
Code Generation of Algebraic Quantities for Robot Controllers

Marco Frigerio, Jonas Buchli and Darwin G. Caldwell

Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova
{marco.frigerio, jonas.buchli, darwin.caldwell} @iit.it

Abstract— Controllers for articulated robots such as an
arm or a humanoid commonly need to continuously calculate
complex algebraic quantities, such as the joint space inertia
matrix or Jacobians. An effective and fast implementation of
the calculation of these quantities is crucial to achieve complex,
yet robust controllers and thus enable sophisticated behaviors
in robots. Although the nature of these algebraic quantities
is very well known in robotics, they do not lend themselves
easily to manual implementation, because of ambiguities and
the complexity in their development and use. We propose an
approach that addresses this issue by relying on automatic
code generation, thus relieving the user from hand crafted
development. Our approach also addresses efficiency and speed,
in order to satisfy the strict requirements of real time robot
controllers, yet it is easy to use. We show the effectiveness of
our method by means of some preliminary comparisons.

I. INTRODUCTION

This paper describes a software tool to support the de-
velopment of simulators as well as fast model–based con-
trollers for articulated robots, such as operational space
controllers and impedance controllers [1]. All these appli-
cations make extensive use of algebraic expressions such
as coordinate transforms, Jacobians, range and null space
projectors, among the others [2].
Despite an established theoretical understanding of these
objects in robotics, sound and efficient implementations are
far from being trivial, yet they are critical for successful
simulations and control and therefore for the safety of the
robot itself. Writing software for these components is error
prone and time consuming, also because of the lack of
established, general software models which address these
concepts, and thus the lack of reusable implementations.
Moreover these algebraic quantities typically suffer from
ambiguities in their definition or in their usage (cf. Section
III-C), so that developing them by hand is even more
tricky. On the other hand, attributes that might resolve these
ambiguities are usually not explicit in software packages,
limiting their flexibility and reusability. The development
becomes even more challenging when real time constraints
and limited hardware resources demand fast and efficient
code.

In short, our method addresses these issues by automating
the implementation of these algebraic expressions, with the
aim of improving the development process and thus the
quality and the robustness of the software itself. It exhibits
several desirable features which we can briefly summarize
here, that will be further developed in the rest of the paper:

• Ease of use: the user is required to deal only with high
level information – as for instance which Jacobians are
of interest for a given robot – leaving implementation
details to the computer. Ideally this approach should be
used whenever possible, especially when dealing with
complex systems like robots.

• Robustness: an automated code generation process is re-
peatable and cannot introduce occasional mistakes that
would occur with manual development. Of course the
process itself needs to be validated, but once established
it allows very fast development and rapid prototyping.

• Flexibility: simple yet general models driving our im-
plementation limit restrictions or anyway enable ex-
tensibility. For example it is possible to generate the
transforms between any pair of possible frames attached
to a kinematic tree, following the user’s needs.

• Efficiency: despite the points above, the generated im-
plementations can be optimized to address the speed
and efficiency constraints of real time systems, making
our approach suitable for use in real robot controllers.

Our method is based on Domain Specific Languages
(DSLs), special purpose languages built on top of domain
models, with a custom syntax [3]. The user can adopt such
a language to provide high level input information and then
have the computer perform an automatic transformation, for
instance into executable code.
This work is tightly related to our previous one about a DSL
for the specification of kinematic trees [4], which focuses
on rigid body dynamics algorithms to show the benefits of
model-based code generation in robotics. Our contribution
with the present work goes in the same direction: another
simple DSL independent of the first one, which provides the
infrastructure to generate implementation of any coordinate
transformation. Used in conjunction with the kinematics DSL,
it allows to enrich the generation process tailored for a
given robot, and specifically to obtain arbitrary transforms
and geometric Jacobians. Thanks to off-line optimization,
the code can also be very efficient and thus appropriate
for computation intensive algorithms and hard real-time
requirements (e.g. control loops in embedded machines).
As an additional contribution, we also added to the code gen-
erator of the kinematic DSL new algorithms, the composite-
rigid-body algorithm to compute the joint space inertia
matrix M , and the LTL factorization for the same matrix,
both as detailed by Featherstone [5].



Altogether these components provide a robust support to
start the development of model–based controllers such as
operational space controllers.

The DSLs allow in principle to generate code in any
language, but in this work we focus on C++ (we use the
linear algebra library Eigen [6]). We use the Xtext workbench
for Eclipse [7] and the Xtend2 language [8] to develop the
languages; these tools provide the generic infrastructure to
actually transform models into code (i.e. text files), which is
not the focus of this paper. Parsers and generators developed
with these technologies can be deployed as standalone Java
packages. In addition, we rely on the Maxima symbolic
computation engine [9], for doing off-line optimization and
therefore generate efficient code (see Section III-E). Our
purpose is to provide reusable tools constructed with open
source technologies; indeed, a user who would like to use
our system would only need a Java runtime environment and
Maxima (which can be built for many systems).

The rest of the paper is organized as follows: Section II
discusses some related work, while Section III explains the
rationale and the assumptions behind our software, whose
main purpose is to generate code. Section IV describes some
of the achieved results and finally Section V discusses about
future development of our work.

II. RELATED WORK

Since the introduction of the operational space concept
by Khatib [10] its use has been extensively discussed in
the robotics control literature (e.g. [11], [12], [13], [14],
[15]). However, almost all these works address the theoretical
aspect of the controller, rather than explicitly focusing on the
software required to implement such approaches. Maybe the
most notable exception to this is the Stanford Whole-Body
Control (S-wbc) open source project [16], initially released
in 2009 as a result of the efforts of the Stanford Robotics Lab
to bring the operational space formulation into a software for
the community.
The S-wbc comprises a library for joint-space kinematics
and dynamics, on top of which additional components pro-
vide the abstractions required by operational space control.
Specific effort has been spent on the configurability of the
framework, so for instance classes can expose their own
parameters via a reflection mechanism, and these can be
changed at runtime.
Even though our approach shares with the S-wbc some
design principles and goals such as flexibility and robustness,
we aim at software components that are even more general
and reusable, since they have a narrower domain, and not at a
full-featured framework. We are also interested in efficiency
and speed of execution, for scenarios with hard real time
constraints. We aim at having our software be used as a
building block of other applications, and the S-wbc itself
might be an example of these.

Generation of code and equations is a feature available
in some commercial programs. SD/FAST [17] is a feature–
rich simulator of mechanical systems that produces C or
Fortran implementation of the corresponding equations of

motions. Robotran [18] targets multi-body systems and can
output symbolic equations for kinematics and dynamics for
MATLAB and SIMULINK. Similar considerations as for the
S-wbc apply here for the comparison with our work.
We focus on a specific functionality, basing the implementa-
tion on explicit models – therefore improving documentation,
usability and extensibility – and adopting only open source
technologies.

III. MODELS AND DSLS

A. Workflow

The diagram in Figure 1 gives an overview of the logical
workflow we use to turn the high level information about the
robot kinematics into working implementations of transforms
and Jacobians. The starting point is the robot kinematics,

Desired 
transforms 

& 
Jacobians

Transforms 
specifications

Robot 
kinematics 

Symbolic 
transforms

Symbolic 
Jacobians

Symbolic 
engine

C++ 
transforms

generator

C++ 
Jacobians

generator

Fig. 1. A conceptual representation of the workflow for the transformation
of models into executable code. The scroll-like blocks are instance doc-
uments of some DSL, the trapezoidal ones perform computations and the
sheet-like ones are resulting code blocks. The curved arrows represent code
generation, while the straight ones represent input/output data flows.

briefly described in Section III-B, together with a user
specified list of desired transforms and Jacobians.

Instead of directly implementing the logic to generate
the transforms from the robot kinematics, we designed a
simple and general DSL for the abstract specification of any
transform, which in turn has its own generator (see Section
III-C). As shown in the workflow, the kinematic information
is transformed into such an abstract, language independent
description of the matrices.
This language is completely general and not constrained
to robotics, and can be used as standalone tool; in our
workflow we happen to generate a document compliant with
the language, but this is just a special use case.
Having a dedicated language enforces the separation of
concerns by making the model underlying the coordinates
transforms explicit. It allows to have simpler and more
reusable components; in this way it was possible to im-
plement the generation of different kind of transforms (for
homogeneous vectors and spatial vectors [5]) sharing the
same, common abstract description.

One of the end products of the generation is the code for
the symbolic computation engine, which can be used in turn
as an input for subsequent steps of the workflow. Such code



can be interpreted and the result exploited to generate more
efficient code for some other language. See Section III-E.

B. Kinematic trees

Information about the kinematic structure of a robot is the
basis to generate the building blocks for its controllers. The
robot model is encoded in a document of another DSL, which
is detailed in our previous work [4].
Such a robot model specifies how links are connected via
prismatic or revolute joints, and where the joints are located.
Reference frames are attached to links and joints according
to a convention (see also chapter 4 of [5]), but any number
of additional, custom frames can be associated to any link of
the structure. All these frames have a name and they are used
to uniquely identify transforms and Jacobians, as detailed in
the next sections.

C. The coordinate transforms DSL

A coordinate transformation matrix maps a coordinate
vector to another coordinate vector, representing the same
physical entity (e.g. a point) in a different reference frame:

pB = BXA · pA

where A and B are two frames, p is the coordinate vector;
more on the notation in the following paragraphs.
The key point behind a model for this kind of objects is
to explicitly expose the information that is usually implicit
and therefore lead to ambiguities and potential mistakes. The
most important is the direction of the encoded transform: as
an example, assume that frame B is rotated by an angle α
about the z axis, with respect to A; this input information
cannot be misunderstood (assuming right handed frame and
right hand rule for the angle sign), but the expression for the
rotation matrix Rz(α) does not tell whether it transforms
vectors from B to A or vice versa, thus is ambiguous. For
instance, the code in the MATLAB robotics toolbox [19]
uses one convention while the 6D transforms introduced by
Featherstone in [5] use the other one.

For the sake of simplicity we will focus only on the
direction property, assuming to deal always with right handed
coordinate frames and left–multiplication (i.e. the matrix
always left–multiply a column vector of coordinates), these
being other possible ambiguities in the usage of the trans-
forms. We believe that this assumption is not a big limitation
since different choices are quite uncommon; moreover, by
additional attributes in the model we could possibly deal
also with such uncommon cases.

Fig. 2. The model for the coordinate transformations at the basis of the
DSL

Figure 2 shows an UML class diagram representing the
model we designed to provide a foundation for the DSL and
its code generator. It comprises the following elements:

• Transform: this represents an atomic transformation
matrix, that is either a rotation or a translation about or
along one of the six Cartesian axes, by a certain amount
(angular or linear displacement). The convention
property is a two-valued field that tells whether the
matrix is supposed to (pre)multiply a vector expressed
in the rotated frame or in the base one. Together with
the first attributes, this uniquely determine the matrix.
We can think of these objects as generic, building blocks
for composite transforms.

• RefFrame: a simple named object which identifies
uniquely a certain reference frame (e.g. on a robot).

• NamedTransform: a transform between two specific
frames, with a unique name, constituted by an arbi-
trary number of simple transforms. The two proper-
ties leftFrame and rightFrame explicitly iden-
tify the role of the matrix: it takes vectors expressed
in rightFrame (the vector is on the right of the
matrix, as in BXA · pA) and gives back vectors of
leftFrame. This is usually only represented in the
algebraic notation but not in code; as seen before, we
will use the formalism leftFrameXrightFrame. Note that
this information disambiguates also the issue of right or
left multiplication.

Fig. 3. A sample document of the coordinate transforms DSL, for an
hypothetical simple robotic leg. q HFE and q KFE could be labels for
Flexion-Extension joints, respectively in the hip and the knee.

Figure 3 shows a simple example of a document of our
DSL, which could be the specification of the transforms of
some imaginary three-link robotic leg. It contains a global
name, a declaration of the frames referenced afterwards and
then a list of the user–defined transformations. Tokens in
the form Rx(), Ty(), . . . , are keywords of the language
and represent the atomic transformations; for simplicity,
the convention attribute of each of them is specified
only once globally (with the TransformedFramePos
keyword). The transformations that are meaningful for the
user must be specified with a syntax that clearly identifies the
left and right frame attributes, but a custom, optional name
can be specified at the end of the line in square brackets. The
language supports numerical constants as well as symbolic
identifiers, including the keyword PI that stands for π; this is
useful to model the dependency of the transform from some
variable, which in our case will typically be the status of the
joints of the robot.



D. Geometric Jacobians

Jacobians map joint space velocities to Cartesian velocities
of some reference frame of interest located in the robot,
according to the well known formula

ẋ = J(q)q̇

As for a coordinate transform, also the Jacobian is fully
identified by two reference frames, which we call the “target
frame” and the “origin frame”. They are respectively the
frame of the body whose velocity (or force) is of interest and
the frame in which the velocity (or force) has to be expressed.
In the robotics literature it is common to find expressions
like “end-effector Jacobian” or “constraint Jacobian”, where
these expressions are really just shortcuts to identify the
frame of interest, without mentioning the origin one since it
is assumed to be known from the context (an often coincides
with the robot base frame). However, to have software
deal automatically with these objects in a general way, this
information cannot be left implicit.
The addition of Jacobians in the domain model is quite
straightforward, and it is shown in Fig. 4. The drawing also

Fig. 4. A view of the domain model including the class for geometric
Jacobians.

shows (by means of a dashed arrow) the dependency with
the NamedTransform, since any geometric Jacobian can
be fully computed on the basis of direct kinematics [2].

We adopted this model to represent Jacobians in our
software and to generate code that implements them. How-
ever we added this logic in the same package of the robot
kinematics, without affecting the coordinate transforms DSL,
as can be seen from the workflow in Figure 1.

E. The role of the symbolic computation engine

In our workflow we use a symbolic computation engine
(Maxima), purely to achieve higher efficiency in the code
generated for other languages, in our case C++. Without
symbolic calculus, one could still generate executable imple-
mentations, simply by translating the atomic transforms into
matrices in the target language, and the composite transforms
into products of such matrices; this is exactly what we do to
generate code for Maxima itself. The process is even more
convenient with a small library in the target language already
implementing the six objects Rx(), . . . , Tz(). With this
approach, once a code generator is developed, one still gets
relieved from developing manually the various transforms of
the robots.

On the other hand, when efficiency is of concern, as in
our case, the symbolic engine can be exploited to develop

the multiplications between the atomic transforms and get
the resulting matrix, possibly simplified to a compact form.
Therefore the engine must be able to perform linear algebra
and possibly some simplifications of trigonometric functions.
Then, another generator can take advantage of a priori
knowledge about the structure of the resulting matrix: which
elements are constant, which ones are equal to some other,
which and how many unique trigonometric functions the
matrix depends on, so that the generated code does not
compute sines and cosines (typically the most expensive
functions) multiple times.

IV. RESULTS

In this section we will present some of the results we
achieved so far, to demonstrate the feasibility and the con-
venience of the approach together with the performance of
the generated code.

We ran some regular tests to check the correctness of
the generated implementations. We mainly performed some
comparisons with the SL software package [20], which has
been in development for more than fifteen years and it is
used in several research labs for simulations and hard real
time model–based control of real robots.
As an additional validation, we partially rewrote a controller
for our quadruped robot HyQ [21] using our approach. This
program – which is detailed in another paper from our
research group [22] – controls the impedance of a single leg
of the robot, and exploits coordinate transforms, the Jacobian
baseJfoot, and so on. We replaced the original implementa-
tion of some of these quantities and we managed to obtain
the same behavior from the robot. More importantly, once the
task was developed, it was a matter of minutes to generate
the same expressions for a different leg and have the software
control its impedance instead.

A. Joint space inertia matrix

The joint space inertia matrix M is a symmetric, positive-
definite matrix that maps forces and accelerations at the joints
of a multi-body system [5]. This matrix is used in rigid
body dynamics algorithms but also appears in the operational
space formulation. It captures the whole system dynamics in
the absence of external forces and body velocities:

τ =M(q)q̈

As mentioned in the introduction, we can generate the
composite-rigid-body algorithm to efficiently compute M .
This algorithm is known to be the most efficient for this
job, especially because it exploits the sparsity of the matrix
induced by the branching of the kinematic tree [5]. More-
over, the algorithm requires almost all the 6D-force-vector
transforms in the form parentXchild and the motion-vector
transforms childXparent, thus its performance depends also
on them.

The computation of M is therefore a good test case for
our approach, both to check the numerical correctness and
especially for the performance of execution. As far as the
latter point is concerned, we performed some comparisons



on the execution times with the S-wbc software, and the
results are summarized in Figure 5. Tests were executed with

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

No. of calls

T
im

e
 [

s
]

 

 

Stanford−wbc

Gen. code

5 DoFs, linear

Time [s]
+ ���
0 0

0.01 0
0.07 0
0.81 0.02
7.91 0.25
Avg. ratio: 36.07

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

No. of calls

T
im

e
 [

s
]

12 DoFs, branching

Time [s]
+ ���

0.01 0
0.05 0
0.45 0
4.49 0.05
44.57 0.41
Avg. ratio: 99.25

Fig. 5. Performance comparison with the S-wbc for the computation of
the joint-space inertia matrix M . The x axis represent the number of calls,
the y axis the total execution time (in seconds – the exact values are shown
in the table in the center). The graph on the left refers to a 5 DoF linear
robot, the one on the right to a 12 DoF quadruped robot (tests executed on
a Intel(R) Core(TM)2 Duo CPU, P8700 @ 2.53GHz).

two different robot models:
1) a 5 DoF fictitious robot, composed of a linear kinematic

chain with three revolute joints and two prismatic joints
2) a 12 DoF robot (our quadruped HyQ [21]), which

has four 3 DoF legs and therefore exhibits a branched
kinematic structure

We measured the cumulative execution time of multi-
ple calls to update M(q), by means of the standard
library function std::clock(). For the S-wbc, for
instance, this simply means to measure the single call
computeMassInertia() of the joint space model class.
Even tough we do not claim these to be definite and exhaus-
tive comparisons, the plots clearly show a significant faster
execution of our implementation, by a factor of about 35 for
the first robot. For the one with a branched structure the gain
raises up to 100 most probably because in the S-wbc the
sparsity of M cannot be exploited.
In addition, our code is compatible with runtime environ-
ments enabling hard real time computations as for instance
a Linux system with Xenomai [23]. Together with the fast
execution speed this means we can employ the generated
code in actual controllers of real robots, for example a
hydraulic one [21].

B. Null space projector

We show in this section an additional comparison on
performance, this time for the computation of a null space
projector N . This is another common ingredient of the
operational space control used to compute velocities and
torques at the joints that do not result in motion at the end
effector. One possible definition is the following:

NT = I − JT (JM−1JT )−1JM−1

where all the terms are function of the joint status q. As
you can see, it requires a Jacobian (e.g. the base to end-
effector Jacobian) and the inverse of M , so we are basically

comparing the computation of both these terms in the S-wbc
and in our software.

We performed the test only in the first, 5 DoF robot without
branches, not to include the effect of sparsity, which we have
already shown to affect significantly the gap between the
S-wbc and the generated code. We selected an hypothetical
end-effector at the tip of the last link, and used the corre-
sponding Jacobian. Results are illustrated in Figure 6. Also

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

No. of calls

T
im

e
 [
s
]

 

 

Stanford−wbc

Gen. code

Time [s]
+ ���
0 0

0.02 0
0.18 0
1.85 0.02
18.21 0.36
Avg. ratio: 71.54

Fig. 6. Performance comparison with the S-wbc for the computation of
the inverse of the joint space inertia matrix and the end-effector Jacobian,
for a 5 DoF robot. The x axis represent the number of calls, the y axis the
total execution time (in seconds – see Fig. 5).

for this case the plot indicates a better performance for the
code generated with our approach. The average ratio of the
execution time is even higher than before, as one might have
expected because we now have two terms computed possibly
in a more efficient way. We get M−1 by means of the LTL
factorization, performed by generated code implementing the
algorithm described again in [5]. The remaining operations
L−1L−T = M−1 are done with generated code as well,
tailored for triangular matrices and exploiting the robot
specific sparsity (if any). These operations obviously add a
cost to the computation of M , which however seems less
than the increase of execution time observed in the S-wbc to
compute M−1 with respect to M ; for these tasks, the current
implementation of the S-wbc uses a call respectively to the
forward dynamics and the inverse dynamics routines.

The computation of the Jacobian is also relevant in this
respect: our implementation is highly optimized since it
has been generated in advance for a specific, known point
of the kinematic tree, and therefore outperforms a regular,
generic implementation that relies only on computations at
run-time. It is true that with our approach we cannot have the
Jacobians for any arbitrary point determined dynamically (i.e.
at runtime), but on the other hand it is very often the case
that the points of interests on the robot are known or can
be estimated in advance, as for instance the end-effectors.
However, the framework already provides a robust way to
address also these issues: as an example, one might generate
the Jacobians for every link of the robot, and pick one of
them at runtime once a specific point on a certain link is
identified (e.g. a contact point); the velocity of the point is
then obtained by a simple motion transform applied to the
velocity of the link.



V. CONCLUSIONS AND FUTURE WORKS

In this paper we have described computer tools to support
the development of effective controllers for real robots,
focusing on common linear algebra expressions such as coor-
dinate transformations or null space projectors. The approach
is based on simple high level models of the information
and on the corresponding Domain Specific Languages, that
provide the infrastructure to generate efficient code out of
such models. A general aim of our efforts is to relieve
roboticists from spending time on non–problems, which are
issues well understood in theory and therefore often of scarce
scientific interest, but yet critical for robotics applications.
Effective software solutions for these (non–)problems can
still be demanding, and contribute significantly to the costs
of development and especially maintenance of the system.

Our approach has proven to be effective, in that it exhibits
a diversity of desirable features for robotics software: it
is easy to use because the user deal only with high level
information; the use of shared models among the components
improves the observability of the process and documentation
in general; it is robust and limits human mistakes because it is
based on automatic code generation; yet it is effective for real
time robot control, because the generated implementation
is fast and efficient. In general we are convinced that this
software could be adopted as a building block of composite
systems, such as real-time capable operational space con-
trollers.

Several improvements and developments of our work are
possible. As an example, it is important to extend our soft-
ware models with the explicit notion of task and task space.
In this way the software could reason about properties such
as the dimension of a task space, for example to generate
a Jacobian with the significant rows only, to automatically
detect task-specific redundancy, or to identify the subset of
joints involved in a specific task.
As far as efficiency is concerned, the use of sparse matrices
might make generic computations (sums and products in
user code) faster. In principle, given a known matrix, the
generator could choose whether to use or not a sparse matrix
implementation in the target language when generating code.
However it is quite difficult to devise such criteria in general,
also because the benefits highly depend on the specific
implementation.
Another development concerns the optimization of the num-
ber of computations: currently each generated matrix updates
itself (given a new joint state vector q) computing once all
the terms it is a function of, even if multiple elements depend
on them. This kind of optimization is not happening at the
global level, among different matrices that might be function
of some shared terms (e.g. terms like baseXlink1, baseXlink2,
baseXlink3, etc.). However our software system is already
designed with this idea in mind, and realizing such improve-
ment would be a matter of tuning our implementation.

ACKNOWLEDGEMENTS

This research has been funded by the Fondazione Istituto Italiano
di Tecnologia.

The authors would like to thank the developers and the maintainers
of Xtext, Xtend, Maxima, Eigen.

APPENDIX
A preliminary version of our software is available for download at:

http://www.iit.it/en/article/10-advanced-robotics/
1253-robotics-code-generator.html
This C++ snippet gives an example of the usage of the generated code:

REFERENCES

[1] N. Hogan, “Impedance control: An approach to manipulation: Part II
– Implementation,” ASME, Transactions, Journal of Dynamic Systems,
Measurement, and Control, vol. 107, pp. 8–16, 1985.

[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics. Mod-
elling, Planning and Control, M. J. Grimble and M. A. Johnson, Eds.
Springer, 2009.

[3] M. Fowler, Domain-Specific Languages. Addison-Wesley, 2010.
[4] M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain specific

language for kinematic models and fast implementations of robot
dynamics algorithms,” in 2nd International Workshop on Domain-
Specific Languages and models for ROBotic systems (DSLRob), 2011.

[5] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[6] G. Guennebaud, B. Jacob, et al. The eigen library v3. [Online].

Available: http://eigen.tuxfamily.org
[7] M. Eysholdt and H. Behrens, “Xtext: implement your language faster

than the quick and dirty way,” in ACM international conference
companion on Object oriented programming systems languages and
applications companion, ser. SPLASH ’10. New York, NY, USA:
ACM, 2010, pp. 307–309.

[8] The Xtend language. [Online]. Available: http://www.xtend-lang.org/
[9] Maxima. (2011) Maxima, a computer algebra system. version 5.25.1.

[Online]. Available: http://maxima.sourceforge.net/
[10] O. Khatib, “A unified approach for motion and force control of robot

manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[11] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer, 2008.

[12] J. Park, “Control strategies for robots in contact,” Ph.D. dissertation,
Stanford University, March 2006.

[13] L. Sentis, “Synthesis and control of whole-body behaviors in hu-
manoid systems,” Ph.D. dissertation, Stanford University, July 2007.

[14] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Oper-
ational space control: A theoretical and empirical comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008.

[15] L. Righetti, M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics
control of floating-base robots with external contraints: an unified
view,” in IEEE international conference on robotics and automation
(ICRA), 2011.

[16] R. Philippsen, L. Sentis, and O. Khatib, “An open source extensible
software package to create whole-body compliant skills in personal
mobile manipulators,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), September 2011, pp. 1036 –1041.

[17] M. Sherman and D. Rosenthal. SD/FAST. [Online]. Available:
http://www.sdfast.com/

[18] Robotran. [Online]. Available: http://www.robotran.be/
[19] P. Corke, “A robotics toolbox for Matlab,” Robotics Automation

Magazine, IEEE, vol. 3, no. 1, pp. 24 –32, mar 1996.
[20] S. Schaal, “The SL simulation and real-time control software package,”

CLMC lab, University of Southern California, Tech. Rep., 2009.
[21] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,

and D. G. Caldwell, “Design of HyQ – a hydraulically and electrically
actuated quadruped robot,” Proc. IMechE Part I: J. Systems and
Control Engineering, vol. 225, 2011.

[22] M. Focchi, T. Boaventura, C. Semini, M. Frigerio, J. Buchli, and D. G.
Caldwell, “Torque-control based compliant actuation of a quadruped
robot,” in 12th IEEE International Workshop on Advanced Motion
Control (AMC), 2012.

[23] P. Gerum, “Xenomai – implementing a RTOS emulation framework
on gnu/linux,” April 2004.


