in tether, lowering itself down al-
most any type of terrain, which has been optimised for
resisting to the very cold temperatures of the Moon or
Mars and their sand traps. Finally, the aerial robot [21]
is a tethered bicopter with horizontal propellers, that by
swinging manoeuvres is able to navigate glacial-inspired
scenarios, where there are obstacles.

Other hanging robot solutions such as the novel bio-
inspired dragline locomotion [22] or CLIO [23], can reach
high navigation speed using an actuated winding/releasing
mechanism, which is a decisive advantage for applications
requiring a prompt intervention over different solutions
such as climbing robots that use sticky pads and gaits to
climb up/down [24, 25, 26, 27].

An efficient locomotion mechanism is certainly key for
a climbing robot. However, other aspects are gaining an
equal level of importance. The peculiar nature of the ac-
tivities required to climbing robots, makes them a difficult
fit for full autonomy. Existing solutions require a tight su-
pervision by humans in visual contact from helicopters or
special structures, such as telescopic platforms or scaffolds.
The difficulty and the costs of this type of human inter-
vention calls for an increased level of autonomy for climb-
ing robots. Two key aspects for increasing autonomy are
control and motion planning. Some approaches involved
numerical optimisation applied to lower-dimensional tem-
plate models [28] or hierarchical whole-body controllers
to plan the motion of the flying base [29]. In particular,
[28] optimises a multi-jump trajectory where the contact
locations and the jump time are free variables, thus over-
coming a gap obstacle. However, no physical simulation
of the approach was provided.

In our previous paper [23], we showed an optimisa-
tion of a jump trajectory with a single rope. A rope-based
climbing robot moving with jumps is somewhat close to the
Salto-1P jumping robot [30], but the key feature of jump-
ing with a rope lies in the ability to address terrains of high
inclination (up to vertical). In legged robots, jumping mo-
tions on the ground are usually synthesised by means of
sophisticated numerical optimisation techniques [31, 32].
For example, Ding et al. [33] consider the dynamics up
to the actuation level and employ direct optimal control
approaches to derive a trajectory for the centre of mass
that satisfies constraints and avoids obstacles (e.g. a gap
on the wall) and mixed-integer programming approaches
in the case that the contact location is not known a pri-

2

ori. Since the main drawback of these solutions is the
exponential computation time, the use of approximations
becomes mandatory. As an example, Jiang et al. [34] and
Grandia et al. [35] propose using convex polyhedrons to
approximate the terrain and constrain the reachability of
the robot feet.
Example Use Case and Requirements. The system
requirements are best illustrated through a realistic use
case related to a typical maintenance operation in a moun-
tainous environment (see Figure 2). In this example, the
system’s objective is to monitor the condition of a steep
mountain wall (the slope could be 0.1 radians from the
vertical line). Reaching the site is a highly challenging
task for humans, requiring advanced mountaineering tech-
niques. Not only are the rock walls steep and difficult to
climb, but they are also obstructed by obstacles up to 2 m
in size, such as bushes, rock protrusions, and cracks. Re-
placing humans with a robot necessitates replicating the
same navigation capabilities in these harsh conditions.

In the outlined scenario, we assume that the robot has
access to a 3D map (e.g., acquired by a drone), but it
still requires onboard sensing capabilities to localise it-
self within the map and to measure its distance from the
wall. Moreover, even after reaching the intervention site,
the robot must be capable of executing potentially com-
plex operations. For instance, assessing the stability of
a boulder might involve hammering and conducting non-
destructive testing. Typical equipment for hammering op-
erations [36] is designed to be portable and lightweight,
but the duration of such tests can be substantial (in the
order of 30 minutes). To function effectively in challenging
scenarios such as the one described, the robot must meet
the following requirements:

R1 - Carry a payload (e.g., in the order of kilograms)
and maintain a stationary position for extended periods
without consuming energy (e.g., to perform inspection or
maintenance operations such as hammering; see Fig. 1).

R2 - Move quickly and efficiently (e.g., in the order of
seconds) with sufficient accuracy (e.g., in the order of cen-
timetres) along very steep, vertical, or slanted mountain
slopes.

R3 - Traverse irregular surfaces, overcoming obstacles
(e.g., in the order of metres) such as bushes and rock for-
mations.

R4 - Autonomously or semi-autonomously execute a
wide range of on-site operations.
Mapping requirements into design choices. The sys-
tem requirements had a significant influence on the design
choices, as detailed below:

� R1: ALPINE operates using two ropes, enabling it
to carry heavy loads and remain stationary with min-
imal energy consumption using brakes; the anchor
point is designed in such a way that, for the intended
motion of the ropes, there is not interference nor fric-
tion with other parts of the anchor (e.g. the anchor
ring is protruding from the rock).

Unstable
rocks

Figure 1: Examples of maintenance operations: rock inspection
with rebound hammering (left), debris removal (middle), injec-
tion of demolition resin (right).

Bush

- F2: Stabilization during flight

- F1: Jump toward desired locations

- F3: Dissipate kinetic energy at landing

Features

Dangerous
crack

Left Anchor

Locations for maintenance
operations

Challenges

A

B
C

D

- R1: Carry heavy payload / maintain
a stationary position for a long time

- A: Two adjustable ropes (F1, R1, R2)

- B: Prismatic pushing leg (F1, R2, R3)

- C: Propeller (F2)

- D: Landing mechanism (F3, R4)

- R2: Move quickly and efficiently

- R3: Overcome large obstacles

- R4: Execute on-site operations

Actuators

Figure 2: Use cases and challenges for tethered climbing robots
and main capabilities of the ALPINE platform.

� R2: ALPINE coordinates the two ropes and a pris-
matic leg to quickly push itself away from its resting
position for navigation. During jumps and flight, the
ropes are independently wound or unwound to con-
trol its trajectory, while an auxiliary rotor stabilises
the flight. This approach, similarly to the Salto-1p
robot [30], demonstrates energy efficiency and high
performance in terms of travel time.

� R3: The paper presents motion planning and control
strategies for navigating while overcoming obstacles
(see Figure 2). A simplified model of the system
allows for efficient numerical solutions to the multi-
jump planning and control problem.

� R4: A landing mechanism dissipates the excess of
kinetic energy and stabilises the robot on the wall
during task execution. Combined with appropriately
designed planning and control components, this pro-
vides a high degree of operational flexibility.

Scientific challenges. The first scientific challenge of the
ALPINE robot lies in its under-actuation: it is impossible

3

to fully control the robot’s Center of Mass (CoM) when
not in contact with the wall. Second, one of the actuators
(the leg) operates in an impulsive way, while the ropes can
only operate in the pulling direction (unilateral actuation).
The problem is partially alleviated by the auxiliary pro-
peller during the flight phase, but the resulting system dy-
namics is hybrid (the continuous evolution is interspersed
with discrete changes). As regards motion planning, since
the motion of the robot depends on both the impulse ex-
erted on the wall and the winding/unwinding of the ropes,
a successful strategy should consider the combined effects
of under-actuation, rope constraints, the actuator limits
and the contact interaction (i.e., friction). Whilst numeric
optimisation is certainly a powerful tool [31, 37], the com-
bination of these factors and hybrid dynamics, makes the
problem tractability far from obvious.
Paper Contribution and Summary.

The contributions of the paper can be summarised as
follows.

� The conceptual design of the jumping robot platform
ALPINE (Section 2);

� A reduced-order model to simplify the solution of the
optimal control strategies (Section 2);

� A static analysis to evaluate the maximum value of
operating forces that the system is able to withstand
in the execution of its tasks (Section 3);

� A computationally efficient planning algorithm to
generate a jump to reach desired targets while over-
coming obstacles (Section 4);

� A motion control strategy to track the reference
trajectories with high landing accuracy on approx-
imately locally flat surfaces (Section 5).

The efficacy of the system design, as well as of motion
planning and control, is tested in a large set of physical
simulations (Section 6), while the limits and the future
work directions are summarised in Section 7.
Improvements over the preliminary version. The
paper builds on a preliminary idea introduced in a confer-
ence paper [23] but presents a significant package of inno-
vations that greatly enhance the platform’s effectiveness
and operational capabilities. Key advancements include:

� Enhanced actuation mechanism: Introducing
two ropes and a propeller (instead of one rope) ex-
pands the workspace and improves stability during
flight.

� Advanced Control Strategy: Transitioning to a
Model Predictive Controller enables obstacle avoid-
ance and represents a substantial improvement
over the original Proportional-Derivative controller
paired with a basic motion planning mechanism.

� Improved landing mechanism: The new design
addresses the limitations of the original retractable
leg by incorporating a more realistic and robust land-
ing system.

� Static equilibrium analysis: This addition pro-
vides a clear evaluation of the device’s operational
capabilities.

Extensive simulations validate the realism and practicality
of these innovations.

Nomenclature

n Number of Degrees of Freedom (DoFs) of the system

p Position of the robot CoM (reduced-order model)

pa,i Position of i-th anchor

ph,i Position of i-th hoist

pl,i Position of the i-th landing wheel

Jh,i Jacobian of the i-th hoist location

Jr Jacobian mapping rope forces/velocities on the CoM

Jc Jacobian of the prismatic leg’s foot contact point

M Inertia matrix

h Bias terms (Centrifugal, Coriolis and Gravity)

τa Actuated generalized forces

µ Friction coefficient

dh Distance of hoist positions on top the base link

da Distance between anchor points

db Distance between landing feet

dw Distance of landing feet w.r.t. base frame (along X)

ψ Reduced-order model state: angle of the ropes w.r.t.
to the vertical

l1 Reduced-order model state: length of the left rope

l2 Reduced-order model state: length of the right rope

Ad,bd Reduced order model dynamic terms

Ap,bp Polytope constraints matrix

fr,max /min Maximum/minimum rope force

fleg,max Maximum (normal) leg force

n⊥ unit vector perpendicular to the rope plane

n∥ unit vector passing through the anchor points

nc normal of the surface in contact with the prismatic
leg’s foot

N Non Linear Program (NLP) Discretisation steps

Nmpc Model Predictive Control (MPC) Discretisation steps

dtsim Simulation time interval

dt Discretisation time interval for the NLP optimisation

4

dtmpc Discretisation time interval for the MPC optimisation

tth Thrust impulse duration

ws NLP Smoothing weight

whw NLP Hoist work weight

wi NLP Impulse work weight

wp/pf/u,mpc MPC weights

δi Impulsive disturbance

δc Constant disturbance

KL, DL Landing strategy impedance parameters

vl,l, vl,r Scalar velocity of the center wheels (parallel to the
wall)

vr,l,vr,r Scalar rope speed along the rope axes

Rw Landing wheels radius

fleg Leg impulse force

ar,i i-th rope axis

fr,i i-th rope force

fp Propeller force

Unless specified, all vectors are expressed in an inertial frame

W frame (attached to the left anchor). Vectors and matrices

are highlighted in bold.

2. Robot Modeling

As mentioned above, a robot hanging on a rope has
the ability to preserve energy, when static, by simply en-
gaging the brakes in the hoist. However, a robot hanging
on a single rope [23, 28] has severe limitations in terms
of possible lateral motions, and hence reachable locations.
Additionally, the lateral pull of the rope makes the system
unstable when static, limiting its ability to execute tasks.
A possible way to tackle these issues is to have an addi-
tional prismatic joint (a slider) that enables the motion of
the rope anchor point. While easy to control, this solu-
tion requires that the slider be mounted on a path clear
from obstacles, which is difficult in environments where
rock protrusions and bushes are common.

With these limitations in mind, we opted for a differ-
ent design based on a second rope attached to an addi-
tional fixed anchor on the wall. Both ropes can be inde-
pendently wound/unwound by means of hoist motors (see
Fig. 4). Deploying the two anchors independently removes
the limitation of having a clear path for the slider, while
the mechanical design is significantly simplified. Another
advantage is an increased robustness to disturbances com-
ing from the operations, as detailed in Section 3. The
price to pay is a higher control complexity, since the re-
lease/winding of the ropes needs to be accurately coordi-
nated.

Anchor_l

pre_rope

rope

pre_base1_l

pre_base2_l

pre_base3_l

base_link

Anchor_r

fake_link

fixed_joint_sdf

foot

landing_leg_l

upperleg

lowerleg

landing_wheel_l

Landing
mechanism

Propulsion leg

Section 2.1.1

Figure 3: Topology of the joints for the full detail model. Links are
red boxes and joints blue circles (revolute) or blue boxes (prismatic).
Shaded joints are the passive ones, not shaded ones are the active
ones.

2.1. Full robot model

We model the robot as 3 kinematic chains branching
from the base link (see Fig. 3). One chain represents the
propulsion mechanism (a 3-DoF prismatic leg) [23]: at the
extreme of the leg there is a point-like foot. The leg is
also endowed with two adjacent rotational joints, called
hip pitch (qHP , rotating about the base Y axis) and hip
roll (qHR, rotating about the base X axis). These joints
are needed to align the leg to the thrusting impulse, so as
to avoid the generation of centroidal moments that would
pivot the robot around the rope axis. A prismatic knee
joint (qK) is used to generate the thrusting impulsive force.
The landing mechanism is represented by two additional
rotational joints that move the landing links (see Fig. 5)
with two passive wheels at the extreme as described in
more detail in Section 2.1.1.

The other two kinematic chains model the two ropes.
To host the hoist motors, the attachment points of the
ropes are mounted with an offset dh/2 w.r.t. the base
frame (see Fig. 4). We model the attachment between
each anchor and the corresponding rope by 2 passive (ro-
tational) joints. Each rope can be seen as an actuated
prismatic joint (qRP,l or qRP,r), followed by 3 passive ro-
tational joints to model the connection between the rope
and the base link. The described mounting choice is in-
deed equivalent to allocating 3 joints at the anchor point
and 2 at the base. However, to avoid a redundant repre-
sentation, there must be only one passive rotational joint

5

Base
link

x

y
z

Right
anchor

x

yz

Left
anchor

Figure 4: Kinematic model of the ALPINE robot with two ropes
(standard definitions). A propeller is mounted on the rear of the
robot. In pink are depicted all the actuation forces. The inertial
(W) frame is attached to the left anchor frame.

aligned with the rope. To increase the robot controllabil-
ity (e.g. capability to apply forces on the base) along the
direction perpendicular to the ropes plane, we added a pro-
peller mounted on the back of the base link, as depicted
in Fig. 4. This brings several advantages. 1) It allows
the robot to reject disturbances and reduce tracking er-
rors (during the flight) in the direction perpendicular to
the ropes plane, enhancing controllability. 2) It increases
the maximum force the robot can withstand during opera-
tions without losing contact. This is particularly relevant
when dealing with harder rocks: by activating the pro-
pellers to provide additional push against the walls, we
can increase the force margin available for more demand-
ing operations, such as drilling. 3) It enables the control
of the robot orientation both in contact and 4) during the
flight, by actuating the propellers in a differential way.
In this paper, we will focus on exploiting only the distur-
bance rejection feature 1), and the reorientation 3) leaving
the other two features for future works. Theoretically, the
propeller itself could be used in place of the prismatic leg
to generate the push from the wall. However, the explo-
sive motion required to achieve high acceleration in a short
time interval is difficult to achieve with a propeller. There-
fore, we chose to rely on a prismatic actuator specifically
designed for this purpose. In this design, we preferred to
keep the propeller size contained and use it only for correc-
tions of the deviations from the desired trajectory due to
environmental disturbances (see Section 5.1). The differ-
ential commanding of a couple of propellers could enable
the horizontal alignment of the leg to the thrusting im-
pulse, removing the need for the qHR joint. We showcase
in the accompanying video the solutions with both qHR
and qHP joints and with propellers plus qHP joint.

Neglecting the 4 joints of the landing mechanism (see

Section 2.1.1) and the propeller, the total number of DoFs
is n = 15, represented by the configuration vector q ∈ R15.
Ten of these joints are relative to the attachment of the
ropes to the hoist and the anchor and are passive. Fig. 3 il-
lustrates the joint definitions: MRX (Mountain Rope X =
Pitch/Roll), RP (Rope Prismatic) and RBX (Rope Base
X = Roll/Pitch/Yaw). By stacking the different joint vari-
ables related to the left rope, we obtain the vector qB,l =[
qMRP qMRR qRP qRBP qRBR qRBY

]T
. We can

repeat the same for the right rope stacking the joint vari-
able into the vector qB,r and come up with the definition

of the joint state q =
[
qTB,l qTB,r qHP qHR qK

]T
,

where additionally we have HX (Hip X = roll/pitch) and
K (Knee) joints. The dynamic equation of motion is sub-
ject to a holonomic constraint because the two attachment
points ph,l(q), ph,r(q) should maintain a fixed distance dh
among them, i.e.

∥ph,l(q)− ph,r(q)∥2 = d2h. (1)

This description creates a kinematic loop represented by
the trapezoid having the two ropes as edges. The full
dynamic equation is reported here just for reference

M(q)q̈+ h(q, q̇) =

[
010×1

τa

]
+ Jc(q)

T fc + Jp(q)
T fp,

A(q)q̇ = 0,

τRP,l ≥ 0,

τRP,r ≥ 0,

(2)

where M ∈ Rn×n is the inertia matrix, h ∈ Rn represents
the bias terms (Centrifugal, Coriolis and Gravity), and
Jc ∈ R3×n is the Jacobian relative to the prismatic leg
contact point (foot) that maps the contact force fc ∈ R3

into the generalised coordinate space. fp ∈ R is a scalar
and represents the magnitude of the propeller force that
is mapped into the robot dynamics through the transpose
of Jp(q) = x̂Tb Jb(q) ∈ R1×n, where x̂b is the X axis of

the base link and Jb(q) =
[
∂p(q)
∂q

]
∈ R3×n is the Ja-

cobian of the robot base. The A(q)q̇ = 0 constraint is
(1) rewritten at the velocity level. The force/torque vari-
able of the the actuated joints are grouped into the vector

τa =
[
τRP,l τRP,r τleg

]T ∈ R5. We will employ the
right hand side of (2) to express the mapping of the con-
tact force and of the propeller force into joint torques.

2.1.1. Landing Mechanism

The robot in Fig. 4 would not be able to self-stabilise on
the wall with a single leg, therefore we designed a landing
mechanism, depicted in Fig. 5, formed by two additional
rotational joints qL,l and qL,r located on the sides of the
base link allowing to activate two landing legs. Moreover,
we added two wheels at the tips of the landing legs, which
can move laterally during the contact and, hence, avoid
the generation of internal forces (i.e., parallel to the wall).

6

Base
link

x

zy

landing leg

landing wheel

Figure 5: Overview of the landing mechanism, with joint and variable
definitions. dw and db are the wall clearance and distance between
landing wheels. Passive wheels are attached to the extremes of the
landing legs.

2.2. Reduced-order model with minimal representation

The high number of states and the constraint in (2)
makes the full dynamics hardly tractable for control de-
sign. For this reason, we derive a lower dimensional
(reduced-order) model with only 3 DoFs that captures the
dominant dynamics of the system along with the holo-
nomic kinematic constraint (1). To this end, we make
the following simplifying assumptions: 1) the mass is en-
tirely concentrated in the body attached to the rope and
we neglect the angular dynamics and 2) during the wind-
ing/rewinding of the ropes they remain completely tight
(i.e., they are not bending).

In order to simplify the control design, we approxi-
mate the rope attachment points as coincident and then
choose a minimal representation for the state with 3
DoFs. Specifically, the reduced state qr is defined as
qr =

[
ψ l1 l2

]
∈ R3, where ψ is the angle formed from

the ropes plane and the wall, and l1, l2 the length of the left
and right ropes, respectively. A geometric scheme of the
reduced model with vector definitions is shown in Fig. 6.
Assuming the inertial frame W attached to the left anchor
point, the dynamics of the point p (where the robot mass
is concentrated, by assumption) is defined by the Newton
Equation:

m(p̈− g) = âr,lfr,l︸ ︷︷ ︸
fr,l

+ âr,rfr,r︸ ︷︷ ︸
fr,l

+fleg + x̂bfp, (3)

where âr,i =
p−pa,i

∥p−pa,i∥ ∈ R3 and fr,i ∈ R, with i = {r, l},
are the rope axes and the magnitude of the exerted forces,
respectively. The term x̂bfp represents the propeller’s force
where x̂b ∈ R3 is the base link X unit axis which is per-
pendicular to the ropes’ plane. 1

The two anchor point positions are given by pa,l and
pa,r. The input variables are: 1) the rope forces fr,i ori-
ented along the rope axes; 2) an impulsive pushing force

1Differently from (2), because we adopt a point mass assumption,
the base link is always aligned with the ropes’ plane (i.e. n⊥ = x̂b).

Anchor_l

Anchor_r

Figure 6: Reduced order model with two anchor points: standard
definitions (left) and side view (right). The impulsive force fleg is
applied only when the leg is in contact.

fleg (applied at p) that the robot generates when in contact
with the mountain (see Fig. 6). Therefore, the expression
of the forward kinematics for the position p of the robot
(origin of the base-link) as a function of qr is given by:

p(qr) =

l1 sin(ψ)

√
1− (d2a+l

2
1−l22)2

4d2al
2
1

(d2a + l21 − l22)/(2da)

−l1 cos(ψ)
√

1− (d2a+l
2
1−l22)2

4d2al
2
1

 , (4)

where the holonomic constraint (1) has been embedded (by
construction) thanks to specific choice of coordinates qr
and da is the distance between the anchors. The dynamics
of the point mass as defined in (3) is given by the second
derivative of (4), which gives an implicit expression for
the coupled derivatives ψ̈, l̈1 and l̈2, thus leading to the
following matrix form of (3)

m

Ad

ψ̈l̈1
l̈2

+ bd

︸ ︷︷ ︸

p̈

= mg + fleg + Jr

[
fr,l
fr,r

]
+ x̂bfp︸ ︷︷ ︸

ftot

, (5)

where Ad and bd are reported in the Appendix, and Jr =[
âr,l âr,r

]
∈ R3×2. Finally, we obtain:ψ̈l̈1

l̈2

 = A−1
d

[
1

m
ftot − bd

]
. (6)

Note that this model has a singularity when the term
sin(ψ) in Ad becomes zero. The configuration ψ = 0
corresponds to the robot base lying on the vertical wall,
which never happens if the ropes are connected directly
(i.e., without obstacles in between) to the robot base, due
to the presence of the leg. For over-hanging walls, no rope-
based system can be employed because the contact cannot
be ensured nor maintained.

7

Anchor,l Anchor,r

Friction cone

Wall

X

Z

Z

Y

Figure 7: Definition of vectors and frames for the rigid body model
used in the static analysis: (left) side view (right) front view. Differ-
ently from Section 2, the inertial frame W is attached to the CoM.

3. Static Analysis

3.1. Feasible Polytope

In this section we present a numerical procedure to
evaluate the static stability of the robot for a set of lo-
cations once landed on the wall. Since the robot with
only one leg would be inherently unstable on the wall,
we consider the ensemble robot and landing mechanism.
The analysis aims to answer the following queries: (Q1)
Is it possible to find a static balance between gravity, rope
tensions and forces at the landing wheels for a given po-
sition that allows the robot to remain in contact with the
wall? The presence of this equilibrium is key to the exe-
cution of any robot task. (Q2) How do the limits on the
actuators and the presence of external forces affect static
stability? More generally, for each robot location on the
wall it is important to evaluate the maximum operation
forces that can be generated. Both aspects are fundamen-
tal to execute any task, since the contact forces generated
for maintenance operation (called operation forces) must
be balanced by the landing wheels and by the ropes. For
instance, if operation forces required a force on the feet
violating the unilateral condition, the robot will tip over.
To answer Q2 we consider unilaterality, friction and ac-
tuation constraints, while to answer Q1 only unilaterality
and friction are sufficient.

The following assumptions underlie the present analy-
sis: 1) we approximate the assembly robot+landing mech-
anism as a rigid body which is in contact with the wall
with the landing wheels; 2) we neglect the masses of the
legs of the landing mechanism; 3) we assume that the con-
tact forces for the landing wheels are linear forces (i.e.
point contacts) limited by the unilateral and friction cone
constraints. For this analysis we introduce the concept
of Feasible Wrench Polytope (FWP) [38] and we refer to
Fig. 7 for standard definitions.

The FWP represents the set of feasible wrenches at the
centroid (i.e., forces and moments) than can be tolerated
while satisfying 1) the balance equation of forces under the
action of gravity (static condition), 2) unilateral conditions
of the contacts, 3) friction constraints and 4) actuation

limits. Therefore, the feasible wrenches can be seen as
a compact representation of the mentioned constraints 1-
4 projected at the CoM by means of a Minkowski sum
operation.

Proceeding with the computation of the FWP [38], the
first step is to compute the Force polytopes Fi associated
with the feet and rope forces. We define 4 unilateral con-
tacts, two at the landing wheels and two at the rope at-
tachment points with the base (refer to Fig. 7). In the
case of the landing wheels, friction constraints are present
while the ropes have an additional constraint on the di-
rection: namely, the force has to be acting along the rope
axis. Adopting an approximation that is commonplace in
robotics, we (conservatively) approximate the cone con-
straint with an inner pyramid and bound them along the
normal direction with the maximum fleg,max. Note that
the friction cone implicitly encodes also the unilateral con-
straint (nTc fl,i > 0). This way, we encode in a single matrix
of constraints: unilaterality, friction and actuation bound
for the i-th wheel. The vertices of the obtained force poly-
tope are stored as columns:

f liml,i = WRc(nc)

0 µ −µ −µ µ
0 µ µ −µ −µ
0 1 1 1 1

 fleg,max, i ∈ {l, r},

(7)

where WRc is the rotation matrix related to the contact
frame C and fleg,max is the maximum force in the normal
direction nc. Regarding the rope forces, they are con-
strained to lie on a mono-dimensional manifold (i.e. along
the axis âr,i) and subject to unilateral (fr,i < 0) and actu-
ation constraints (−fmax

r,i ≤ fr,i). Then the Force Polytope
associated to rope i boils down to a segment with only two
vertices:

f limr,i =
[
−âr,i 03×1

]
fr,max, i ∈ {l, r}, (8)

Next, for each vertex, we add the moments that are gen-
erated in correspondence to the maximum forces:

wl,i =

[
. . . f liml,i,k . . .

. . .pl,i × f liml,i,k . . .

]
with k = 1, . . . , 5, (9)

where pl,i ∈ R3 represents the position of the i-th landing
wheel and wl,i,k ∈ R6 represents a wrench that can be
realised at that wheel. Likewise, for ropes:

wr,i =

[
−âr,i 03×1

−ph,i × âr,i 03×1

]
fr,max, (10)

where ph,i ∈ R3 is the i-th rope attachment point. There-
fore, the set of admissible wrenches that can be applied at
the CoM by the i− th wheel is:

Wl,i = ConvexHull(wl,i,1, . . . ,wl,i,5), i ∈ {l, r}. (11)

The convex hull operation should be performed also for
ropes to compute Wr,i and has the purpose to eliminate
internal vertices. We now have 4 wrench polytopes Wi that

8

contain all the admissible wrenches that can be applied to
the robot’s CoM.

Finally, the FWP is computed through the Minkowski
sum of the Wi for all the contacts:

FWP = ⊕4
i=1Wi. (12)

Since we used a vertex description (V-description), the
Minkowski sum can be efficiently obtained as in [39]. Re-
mark: To avoid polytopes becoming flat2 it is preferable
to define all quantities w.r.t. an inertial frame placed in
a location different from the anchors. More precisely, it is
convenient to refer all quantities about the CoM (see Fig.
7). Henceforth, only for this section, we assume that
the inertial frame is attached to the CoM and not to the
left anchor. In a preliminary analysis, to answer Q1, we
assume there are no actuation limits. The FWP, in this
case becomes unbounded, and becomes a Contact Wrench
Cone (CWC) [40]. We define a robot position feasible if
there exists a set of rope and wheel forces that 1) ensures
static equilibrium, 2) ensures unilateral and friction con-
straints.

3.2. Gravitational wrench

To evaluate the feasibility of a robot location, we first
compute the gravito-inertial wrench wG in the specific
robot state. Because we are dealing with a static anal-
ysis we neglect the inertial effects:

wG =

[
mg

p×mg

]
, (13)

where p is the robot CoM position (equal to 0 because
the inertial frame is attached to the CoM). A feasibility
criterion can be written as:

wG ∈ FWP. (14)

The criterion (14) tells us that it exists a feasible set
of forces

[
(âr,lfr,l), (âr,rfr,r), fl,l, fl,r

]
that generates the

wrench wG. We evaluate (14) at different positions on
the wall, on a fine grid. We set a friction coefficient of
µ = 0.8, a distance of the anchors da = 5 m, the relative
distance of the landing wheels db = 0.8 m and the wall
clearance dw = 0.4 m (see Fig. 5). The outcome of this
analysis is that the set of equilibrium locations on the wall
is mostly limited to the rectangle delimited by two anchors
(red shaded area A in Fig. 8).

To answer Q2, we are interested in the additional op-
eration forces that can be tolerated when the robot is in
equilibrium, for which we want to evaluate the operating
margin. This time, we also consider actuation limits, and
find that the answer is closely correlated to the concept of
feasibility margin, which can be computed from the FWP.

2A flat polytope is a polytope that has some vertex lying on its
facets.

Figure 8: Results of the static analysis in three representative points
for pz = 5 m. The red shaded area A indicates all the robot positions
for which static equilibrium, unilateral and friction constraints are
fulfilled. We report the forces for 3 representative robot positions.
The figure shows that, the rope connected to the closer anchor point
gets gradually loaded when moving towards it, while the rope con-
nected to the farther anchor gets gradually unloaded.

We recall that the FWP represents the set of admissible
centroidal wrenches for a specific position of the robot on
the wall, where: 1) centroidal it means applied at the CoM,
2) admissible it means that this is a ”mapping” of contact
forces satisfy both friction and unilateral constraints at
the landing legs and ropes have tensions such that do not
get unloaded or exceed their limits. When the wrench goes
out of the FWP it means that one of the above constraints
if violated (e.g. one leg slips or it becomes unloaded, and
the robot tips over).

The feasibility margin of applicable operating forces
is defined as the smallest distance between the gravita-
tional wrench wG and the boundaries represented by the
FWP facets. Authors in [38] show that an estimate of this
margin could be obtained directly from the vertex (V) de-
scription. However, a margin computed with the vertex
description is a normalised value. Additionally, we might
be interested in evaluating the maximum wrench and then
the relative margin in a specific direction v̂ ∈ R6. In this
case the vertex description is no longer sufficient, and we
ought to derive the half-plane (i.e. H-description) of the
FWP from the V-description via the double description al-
gorithm [41]. In the H-description, the FWP set can be
written in terms of half-spaces as:

FWP = {w ∈ R6|âTj w ≤ 0, j = 1, . . . nh}, (15)

where nh is the number of half-spaces of the FWP and âj ∈
R6 is the normal vector to the j-th facet. The feasibility
criterion expressed in (14) can thus be formulated as:

ApwG ≤ bp, (16)

where Ap ∈ Rnh×6 is the matrix whose rows are âj .

3.3. Evaluating the feasibility margin

The feasibility margin γ ∈ R in the direction v̂ is the
distance (along v̂) between wG and the polytope bound-

9

Figure 9: Representation of the linear part of the FWP computed for
a position p = [1.5, 2.5,−6.5]T . The green point is the gravitational
force wGlin

. The red point is the maximum force along the direction
v̂ = [0, 0, 1, 0, 0, 0] (blue line). Shaded blue points are internal points
that are removed by the convex hull operation.

ary and can be obtained by solving the following Linear
Program (LP):

γ⋆ = argmin
γ

− γ (17a)

s.t. Ap(wG + γv̂) ≤ bp, (17b)

Hereby, (17b) ensures that the total wrench wG + γv̂ is
inside the FWP set. The solution γ⋆ of (17) gives the
surplus of additional external wrench γ⋆v̂ that can be
tolerated by the system [38]. Since it is not possible to
visually represent a set of 6D elements using a 3D figure,
in Fig. 9, we depict only the linear component of the
FWP (i.e., the set of admissible centroidal linear forces),

computed for the position p =
[
1.5 2.5 −6.5

]T
. In this

representation, the green dot indicates the gravitational
force, while the red dot shows the maximum additional
force that can be applied in the direction of the blue line
(oriented vertically) before becoming unfeasible.

3.4. Numeric evaluation

In a first representative operation, that ensembles a
hammering operation, we compute the feasibility margin
to generate a pure force (i.e. passing through the CoM)

along the X direction v̂ =
[
−1 0 0 0 0 0

]T
for

robot positions with Y ranging between the two anchors
(i.e. from 0 to 5 m) and the Z component ranging from
−2 to −10 m. We repeat the analysis for two different wall
inclinations (0.2 and 0.4 rad) that will result in different
nc. To have the robot in contact, the X component is set
to 1.7 and 3 m, respectively. Figure 10 (left plots) reports
the 2D (heat-map) representation of the value of the fea-
sibility margin for the two different wall inclinations. The
friction coefficient is set to µ = 0.8. As expected, the mar-

gin decreases with the distance to the anchors because the
angle ψ decreases with rope elongation (for the same wall
clearance), and pushing on the wall becomes more difficult
because the legs get more and more unloaded. For the
same reason, a more slanted wall involves overall higher
gravity components and, hence, overall more feet loading,
thus higher values for the margin can be observed. The
diagonal shape is related to the friction constraint which
is violated in the dark blue area. In these cases the whole
static feasibility is invalidated (i.e. wG goes out of the
polytope) and we set the margin to be null.

In a second analysis (see Fig. 10, right plots) we con-
sider a composite loading as observed in a debris re-
moval application, pictorially represented in Fig. 1, mid-
dle. This time we consider a purely vertical wall (i.e.

nc =
[
1 0 0

]T
) with a constant px = 1.5 m. Inter-

estingly, for the margin in the vertical direction, only two
values are possible: zero in the region for which friction
constraints are violated (we did a parametric analysis for
µ = {0.4, 0.6, 0.8} to highlight its influence), and the value
of the gravity (147 N) in the remaining region. This means
that the vertical push is obtained through the action of
gravity and cannot go beyond that. We also noticed that
the position of the feet is fundamental to achieve a stable
configuration (i.e. they cannot be shifted too much w.r.t
the CoM in the vertical direction, cf. Fig 7). The results
for the moment my (fourth plot) are more inline with the
fx case, where higher margins are related to positions be-
tween the anchors. This is a quantitative evaluation that
is important for real operations: being able to evaluate
the operating margin is a feature useful to optimise costs-
related maintenance operations depending on the type of
the rock. Being able to estimate the maximum force appli-
cable gives benefits in terms of cost effectiveness, because
it allows to minimise the time budget for the operation.

4. Motion Planning

Setting up a navigation approach for the ALPINE
robot is a non-trivial task. First of all, even the simplified
dynamics (6) is highly nonlinear. Second, the configura-
tions between which the robot moves are usually distant,
and therefore, linearising the dynamics around an operat-
ing point would lead to inaccurate results. Third, one of
the inputs, the thrusting force fleg, has an impulsive na-
ture, operating at discrete time instants, and its tangential
component is constrained by friction. Therefore, it is not
possible to use it in any feedback control scheme.

As customary in robotics, we split the navigation prob-
lem into two sub-problems: 1) motion planning, i.e.,
deciding a trajectory before the motion starts, 2) mo-
tion control, i.e., a feedback controller that operates the
rope/propeller forces to compensate for small deviations to
track the trajectory and land in proximity of the expected
position. This section focuses on step 1 and considers the
robot without the landing mechanism. The motion plan

10

1 2 3 4 5

-7

-9

-11

-13

-15 0

5

10

15

20

25

30

35

1 2 3 4 5

-7

-9

-11

-13

-15 10

20

30

40

50

60

1 2 3 4 5

-7

-9

-11

-13

-15
1 2 3 4 5

-7

-9

-11

-13

-15 0

2

4

6

8

10

Figure 10: Heat-maps of the feasibility margin computed for different positions along the wall, (left plots) along −fx = [−1, 0, 0, 0, 0, 0]T for
a hammering application, for a wall inclination of 0.2 rad (first), and 0.4 rad (second) and (right plots) along −fz = [0, 0,−1, 0, 0, 0]T (third)
and my = [0, 0, 0, 0,−1, 0]T direction (fourth) relative to a debris removal operation which involves the application of a not purely centroidal
force (also a moment). In the third plot we reported the results for 3 values of the friction coefficient µ = {0.4, 0.6, 0.8}. The feasibility
margin is a synthetic metric to estimate the amount of external forces and moments available for operations. We report the absolute value
of the margin γ.

for the robot is decided by solving a nonlinear optimal
control problem (OCP), which in general is modelled as
follows:

min
x(t),u(t)

mf (x(tf)) +

∫ tf

0

l (x(t),u(t)) dt, (18a)

s.t.

ẋ(t) = f(x(t),u(t)), (18b)

u(t) ∈ U , (18c)

h (x(t),u(t)) ≤ 0, (18d)

B(x(t0),x(tf)) = 0, (18e)

where l(x,u) and mf (x) are the running and the termi-
nal costs, x is state, U is the control input constrained in
the convex set U , f is the dynamics, h are the path con-
straints, andB are the boundary conditions. To reduce the
computational effort, we consider as f the reduced-order
model (6), which implicitly includes the closed-loop kine-
matic constraints. The control inputs should include both
the rope forces u =

[
fr,l, fr,r

]
∈ R2 and the leg impulse.

However, the latter is applied only during the thrusting
phase, which typically lasts a short amount of time tth ∈ R.
For this reason, we assume it remains constant during this
phase, and treat it as an additional state with null dy-
namics. As decision variables, we consider: 1) the vec-
tor of control inputs U =

[
Fr,l,Fr,r

]
where Fr,l,Fr,r are

the trajectories of the rope forces along the horizon, 2)
the horizon length tf ∈ R, and 3) the initial leg impulse
fleg ∈ R3.
System Dynamics. Because we define a priori the du-
ration of the thrusting phase, the dynamics of our system
is no longer hybrid but time-varying. When the leg is in
contact, the dynamics accounts for the force fleg(t) gen-
erated by the thrusting leg. Rather than modelling this
force as an impulse, we model it as:

fleg(t) =

{
fleg 0 ≤ t ≤ tth,

03×1 t > tth.
(19)

Hence, during the contact t ∈
[
0 tth

]
, the leg applies a

constant force fleg while, for t ∈
[
tth tf

]
, this force is

zero. Given the nature of our actuation mechanism, a re-
alistic choice is to have a duration in the order of tens
of milliseconds, which consequently determines a remark-
able intensity of the impulse. We incorporate the leg force
fleg(t) in the state vector x with a null dynamics. The
state of our problem, hence, is defined as:

x =
[
ψ l1 l2 ψ̇ l̇1 l̇2 fTleg

]T
∈ R9. (20)

However, when the contact is broken at t = tth, the vari-
able fleg must disappear from the state. We model this
change in state dimension by defining a matrix S that se-
lects the first 6 elements the 9D state vector:

x+ = Sx, t = tth, (21)

Consequently, the state-space representation of the nonlin-
ear dynamics, casted in input-affine form, can be derived
from (6):

ẋ = fleg(x) + gleg(x)u, t < tth,
ẋ = fnoleg(x) + gnoleg(x)u, t > tth,

(22)

where:

fleg(x) =

 x4...6

A−1
d

[
x7...9

m + g − bd
]

03×1

 (23)

gleg(x) =

[
gnoleg(x)
03×2

]
(24)

fnoleg(x) =

[
x4...6

A−1
d (g − bd)

]
(25)

gnoleg(x) =

[
03×1 03×1

A−1
d âr,l A−1

d âr,r

]
(26)

To solve OCP (18) we apply a direct method to trans-
form the infinite dimensional problem into an NLP. In
particular, we chose a single shooting approach where we
discretised the rope forces along the horizon in N knots
equally spaced by dt = tf/N time intervals and regarded

11

the states x(k) ∈ [0, N] as dependent variables, obtaining
the following NLP:

min
U,fleg,tf

N−1∑
k=0

ℓ (xk,uk) + ℓf (xN) (27a)

s.t. x0 = x̂0, (27b)

xk+1 = fk(xk) + gk(xk)uk, k ∈ IN−1
0 , (27c)

hk (xk,uk) ≤ 0, k ∈ IN−1
0 , (27d)

We compute the state vector xk+1 from the input uk, by
integrating the dynamics (27c) via a fourth-order method
(i.e. Runge-Kutta 4) starting from the initial state x0 =
x̂0. The number of knots N should be roughly adjusted
according to an estimate of the jump duration (e.g. by
heuristics) in order to reduce the impact of integration
errors. Furthermore, to mitigate this issue, we found ben-
eficial to perform integration on a finer grid (cf. paragraph
“Integration errors” in Sec. 6.1 for a performance evalua-
tion of different integration schemes). This has the advan-
tage to improve integration accuracy without increasing
the problem size.
Boundary Conditions. To start the integration of the
dynamics we need to set the initial value for the state:

x̂ =
[
ψ0 l1,0 l2,0 ψ̇0 l̇1,0 l̇2,0 fleg

]T
. (28)

Apart from fleg that is an optimisation variable that we
can arbitrarily set (see the Initial Guess paragraph at the
end of this section), the other entries can be obtained from
the initial robot Cartesian position/velocity.

The inverse kinematics mapping, to convert the robot
position p into qr can be obtained with simple geometric
analysis:

ψ = arctan 2(px,−pz),

l1 = ∥p− pa,l∥,
l2 = ∥p− pa,r∥,
ϕ̇ =

(n∥×n⊥)T ṗ

(n∥×n⊥)T (pa,l−pa,r)
,

l̇1 = (p− pa,l)
T ṗ,

l̇2 = (p− pa,r)
T ṗ,

(29)

where n∥ = (pa,l − pa,r)/∥pa,l − pa,r∥ is the unit vector
passing through the anchor points and n⊥ = I3×3−n∥n∥

T

perpendicular to the rope plane.
Likewise, for cost and constraint computation, which

involve the position/velocity of the robot, these are related
to the state variables by means of (4) and its derivative. To
avoid overloading the notation, henceforth, we implicitly
assume that p, ṗ are expressed as a function of the state
x. Finally, we wish to enforce that the robot is at the
target position ptg, at the end of the horizon (i.e. end
of the jump). The use of hard constraints can prevent
convergence when the problem is close to unfeasibility or
ill-conditioned. We found it useful to relax the constraint
of the terminal state by adding a fixed slack (s):

∥p(tf)− ptg∥ − s ≤ 0. (30)

Finally the time tf is bound to be positive.
State Constraints. State constraints are related to re-
gions of the operation space that are not accessible. A
constraint is added to prevent collision with the wall for
the whole jump duration

nTp ≥ ϵ, (31)

where n is the normal pointing outwards the wall. We set
a threshold ϵ to avoid the singular configuration px = 0
(ψ = 0) for the model (6). To encourage the optimisation
to make the robot detach from the wall with a desired
clearance c ∈ R we force a via point inequality (e.g. at the
half of the duration (tf/2) of the trajectory).

nTp(tf/2) ≥ c. (32)

If the rocky wall has an irregular shape, or there are
obstacles that the robot should overcome in order to reach
its final destination, the via point constraint should be
replaced by one that forces the robot to avoid the ob-
stacle. We can model the inaccessible area as a region
whose boundary is a surface. We assume that this surface
can be expressed by a smooth 2D manifold expressed by
Q(x) = 0. Therefore the admissible region is generally
given by Q(x) ≥ 0 and could be non-convex.
Actuation Constraints. The rope forces are bounded by
the limits of the actuators (e.g. a hoist) and by unilateral
constraints:

−fmax
r,i ≤ fr,i ≤ 0, i = {l, r}. (33)

Likewise, the norm of the impulse force fleg is upper-
bounded by the actuation limit:

∥fleg∥ ≤ fleg,max, (34)

while the unilateral constraint is encoded from its normal
component:

nTc fleg ≥ 0, (35)

where nc is the surface normal at the contact location.
This can be locally different from the wall inclination n
if there are rock asperities. Additionally, the tangential
components of fleg are constrained by the following second
order friction cone:

∥tTx fleg + tTy fleg∥ ≤ µnTc fleg. (36)

Objective Function. As terminal cost we minimise the
final kinetic energy K(tf) at touch-down. We project the
touchdown velocity in the direction normal to the contact
location, because it is the one that is getting nullified by
the impedance strategy illustrated in Section 5.3. For the
running cost we consider 1) a smoothing term for the rope
forces, and 2) a second term that penalises the hoist work
(i.e. work made to wind/unwind the ropes). Thus, the

12

cost function is:

J = ws

N−1∑
k=0

(fr,ik − fr,ik−1
)2 + whw

N−1∑
k=0

|fr,i l̇i|Ts (37)

+ wi
1

2
mṗ(tf)

TPṗ(tf)︸ ︷︷ ︸
K(tf)

, i ∈ {l, r}, (38)

with ws, whw and wi being the weights associated to the
three cost components and P = ncn

T
c a projection oper-

ator to extract the normal component from the velocity
ṗ.
Initial guess. To speed-up convergence, it is worth to
initialise the optimisation with a feasible initial guess. The
rope forces are initialised with zeros and the leg impulsive

component with
[
fleg,max fleg,max fleg,max

]T
to easily

explore areas away from the singularity. The time tf is
initialised with the time constant for the system linearised
around the initial position p0. Note that the linearised
system becomes also a reasonable approximation when the
jump length is small with respect to the rope elongation.

5. Motion Control

5.1. Flying motion control: Linear position

During the flight phase, which starts after the thrust-
ing phase, the leg has no longer influence on the linear
motion of the base and the ropes are the only actuators
to control the robot’s motion. Several factors can make
the actual robot position diverge from the planned tra-
jectory (e.g., tracking inaccuracies of the leg impulse, ap-
proximations due to the use of the reduced order and en-
vironmental disturbances like, for instance, wind). The
deviation from the planned trajectory is exacerbated by
the presence of strong nonlinearities in the system and
can result in unsatisfactory outcomes. For this reason, the
presence of a feedback-based motion controller is impera-
tive. The strong changes in the configuration of the system
during the flight impede the application of linear strate-
gies around a linearised equilibrium. On the other hand,
nonlinear (i.e. Lyapunov-based) approaches are not easy
to design in the presence of unilateral constraints (that act
as saturation). The presence of saturation constraints also
prevents the usage of feedback linearisation approaches.
With these considerations in mind, a constrained MPC ap-
peared as the most suitable solution, since it allows to ac-
count for several types of constraints. A potential problem
with MPC is that, given a nonlinear model, the resulting
optimisation problem is non-convex and potentially diffi-
cult to solve online. Once again, the reduced-order model
helps to diminish these problems.

The MPC optimisation problem aims to minimise the
tracking error with respect to the optimised reference po-
sition pref. The decision variables are: 1) the deviations
∆Fr,l,∆Fr,r ∈ R2Nmpc of the rope forces with respect to
the nominal feed-forward values F∗

r,l,F
∗
r,r (the solution of

(27)) and 2) the trajectory of the force Fp ∈ RNmpc gen-
erated by the propeller, where Nmpc is the length of the
MPC horizon. As for motion planning, the reduced-order
dynamics (27c) is integrated to obtain the states (in a sin-
gle shooting fashion) but this time starting from the cur-
rent state x̂ at sample k. The main differences w.r.t. the
offline NLP (27) are that: 1) the MPC is active only during
the flight phase, hence, the leg impulse is not considered,
and 2) we integrate as inputs F∗

r,i +∆Fr,i instead of F∗
r,i.

The resulting optimisation problem is as follows:

min
∆Fr,{l,r},Fp

wp

Nmpc−1∑
i=0

∥prefk+i − pi∥2+ (39a)

+ wu

Nmpc−1∑
i=0

(fr,li − fr,li−1
)2 + (fr,ri − fr,ri−1

)2

+ wpf∥prefk+Nmpc

− pNmpc∥
2,

s.t.

x0 = x̂k, (39b)

xi+1 = f

xi,

F∗
r,lk+i

+∆Fr,li

F∗
r,rk+i

+∆Fr,ri

Fpi

 , i ∈ INmpc−1
0 , (39c)

− fr,max ≤ Fr,lk+i
+∆Fr,li ≤ 0, i ∈ INmpc−1

0 , (39d)

− fr,max ≤ Fr,rk+i
+∆Fr,ri ≤ 0, i ∈ INmpc−1

0 , (39e)

− fp,max ≤ Fpi ≤ fp,max (39f)

where k is the index relative to the solution of (27) while
i is the index for the MPC trajectory (receding horizon).
In the cost function (39b), we included also a regularisa-
tion (smoothing term) for ∆Fr,l,∆Fr,r. The constraints
(39d) and (39e) bound the rope forces, while (39f) bounds
the propeller force. Problem (39a) is solved every dtmpc

seconds and only the first value is retained from the solu-
tion ∆Fr,l,∆Fr,r, while the rest is discarded. As common
practice, to speed up convergence, we bootstrap each op-
timisation with the solution of the previous loop. Note
that the simulation is running at a much higher rate than
the MPC (dtsim ≪ dtmpc) and we apply zero-order hold.
When the last sample MPC trajectory matches with the
end of the optimal reference trajectory, we start reducing
the length of the MPC horizon until the end of the refer-
ence trajectory.

5.2. Flying motion control: orientation

In the previous section, we showed how to control the
robot Cartesian position during the flight phase, however
controlling the orientation is also relevant. To avoid cre-
ating undesired moments, the direction of fc should point
towards the CoM. Tracking errors on fc could result in
moments that would initiate unwanted pivoting motions.
Indeed, this eventually leads to undesirable landing pos-
tures (i.e. with landing wheels misaligned with the rock
wall), with the risk of tipping over. A solution could be
to optimise also for the orientation in (27), but this would

13

x

y

Figure 11: Kinematic strategy for reorientation of the landing
system.

require the extension of our simplified model to describe
also the angular dynamics.
Leg reorientation. In the case moderate orientation
changes are expected, a kinematic strategy could be
adopted: rather than trying to re-orient the base, we can
consider to re-orient both the prismatic leg and the landing
mechanism, in order to align them with the wall. Because
of the presence of the ropes, most of the times the orien-
tation errors are related to misalignment with the vertical
Z axis of the base (see Fig. 4). If we chose a Z − Y −X
sequence for the Euler angles to represent orientation, the
orientation errors about the Z axis can simply be associ-
ated with the tracking error in the yaw direction: ϕd − ϕ.
To align the prismatic leg and the landing links to the wall,
it suffices to continuously adjust their set-points as follows
(see Fig. 11):

qdL,i = qL,i0 + (ϕd − ϕ), i ∈ {l, r}, (40)

where ϕ is the actual value of the yaw angle that can be
obtained from the rotation matrix wRb, which represents
the orientation of the base link:

ϕ = arctan(wRb21 ,wRb11). (41)

This approach is meant to have good performance in face
of orientation errors up to 0.6 rads. This value is related to
the maximum opening of the landing joints, namely, when
the landing link is aligned with the base link Y axis.

5.3. Flying motion control: landing

The purpose of the landing mechanism is twofold: 1)
to dissipate the excess of kinetic energy at the landing, to
avoid bounces and 2) to keep the robot firm on the wall
for maintenance operations. During the flight phase, the
central thrusting leg is retracted and the landing legs are
extruded in order to make contact with the wall during
the landing phase. At impact, the kinetic energy

τdL,i = KL(q
d
L,i − qL,i)−DLq̇L,i i ∈ {l, r}, (42)

is dissipated through a joint impedance control law imple-
mented for the qL,l and qL,r joints, with stiffness KL and

damping DL selected to achieve a critically damped be-
haviour. The damping value is set considering the reflected
inertia of the robot at the joint level. This control strat-
egy avoids the robot bouncing3, thus ensuring a constant
contact. For the sake of simplicity, we did not consider the
influence of the ropes and gravity force in the impedance
law. This is reasonable since, at the impact, the gravity
forces and the rope forces are aligned with the landing
joint axis; this alleviates their adverse effects on the land-
ing joints (unless the wall is significantly slanted). A more
accurate design of a Cartesian impedance controller could
be implemented, considering the full (constrained) robot
dynamics [42], but this is left for future developments. No-
tice that, once the joint impedance law takes care of the
kinetic energy in the direction perpendicular to the wall,
any residual lateral effect can be dissipated with mechan-
ical damping from the landing wheels. When the wall is
nearly vertical, the effectiveness of the impedance-based
landing strategy diminishes. In such cases, a promising
approach could be to activate the propeller to push the
robot against the wall, thereby eliminating any potential
rebounds.

5.4. Lateral manoeuvring

In situations where the rock wall is free of obstacles
(e.g., a clean slab), it is more efficient to navigate the wall
locally by actively controlling the motion of the wheels.
This approach can also help correct potential landing er-
rors, enabling additional adjustments without requiring
further jumps. For the current design, since the wheel is
not steerable, only lateral motion is possible. Implement-
ing a wheel-steering mechanism is left for future work. In
any case, the motion of the wheels must be coordinated
with the motion of the ropes to ensure kinematic consis-
tency. To achieve this, we first compute the mapping (i.e.,
the Jacobian) between the base link linear ṗ and angular
velocity ωb, and the linear velocities of the landing wheel
centres vl,l, vl,r ∈ R3 ropes vr,l, vr,r ∈ R. Because the
wheels vl,l, vl,r are constrained to lie along the base axis
yb, and the ropes velocity vectors lie along the rope axes
âr,l, âr,r, we can include these constraints in the construc-
tion of the Jacobian matrix. Then, referring to the rigid
body model and its definitions in Fig. 7, the Jacobian Jlm

is a 4× 6 and writes:

3A critically damped spring-mass-damper, is a second order sys-
tem that has no overshoots to a step-response. The impact on the
wall can be modelled as a step input to the system and the impedance
law act as a virtual spring-mass-damper acting in the direction nor-
mal to the wall. Being the contact unilateral to have bounces, it
suffices that the velocity of the mass is negative (going out from the
wall). The effect of the control law that eliminates overshoots it
reflects in the mass velocity being always positive (i.e approaching
the wall) eventually becoming zero. This ensure that there is no
detachment from the wall (i.e. bounces).

14

vl,l
vl,r
vr,l
vr,r

 =

yTb yTb [−pl,l]×
yTb yTb [−pl,r]×
vTr,l vTr,l[−ph,l]×
vTr,r vTr,r[−ph,r]×

︸ ︷︷ ︸

Jlm

[
ṗ
ωb

]
, (43)

where vl,l,vl,r ∈ R are scalars representing the velocity
of the centre wheels along yb axis and the vr,l,vr,r ∈ R the
rope speed along the rope axes. [.]× is the skew-symmetric
matrix associated to the cross product operator. By set-
ting the desired values ṗ and ωb through (43), the set-
points vdl,l/Rw, v

d
l,r/Rw, v

d
r,l, v

d
r,r can be computed. These

set-points are then commanded to the PD controllers of
the wheel and rope joints, respectively, where Rw is the
wheel radius.

6. Simulation Results

This section presents simulation results demonstrating
how the proposed solution package enables the robot to
navigate along the mountain wall. The goal is to showcase
the features outlined in Section 4 and Section 5, which
are essential for realizing the use case described in Sec-
tion 1. Table 1 summarizes the experiments, highlighting
the specific features demonstrated in each experiment and
indicating which components are active.

6.1. Simulation Setup

We simulate the robot in a Gazebo environment, which
computes the full robot (constrained) dynamics using the
ODE physic engine [43]. We employ the Unified Robot
Description Format (URDF) [44] formalism to describe the
robot model and the Pinocchio library [45] to compute the
kinematic functions. We always initialise the simulation
in a way that the closed loop kinematic constraints are
satisfied at the startup (i.e. at a joint configuration qinit).

The optimisation has been implemented in Matlab us-
ing the fmincon function. To improve performance, we
used a C++ implementation of the Optimal Control Prob-
lem (OCP) both for motion planning and control, which
is freely available4.

6.2. Open Loop Model Validation (experiment 1)

As in [23], in a first experiment, we run the op-
timisation to perform a jump from an initial position

p0 =
[
0.2 2.5 −6

]T
m to a target position ptg =[

0.2 4 −4
]T

m. We validate the results in open loop
for both the reduced model (in a Matlab environment)
and the full model (in Gazebo). For the Matlab simula-
tion, we simply integrate (6) with an ode45 Runge-Kutta
variable-step scheme. For the Gazebo simulation, we setup

4https://github.com/mfocchi/climbing robots2.git

a state machine that orchestrates the 3 phases of the jump:
leg orientation, thrusting and flying. The offline optimisa-
tion is run before the leg orientation phase, providing the
values of the initial impulse (f∗leg), the pattern of the rope
forces F∗

r,l, F
∗
r,r and the jump duration t∗f . Since the simu-

lation runs at 1 kHz (dtsim = 0.001 s) while the optimised
trajectory has a different time discretisation (dt = tf/N),
depending on the jump duration tf , appropriate interpo-
lations are performed to adapt the rate difference. During
the thrusting phase, we generate the pushing impulse fleg
at the CoM by applying a force fc at the contact point.

To avoid generating moments at the CoM, we per-
form a preliminary step (leg orientation phase) to align
the prismatic leg to the direction of fc. To achieve this,
we command the set-points for hip roll and hip pitch
joints to be qdHR = atan2(fleg,y, fleg,x) and qdHP = −π +
atan2(fleg,z, fleg,x). Then, we employ the leg dynamics
(last 3 rows of (2)) to map the contact force fc = fleg
into torques τ dleg at the leg joints:

τ dleg =

τHPτHR
τK

 = hleg(q, q̇)− JTc,leg(q)fc, (44)

where Jc,leg ∈ R3×3 is the sub-matrix of the Jacobian Jc,
whose columns are relative to the leg joints, and hleg ∈ R3

represents the bias terms (Centrifugal, Coriolis, gravity).
In general, a PD controller is superimposed to the feed-

forward torques τ dleg to drive the leg joints qHR, qHP , qK .
However, during the thrusting phase, only the feed-
forward torques τ dleg are applied, while the PD controller
is switched off. Finally, during the flying phase, the rope
(prismatic) joints are actuated in force control mode. The
optimised force patterns τdRP,l = f∗r,l and τ

d
RP,r = f∗r,r are

set as reference forces for the whole jump duration tf . Dur-
ing the flight, the landing mechanism and the prismatic leg
are continuously reoriented to be always aligned with the
wall face, as explained in Section 5.2.

Figure 12 reports the results in open loop. Simulating
the simplified model, the final error norm is below 0.06 m
(due to integration errors), while in the full-model simu-
lation, it is around 0.34 m. These errors are in a range
that can be efficiently handled by a controller, as demon-
strated in Section 5.1. However, the purpose of this val-
idation is to show that the proposed reduced model is a
good approximation of the real system and it is sufficient
to generate feasible jumps trajectories that do not involve
large orientation changes. Table 2 reports the value of the
physical parameters used in the simulation, together with
the optimisation settings, that achieve a good compromise
between accuracy and convergence rate.
Integration errors. To decrease the computational load
of the optimisation process, we can reduce the density of
the trajectory’s discretisation, which refers to the number
of specified points N , also known as knots. This reduc-
tion, however, results in integration errors, particularly in
single shooting settings. First-order integration methods,

15

https://github.com/mfocchi/climbing_robots2

Table 1: Simulation Experiments

Exp. # Description Feature to validate MPC Propeller Land. Mech. Fig./Tab.

Exp. 1 Open Loop Model Validation (Sec. 6.2)
Validation of lower dimensional vs. full-detail
model

Fig. 12

Exp. 2 Disturbance tests (Sec. 6.3)
Evaluate the capability of the MPC controller to
reject disturbances

✓ ✓ Fig. 13

Exp. 3
Disturbance tests: Ablation Study
(Sec. 6.4)

Evaluate the capability of the MPC controller to
reject disturbances without propeller

✓ Fig. 15, 14

Exp. 4
Disturbance tests: Robustness evalua-
tion (Sec. 6.3)

Rejection of random disturbances ✓ ✓ Tab. 4, Fig. 16

Exp. 5 Multiple targets (Sec. 6.6)
Test planner capability to do omni-directional
jumps

✓ ✓ Tab.5, 6, Fig. 17

Exp. 6 Obstacle avoidance (Sec. 6.7)
Test planner capability to do overcome obstacles
of small/medium size

✓ ✓ Video only

Exp. 7 Landing test (Sec. 6.8)
Test landing control capability to land without
bounces

✓ ✓ ✓ Fig. 18

Exp. 8 Slanted wall tests (Sec. 6.9)
Test of jump from slanted walls of different incli-
nations

✓ ✓ ✓ Only video

0.5
1

3
4

-6
-5
-4

Figure 12: Experiment 1. Open loop validation of the opti-
misation results. Reference position for the CoM from opti-
misation (red), simulated trajectory with reduced-order model
(blue) and full-robot model (black).

such as Explicit Euler, may not be sufficient to strike a
good balance between computational time and accuracy.
To improve accuracy, we found beneficial using higher or-
der integration schemes like Explicit Runge-Kutta 4 (RK4)
and to perform a number of Nsub integration sub-steps of
the dynamics within two adjacent knots. We considered
that the rope forces remain constant on the time interval
dt between two knots.

In Table 3 we evaluate different combinations of: 1)
number N of discretisation nodes, 2) number of sub-steps
Nsub and 3) integration method of different order (Euler
or RK4). We benchmark on the same experimental jump
employed in validation. We report the number of itera-
tions needed to converge, the solution time, the absolute
error at the end of the trajectory with respect to the tar-
get ea = ptg − p(tf), and the error due to integration
ei = pgt − p(tf), where pgt is the final position obtained
by integrating with a smaller time step of 0.1 ms. From Ta-
ble 3 it is evident that both the computation time and the
integration error ∥ei∥ are linearly proportional (directly

Table 2: Simulation and optimisation parameters

Name Symbol Value
Robot mass [kg] m 5, 13 (with land. mech)
Anchor distance [m] da 5
Left Anchor position [m] pa,l

[
0 0 0

]
Right Anchor position [m] pa,r

[
0 b 0

]
Friction coeff. [] µ 0.8
Contact normal nc

[
1 0 0

]
Wall normal n

[
1 0 0

]
Thrust impulse duration [s] tth 0.05
Discretisation steps (NLP) N 30
Simulation time interval [s] dtsim 0.001
Sub-integration steps Nsub 5
Hoist work weight whw 0.1
Smoothing weight ws 1
Integration method - RK4
Max. (normal) leg force [N] fmax

leg 300, 600 (with land. mech)

Max. rope force [N] fmax
r 90, 300 (with land. mech)

Jump Clearance [m] c 1
Slack [m] s 0.02
Discretisation steps (MPC) Nmpc 50
Tracking term weight (MPC) wp,mpc 1
Terminal cost weight (MPC) wpf,mpc 0
Smoothing weight (MPC) wu,mpc 10−5

Landing wheels radius Rw 0.075

and inversely) to the number of discretisation points N .
Increasing either the number of sub-stepsNsub or the order
of integration (i.e. using RK4 instead of Euler) makes the
single iteration slower but it makes an accuracy improve-
ment; instead, by reducing N , the accuracy decreases.
Adding a certain number of integration sub-steps allows
to reduce N keeping the accuracy unaltered. Setting N
too low the problem can become ill conditioned and con-
vergence might not be achieved. As expected, being RK4
a higher order method, it is superior than Forward Eu-
ler in terms of accuracy and requires a lower number of
knots N to achieve the same accuracy. As a reasonable
trade off, we selected the RK4 with N = 30 and Nsub = 5
intermediate integration steps.

6.3. Disturbance tests (experiment 2)

To evaluate the effectiveness of the MPC (Section 5.1)
in tracking and rejecting disturbances during the flight

16

Table 3: Performances of different integration schemes

N Method Nsub Iters Comp, Time [s] ∥ei∥ ∥ea∥
40 RK4 0 44 1.19 0.141 0.148
60 RK4 0 30 1.74 0.045 0.17
40 RK4 5 26 2.1 0.1 0.144
40 EUL 0 28 0.28 0.83 0.85
40 EUL 10 28 1.32 0.05 0.167
30 RK4 5 34 1.71 0.037 0.134

phase, we conducted a test similar to the one of the pre-
vious section, but in closing the loop with the MPC con-
troller presented in Section 5.1 in presence of disturbances.
We set dtmpc equal to the optimal control time step dt and
Nmpc = 0.4N . Since the MPC optimisation takes on aver-
age 0.3 s to be computed, to avoid delays in the simulation,
we paused the simulation during the optimisation. We
postpone to future work a customised C++ implementa-
tion more performing than the C++ code generated from
Matlab.

Figure 13 presents the tracking plots for the 3 reduced
states (ψ, l1, l2) when both an impulsive and a constant
disturbance are applied to the robot base. The impulsive
disturbance is applied after lift-off and persists for 0.2 s,
while the constant disturbance is applied during the whole
jump. This test has the purpose to emulate the effect of
wind5. The MPC is able to compensate the impulsive
disturbance only after 1.4 s, reaching the target with a
cumulative error of 0.072 m. The error during the tran-
sient in the impulsive case is related to the presence of the
unilateral constraint (fr,i ≤ 0), which is hit by the left
rope.

Thanks to the predictive capability of MPC, despite
the saturation of the control inputs, the tracking error is
eventually reduced. Notably, the impulsive disturbance
test reveals that the disturbance it is more promptly re-
jected on the ψ variable compared to the other states. This
can be attributed to the assumption of having bilateral
actuation in the propeller thrust forces (i.e. no unilat-
eral constraint). In the case of constant disturbance, the
controller proficiently compensated the disturbance also
during the transient, showing a landing error of 0.073 m.

6.4. Disturbance tests: Ablation Study (experiment 3)

In this paragraph, we want to evaluate how perfor-
mance degrades when the propeller is not present (e.g. a
propeller is not installed for cutting costs). We repeated
the last tests switching off either the propeller or the whole
MPC controller. The results are reported both in Fig. 14
and Fig. 15. The plots reveal that the errors are com-
pletely recovered (the MPC controller is still active on the
ropes) only on l1 and l2 (with a cumulative error of 0.06 m
for l1 and l2 at landing), while there is a remarkable wors-
ening in the tracking of ψ. This is related to the fact

5Given the form factor of the robot, a 30 km/h wind translates
into a 7 N disturbance force.

0

0.1

0.2 Ref Imp.dist. Const.dist.

6

6.5

0 0.5 1 1.5
4

5

6

0 0.5 1 1.5
-100

-50

0

Figure 13: Experiment 2. Simulation with MPC. Tracking of
the state variables in face of an impulsive δi = [50,−50, 30]T N
(black) and constant disturbance (blue) δc = [7,−7, 0]T N.
The last plot shows the rope forces in the case of the impulsive
disturbance.

that the system is under-actuated and the rope forces are
constrained on a plane. Therefore, errors on ψ cannot be
easily recovered.

6.5. Disturbance tests: Robustness Evaluation (experi-
ment 4)

Impulsive disturbance: In this section, we test the
controller under random impulsive disturbances applied
at different moments of the flight phase. We repeat 100
tests with random disturbances with amplitudes between
25 N and 50 N. We limit the disturbance to a down-
ward hemisphere 1) to avoid unloading the ropes and
2) because it is more representative of a real situation
(e.g. rock-falling from above). To quantitatively evalu-
ate the tracking performance during the flight phase, we
completely retract the prismatic leg to avoid early or de-
layed touch-down and let the simulation stop at the end
of the horizon (t = tf), where we evaluate the differ-
ence between the position of the robot and the desired
target. This discrepancy is referred to as the landing er-
ror ea. We discretised the flight phase in 10 intervals of
equal duration. For each interval we performed 10 tests
applying a randomised disturbance in that interval. In
Fig. 16 (left) we report ∥ea∥ as a function of the mo-
ment the random disturbance is applied. Since the result
can be different for different rope lengths, we tested this

for ptg =
[
0.5 4 −4

]T
(short), ptg =

[
0.2 4 −9

]T
(medium) and ptg =

[
0.2 4 −12

]T
(long) jumps, that

correspond to rope lengths at the landing of 6, 9 and 12
m, respectively. As expected, the absolute error decreases

17

0

0.1

0.2

4
5
6

4
5
6

Figure 14: Experiment 3. Ablation study. Simulation with impul-
sive disturbance δi without propellers.

0
0.1
0.2

5

6

7

0 0.5 1 1.5
4
5
6

Figure 15: Experiment 3. Ablation study. Simulation with constant
disturbance δc without propellers.

with shorter rope lengths but exhibits more erratic be-
haviour during downward jumps. We hypothesize that this
is because the MPC controller has limited room for adjust-
ment when the rope forces approach the upper bound (see
the discussion in Section 6.9). Overall, the norm of the
absolute error, ∥ea∥, remains constrained within a narrow
range, indicating the controller’s ability to reject various
constant disturbances from different directions.
Constant disturbance: Regarding the constant distur-
bance, we repeated the experiment for the 6 directions
that represent the vertices of a cube, with a constant am-
plitude of 7 N. The norm of the landing error ∥ea∥ is re-
ported in Table 4. Except for the

[
0 1 0

]
direction, they

have the same order of magnitude, which is an indicator of
the capability of the controller to reject a variety of con-
stant disturbances of different directions. A disturbance in
the direction

[
0 1 0

]
(Y) is problematic for this specific

jump because it would require mainly the action of the left
rope to be rejected, which is almost unloaded in the case
of the designated landing point ptg.

10 40 70 100
0.04

0.06

0.08

0.1

0.12

0.14
up - 6 m
down - 9 m
down - 12 m

0 2 4
-8

-6

-4

0

1

2
3

4

5

6
7

Figure 16: (left) Experiment 4. Mean of the norm of the landing
error ∥ea∥ for a random impulsive disturbance applied at dif-
ferent moments of the flight phase for jumps involving different
rope lengths: short (blue), medium (red) and long (black). The
duration of the flight phase is normalised: 0 is lift-off and 100
is touch-down moment. (right) Experiment 5. Set of targets
to evaluate jumps of variable length and directions. The first
target is the rightmost (blue), the others in the list are in CCW
order.

Table 4: Experiment 4. Tracking errors with constant disturbance

Dist. direction ∥ea∥ [m][
1 0 0

]
0.0512[

−1 0 0
]

0.0539[
0 1 0

]
2.4885[

0 −1 0
]

0.2109[
0 0 1

]
0.0835[

0 0 −1
]

0.1384

6.6. Multiple targets: omni-directional jumps (experiment
5)

We now aim to demonstrate the effectiveness of the
control inputs obtained from the offline optimisation pro-
cess presented in Section 4 in manoeuvring the robot to
reach various target locations.

It is important to highlight that while we consider the
wall to be vertical, a similar approach has also been proven
to work for jumps from non-vertical (see Section 6.9). To
showcase the capabilities of our approach, we have gener-
ated a total of 8 target points, evenly distributed on an
ellipse around the p0 location on the wall. The main axis
of the ellipse measures 2.5 m and is inclined at an angle
of 45 degrees with respect to the horizontal plane. The
minor axis, on the other hand, spans a length of 2 m (refer
to Fig. 16(right) for a visual representation). This has the
purpose to evaluate how good the optimisation generalises
to different jump lengths and directions. The simulation
results are reported in Table 5 and in the accompanying
video6.

We compute the energy consumption E for each jump,
considering the energy consumed in the pushing impulse

6Video of experiments available at
https://youtu.be/FqsREaoe-28

18

https://youtu.be/FqsREaoe-28

Table 5: Experiment 5. Tracking error and energy consumption
without hoist work penalisation

Exp. ptg [m] ∥ea∥ [m] E [J]

0
[
0.28 4.73 −6.34

]
(0.6) 0.9 ± 0.19 (103) 162 ± 111

1
[
0.28 3.91 −4.69

]
(0.078) 0.3 ± 0.008 (119) 129 ± 4

2
[
0.28 2.26 −3.86

]
(0.079) 0.4084 ± 0.16 (200) 147 ± 16

3
[
0.28 0.75 −4.35

]
(0.081) 1.5 ± 0.95 (287) 607 ± 317

4
[
0.28 0.26 −5.86

]
(0.066) 0.17 ± 0.007 (228) 199 ± 5

5
[
0.28 1.08 −7.51

]
(0.067) 0.24 ± 0.06 (261) 214 ± 45

6
[
0.28 2.73 −8.34

]
(0.08) 0.2653 ± 0.044 (32) 202 ± 71

7
[
0.28 4.25 −7.85

]
(0.32) 0.62 ± 0.27 (78) 152 ± 108

and in winding/unwinding the ropes:

E =
1

2
m∥ṗ(tth)∥2 +

∫ tf

0

(
|fr,l(t)l̇1|+ |fr,r(t)l̇2|

)
dt, (45)

where the former is proportional to the kinetic energy of the
robot evaluated at the lift-off (t = tth) (assuming the robot
starting standstill). The second term is the energy consumed
by the hoist motors as the integral of the power along the whole
jump duration tf . The hoist work, in general, dominates. In a
first batch of tests we set the weight relative to the hoist work
whw = 0 in (38). In another set of experiments we set a non
zero weight for the hoist work whw = 100.

To demonstrate the robustness of the approach in a real
application where states derivatives are usually obtained by
numeric differentiation of encoder readings, we added a zero-
mean white Gaussian noise to the state with standard deviation
σ =

[
0.01 rad/s 0.2m/s 0.2m/s

]
.

Table 5 reports mean and standard deviation of the norm
of the absolute landing error ea = ptg − p(tf) and the energy
consumption E for each jump. To better appreciate the impact
of noise we also report between parenthesis the values without
noise. Interestingly, the highest errors are with test 0 and 7,
which are the targets that are closer to the vertical of the right
anchor (i.e. at pa,ry = 5 m). This is reasonable because in
these tests one of the two ropes is almost unloaded and cannot
control properly the error in the Y direction. This suggests
that a reduction in performance occurs when one of the ropes
is almost unloaded. For the other tests, the error is on average
around 0.07 m. The noise results in higher errors with a similar
trend, except for test 3, which resulted in a significantly higher
average error of 2.22 m. Inspecting the collected data for that
target, we noted that the error had an erratic behaviour being
very high only in some tests that increase the overall mean,
while others are in the same range as 1, 2, 4, 5, 6. We conjecture
that this is related to the fact that test 3, being an upward
jump, was exceptionally demanding for the left rope that was
working at the boundary of its physical actuation limits.

Regarding the consumed energy, this is low for jumps to
a lower target (i.e. 6, 7), because the gravity helps and the
ropes can be let to passively unwind the ropes to attain the
target. However, it was surprisingly high for tests 3, 4, and 5.
The reason is that, because there was no penalisation in the
cost function, the optimiser found elaborated trajectories to
reach the target maximising accuracy disregarding the energy.
Therefore, we repeated the previous tests penalising, this time,
the hoist work. The results are reported in Table 6.

In this case, the optimiser managed to find solutions that
are more energy efficient, with similar accuracy. The trend is

Table 6: Experiment 5. Tracking error and energy consumption with
hoist work penalisation

Exp. ptg [m] ∥ea∥ [m] E [J]

0
[
0.28 4.73 −6.34

]
(0.4) 0.4 ± 0.244 (19.4) 152 ± 125

1
[
0.28 3.91 −4.69

]
(0.067) 0.068 ± 0.0315 (54) 120 ± 4

2
[
0.28 2.26 −3.86

]
(0.071) 0.064 ± 0.278 (124) 171± 42

3
[
0.28 0.75 −4.35

]
(0.077) 2.22 ± 1.21 (97) 568 ± 210

4
[
0.28 0.26 −5.86

]
(0.07) 0.06 ± 0.023 (45) 200 ± 11

5
[
0.28 1.08 −7.51

]
(0.095) 0.06 ± 0.018 (14) 224 ± 54

6
[
0.28 2.73 −8.34

]
(0.12) 0.053 ± 0.024 (10)236± 75

7
[
0.28 4.25 −7.85

]
(0.28) 0.23 ± 0.16 (13) 160 ± 117

0 1 2 3 4 5 6 7
0

1

2

3

4
Mean
Std.Dev

Figure 17: Experiment 5. Mean and standard deviation for 50
repetitions of each test in Fig. 16 (with hoist work penalisation)
adding white Gaussian Noise to the state derivatives.

now inline with the physical intuition that targets above p0

(i.e. 1, 2, 3) are more energy demanding than the ones below
(i.e. 5, 6, 7). The impact of noise (c.f. Fig. 17) is similar to
the previous case. To highlight the versatility of the approach,
in the accompanying video, we conducted additional tests by
placing the anchor points at different locations, specifically 5,
7, 9, and 11 meters apart. Despite these varying placements,
our optimisation algorithm still successfully produces valid re-
sults. We observed that the proposed method yields different
solutions for the same target based on the anchor location, yet
in all cases a level of landing accuracy comparable with the
previous experiments is achieved.

6.7. Obstacle avoidance (experiment 6)

In this section we test capability of the optimal planner to
deal with a non-flat wall surface. We model an obstacle as a
hemi-ellipsoid whose semi axes are Rx = 1.5 m, Ry = 1.5 m

and Rz = 0.87 m, with centre o =
[
−0.5 2.5 −6

]T
m7. The

equation of a generic ellipsoid in standard form writes:

(x− ox)
2

R2
x

+
(y − oy)

2

R2
y

+
(z − oz)

2

R2
z

= 1. (46)

To implement obstacle avoidance we set a path constraint
f(x) > 0 on theX component of the robot position: px > x̂+c.
Where c is a clearance margin that should be kept from the

7Note, that the obstacle shape is arbitrary. We have already
shown in [23] an example with a conic pillar. Any 3D map of the
wall face would be suitable given that a convex representation is
provided.

19

obstacle, for safety. x̂ ∈ R is a function f(py,pz) that can be
easily obtained from the ellipsoid equation:

x̂ = ox +
√
q,

q = R2
x − Rx

Ry
(py − oy)−

Rx

Rz
(pz − oz)

2.
(47)

To ensure that the constraint is enforced only for positions in
the convex hull of the ellipsoid (where the square root is de-
fined), we check if the argument q of the square root is positive,
otherwise we consider the usual wall constraint (31) where, for
vertical wall, nTp = px:{

px > x̂+ c, q > 0,

px > ϵ, q < 0.
(48)

Considering this constraint, and setting a clearance c =
1 m, we optimise a jump starting from a point p0 =[
0.5 0.5 −6

]T
(to the left of the obstacle) to reach a tar-

get ptg =
[
0.5 4.5 −6

]T
(to the right). The accompany-

ing video shows that the optimisation is able to find a trajec-
tory that allows the robot to successfully overpass the obsta-
cle. We believe the chosen obstacle size is representative of
most medium-sized obstacles commonly found in nature and
can reasonably be cleared with a single jump. For larger obsta-
cles (e.g., a rock pillar), multiple jumps may be necessary—for
example, an initial jump to land on the obstacle, followed by
a second jump to surpass it. To explore this scenario, we con-
ducted an additional simulation where the robot jumps onto a
taller obstacle (e.g., Rx = 2.5 m). One limitation of the actual
approach, is that targets that are in the shade cone of the ob-
stacle, could not be reached. This is because the ropes would
collide with the obstacle, unless the obstacle is small enough
and the ropes come from the sides.

6.8. Landing test and lateral manoeuvring (experiment 7)

Landing: In this section, we conduct a simulation of the robot
equipped with the landing mechanism presented in Section
2.1.1 with the aim of assessing the effectiveness of the landing
strategy in dissipating any excess kinetic energy during touch-
down without causing any rebound. Depending on the accu-
mulated errors during the flight phase, the touch-down could
be either early or delayed with respect to the duration of the
optimised trajectory. In the case that the touch-down is de-
layed, we use the feed-forward coming from the optimisation
to determine the ropes forces and we apply a gravity compen-
sation action. Due to the additional weight of the lander, in
these tests, we increased the mass to 15 kg. This requires that
we also ought to adjust the actuation limits: fleg,max = 600 N
and fr,max = 300 N. The landing joints qL,f are controlled
through the PD strategy (42) with stiffness and damping set
to KL = 60 N/m and DL = 10 N/m respectively. Figure 18
reports the tracking of the Cartesian position of the robot for
the landing test. It is evident, inspecting the first plot (X vari-
able), that the robot is able to land without re-bounce and that
an early touch-down occurred.
Lateral Manoeuvring: After the landing, with the purpose
to locally explore the area, the controller (43) for lateral ma-
noeuvring is used to drive the robot in a lateral motion, by
setting ṗd =

[
0. −0.7 0.

]
m/s ωd

b =
[
0 0 0

]
rad/s. Ad-

ditionally, we commanded the propeller to apply 25 N of force
to push the robot against the wall, enhancing the grip of the

0

0.5

1

1.4 1.45 1.5
0.5

0.55

0.6

0 0.5 1 1.5

3

4

0 0.5 1 1.5
-6
-5
-4

Ref
act

Figure 18: Experiment 7. Simulation of the landing test for
a wall inclination of 0.1 rad from the vertical. The red and
blue plots are the reference and actual position of the robot,
respectively. The vertical red shaded line highlights the early
touch-down moment.

wheels. The propeller in this case is used solely to enhance
contact, as gravity is already counteracted by the ropes, unlike
in propeller-wheeled wall-climbing robots, where the propeller
must create a bigger normal force such that frictions can over-
come gravity [8]. A bottom view of the resulting motion is
shown in the accompanying video.

6.9. Jumps on slanted walls (experiment 8)

The presented approach is generic and for any wall inclina-
tion within the vertical. Indeed, the wall normal n is an in-
put for the optimal control planner and can be set according
to the value of the inclination of the wall at the lift-off po-
sition. In the accompanying video we present results for up-

ward jumps from p0 =
[
2.5 −6

]T
m8 to a target po-

sition ptg =
[
4 −4

]T
m and downward jumps from p0

to ptg =
[
4 −12

]T
m on slanted walls of different incli-

nations w.r.t the vertical (0.1,0.2,0.3,0.4 rad). In Table 7 we
report the norm of the leg impulse, the energy consumption
and the absolute landing error, for the different inclinations of
the rock wall for both upwards and downwards jumps.

The output of the optimisation shows that for upward
jumps the more slanted is the slope the higher is the impul-
sive pushing force needed to detach the robot from the rock,
because a bigger component of gravity should be overcome. For
downward jumps this trend is less evident, on the other hand
the energy consumption is significantly lower because the robot
mostly exploits gravity to reach the target. In both cases, the
tracking error is unaffected by inclination and remains within
the same range, whereas it is significantly higher for downward
jumps. This occurs because the optimal solution involves rope
forces close to the bound fr ≤ 0 N, leaving the MPC with
minimal flexibility for corrections. This issue can be mitigated
by setting a bound of fr ≤ 15 N. This adjustment provides
the MPC with sufficient room to correct model uncertainties,

8# indicates that X coordinate is adjusted to be consistent on the
wall for the given (Y ,Z) pair.

20

Table 7: Experiment 8. Slanted wall

Jump Wall incl. [rad] ∥fleg∥[N] E [J] ∥ea∥ [m]

Upward

0.1 98 145 0.074

0.2 124 166 0.066

0.3 203 211 0.077

0.4 230 176 0.067

Downward

0.1 92 30 0.66

0.2 104 40 0.56

0.3 90 27 0.67

0.4 114 33 0.60

Downward
0.1 172 186 0.1

0.2 285 186 0.072

+ fr ≤ 15N
0.3 300 178 0.065

0.4 300 189 0.064

reducing the landing errors to values comparable to those ob-
served for upward jumps (see Table 7), at the price of higher
leg impulses and energy consumption.

6.10. Energetic comparison with other robotic solutions

In this section we compare ALPINE with existing state of
the art solutions in performing maintenance operation. The
main requirements for performing maintenance operations are
related to power consumption for navigating to a designated
destination and remaining stationary on the wall for 30 min-
utes to carry out the operation (assuming the energy consumed
for the operation is the same across all solutions), as well as the
travel time needed to reach the target destination. The weight
of the operating machine is modelled as a 4 kg payload that
the robot must carry in addition to its own weight. The en-
ergy consumption will be normalised by the mass of the robot
to enable a fair comparison. As a representative navigation
we consider again a dislocation from p0 =

[
0.5 2.5 −6

]
m

to ptg =
[
0.5 4 −4

]T
m. In Table 8, we report the nor-

malised energy consumption for the ALPINE platform, two
drones from Nanjing Hongfei Company [46], the lightweight
model HZH C680 and the heavy-duty model HZH Y100, the
Stickybot III [5], and the ROCR climbing robot [27].

From table 8, an important advantage of roped robots be-
comes evident, thanks to the brakes that can block the ropes,
the energy consumption for standing still on the wall is 0. The
consumption of navigation, because gravity is exploited, is very
low when descending and higher when ascending. For walking-
based climbing robots, energy consumption is also limited, but
payload capacity is significantly constrained, and operating
speed is relatively slow. A comparison with the two drones
demonstrates ALPINE’s superior speed, although drones’ en-
ergy consumption is largely influenced by the hovering time re-
quired to remain on-site, which is zero for the climbing robots.
Overall, ALPINE combines the best aspects of both types of
solutions.

7. Conclusions

This paper presents a robotic platform designed to execute
rescue and maintenance operations along mountain slopes. The
robot hangs on two ropes that are attached to anchors deployed

on the top of the wall. The motion is guaranteed by two mo-
tors that wind and un-wind the ropes, and by a retractable leg
that pushes away the robot from the mountain. An auxiliary
propeller guarantees the stability of the robot during the flight
phases. We have discussed in depth the design of the robot, and
shown a simplified dynamic model that captures the dominant
components of the system’s dynamics, while being mathemat-
ically tractable. The model has been used to design motion
planning and control strategies based on a suitable MPC for-
mulation. The paper also discusses effective means to compute
the locations where the system can be in equilibrium and apply
sufficient forces on the wall (e.g., to scale boulders, or perform
hammering operations). As an essential part of our work, we
also developed a complete and realistic simulation model that
we used to collect a large number of simulation results in dif-
ferent application scenarios.

This paper could open the way to a large amount of fu-
ture work, addressing the problems that this novel platform
and its potential applications have unveiled. A non-complete
list includes: 1. developing a multi-jump motion planner that
considers the hybrid dynamics of the system to plan the sys-
tem actions across the mode transitions related to the landing-
take-off phase; 2. considering a more complete simplified model
that accounts for rotational dynamics to improve the control
algorithm during the flight phase; 4. investigating the usage
of steering wheels for efficient navigation in areas of the wall
that are clear of obstacles (e.g., slabs); 3. developing control
strategies for specific operations (e.g., drilling scaling) or to deal
with harsh and highly uneven terrains; 4. developing learning
approaches to enable jumps on crumbly terrain with hardly
predictable responses.

References

[1] A. Nishi, Y. Wakasugi, K. Watanabe, Design of a robot capa-
ble of moving on a vertical wall, Adv. Robot. 1 (1986) 35–45.
doi:10.1163/156855386X00300.

[2] F. Potenza, C. Rinaldi, E. Ottaviano, V. Gattulli, A robotics
and computer-aided procedure for defect evaluation in bridge
inspection, Journal of Civil Structural Health Monitoring 10
(2020) 471–484.

[3] J. Seo, L. Duque, J. Wacker, Drone-enabled bridge inspection
methodology and application, Automation in Construction 94
(2018) 112–126.

[4] A. Ji, Z. Zhao, P. Manoonpong, W. Wang, G. Chen, Z. Dai, A
bio-inspired climbing robot with flexible pads and claws, Jour-
nal of Bionic Engineering 15 (2018) 368–378.

[5] E. Hawkes, D. Christensen, M. Cutkosky, Vertical dry adhe-
sive climbing with a 100x bodyweight payload, Proceedings
- IEEE International Conference on Robotics and Automation
2015 (2015) 3762–3769. doi:10.1109/ICRA.2015.7139722.

[6] M. T. Pope, C. W. Kimes, H. Jiang, E. W. Hawkes, M. A.
Estrada, C. F. Kerst, W. R. Roderick, A. K. Han, D. L. Chris-
tensen, M. R. Cutkosky, A Multimodal Robot for Perching and
Climbing on Vertical Outdoor Surfaces, IEEE Trans. Robot. 33
(2017) 38–48. doi:10.1109/TRO.2016.2623346.

[7] W. C. Myeong, K. Y. Jung, S. W. Jung, Y. H. Jung, H. Myung,
Drone-type wall-climbing robot platform for structural health
monitoring, Int. Conf. Adv. Exp. Struct. Eng. 2015-Augus
(2015) 1–6.

[8] K. Sukvichai, P. Maolanon, K. Songkrasin, Design of a double-
propellers wall-climbing robot, in: 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), 2017, pp.
239–245. doi:10.1109/ROBIO.2017.8324424.

[9] M. Alkalla, M. Fanni, A. Mohamed, S. Hashimoto, Tele-
operated propeller-type climbing robot for inspection of petro-

21

http://dx.doi.org/10.1163/156855386X00300
http://dx.doi.org/10.1109/ICRA.2015.7139722
http://dx.doi.org/10.1109/TRO.2016.2623346
http://dx.doi.org/10.1109/ROBIO.2017.8324424

Table 8: Normalised energy comparison with state of the art existing solutions

Robot Weight [kg] Max Payload Capacity[kg] Energy navigation[kJ/kg] Energy stand. still[kJ/kg] Tot. energy[kJ/kg] Travel Time[s]
ALPINE 5 ≈ fmax

r /g 0.03 0 0.03 1.52
Drone - HZH C680 (light-weight) [46] 5 1.5 0.8 83 84 1.5
Drone - HZH Y100 (heavy-duty) [46] 40 100 0.9 75 76 1.5
Stickybot III [24] 1 0.6 0.03 0 0.03 50
ROCR [27] 0.55 0 0.1 0 0.1 17

chemical vessels, Industrial Robot: An International Journal 44
(2017) 166–177. doi:10.1108/IR-07-2016-0182.

[10] L. Yang, B. Li, J. Feng, G. Yang, Y. Chang, B. Jiang,
J. Xiao, Automated wall-climbing robot for concrete construc-
tion inspection, Journal of Field Robotics 40 (2023) 110–129.
doi:10.1002/rob.22119.

[11] Y. Nishimura, S. Takahashi, H. Mochiyama, T. Yamaguchi, Au-
tomated hammering inspection system with multi-copter type
mobile robot for concrete structures, IEEE Robotics and Au-
tomation Letters 7 (2022) 9993–10000. doi:10.1109/LRA.2022.
3191246.

[12] S. Qian, B. Zi, W.-W. Shang, Q.-S. Xu, A review on cable-
driven parallel robots, Chinese Journal of Mechanical Engi-
neering 31 (2018) 1–11.

[13] M. Korayem, H. Tourajizadeh, A. Zehfroosh, A. Korayem, Op-
timal path planning of a cable-suspended robot with moving
boundary using optimal feedback linearization approach, Non-
linear Dynamics 78 (2014) 1515–1543.

[14] N. Zhang, W. Shang, S. Cong, Dynamic trajectory planning for
a spatial 3-dof cable-suspended parallel robot, Mechanism and
Machine Theory 122 (2018) 177–196.

[15] S. Newdick, N. Ongole, T. G. Chen, E. Schmerling, M. R.
Cutkosky, M. Pavone, Motion planning for a climbing robot
with stochastic grasps, in: 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 11838–11844.
doi:10.1109/ICRA48891.2023.10160218.

[16] S. Lahouar, E. Ottaviano, S. Zeghoul, L. Romdhane, M. Cec-
carelli, Collision free path-planning for cable-driven parallel
robots, Robotics and Autonomous Systems 57 (2009) 1083–
1093.

[17] M. Polzin, F. Centamori, J. Hughes, Heading for the abyss:
Control strategies for exploiting swinging of a descending teth-
ered aerial robot, in: 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 5373–5378.
doi:10.1109/ICRA48891.2023.10160347.

[18] Webpage, Youbube - Blade BUG: the robot that can repair wind
turbines, Accessed on 02/2024. URL: https://www.youtube.

com/watch?v=I3X6YlF4jAI.
[19] Webpage, Youbube - Wind Turbine Blade Repairs - Robotics

Revolutionizing the Wind Industry, Accessed on 02/2024. URL:
https://www.youtube.com/watch?v=pz9Wn2Kcj4A.

[20] I. A. Nesnas, J. B. Matthews, P. Abad-Manterola, J. W. Bur-
dick, J. A. Edlund, J. C. Morrison, R. D. Peters, M. M. Tanner,
R. N. Miyake, B. S. Solish, R. C. Anderson, Axel and du-
axel rovers for the sustainable exploration of extreme terrains,
Journal of Field Robotics 29 (2012) 663–685. doi:10.1002/rob.
21407.

[21] M. Polzin, F. Centamori, J. Hughes, Heading for the abyss:
Control strategies for exploiting swinging of a descending teth-
ered aerial robot, in: 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 5373–5378.
doi:10.1109/ICRA48891.2023.10160347.

[22] L. Wang, U. Culha, F. Iida, A dragline-forming mobile robot
inspired by spiders, Bioinspiration and Biomimetics 9 (2014).
doi:10.1088/1748-3182/9/1/016006.

[23] M. Focchi, M. Bensaadallah, M. Frego, A. Peer, D. Fontanelli,
A. Del Prete, L. Palopoli, CLIO: a Novel Robotic Solu-
tion for Exploration and Rescue Missions in Hostile Moun-
tain Environments, in: 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 7742–7748.
doi:10.1109/ICRA48891.2023.10160440.

[24] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M. R.

Cutkoskly, Smooth vertical surface climbing with directional
adhesion, IEEE Transactions on Robotics 24 (2008) 65–74.
doi:10.1109/TRO.2007.909786.

[25] D. K. Riskin, P. A. Racey, How do sucker-footed bats hold
on, and why do they roost head-up?, Biological Journal of the
Linnean Society 99 (2010) 233–240. doi:10.1111/j.1095-8312.
2009.01362.x.

[26] A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash,
B. Kennedy, Lemur 3: A limbed climbing robot for extreme
terrain mobility in space, in: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2017, pp. 5467–5473.
doi:10.1109/ICRA.2017.7989643.

[27] S. Jensen-Segal, S. Virost, W. R. Provancher, Rocr: Dynamic
vertical wall climbing with a pendular two-link mass-shifting
robot, in: 2008 IEEE International Conference on Robotics and
Automation, 2008, pp. 3040–3045. doi:10.1109/ROBOT.2008.
4543672.

[28] E. M. Hoffman, M. P. Polverini, A. Laurenzi, N. G. Tsagarakis,
Modeling and Optimal Control for Rope-Assisted Rappelling
Maneuvers, Proc. - IEEE Int. Conf. Robot. Autom. 2021-May
(2021) 9826–9832. doi:10.1109/ICRA48506.2021.9560802.

[29] A. Coelho, Y. S. Sarkisov, J. Lee, R. Balachandran, A. Franchi,
K. Kondak, C. Ott, Hierarchical control of redundant aerial
manipulators with enhanced field of view, in: 2021 International
Conference on Unmanned Aircraft Systems (ICUAS), 2021, pp.
994–1002. doi:10.1109/ICUAS51884.2021.9476739.

[30] D. W. Haldane, J. K. Yim, R. S. Fearing, Repetitive extreme-
acceleration (14-g) spatial jumping with salto-1p, IEEE Interna-
tional Conference on Intelligent Robots and Systems 2017-Septe
(2017) 3345–3351. doi:10.1109/IROS.2017.8206172.

[31] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, S. Kim,
Optimized jumping on the MIT cheetah 3 robot, Proc. -
IEEE Int. Conf. Robot. Autom. 2019-May (2019) 7448–7454.
doi:10.1109/ICRA.2019.8794449.

[32] M. Chignoli, S. Kim, Online trajectory optimization for dy-
namic aerial motions of a quadruped robot, in: 2021 IEEE
International Conference on Robotics and Automation (ICRA),
2021, pp. 7693–7699. doi:10.1109/ICRA48506.2021.9560855.

[33] Y. Ding, M. Zhang, C. Li, H.-W. Park, K. Hauser, Hybrid
sampling/optimization-based planning for agile jumping robots
on challenging terrains, in: 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2021, pp. 2839–2845.
doi:10.1109/ICRA48506.2021.9561939.

[34] X. Jiang, W. Chi, Y. Zheng, S. Zhang, Y. Ling, J. Xu, Z. Zhang,
Locomotion generation for quadruped robots on challenging
terrains via quadratic programming, Auton. Robots (2022).
doi:10.1007/s10514-022-10068-3.

[35] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, M. Hutter, Per-
ceptive Locomotion through Nonlinear Model Predictive Con-
trol, arXiv (2022) 1–20. arXiv:2208.08373.

[36] Webpage, Rock schmidt rebound hammer, Accessed
on 12/12/2024. URL: https://www.globalgilson.com/

rock-schmidt-hammer-type-n.
[37] Y. Ding, C. Li, H. W. Park, Kinodynamic motion planning for

multi-legged robot jumping via mixed-integer convex program,
IEEE Int. Conf. Intell. Robot. Syst. (2020) 3998–4005. doi:10.
1109/IROS45743.2020.9341572.

[38] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, G. D. Cald-
well, C. Semini, Application of wrench based feasibility anal-
ysis to the online trajectory optimization of legged robots,
IEEE Robotics and Automation Letters (2018). doi:10.1109/
LRA.2018.2836441.

22

http://dx.doi.org/10.1108/IR-07-2016-0182
http://dx.doi.org/10.1002/rob.22119
http://dx.doi.org/10.1109/LRA.2022.3191246
http://dx.doi.org/10.1109/LRA.2022.3191246
http://dx.doi.org/10.1109/ICRA48891.2023.10160218
http://dx.doi.org/10.1109/ICRA48891.2023.10160347
https://www.youtube.com/watch?v=I3X6YlF4jAI
https://www.youtube.com/watch?v=I3X6YlF4jAI
https://www.youtube.com/watch?v=pz9Wn2Kcj4A
http://dx.doi.org/10.1002/rob.21407
http://dx.doi.org/10.1002/rob.21407
http://dx.doi.org/10.1109/ICRA48891.2023.10160347
http://dx.doi.org/10.1088/1748-3182/9/1/016006
http://dx.doi.org/10.1109/ICRA48891.2023.10160440
http://dx.doi.org/10.1109/TRO.2007.909786
http://dx.doi.org/10.1111/j.1095-8312.2009.01362.x
http://dx.doi.org/10.1111/j.1095-8312.2009.01362.x
http://dx.doi.org/10.1109/ICRA.2017.7989643
http://dx.doi.org/10.1109/ROBOT.2008.4543672
http://dx.doi.org/10.1109/ROBOT.2008.4543672
http://dx.doi.org/10.1109/ICRA48506.2021.9560802
http://dx.doi.org/10.1109/ICUAS51884.2021.9476739
http://dx.doi.org/10.1109/IROS.2017.8206172
http://dx.doi.org/10.1109/ICRA.2019.8794449
http://dx.doi.org/10.1109/ICRA48506.2021.9560855
http://dx.doi.org/10.1109/ICRA48506.2021.9561939
http://dx.doi.org/10.1007/s10514-022-10068-3
http://arxiv.org/abs/2208.08373
https://www.globalgilson.com/rock-schmidt-hammer-type-n
https://www.globalgilson.com/rock-schmidt-hammer-type-n
http://dx.doi.org/10.1109/IROS45743.2020.9341572
http://dx.doi.org/10.1109/IROS45743.2020.9341572
http://dx.doi.org/10.1109/LRA.2018.2836441
http://dx.doi.org/10.1109/LRA.2018.2836441

[39] V. Delos, D. Teissandier, Minkowski sum of polytopes defined
by their vertices, Journal of Applied Mathematics and Physics
(2015).

[40] H. Dai, R. Tedrake, Planning robust walking motion on uneven
terrain via convex optimization, in: 2016 IEEE-RAS 16th Inter-
national Conference on Humanoid Robots (Humanoids), 2016,
pp. 579–586. doi:10.1109/HUMANOIDS.2016.7803333.

[41] K. Fukuda, A. Prodon, Double description method revisited,
in: M. Deza, R. Euler, I. Manoussakis (Eds.), Combinatorics
and Computer Science, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1996, pp. 91–111.

[42] E. Mingo, S. Kothakota, A. Moreno, A. Curti, N. Miguel,
L. Marchionni, Whole-body kinematics modeling in presence of
closed-linkages: application to the kangaroo biped robot, HAL
archive, Id: hal-03652472 (2022).

[43] Russell Smith, Open dynamics engine (ode), https://www.ode.
org/, 2001. Accessed: 2024-06-17.

[44] Webpage, URDF Package Summary, Accessed on 02/2024.
URL: http://wiki.ros.org/urdf.

[45] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lami-
raux, O. Stasse, N. Mansard, The Pinocchio C++ library – A
fast and flexible implementation of rigid body dynamics algo-
rithms and their analytical derivatives, in: IEEE International
Symposium on System Integrations (SII), 2019.

[46] Webpage, Nanjing hongfei drones, Accessed on 18/12/2024.
URL: https://nanjinghongfei.en.made-in-china.com.

8. Appendix*

Definitions of Ad, bd introduced in (6) of the reduced order
model.

23

http://dx.doi.org/10.1109/HUMANOIDS.2016.7803333
https://www.ode.org/
https://www.ode.org/
http://wiki.ros.org/urdf
https://nanjinghongfei.en.made-in-china.com

Ad =

−pz
px

l1
− sin(ψ)2py

2dapxl1

(
2l21 − da

) l2py sin(ψ)2

dapx

0 l1
da

− l2
da

px
cos(ψ)sin(ψ)py

2pxl1da

(
2l21 − da

)
+ pz

l1
− l2py cos(ψ) sin(ψ)

dapx

(49)

bd =

q1 − sin(ψ)2q2
q4

− py2da
2 sin(ψ)q21
q3

+
ψ̇py2da cos(ψ)q1

q6
+

l̇1py2da sin(ψ)q1
q6l1

−l̇2
2
+l̇21

da

q7 +
cos(ψ)q2

q4
+

py2da
2 cos(ψ)q21
q3

− l̇1py2da cos(ψ)q1
q6l1

+
ψ̇py2da sin(ψ)q1

q6

T

(50)

with:

q0 = 2l̇1
pz

l1 ψ̇ − l1ψ̇
2 px

l1

q1 = −l22 l̇1 + 2l1l2 l̇2 − l21 l̇1 + d2a l̇1

q2 = 3l̇21py2da
2 + 8l1l2 l̇1 l̇2py2da − 2l1

2 l̇2
2
py2da + 4 l1

2 l2
2 l̇2

2

−6 l1
2 l̇21 py2da − 8 l1

3 l2 l̇1 l̇2 + 4 l1
4 l̇21

q3 =
16d4al1

2px
3

sin(ψ)3

q4 =
4d2al1

2px

sin(ψ)

q6 =
2d2al1px

sin(ψ)

q7 = −pzψ̇
2 + 2l̇1ψ̇

px

l1

24

	Introduction
	Robot Modeling
	Full robot model
	Landing Mechanism

	Reduced-order model with minimal representation

	Static Analysis
	Feasible Polytope
	Gravitational wrench
	Evaluating the feasibility margin
	Numeric evaluation

	Motion Planning
	Motion Control
	Flying motion control: Linear position
	Flying motion control: orientation
	Flying motion control: landing
	Lateral manoeuvring

	Simulation Results
	Simulation Setup
	Open Loop Model Validation (experiment 1)
	Disturbance tests (experiment 2)
	Disturbance tests: Ablation Study (experiment 3)
	Disturbance tests: Robustness Evaluation (experiment 4)
	Multiple targets: omni-directional jumps (experiment 5)
	Obstacle avoidance (experiment 6)
	Landing test and lateral manoeuvring (experiment 7)
	Jumps on slanted walls (experiment 8)
	Energetic comparison with other robotic solutions

	Conclusions
	Appendix*

