
Model based code generation for kinematics and dynamics
computations in robot controllers

Marco Frigerio, Jonas Buchli and Darwin G. Caldwell

Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova
{marco.frigerio, jonas.buchli, darwin.caldwell} @iit.it

Abstract— This paper gives an overview on our current
research on models and Domain Specific Languages (DSLs) for
robotics software development. We target the set of kinematics
and dynamics algorithms which are critical for simulation
and control (e.g. forward kinematics or inverse dynamics), but
whose manual implementation is error prone and time con-
suming. Our approach relies on model based code generation
to address the apparently conflicting requirements arising from
the constraints of real time robot controllers on one hand, and
the ease of use and the flexibility desirable by the end user on
the other hand. Evidences from our experience and numerical
experiments demonstrate the effectiveness of this approach.

I. INTRODUCTION AND RELATED WORK

Model based controllers for articulated robots, such as
operational space controllers [1] and impedance controllers
[2], heavily rely on kinematics and dynamics algorithms and
expressions. Despite an established theoretical understanding
of such algorithms, sound implementations demand a lot of
resources, making the development of new experimentations
with robots harder.
The difficulties can arise from the lack of established soft-
ware models and thus the lack of reusable components, in
addition to the inherent complexity of kinematics/dynamics.
The implementation becomes even more challenging when
real time constraints and limited hardware resources demand
fast and efficient code.

To address these issues we designed some simple yet gen-
eral domain models of the relevant aspects of the kinematics
and dynamics of a robot, and then built DSLs on top of
them [3], with the final purpose of automatically generating
code. We primarily target the algebraic expressions typical of
different control approaches (e.g. operational space control,
Jacobian-transpose force control) and rigid body dynamics
algorithms.
Our approach exhibits several desirable features which in-
clude:

• ease of use: the user is required to deal only with high
level information;

• robustness: an automated code generation process is
repeatable and cannot introduce occasional mistakes;

• flexibility: domain models make the software more
general and enable extensibility;

• efficiency: the generated implementations can be opti-
mized to address the speed and efficiency constraints of
real time robot controllers.

In principle DSLs allow to generate code of any language,
but for this work we mainly focus on C/C++ (using the
algebra library Eigen [4]) because of the need to run hard
real time control loops at high frequencies (e.g. 1Khz). We
develop the DSLs with the Xtext workbench for Eclipse [5],
using the Java and the Xtend2 languages [6]. In addition,
we rely on the Maxima symbolic computation engine [7], to
simplify algebraic expressions and thus generate optimized
code.

Generation of code and equations is a feature available
in some commercial software packages, as for instance
SD/FAST [8] and Robotran [9]. SL is a mature package [10]
which is used in several research labs – including ours – for
simulations and control; we will use it for some comparisons
with our code. We will also show some comparisons with
the Stanford Whole Body Control (S-wbc) software, which
explicitly targets the implementation of the operational space
formulation [11]. For further details about the kinematic
model and rigid body dynamics algorithms please refer to
the work of Featherstone [12].
Our contribution lies in gathering different points: the use
of domain models according to an established best practice
in software design (in a field like robotics, that on the other
hand seems to partially lack of a principled development
process [13]); the use of the technological opportunity given
by DSLs to realize our purposes; the efficiency of the
resulting implementations, which meet the requirements of
controllers of real robots.

II. MODELS AND LANGUAGES

Figure 1 shows an UML class diagram representing kine-
matic trees. The model is simple but general, and can be
applied to almost any robot made by rigid links (we are not
handling kinematic loop though).

We designed a DSL based on this domain model so that
its instance documents are specific robot descriptions (an
example in Figure 2). The effort required to design the
grammar of the language was relatively limited and subject
to a confident understanding of the domain.
With this DSL the user only needs to produce an high level
description of the robot, which however fully specifies the
physics of the system according to the rigid body dynamics
model.
Then, such information can be transformed automatically

Link
 # mass: double
 # centerOfMass: Vector3
 # inertiaMatrix: Matrix3
 # ID: Integer

RefFrame
 - name: String

ChainLink

Placement
 - translation: Vector3
 - rotation: Vector3

VirtualLink
 # mass = 0

Joint
 - ID: Integer

 + getStatus(): double

«singleton»
RobotBase

PrismaticJointRevoluteJoint

 children [1..*]

 parent [0..1]

 localFrame
 localFrame

Fig. 1. The kinematic tree (meta)model as an UML class diagram. It can
represent a tree-like layout of rigid bodies, capturing the role of joints as the
connection between any pair of parent/child bodies, and emphasizing their
association with reference frames. The convention about the placement of
these frames and numerical data about the relative pose of two successive
ones (the Placement class) provide the full geometry information about
the robot.

into executable code, relieving the user from manual de-
velopment: for instance, rigid body dynamics algorithms
like the Newton-Euler inverse dynamics are parametrized
on such robot models, therefore robot-specific, optimized
implementations can be generated.

... ...

{ }...

Fig. 2. A little excerpt from a document of the kinematic DSL describing
a fictitious 5 DoF robot. The text shows the fixed base, the first link and the
first two joints.

Another possible exploitation of the robot model pertains
kinematics, and in particular the coordinate transformations
and the geometric Jacobians. These matrices typically suffer
from ambiguities that make their manual development tricky
and time consuming. An effective software model of these
objects exposes the properties that allow to disambiguate the
structure of the expressions (e.g. whether a rotation matrix
is supposed to multiply a vector in the original frame or
in the rotated one), enabling, for instance, consistent code
generation. See Figure 3.

Part of the diagram in Fig.3 served as the basis for
another standalone DSL, whose documents contain an ab-
stract specification of some transformation matrices. This
abstract description allows to generate different matrices like
homogeneous transforms or 6D motion vector transforms.
We take advantage of this language by translating the geo-
metric data about the placement of robot frames to a user
defined list of abstract transforms. Then, these can in turn

Fig. 3. The model of coordinate transformations and Jacobians as an
UML class diagram. Transforms are composition of basic rotations and
translations; named transforms describe the relative pose of two known
frames; left and right refer to the position of frames B and A in
the notation BXA. Jacobians on the other hand are fully determined by a
pair of frames, as they can be computed from the transformations related
to such frames.

be transformed into executable code.
Jacobians, on the other hand, do not add further concepts
to the model, and their generation happens directly from the
kinematic model (though they depend on the transforms of
direct kinematics).

Currently, our DSLs allow to generate the following ele-
ments:

• Robot model description: URDF XML file (used in ROS),
Matlab model (compatible with Featherstone’s code), SL
model.

• Dynamics (C++): the Newton-Euler algorithm for in-
verse dynamics, the composite-rigid-body algorithm for
the joint space inertia matrix M , the LTL factorization
of M .

• Kinematics (C++, Maxima): coordinate transforms and
Jacobians

Figure 4 gives a rough idea on how the C++ code might look
like.

Fig. 4. A little section of the generated C++ code for the first pass of the
Newton-Euler inverse dynamics. The first line is computing the transform
link2Xlink1 according to the new joint status q (i.e. q); similarly, qd and
qdd represent q̇ and q̈. v, a and f stand for velocity, acceleration and force
(of the link).

III. EXPERIMENTAL RESULTS

In this last section we will show some performance
evaluations of the generated code (all tests were executed
on a Intel(R) Core(TM)2 Duo CPU, P8700 @ 2.53GHz).
We obviously performed other tests to assess the numerical
correctness, generally by comparing the output with other

established software.
Our approach has proven to be very convenient and flexible,
in that given a new robot model is very easy to get working
implementations of diverse kinematics/dynamics computa-
tions.

Figure 5 shows a comparison of the execution time be-
tween our code and SL, for the computation of the Newton-
Euler inverse dynamics. SL generates a highly optimized C
code implementation, and in our experience its performance
can very well be considered as a reference. As can be seen

4 5 7
0

2

4

6

8

No. of DOF

T
im

e
[s

]

SL
Gen. code

Fig. 5. Performance comparison with the SL software about the Newton–
Euler algorithm for inverse dynamics. The plot shows the cumulative
execution time for 106 calls of the function τ = f(q̈, q, q̇) as a function
of the number of degrees of freedom of three robot models.

from the plot, the execution times of the two implementation
basically have the same order of magnitude. We achieved a
performance similar to SL without sacrificing the usability
and the maintainability of the modeling/generation process.

Figure 6 shows instead a comparison with the S-wbc
software, about the computation of the base-to-end-effector
Jacobian and the inverse of the joint space inertia matrix, for
a 5 DoF robot. These quantities are the factors of the inertia
weighted pseudo inverse of the Jacobian, and then of its null
space projector, an expression that appears in the operational
space formulation.
The graph clearly shows a better performance for the code

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

No. of calls

T
im

e
[s

]

Stanford−wbc
Gen. code

Time [s]
+ ���
0 0

0.02 0
0.18 0
1.85 0.02
18.21 0.36
Avg. ratio: 71.54

Fig. 6. Performance comparison with the S-wbc for the computation
of the inverse of the joint space inertia matrix M−1 and the end-effector
Jacobian J , for a 5 DoF robot. The x axis represent the number of calls
to the update functions M(q)−1 and J(q), the y axis the total execution
time in seconds. The same random joint state vector q is used for each call
on both implementations.

generated with our approach, due to the efficient algorithms

we are employing to compute M−1 (the composite-rigid-
body algorithm and the LTL factorization) and J . The com-
putation of M makes use of several coordinate transforms,
which are also efficient thanks to the symbolic simplifications
taking place in the generator. The same thing applies for J .

IV. CONCLUSIONS

In this paper we have shown an approach based on simple
domain models and Domain Specific Languages to support
the development of robotics software by automating the
implementation of kinematics and dynamics computations.
The use of shared models among the components and the
code generation improve the ease of use and the flexibility
of our tools. Experimental results also demonstrate the com-
patibility with applications with hard real time constraints,
such as fast controller of real robots.

ACKNOWLEDGEMENTS

This research has been funded by the Fondazione Istituto Italiano
di Tecnologia.
The authors would like to thank the developers and the maintainers
of Xtext, Xtend, Maxima, Eigen for having created these softwares
and having released them to the community.

PUBLICATIONS

The work described in this extended abstract is detailed in:
• M. Frigerio, J. Buchli and D. G. Caldwell, A Domain Specific

Language for kinematic models and fast implementations of
robot dynamics algorithms, in 2nd International Workshop on
Domain-Specific Languages and models for ROBotic systems
(DSLRob), 2011.

• M. Frigerio, J. Buchli and D. G. Caldwell, Code Generation of
Algebraic Quantities for Robot Controllers, IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2012
[submitted for review].

REFERENCES

[1] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[2] N. Hogan, “Impedance control: An approach to manipulation: Part II
– Implementation,” ASME, Transactions, Journal of Dynamic Systems,
Measurement, and Control, vol. 107, pp. 8–16, 1985.

[3] M. Fowler, Domain-Specific Languages. Addison-Wesley, 2010.
[4] G. Guennebaud, B. Jacob, et al. The eigen library v3. [Online].

Available: http://eigen.tuxfamily.org
[5] M. Eysholdt and H. Behrens, “Xtext: implement your language faster

than the quick and dirty way,” in ACM international conference
companion on Object oriented programming systems languages and
applications companion, ser. SPLASH ’10. New York, NY, USA:
ACM, 2010, pp. 307–309.

[6] The xtend language. [Online]. Available: http://www.xtend-lang.org/
[7] Maxima. (2011) Maxima, a computer algebra system. version 5.25.1.

[Online]. Available: http://maxima.sourceforge.net/
[8] M. Sherman and D. Rosenthal. Sd/fast. [Online]. Available:

http://www.sdfast.com/
[9] Robotran. [Online]. Available: http://www.robotran.be/

[10] S. Schaal, “The sl simulation and real-time control software package,”
CLMC lab, University of Southern California, Tech. Rep., 2009.

[11] R. Philippsen, L. Sentis, and O. Khatib, “An open source extensible
software package to create whole-body compliant skills in personal
mobile manipulators,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), September 2011, pp. 1036 –1041.

[12] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[13] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,

H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld,
J. Broenink, D. Brugali, and N. Tomatis, “BRICS – best practice in
robotics,” in IFR International Symposium on Robotics (ISR), 2010.

