
A
D
V
R

Istituto Italiano di Tecnologia
Advanced Robotics Università di Genova

Model–Based Code Generation
for the Kinematics and the

Dynamics of Articulated Robots

Marco Frigerio

A thesis submitted for the degree of

Doctor of Philosophy (Ph.D.)

March 2013

Thesis supervisors:

Prof. Dr. Jonas Buchli
Agile & Dexterous Robotics Lab – Head
Institute of Robotics and Intelligent Systems
ETH Zurich

Dr. Claudio Semini
Dynamic Legged Systems Lab – Head
Advanced Robotics Department
Istituto Italiano di Tecnologia (IIT)

Prof. Dr. Darwin G. Caldwell
Advanced Robotics Department – Director
Istituto Italiano di Tecnologia (IIT)

a mio fratello Michele,
ai miei genitori,
e allo zio Carlo

Abstract

In the past decades of development of robotics technology, software has not
received as much attention as control, mechanics and actuation. The goal of
my thesis is therefore to contribute in reducing the gap between the current
expertise in robotics (in fields like control theory, or multibody dynamics) and
best practices of software engineering.
The thesis deals with software for articulated robots such as humanoids and
quadrupeds. Recent trends in robotics research have focused on such machines,
for applications that go beyond the use of manipulators in production lines. For
example, legged robots capable of traversing rough terrain may be employed in
the future to support human operators in the management of an environmental
emergency, such as an earthquake.

The thesis initially describes the control system we realized for the quadru-
ped robot HyQ, from the hardware platform to higher level software, and shows
a selection of the promising results we have achieved. The thesis then illustrates
the software models I designed about the kinematics and the dynamics of artic-
ulated robots in general, and the development of a code generation framework
based on such models and on the technology of Domain Specific Languages. The
code generation framework focuses on rigid body dynamics algorithms, such as
the Newton–Euler algorithm for inverse dynamics, and on kinematics quanti-
ties like geometric Jacobians, which are crucial components of the control of
articulated robots.

My approach allows the users to deal only with high level descriptions of
a robot and relieves them from complex development of critical routines. Re-
sources and efforts can then be focused on open research questions. The effi-
ciency and speed of the generated code makes it suitable not only for simulations
but also for real–time control of real robots. My framework exhibits flexibility
and ease of use, and satisfies different requirements arising both from robotics,
like real–time capability, and software engineering, like modularity and sepa-
ration of concerns. Providing a toolchain that can effectively support research
and development in robotics, based on sound software–engineering approaches,
is the core contribution of my thesis.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Outline . 5

2 Basic concepts 7

2.1 Software principles and features 7

2.2 Error–feedback and model–based control 9

2.3 Domain Specific Languages . 11

2.4 Overview of the code generation framework 12

3 Related work 15

3.1 Articulated robots . 15

3.2 Model–based control . 18

3.2.1 Operational space control 18

3.2.2 Joint–level inverse dynamics control 19

3.3 Rigid body dynamics . 20

3.4 Robotics software . 21

3.5 Robot modelling and code generation 23

4 Software control of articulated robots 27

4.1 Overview . 27

4.2 Key aspects of the platform . 30

4.2.1 Real–time . 30

4.2.2 Communication with the robot hardware 32

4.2.3 Motor control and robot behavior 39

4.2.4 The SL package . 41

5 Domain analysis and software models 43

5.1 Kinematics and dynamics of articulated robots 43

5.1.1 Kinematics . 44

5.1.2 Dynamics . 46

5.2 Domain models . 48

5.2.1 Kinematic trees . 49

5.2.2 Rigid body motions . 55

i

6 The code generation framework 59
6.1 The specification languages . 59

6.1.1 Overview . 60
6.1.2 General features of the grammars 60
6.1.3 The kinematics DSL . 60
6.1.4 The rigid body motions DSL 65
6.1.5 The coordinate transforms DSL 65

6.2 Code generation . 68
6.2.1 Robot–specific dynamics routines 68
6.2.2 Coordinate transforms . 70
6.2.3 Putting all together: the robotics code generator 75

7 Experimental results 79
7.1 Control software for articulated robots 79
7.2 Evaluation of the code generator 83

7.2.1 General remarks . 83
7.2.2 Validation . 84
7.2.3 Performance comparisons 84
7.2.4 Simulation and control . 88

8 Conclusions and future work 91
8.1 A software architecture for the HyQ robot 92
8.2 The robotics code generator . 94

8.2.1 Discussion . 94
8.2.2 Future improvements . 96

A Generated code example 99
A.1 Header file . 99
A.2 Definitions file . 101

B Publications 105

ii

List of Figures

2.1 Model–based control vs. error–feddback control 10
2.2 Overview of the code generation approach 13

3.1 The HyQ robot . 16
3.2 Articulated robots . 17

4.1 The computing setup of the HyQ robot 28
4.2 The computer and the I/O boards of HyQ 29
4.3 Simplified architecture of Xenomai 32
4.4 The hardware–software boundary 34
4.5 The Sensoray526 software stack 35
4.6 The class diagram for encoders 36
4.7 A generic control scheme . 40
4.8 The graphical interface of the sl software 42

5.1 Ambiguity in rotation matrices 45
5.2 A simple example of a geometric Jacobian 46
5.3 Modelling a robot as a graph . 50
5.4 Kinematic trees . 51
5.5 Layout of reference frames for a generic section of a kinematic

chain . 52
5.6 The kinematic tree UML model 54
5.7 The UML class diagram for rigid motions 55
5.8 The UML class diagram for coordinate transforms 56
5.9 Adding Jacobians in the UML class diagram 58

6.1 The relation between language grammars and domain models . . 61
6.2 The grammar of the kinematics dsl 62
6.3 The HyQ robot model in a document of the kinematics dsl . . . 64
6.4 The grammar of the motion dsl 66
6.5 A document of the motion dsl 66
6.6 The grammar of the transforms dsl 67
6.7 A document of the transforms dsl 67
6.8 Robot specific implementations 69
6.9 A document of the dsl for Maxima 73
6.10 Code generation for coordinate transforms 74
6.11 Specifying the desired transforms 75
6.12 The code generation workflow . 76
6.13 From joint parameters to a motion dsl document 76

iii

7.1 Walking experiments with the HyQ robot 80
7.2 The C++ interface for hydraulic valves 80
7.3 Hopping experiment with the hydraulic leg 81
7.4 Force tracking during squat jump 82
7.5 The HyQ robot performing more advanced tasks 82
7.6 Comparison with sl of the speed of dynamics algorithms 85
7.7 Comparison of the computation time of the jsim 86
7.8 Comparison of the computation time of the null space projector . 87
7.9 Simulation with the generated code 88
7.10 The generated code for inverse dynamics running on a real robot 89

iv

Chapter 1

Introduction

Designing software for robots is among the most demanding and complex soft-
ware engineering challenges, due to a list of strict and partially conflicting re-
quirements. The sheer complexity arises from the high number of tasks such a
software has to perform, the variety of characteristics of the different modules
(e.g. computational complexity, frequency of execution, etc.) and the need of
effective orchestration.
For the robotics research community as well as for a widespread adoption of
robotic technology, it is central to have flexible yet reliable software: a typi-
cal academic research unit cannot afford the same resources to develop reliable
software as an airplane or a car manufacturer, yet requires safe and flexible so-
lutions for a machinery of similar complexity, in order to address open research
questions.

However, software is often conceived as a mere tool to achieve the numerical
implementation of some control scheme, in order to get some visible results as
quickly as possible. On the one hand, this approach is justified and actually
required, each time one addresses new research problems for which an estab-
lished, general solution does not exist. On the other hand, it is of fundamental
importance to realize that software itself represents a critical part of robotics
development as much as mechanics and control. A careful design, and an appro-
priate choice of implementation technologies are simply necessary (not sufficient)
conditions to achieve useful and versatile robots. In general, this work can be
classified within the research field whose main purpose is to fill the gap between
software engineering practices and robotics software development.

This thesis describes the first computing system we developed for the HyQ
quadruped robot, which allowed us to perform a variety of experiments to inves-
tigate artificial legged locomotion. This experience and evidence in the literature
showed the importance of approaches based on physics models (e.g. multibody
dynamics) for high performance control of articulated robots; hence, the sec-
ond part of the thesis focuses on an approach to provide robust and efficient
implementation of kinematics and dynamics computations for such a class of
robots.

1

2 Chapter 1: Introduction

1.1 Motivation

Almost any software application for articulated robots needs to perform some
calculus related to the geometry of the robot. Control approaches based on a
sound physical model of the robot (a multibody system) enable more sophis-
ticated behaviors by taking advantage of the high degree of mobility of these
machines. Examples of model–based controllers include operational space con-
trollers (Khatib 1987) and impedance controllers (Hogan 1985), which heavily
rely on kinematics and dynamics algorithms and expressions.

The algorithms for kinematics and dynamics are well known in the robotics
community and have been extensively studied in the past decades. However, de-
spite the established theoretical understanding of them, sound implementations
demand a lot of resources and still represent an obstacle for the development of
new applications: a significant development in the starting phase of a project is
required to make the robot operational, it is critical for the control and simula-
tion but often not the focus of the research per se (for example if a researcher
wants to test some learning algorithms on a new manipulator).

The difficulties arise from the lack of established software models and thus
the lack of reusable components, addressing the inherent complexity of kinemat-
ics/dynamics (the availability of several textbooks on this subject does not imply
they are trivial). The scarce availability of truly reusable solutions, often re-
sults in wasting significant development time on what we can call non–problems.
These problems have been solved theoretically and covered in the literature,
nonetheless practical solutions like software implementations can still be hard
to achieve, with the unfortunate consequence of turning such non–problems back
to real ones. Coordinate transformation matrices are a simple, yet meaningful
example of a recurring non–problem of almost any robotics software application.
Such matrices are conceptually relatively simple and they are considered text–
book knowledge. However anyone who has ever worked with these objects is
aware of how confusing they can be, and how much effort is required to validate
any implementation using them.

Writing software becomes even more challenging when real–time constraints
and limited hardware resources demand fast and efficient code. The real–time
capability is fundamental for the implementation of control algorithms running
on real robot hardware; any failure of the software may lead to consequences
such as physical damage to the robot itself or the surroundings, including people.
Code used for model–based controllers is a typical example of software with an
apparent trade-off between flexibility/maintainability and efficiency. On one
hand a rigid body model is a generic description of a robot that naturally lends
itself for a rather general implementation, e.g. with object oriented code. On the
other hand it is critical that such code does not violate real–time constraints (e.g.
by system calls such as those for dynamic memory allocation or file access) and
is ideally running as fast as possible (e.g. exhaustive evaluations in sampling
based planner algorithms or fast control loops). Resolving such a trade-off
would substantially improve the quality of software without compromising its
effectiveness for robotics applications.

In the past (say 15-20 years ago, or more), the need for optimized code in
robotics was perceived as a more critical issue than today, since the same re-
quirements of the real–time control of robots had to be met by much slower

1.1 Motivation 3

computers. Nowadays, computing power is much higher and cheaper, nonethe-
less some of the issues of hard real–time code for robot control are still retained.
First of all, the specific requirements of real–time capable code have not changed:
special care must be taken not to insert system calls like input/output operations
or similar, which have a non–deterministic execution time (often also “long”,
relative to the timing constants of the control loop) and therefore may violate
the strict deadlines of the control loop.

In addition, in parallel to the evolution of computing resources, achievements
in robotics and the expectation of the community about robotics have grown.
Therefore, barely managing to run a pid position controller implemented on
a separate workstation connected to the robot is not satisfactory. Research is
striving for fully autonomous robots, i.e. machines embedding all the required
power and the intelligence to operate in unstructured environments; in addition,
despite the evolution of hardware, embedded computers typically mounted on a
robot may still have some limitations in terms of memory, cpu, etc. Therefore,
the faster the implementation of certain routines (e.g. kinematics and dynam-
ics), the larger the room for additional computation within the same hardware
resource boundaries. More sophisticated logic leading to more effective behav-
iors of the robot can then be implemented.

In addition – regardless of the available computing power – there are always
certain tasks whose implementation is ideally as fast as possible, since higher
speeds would enable more effective results. The simulation of the dynamics of a
multibody system is a typical example of this idea: the faster the simulation, the
more convenient it is for the user to try out new approaches, use more complex
models, etc. Another interesting scenario would be when the simulation is
executed on–line on a robot moving in the environment, e.g. within a sampling–
based planning routine: in essence, the robot can use its own dynamic model to
evaluate different alternative movements it might take as a reaction to a certain
event (e.g. a slippage, a shift of its current target, etc.). The faster the robot
can simulate possible scenarios, the more reactive and therefore versatile it can
be, since it can adapt to sudden events.

For all these reasons, roboticists would benefit from an automatic imple-
mentation of kinematics and dynamics computations, in terms of robustness of
the code and resources saved during the course of the project. Dynamics algo-
rithms, for instance, are general and parametrized on the kinematic description
of a robot – often called the robot model (Featherstone 2008) – which is rela-
tively compact but fully specifies the physics of the system. Hence, it is sensible
to look for a high level representation of the robot models, which can be eas-
ily constructed by hand, while exploiting automated procedures to turn such
information into code. See Section 5.1.2.3 and 6.2.1.

A general dynamics library (such as ode (Smith 2013)) – which would nec-
essarily require the robot model as a parameter – could solve this problem. But
the main point of generating code is efficiency without loosing flexibility. In any
case, a robot is unlikely to need a general purpose dynamics engine that can
solve a whole class of problems, when it only needs to solve the dynamics of its
own body.1 To keep the software lightweight and efficient, it is more effective

1Very advanced control software computing the dynamics of other mechanisms the robot
may interact with – such as a door – is an exception of this point.

4 Chapter 1: Introduction

to have a specialized implementation.

1.2 Contribution

To address the points described above, this thesis is focused on a toolchain for
the automatic code generation of algorithms for rigid body dynamics and kine-
matics, for the simulation and the control of robots under real–time constraints.
Our focus is on articulated robots, made of chains or branched chains of rigid
links.

The code generation framework is based on a few Domain Specific Languages
(Section 2.3) concerning kinematics and dynamics, whose design is based in
turn on general domain models. The resulting system represents a progress
beyond state-of-the-art tools since it gathers different effective features – usually
not available together. In particular, the main contributions of my work are
summarized in the following points:

• The design of simple yet general domain models about the kinematics
and the dynamics of articulated robots, according to an established best
practice in software design (in a field, robotics, that often partially lack
a structured development process (Bischoff, Guhl, et al. 2010)). These
models enable a principled development of the toolchain and also ease the
understanding of the end users (Section 5.2).

• The exploitation of Domain Specific Languages, as an effective technology
for the implementation of our approach. A sound choice of the technology
again helps the development as well as the user experience (Section 6.1).
For example, users can write the description of the kinematics of their
robot with a simple text file that has a very intuitive format. If necessary,
the file can be converted to other, less user–friendly formats automatically.

• The development of a code generation framework, based on the previous
points, which exhibits several desirable features:

– Ease of use: the user is required to deal only with high level infor-
mation and is relieved from time consuming and error prone code
development.

– Reliability and robustness: an automated code generation process is
repeatable and cannot introduce occasional mistakes, as opposed to
manual coding.

– Efficiency: the generated implementations can be optimized to ad-
dress the speed and efficiency constraints of real–time robot con-
trollers.

– Flexibility: domain models make the software more general and
enable extensibility. Any articulated robot (without loops) is sup-
ported, arbitrary coordinate transforms can be chosen, etc.

• The achievement of a software that does not sacrifice performance for
generality or the other way round. For instance, the generated C++ code
is suitable for hard real–time control of real robots, yet the framework is
easy to use and works for a wide class of robots.

1.3 Outline 5

• An implementation of a model–based code generation approach based on
open source technologies only. This property makes it very convenient for
the user to install and use the toolchain, easing a widespread adoption of
this work.

An additional contribution lies in the development of a general software
system for the control of articulated robots, which allows users to robustly
operate with real machines. This system, for example, allows the roboticist to
perform experiments and thus address state-of-the-art research questions.

1.3 Outline

The rest of this thesis is organized as follows:

• Chapter 2 serves as an introduction to different topics and concepts re-
lated to software and control, required to understand the rest of the mate-
rial. This chapter also contains a general overview of the code generation
framework, in Section 2.4.

• Chapter 3 discusses several works in the research literature concerning
the topics discussed in this thesis – e.g. model based control, software for
robotics.

• Chapter 4 describes the control system for the HyQ robot, as a represen-
tative solution for the control of a sophisticated articulated robot.

• Chapter 5 and 6 illustrate the domain analysis and the design we realized
to implement our robotics code generator. These two chapters – together
with the previous one – contain the core material of the thesis.

• Chapter 7 presents an overview of the promising results we achieved with
the HyQ robot, thanks to its control software. The chapter also shows
some experimental results with our code generation framework, e.g. in
terms of performance comparisons.

• Finally, Chapter 8 discusses some of the current issues and proposes di-
rections for future development.

Chapter 2

Basic concepts

The goal of this chapter is to introduce some of the basic concepts that will
be used throughout the rest of the text. The material in this chapter is a
prerequisite for a proper understanding of the following ones.

Section 2.1 lists some general principles and best practices about software
engineering that happen to be particularly relevant for robotics software. Sec-
tion 2.2 gives an intuitive explanation of model–based control techniques, while
Section 2.3 introduces the technology of Domain Specific Languages.

2.1 Software principles and features

This section lists some very general desirable features for software, which often
are not specific to robotics but are nonetheless particularly relevant for this
field. The concepts described in the following points will be referenced in the
rest of this thesis.

Domain models Appropriate abstractions for common components, and in
general for recurring problems in robotics, fosters the establishment of
principled and general solutions (e.g. a reference implementation in the C
language of a pid controller or a general model of virtual components for
operational space control (Pratt et al. 2001)). Although this practice is
well known in software engineering in general, the development of robotics
software often does not follow a rigorous approach (Bischoff, Guhl, et al.
2010); developers often “reinvent the wheel”.

Separation of concerns This is another general principle – mentioned for in-
stance in chapter 4 –, which refers to the proper partitioning of the tasks
of the system and of the corresponding implementation. For example, it
is important to impose a clear separation between the low–level modules
for motor control and those pertaining the behavior of the whole robot.
Modularity is strictly related to reusability, a property that also alleviates
the reinvent–the–wheel issue. Note that reusability does not apply only
to code, but also to models, design patterns, strategies, etc.

Explicit properties and semantics The lack of proper information on un-
derlying models, assumptions, and even the function itself of software

7

8 Chapter 2: Basic concepts

components, poses severe limitations on the reusability of such compo-
nents. System integration costs rise, sometimes up to the point when it
appears to be more convenient to develop components from scratch. This
problem is quite severe in robotics since the composite nature of software
dealing with a diversity of fields (e.g. control theory, image processing,
kinematics) makes the integration a critical point. In addition, specific
fields such as rigid body kinematics may easily lead to ambiguous imple-
mentations because of non–standard conventions or implicit assumptions
(Laet, Bellens, Smits, et al. 2012). Note that the simplest approaches to
address this issue are simply documentation and possibly standardization;
such remedies are at the user level. Sometimes though it is necessary or
desirable to explicitly represent certain semantics (e.g. by adding more
properties to a data type) to enable a more automated integration (e.g. a
software that composes correctly a sequence of coordinate transformation
matrices).

Other points, somehow more directly related to the actual implementation, in-
clude the following:

Targeting different platforms The development and the experimentation
with robots may require diverse hardware platforms and technologies.
Maybe the most notable example of this point is the need of working
both with simulators and with real machines. Simulation is necessary
since experimentation of new approaches (that may fail) on a real robot is
typically much more demanding in terms of resources; these costs, which
however vary heavily with the type of the robot (big, small, powerful, ar-
ticulated, etc.), include the time to check and activate the platform, the
number of involved people, all the costs related to a possible damage to
the robot itself.
Therefore, it is desirable to have support for multi–platform development,
for example to ensure consistency between the C code to be deployed on
the real robot and the Matlab code reserved for simulations.

Reliability and robustness We may describe these two properties of a human–
made system respectively as the likelihood and the confidence about a
proper functioning and the capability of dealing with a diversity of oper-
ating conditions; robustness also refers to how gracefully the system fails
as a consequence of non–manageable events (exceptions). Obviously, these
properties are relevant for any kind of software, but at different degrees
that depend on the criticality of the application. The possibly high main-
tenance costs associated to failures of a robot, but especially the safety
issues arising in the field of human–robot interaction make robotics a
domain where guarantees about reliability and robustness are very impor-
tant. The more powerful the actuation of the robot, the more critical the
safety issue, since the robot is potentially more harmful.

Debugging support The complexity of a typical software platform for a robot
and the need for reliability (discussed above) demand for effective tools
for testing and debugging. Inspection of the status of the software (e.g.
the current value of some variable) is necessary also while performing ac-
tual experiments. Data loggers (possibly compatible with real–time pro-

2.2 Error–feedback and model–based control 9

cesses), graphic interfaces, simulation tools are precious resources to eval-
uate the correctness of the implementation and to identify the source of
problems during an experiment. Simulators can help in estimating the
performance of control strategies, graphic visualization can give the user
a quick overview of part of the data (e.g. the layout of the reference frames
on the bodies of the robot) providing immediate clues of malfunctioning
(e.g. a broken position sensor results in a weird posture of the robot model
displayed on a screen) and logs can be inspected off–line to spot the source
of numerical problems. For some of these features there exist generic im-
plementations that can be applied to many cases; for example in ros
(Quigley et al. 2009) there is a generic component which can visualize a
graphical model of the robot, called RViz.

Real–time and efficiency This topic will be discussed in Chapter 4, espe-
cially in Section 4.2.1, but it is briefly introduced here for convenience. A
critical requirement for some of the code of the software of a robot is to
be compatible with real–time constraints, since it must execute within a
certain deadline in order to lead to correct results. Entire portions of code
have to be developed and maintained with specific care so as not to use
incompatible operations with unpredictable execution time.
Due to space or power constraints, robots often mount embedded com-
puters that might provide limited hardware resources and thus run–time
capabilities. For this reason, the efficiency of the software is also very im-
portant and might impose additional constraints on the implementation,
like prohibiting the use of a certain library. Tools capable of assessing
memory and computational complexity of parts of the code can help the
development.
In addition, although efficiency (and speed) are in principle orthogonal to
real–time capability, in robotics they happen to be tightly related because
real–time routines usually have to be very fast due to specific requirements
(e.g. control loops running at hundreds of Hertz). Hence, it is even harder
to develop by hand code suitable for certain software components. The
choice of implementation and deployment technologies is also restricted be-
cause of the need for speed guarantees: for example, certain programming
languages cannot be used, regular off–the–shelf communication protocols
might be too slow, etc.

2.2 Error–feedback and model–based control

Generally speaking, control theory gives us methods to drive the behavior of a
real system (often called plant – e.g. an assembly of rigid bodies) by means of
numerical techniques, i.e. algorithms that can be executed on computers. These
algorithms are typically based on a periodic sequence of operations that involve
injecting some sort of input in the plant, based on the measurement of state
and output variables of the plant itself.
As an example, it is possible to move each joint of a robot up to a certain
desired position, by activating the actuator while constantly monitoring the
current position (status) of the joints.

A simple form of automatic control of a plant is the error feedback control,

10 Chapter 2: Basic concepts

that is a strategy purely based on the comparison between the expected and
the actual value of the quantity to be controlled. The actual logic of the control
is thus very simple and boils down to a weighting of such an error, possibly
using also the derivative and the integral of the error itself. It follows that such
a control approach is basically agnostic with respect to the actual plant to be
controlled, since it does not rely on any particular assumption; however, it is
true that the weights of the control function (called gains in the literature) have
to be chosen appropriately in respect to the plant dynamics.

As a matter of fact, there exist more sophisticated control strategies that
exploit some knowledge about the plant, and can be used in combination with
other strategies (a detailed discussion about control architectures is beyond
the scope of this work). The term model–based control refers to such a class
of strategies that rely on some sort of approximate, formal description of the
internal behavior of the plant (i.e. a model). Figure 2.1 illustrates this concept

Controller Plant
x ref u x

(a) Purely error feedback

Controller Plant
x ref u x

Plant inverse
model

+

(b) Model based

Figure 2.1 – A minimal illustration of two different control strategies: in the
first approach the only input to the controller is the difference between the
outcome of the plant and the desired reference point. In the second, some
knowledge about the plant internals is exploited to estimate the required
input in a principled way; note that the error feedback branch is still active,
to cope with the uncertainties in the plant model.

through a simple comparison of two generic block diagrams, representing a
control loop based on the feedback of the error and one using a model of the
plant.
The rationale behind the use of model–based approaches is quite intuitive: using
some prior information about the plant in the controller should lead in general
to better or more effective results (e.g. faster responses) in comparison to a
purely generic approach (such as a pid controller).

For articulated robots such as humanoids and other legged robots, the model
being exploited in control is typically that of Rigid Body Dynamics (rbd). We
do not use information strictly specific to a certain robot but rather rely on our
knowledge about the physics of rigid bodies in general, i.e. the relation between
motion, forces, and inertia. We use the term “model” since the whole theory
is still based on an simplified view of the reality: it is assumed for all inertial
bodies to be perfectly rigid, which is not true in general but it is often a good
approximation. Moreover, rbd deals only with a basic set of physical quantities,
namely velocity, force and inertia, and essentially it describes the effect of forces
on the motion of bodies (i.e. dynamics). This is one of the reasons why it is
desirable to have a fully force–controlled robot, as shown for instance in Figure
4.7: it allows us to abstract the details of the actuation system and to think of
it as a force source, thus enabling the use of rbd based approaches.

2.3 Domain Specific Languages 11

Each articulated robot is treated as an assembly of many rigid bodies (often
called “links”), with force sources at the joints (a multibody system); more on the
modelling of articulated robots will be presented in Section 5.2.1. Model–based
control has proved to be a fundamental approach to achieve more sophisticated
behaviors and to increase the performance of articulated robots. Refer for in-
stance to (Boaventura, Semini, Buchli, Frigerio, et al. 2012; Focchi et al. 2012;
Mistry, Buchli, et al. 2010; Sentis et al. 2005).
Maybe the most common example of a model–based controller is the inverse-
dynamics–based controller (see Section 5.1.2.2), which uses the dynamic model
of the robot to estimate in advance the forces required to achieve the desired
accelerations. With this approach it is possible to achieve very fast movements
of the links of the robot that a regular pid controller cannot track well: i.e. the
actual movement does not reproduce with good accuracy the desired trajectory
(Boaventura, Semini, Buchli, Frigerio, et al. 2012). In general, this approach
allows the reduction of the contribution of the error feedback control (that
can run in parallel) to the final commands delivered to the actuators, since it
pre–computes a good estimate of the necessary forces. The gains of the error
feedback function can then be reduced, resulting in a more compliant behavior
of the joints of the robot, which can be a very useful feature for certain tasks
such as locomotion.

2.3 Domain Specific Languages

This sections gives a brief introduction to the idea of Domain Specific Lan-
guages (dsls). The aim of such an introduction is to give a general, reasonable
understanding of the topic, focusing on the features that are most relevant with
respect to the content of the next chapters; a detailed explanation would go
beyond the scope of this work, and the interested reader can refer to publica-
tions available in the literature (Fowler 2010). How dsls fit into our approach
is detailed in Section 6.1.

A Domain Specific Language is a computer language suitable to provide
some sort of specification related to a precise class of problems (i.e. a domain)
(Mernik et al. 2005). The syntax and especially the semantic of the language
are explicitly designed to have a limited expressiveness in general, which is paid
off by the clarity in the representation of the elements of the target domain.
The level of abstraction of the documents is then higher than with a regular
programming language, making dsls more suitable also for non–developers and
domain experts.
Domain specific languages naturally compare against the so–called general pur-
pose languages, which on the other hand are programming languages with lots
of capabilities and that can implement any algorithm. However, the concept of
dsl does not have sharp boundaries, and the classification of certain languages
can sometimes be argued.
Many examples of dsls exist in the world of computer programming, and we
can cite a few: sql to specify queries to databases, regular expressions to specify
character patterns used for text manipulation, custom scripts of any application
to specify a batch of operations to be performed.

dsls can be roughly divided into two categories: “internal” and “external”.

12 Chapter 2: Basic concepts

Internal dsls include languages built through a particular usage of an existing
general purpose language, using its syntax and a subset of the language features.
External dsls include independent languages that usually have a custom syntax
(Fowler 2010). Confirming the sometimes blurred boundaries of these definitions,
some examples are harder to classify; think for instance of xml based languages,
which can be considered external dsls using the syntax of an existing language.
The urdf file format used in ros to describe the robot kinematics is an example
of this case (Quigley et al. 2009).

For our work, it is very useful to think of a dsl as a thin layer on top of a
domain model that describes the actual structure of the information and thus
most of the semantics of the language itself. The language becomes simply a
convenient yet clear tool for the specification of instances of the model, by means
of documents compliant with the language (Fowler 2010).1

The last important point about dsls concerns run–time execution, that is, how
they concretely contribute to the operations of a software system. We are in-
terested here in code generation, which is basically a transformation process of
the dsl documents into source code of some programming language that can
be compiled and executed. Code generators use the information encoded in
the documents during the generation of code, according to some logic (e.g. an
algorithm to be implemented with some parameters taken from the document,
a predefined template to be filled with values, etc.).

2.4 Overview of the code generation framework

The purpose of this section is to give the reader an overview of our code genera-
tion framework for the kinematics and the dynamics of articulated robots. The
domain analysis and the implementation of the parts of the generator will be
detailed in Chapter 5 and 6 (pointers to specific sections of these chapters will
be given below). The aim of this section is to describe the conceptual framework
such parts fit into, to prepare the reader to a more technical explanation.

This introduction – together with the points listed in Section 1.2 – also
provides a first evidence about how the framework meets some of the software
principles listed above (Section 2.1), which are particularly significant for robo-
tics.

Figure 2.2 illustrates the idea behind the code generation approach. The
core logic resides in the block called dsls infrastructure, which includes the
grammar and the parser of our dsls, plus the code generation algorithms that
transform parsed documents into code. The input information for this block
is conveyed by high–level models in the form of documents of the languages;
for example, these documents can contain a description of the kinematics of a
robot, or the list of translations and rotations that relate two different reference
frames of interest. Such high–level information is the only thing the final user
has to deal with.
Note that the code generation software embeds the full knowledge about the spe-
cific algorithms whose implementation is of interest, as for instance the Recursive

1Actually Fowler uses the term “semantic model”, to mean a part of the whole domain
model, and identifies each dsl document with a semantic model, rather than talking about
instances.

2.4 Overview of the code generation framework 13

x

z

y

x

y

z

DSLs infrastructure

High-level models

Generated
code

Simulations

Real robots

deployment

Algorithms knowledge

...

Figure 2.2 – A high level overview of the code generation framework. The
core logic resides in the the dsls infrastructure, which includes code gen-
eration software embedding the knowledge about kinematics and dynamics
algorithms. The actual input to the framework are high level models typi-
cally in the form of documents of some dsl. The output is standalone code
in different languages, which can be used both for simulations and control
of real robots.

Newton–Euler algorithm for inverse dynamics (see Section 5.1.2.2). Hence the
algorithm itself is currently not a specific input to the infrastructure, but rather
a piece of information embedded into it.

The infrastructure generates source code possibly in different programming
languages, and possibly tailored for specific platforms. The code generation
process can also perform various optimizations making the output code quite
efficient. For example, as explained in Section 5.1.2.3, dynamics algorithms
are parametrized with respect to the robot structure: knowing such structure
allows the generation of tailored implementations that are more efficient, that
is, specific instances of the general algorithm. An instance of an algorithm is
a particular realization of the algorithm itself obtained by fixing one or more
of the parameters. Basically each parametrized algorithm can be considered
as a class of procedures, each one identified by a specific value of some of the
parameters. See also Section 6.2.1.

The generator produces the implementation of functional components (such
as a dynamics algorithm), which have a precise, well identified meaning and can
be reused in different external applications. In addition, our approach allows the
users to deal only with high level information and relieves them from problematic
hand-crafted development; resources and efforts can then be focused on open
research questions.
The flexibility of the framework as far as languages, platforms and efficiency
are concerned, makes it suitable for simulations but also for the control of real
robots under hard real–time constraints. A single generation infrastructure,
and a single format for input information guarantee the consistency among the
different outputs; this property is fundamental e.g. when working with both the
simulation and the control of the same robot on different platforms.

Two of the dsls the framework is comprised of are actually standalone tools
whose aim is to provide a toolchain to perform robust code generation of ar-

14 Chapter 2: Basic concepts

bitrary coordinate transforms (see Section 6.1.4 and 6.1.5); it is definitely not
effective to develop transforms by hand, besides for learning purposes, and any
roboticist should not waste time with this non–problem. How these languages
fit into the bigger framework of code generation for articulated robots is detailed
in Section 6.2.3.

Currently, the following quantities and algorithms are supported by the code
generation framework (the target languages are mainly C++ and Matlab, but
more may be added):

• The Recursive Newton–Euler algorithm to compute inverse dynamics, the
Articulated–Body algorithm for forward dynamics, and the Composite–
Rigid–Body algorithm to compute the joint–space inertia matrix. See
Section 5.1.2.2 and 6.2.1.

• Arbitrary coordinate transforms (for homogeneous coordinates and for
spatial vectors) and arbitrary geometric Jacobians, for any point of interest
on the robot structure. See Section 5.1.1.1, 5.1.1.2, 6.2.2 and 6.2.3.1.

• A few robot–description files can also be generated by our kinematics dsl
(see Section 5.2.1, 6.1.3), as for instance the URDF-XML file used in ros
(Quigley et al. 2009), and the text file required by SD/FAST (Sherman
et al. 2013).

Chapter 3

Related work

3.1 Articulated robots

Articulated robots are machines composed of multiple rigid bodies connected via
joints that allow some degrees of motion freedom. Actuators provide the energy
required to articulate the joints and therefore move the links. Articulated robots
range from linear chains of bodies connected in a sequence, such as industrial
manipulators or snake–like robots, to more complicated branched structures
such as humanoid robots, typically with more degrees of freedom (dofs).
Articulated robots represent a wide class of machines largely used in industry
and research, which differ from simpler mobile platforms (e.g. wheeled rovers
equipped with sensors) because of the larger number of dofs and thus the
greater dexterity. Think for instance of the manipulation capability of a human
arm, or the degree of mobility of mammals with four legs.

HyQ (Figure 3.1) is a versatile quadruped robot developed at the Istituto
Italiano di Tecnologia in my research group, and it is a notable example of an
articulated robot. HyQ is about one meter long and 70 kg heavy, with electric
and hydraulic actuation at its twelve joints, three for each one of the four legs. It
is primarily designed to investigate artificial legged locomotion, which holds the
promise of building machines able to traverse very rough terrains precluded to
wheels and tracks (Semini, Buchli, et al. 2011; Semini, Tsagarakis, et al. 2011).
The actual purpose of the project is to make the robot capable of complex be-
haviors ranging from highly dynamic tasks, such as running or jumping, to slow
and careful walking over rough terrain, when mapping and planning become
necessary. A challenging objective is to make the robot fully autonomous with
respect to both the energy consumption and the control.
Hydraulic actuation was chosen primarily because of the speed and the power,
but also because of the capability of the actuators (like cylinders) to withstand
strong impacts, inevitable in legged locomotion. A high–performance, full–body
active torque control is the strategy being investigated in this research project
to enable the versatility required for locomotion.
Chapter 4 describes the computing system currently installed in HyQ that en-
ables the control of the machine through software programs.

(Hutter et al. 2012) presents another quadruped robot – called StarlETH –
designed for similar purposes, but smaller in size (about 0.6 meters in length

15

16 Chapter 3: Related work

Figure 3.1 – The hydraulically actuated quadruped robot HyQ, developed at
the Advanced Robotics Department of the Istituto Italiano di Tecnologia.

and 23 kg weight) and actuated only by electric motors with elastic elements in
the transmission. The development is focused on the compliance of the series
elastic actuation as the key to cope with collisions with the ground and to enable
safe interaction with humans. Another objective of such an actuation system is
to increase the overall efficiency of the robot.

The COMpliant huMANoid robot COMAN is a full humanoid robot, ap-
proximately the size of a four year old child, which weighs about 31 kg and has
a total of 25 dofs (Tsagarakis et al. 2013). COMAN was also designed and built
with passive compliance actuators in some joints, to cope with impacts and to
be more adaptable during the interaction with the environment. The investi-
gation of how passive compliance can improve the performance of such a robot
is an explicit goal of the research. The paper illustrates the mechanical design
of the robot, focusing on the series elastic actuators module for the joints, the
legs and the torso of the humanoid. Before showing some experimental trials,
the authors also describe the dynamics model of the robot and their strategy to
optimally determine stiffness values for the 14 joints with compliance.

The Lightweight Robot (LWR) is an articulated robotic arm jointly devel-
oped at KUKA Roboter and the Institute of Robotics and Mechatronics at the
German Aerospace Center(DLR) (Bischoff, Kurth, et al. 2010). This robot was
designed to achieve high dynamic performance and to be suitable for the cur-
rent trend of robotics research, the human-robot interaction: limited mass for
lower power consumption and easier control, seven degrees of freedom for high
mobility, torque sensors at each joint and fast control loops to enable compliant
behavior and model–based control schemes.

Pictures of the robots described in these paragraphs can be found in Figure
3.2.

3.1 Articulated robots 17

(a) The COMpliant huMANoid robot CO-
MAN (Tsagarakis et al. 2013)

(b) The KUKA–DLR lightweight robot
arm (Bischoff, Kurth, et al. 2010)

(c) The StarlETH quadruped (Hutter et
al. 2012)

Figure 3.2 – A few examples of articulated robots currently being developed
in research laboratories.

18 Chapter 3: Related work

3.2 Model–based control

The potentially high mobility and dexterity of articulated robots such as those
mentioned above, and the development of new trends in robotics applications
that go beyond the use of manipulators in industrial production lines (e.g. com-
plex manipulation, interaction with humans) demand for more sophisticated
control schemes compared to traditional joint–position control.

3.2.1 Operational space control

The early work of Khatib is generally considered as the foundation of the op-
erational space formulation, an approach shifting the focus of control from the
single joints of the robot to the actual task, i.e. the behavior of one or more
points on the robot (typically the end–effectors). In (Khatib 1987), the au-
thor describes the modeling of the dynamic behavior of the end–effector of a
manipulator (as opposed to the dynamic model at the joint level), to devise a
control framework addressing both the position and the contact forces at the
end–effector. The development of the approach stems from the basic idea that
the allowed motions of a constrained end–effector (like a tool pressing on a flat
surface) form a certain vector space, while the forces the end–effector can exert
lie in another space which is orthogonal to the first (i.e. the tool can press but
not move along the normal to the surface, and it can move in the other direc-
tions; constraint forces do not do any work)1. In (Khatib 1987), the dynamics
equations relating the end–effector with the joints are developed, and then the
treatment is extended to the case of redundant manipulators (i.e. those having
more degrees of motion freedom in the kinematic structure than the degrees of
freedom of the current task – e.g. a 7-dof arm with respect to the positioning
of the hand in space, which is a 6-dof task). These systems are special because
the relation between forces in joint space and task space is not bijective. Note
that the operational space dynamics is basically the result of projecting the joint
space dynamics into the more convenient motion space of the end–effector. In
other words it is a different description of the same physical system, which can
be more convenient for the formulation of controllers.
In (Khatib 1995) the operational space formulation is revised and new results
are shown, with reference to macro-mini manipulators and parallel multiarm
structures. This work summarizes the dynamics equations, establishes some
nomenclature (like basic Jacobian, and dynamic consistency) and is the main
reference for work in this field.

A development of the operational space formulation that started in more re-
cent years and has experienced a growing interest from the community, pertains
whole body control of branched robots such as humanoids and the hierarchical
decomposition of multiple tasks (Khatib et al. 2004; Sentis et al. 2005).
This field or research is mainly motivated by the new emerging applications
of humanoid robots, interacting heavily with the environment and with human
operators. In (Khatib et al. 2004) and (Sentis et al. 2005), for instance, it is

1Note that, in this case, the concept of orthogonality is based on the scalar product defined
between velocities and forces, which live in two different non-Euclidean vector spaces. So it is
not the same thing as the common notion of orthogonality defined within an Euclidean space
(such as R3) where an inner scalar product between vectors of the same space is defined
(Featherstone 2008; Siciliano et al. 2009)

3.2 Model–based control 19

argued that the human motion is the result of the simultaneous execution of
multiple tasks with different priorities, such as balancing, walking, manipulating
objects, suggesting a control approach that mirrors this structure.
Multiple tasks each identifying an operational space are then defined and or-
ganized into a prioritized hierarchy where, for example, the balancing of the
humanoid is the most important task. The concept of dynamic consistency first
introduced in (Khatib 1987) is applied to ensure that control actions aimed at
fulfilling a certain task are guaranteed not to affect higher priority tasks. The
fundamental tool in the algebra of the approach is in fact the task null–space
projector, a matrix mapping a torque vector into the closest vector that does
not lead to accelerations violating certain constraints. Quite intuitively, a pre-
condition for the applicability of the approach is some degree of redundancy in
the robot, which is typically available in humanoids.

3.2.2 Joint–level inverse dynamics control

Model based control can be very effective also at the joint level, as in the case
of controllers based on inverse dynamics (see Section 2.2).
In (Boaventura, Semini, Buchli, Frigerio, et al. 2012) we describe a low–level
force control based on a model of the hydraulic actuation of the HyQ robot,
which results in very good performance in the force and position tracking at the
joints. Actuators at the joint can then be abstracted as reliable torque sources,
enabling the use of inverse dynamics; the paper illustrates how the robot is then
able to accomplish challenging tasks such as very fast and dynamic movements.
Inverse dynamics allows to lower the position control gains without sacrificing
much position accuracy, which makes the robot more compliant hence capable of
withstanding the impacts of a squat jump. Note that the controller described in
this work applies the model–based approach twice: it uses a model of hydraulic
actuation and the rigid body dynamics model.

Inverse dynamics control for fixed base robots such as manipulators is well
understood, efficient algorithms for this task exist and they are supported by
our code generation framework (see Section 5.1.2.2 and 6.2.1).
On the other hand, inverse dynamics for floating base robots with constraints,
like legged robots, is not solved and is a topic of recent research. The main issues
are due to (a) discontinuity in the status of contact points (e.g. feet with re-
spect to the ground, during walking), (b) idealization of such points as kinematic
constraints even though slippage may occur, and in general (c) underactuation
(there is no direct actuation on the robot base). Computing the joint torques
that lead to the desired accelerations with constraint forces that also depend on
the same torques is another issue.
In (Nakanishi et al. 2007), the authors use floating base inverse dynamics on
a humanoid, to realize compliant control compatible with the use of pattern
generators for locomotion. The paper refers explicitly to the algebra and the
algorithms described in the Featherstone’s literature, which is also the main
reference for our code generation infrastructure (see Section 3.3). The authors
develop a control law from the idea of estimating the contact forces using the
joint torques at the previous control cycle, and then show the equivalence with
the hybrid dynamics algorithms for floating bases described in (Featherstone
2008), treating contact forces as external forces. Simulation results on a biped
robot showing improved position tracking are finally presented.

20 Chapter 3: Related work

This approach requires knowledge of the contact forces, which are difficult to
measure reliably with sensors and whose estimation leads to analytically incor-
rect solutions. For this reason, the authors proposed a new approach based
on the QR decomposition of the constraints Jacobian, which yields dynamics
equations that do not depend on the constraint forces, yet describe the full dy-
namics of the system (Mistry, Buchli, et al. 2010). This technique is developed
on the assumption of a properly constrained robot, which is the condition al-
lowing the projection of the dynamics equations into a space of coordinates of
reduced size. See also (Mistry, Nakanishi, et al. 2008), which discusses the role
of constraints in resolving the under actuation issue of floating base robots, to
devise a controller based on inverse kinematics.

A perhaps obvious remark we find, however, worth mentioning, is that from
the point of view of the domain analysis and the software design, focusing on
the tasks of the robot rather than on its joints is a natural approach stemming
from the abstraction principle (Ghezzi et al. 2002). In other words, a software
engineer with no specific background in the topic, when asked to develop some
programs to control a robot, would likely start modelling components for possi-
ble tasks – like pointing the end–effector somewhere – with the aim of hiding in
lower–level components the actual actions to achieve such tasks, i.e. controlling
the joints.
However, the literature shows how this abstraction in robotics is far from be-
ing straightforward, because joint space control alone already exhibits several
difficulties; the operational space formulation however, might provide a way to
realize in software such a separation of concerns.

3.3 Rigid body dynamics

There exist different approaches to solve the dynamics of multibody systems
such as articulated robots, but research in the field has developed and identified
the most effective and efficient numerical procedures for the purpose, which is
what we are interested in for our work. Our code generation framework de-
scribed in Chapter 5 and 6 is entirely based on the algorithms and the spatial
vector algebra described in the works by Roy Featherstone. He has carefully
investigated the field, by analyzing the asymptotic complexity of existing algo-
rithms, inventing new ones, describing guidelines for efficient implementations,
and providing the community with a comprehensive review about spatial vec-
tors (Featherstone 2008, 2010a,b, 2013).
His book about rigid body dynamics algorithms includes much of such work,
the main matter being the algorithms for solving the forward and the inverse
dynamics problems (Featherstone 2008). First, it introduces the formalism of
spatial vectors, and the main equations of the physics of rigid bodies expressed
in such formalism. Spatial vectors are six dimensional coordinate vectors that
can represent the generalized velocity (twist) and the generalized force (wrench)
for a rigid body. The main reasons behind the use of spatial vectors lie in the
compactness of the resulting notation, which has fewer equations and quantities
if compared to 3D vectors algebra, but also in their expressiveness, so that rea-
soning about the physics of rigid bodies is easier if one is used to spatial vectors
(Featherstone 2010a,b).

3.4 Robotics software 21

The book also includes a detailed chapter about the modelling of kinematic
trees, which is also the basic material for the derivation of the software model
presented in Section 5.2.1. The author then provides an exhaustive description
of some of the most efficient algorithms for dynamics, with pseudo–code imple-
mentations adopting the spatial vectors notation; see Section 5.1.2.2 for a brief
review of them, and also Section 6.2.1.
Other topics of the book include closed loop and floating base systems, whose
support in our framework is the subject of current research.

3.4 Robotics software

According to the presentation of the joint research project brics (Best practice
in RobotICS), which aims at identifying best practices in the development of
robotics systems, such development process often lacks a rigorous structure and
principles (Bischoff, Guhl, et al. 2010), even after decades of research in the
field. A typical example is software development for robotics, where the lack
of design and identification of effective abstractions lead to the development of
code–driven systems as opposed to model–based ones. As a matter of fact, soft-
ware engineering for robotics has only recently become an explicit research area
(especially if considering the age of the two disciplines), as shown for example
by the birth of a new journal (Brugali 2010).
In this context, in (Schlegel et al. 2009) the authors point out the gap between
the experience available in robotics and the exploitation of such knowledge for a
proper software development process. They describe the need for model–driven
development to tackle the complexity of robotics software and relieve roboticists
from hand crafted development, which is expensive yet not very effective. This
point is also an important motivation of the work described in this thesis.
In (Steck et al. 2010), starting from the same premises, the authors focus on
the importance of resource awareness and non–functional requirements in ro-
botics applications, to enable, for instance, automatic run–time selection of the
components to activate as a function of the available computing resources.2A
development process, a meta–model and a toolchain based on Eclipse focused
on such features for robotics systems are then presented.

The techniques of meta–modeling and domain specific languages are ex-
ploited in (Reckhaus et al. 2010) to design a programming environment inde-
pendent of the target robot, to facilitate the specification and reuse of control
programs. In (Klotzbücher et al. 2010), the authors present an execution envi-
ronment based on the scripting language Lua, to support the implementation
of internal dsls for modeling expressive state machines for robot coordination.
The work focuses particularly on dynamic memory management, in order to
respect the real–time constraints during the interpretation (execution) of the
state machines.

Another example of the use of a dsl in robotics, as a consequence of the need
to find higher abstractions to drive software development, is presented in (Bor-
dignon et al. 2010), which targets the specific field of modular robots. Here the

2We also believe this feature is essential for sophisticated control of robots, and some
remarks about this point, with reference to the HyQ robot, will be given in the future work
section of this thesis (see Chapter 4 and Section 8.1).

22 Chapter 3: Related work

authors give an extensive description of a domain specific language for modeling
the kinematics of individual robot modules and their possible interconnections,
which is exploited to generate code for both the Webots simulator and a custom
platform for the execution of real experiments. In the same context, (Schultz
et al. 2007) presents a high level language built around the concepts of roles to
facilitate the programming of controllers for the modular robot ATRON, inde-
pendently of its physical configuration. While sharing the approach of model
based generation and the focus on kinematics, our work targets the different do-
main of robots with linear or branched structure composed by rigid links (such
as manipulators or legged machines); it focuses on the generation of efficient dy-
namics algorithms applicable in different components of a software framework
for robots.

In (Nayar et al. 2007), the authors describe a software framework designed
to generalize modeling and control of a variety of robotics platforms, such as
wheeled rovers possibly with manipulator arms. One of the aims of the frame-
work is to devise a general model (i.e. a data structure) for the mechanisms
to allow interoperability with diverse algorithms, such as forward and inverse
kinematics. The modeling of kinematics trees is almost the same as the one
described in this work (see Section 5.2.1). The implementation is quite different
though, as they use a regular hierarchy of classes so that robot models have to
be specified programmatically and the related algorithms have to explore such
data structures at run–time, while our approach is based on code generation
that exploits the mechanism model offline (i.e. before the actual start up of the
robot software). Our software shares with (Nayar et al. 2007) the aim to be gen-
eral and adaptable to a wide class of mechanisms, but it is explicitly designed
to be independent of any framework or middleware in order to be reusable in
diverse contexts.
In (Brooks et al. 2005) instead, the authors address the more specific field of
mobile robots – meaning robots with wheels or tracks typically equipped with a
variety of sensors like cameras and laser range finders – and specifically the ben-
efits of Component–Based Software Engineering for this kind of applications.
Compared to our work, this paper addresses a different class of robots (even
though also articulated robots, the subject of our work, can be mobile) and a
different level of software integration (deployable components versus specific al-
gorithms for kinematics and dynamics); however both works share principles like
the need of addressing the complexity of robotics software, and the importance
of the reuse of existing implementations.

An interesting work in the field of software for robotics, specifically about
the problem of robustly implementing fundamental concepts in robotics such as
positions, velocities, coordinates, can be found in (Laet, Bellens, Bruyninckx,
et al. 2012; Laet, Bellens, Smits, et al. 2012). These articles address the issue of
the ambiguities of existing implementations regarding the geometrical relations
related to rigid bodies, which are ubiquitous in robotics software: position and
orientation (pose), velocities, forces, and their coordinate representation.
Such ambiguities arise from the lack of standardization of notation but especially
in the implicit assumptions libraries are based on, assumptions that determine
incompatibilities, high costs for system integration and the risk of implement-
ing non–physically consistent operations. The first article aims at identifying

3.5 Robot modelling and code generation 23

the entities required to uniquely and unambiguously specify the semantics of
geometric relations and at defining a corresponding terminology; the second one
describes a proof–of–concept implementation that can be applied to existing ge-
ometric libraries and can provide consistent semantic checks of the geometrical
operations, signaling for example an incorrect composition of two twists.
These articles are explicitly focused on a rigorous and exhaustive formalization
of geometric relations and on a dedicated implementation, while the present
work targets a wider spectrum of concepts with the main purpose of easing the
development of simulations and controllers. However, they share the fundamen-
tal rationale in which robust software has to explicitly expose all the properties
required to uniquely identify the objects it manipulates, e.g. coordinate repre-
sentations of velocities.

In the robotics control literature, model–based control has been extensively
discussed, and some examples have been given in a previous section. However,
almost all the works address the theoretical aspect of the controller, rather
than explicitly focusing on the software required to implement the approaches.
Maybe the most notable exception to this is the Stanford Whole-Body Control
(S-wbc) open source project (Philippsen et al. 2011), initially released in 2009
as a result of the efforts of the Stanford Robotics Lab to bring the operational
space formulation into a software for the community.
The S-wbc comprises a library for joint-space kinematics and dynamics, on
top of which additional components provide the abstractions required by oper-
ational space control. Specific effort has been spent on the configurability of
the framework, so for instance classes can expose their own parameters via a
reflection mechanism, and these can be changed at runtime.
Even though our approach shares with the S-wbc some design principles and
goals such as flexibility and robustness, we aim at software components that
are even more general and reusable, since they have a narrower domain, and
not at a full–featured framework. We are also particularly concerned with ef-
ficiency and speed of execution, for scenarios with hard real–time constraints.
The precise set of features and the lack of dependencies on middlewares or spe-
cific technological platforms make our software suitable as a building block for
other applications, of which the S-wbc itself might be an example.

3.5 Robot modelling and code generation

The generation of code exploiting symbolic math engines is not a new idea,
and some examples of it can be found already in older literature. For example,
the premises of (Toogood 1989) are analogous to some of the motivations of
our work: basically, the need for efficiency and the intrinsic difficulty of im-
plementing the dynamics of a manipulator by hand. The paper describes two
algorithms for inverse and forward dynamics and a computer program capable
of symbolic manipulation and simplification that generates a Fortran implemen-
tation of such algorithms.
The improvements of our work with respect to this previous approach are mul-
tiple, and include: we base our code generation on state-of-the-art algorithms
which are recognized to be the most efficient for the numerical solution of dy-
namics (see Section 3.3). Then we base our software on generic software models

24 Chapter 3: Related work

that capture the main features of the domain of interest (e.g. the kinematic
tree abstraction), which make the system more flexible, reusable (but also more
understandable for other users). Finally we exploit recent, effective technologies
like the Domain Specific Languages (Fowler 2010) and Java, which also make
our code generation more easily usable by different people.

SD/FAST (Sherman et al. 2013) is a powerful software that produces C or
Fortran implementation of the equations of motions of any given mechanical
system which can be described as a set of rigid bodies connected through joints,
possibly with further motion constraints. SD/FAST is quite flexible, in that it
supports a wide selection of topologies, of joints, simulation conditions (forces,
prescribed motions, etc.). Similar to our work, this software is not a fully fledged
simulation language or environment, but rather aims at being a useful tool for
the development of a simulation process, by providing the equations of motion
that would be particularly difficult to write by hand. To this extent, our work
is designed to be even more reusable in different contexts, since it can target
multiple programming languages, it is based on neat models that make very
explicit what the generator is doing, it is not tied to specific frameworks or
technologies (besides Java, Xtext and Maxima, which however are open source
and run on a variety of platforms – see the introduction of Chapter 6). Moreover,
it is also capable of generating consistent, hard real–time capable code which can
be actually deployed on a real robot controller, therefore going beyond the realm
of simulations. SD/FAST, on the other hand, appears quite tied to simulation
applications only; in addition, it does not seem to be maintained anymore and
the available release is a bit old.

Similarly, Robotran (CEREM 2013) deals with the dynamics of multibody
systems; after reading a user model defined with a graphical editor, it can output
symbolic equations of motion and perform simulations interacting with Mat-
lab. Robotran is quite sophisticated and can handle a variety of mechanisms,
including closed loop assemblies and vehicles. It includes its own symbolic en-
gine that allows the generation of optimized code in C language. Simulations
though, have to be performed with Matlab and Simulink, which refer to the
C code, and perform the numerical integration. So Robotran is tied to these
programs, and does not support explicitly the generation of standalone C code
– although one can try to extract some routines out of it.
Even though Robotran can target more complex mechanisms than open kine-
matic trees, our approach still provides some advantages. It is based only on
open source technologies and has limited requirements to be used; the explicit
models underlying its implementation make it easier to understand its behav-
ior and therefore re–use its output in whatever application, which also includes
hard real–time robot controllers, with code that exhibits no external depen-
dency but the Eigen library (see Section 6.2); Eigen and the language features
even make the generated code much more readable and neat with respect to
low level C code; it may seem a minor point but it fosters reuse. More pro-
gramming languages can be addressed as well. In general, our framework can
be extended to support closed loop systems by further developing the domain
model (see Section 5.2.1.3 and 8.2.2) and adding the other algorithms described
in (Featherstone 2008).

sl is a rigid body dynamics simulator and robot controller package – we are
currently using it for our research (see also Section 4.2.4) –, which uses a custom
format for the description of the kinematics and can generate highly optimized

3.5 Robot modelling and code generation 25

C code for kinematics and dynamics (Schaal 2009). The performance of such
code is definitely high: the sl design started roughly twenty years ago with the
purpose of doing real–time control on articulated robots, with the computers of
that time.
Although sl already meets some of the points that motivate our work, and as
such it provides a truly valuable support for the development of simulations
and controllers, much improvement can be introduced with regard to the code
generation process. Among other things, sl depends on a commercial software,
Mathematica, that is used to parse the text file with the description of the robot
and to perform the symbolic calculus required to generate optimized code; this
file is in fact much harder to read with respect to the language we propose in this
work, and also the syntax errors reporting is not very effective.3 In addition,
the generated code is tightly coupled with the rest of the sl infrastructure,
and it would be extremely hard to reuse it in a different application; it is not
customizable (i.e. to generate code for some different coordinate transforms)
and it is only in C language.
Other information about sl are given in Section 4.2.4.

Some examples concerning the modeling and the description language for
multibody systems can also be found in existing packages and programs. In the
Robot Operating System ros (Quigley et al. 2009), for instance, robot descrip-
tion files need to be provided with a custom format based on xml (the urdf file
format) that makes it harder to read and maintain as compared with a dedicated
solution such as a dsl; in the OpenHRP simulator (OpenHRP group 2013), the
language for the models comes from the 3D modeling field, and mixes graphical
aspects and sensors with kinematics parameters. In addition, to the best of our
knowledge these languages do not come with efficient code generation capabili-
ties.
Another example is Modelica, a multi–domain, object–oriented modelling lan-
guage for a variety of physical systems used also in industry (Modelica Associa-
tion 2013). Its models basically contain the system equations, which then need
to be transformed into executable code or into a form suitable for a simulation
engine. The main advantage of Domain Specific Languages such as the ones we
propose in this work, is that they are concise and easy, since they are dedicated
to one purpose. On the other hand, Modelica is a very general, multi–domain
language that may prove inconvenient for very specific requirements (the ver-
sion 3.3 of the language specification is 282 page long), such as code generation
tailored for robotics.

The idea of using code generation to achieve more efficient software is not
restricted to the robotics domain. For instance, in (Mattingley et al. 2012) the
authors propose to generate an optimized implementation of solvers for convex
optimization problems, so that the solver can execute faster and within some
hard real–time deadlines. The authors call family of the problems the set of all
the same optimization problems that depend on certain parameters. A problem
instance, on the other hand, is identified by a specific value for all such parame-
ters. The idea is to exploit ahead of time the information about the family (i.e.

3The file format for the description of robot models in sl happens to be an internal dsl
based on Mathematica scripts. See Section 2.3.

26 Chapter 3: Related work

common features of all the possible instances), in order to generate specialized
code which works efficiently only for such problems. The underlying idea is
very similar to what is described in this work; a slight difference purely related
to nomenclature is worth mentioning. In this work we deal with optimized so-
lutions for specific robot kinematics, which we think of as an instance of the
kinematics model, while in (Mattingley et al. 2012) they address the family of
problems, since a solution for a problem instance would not make sense.

Chapter 4

A computing system for the
control of articulated robots

The purpose of this chapter is to explain in detail the computing system cur-
rently running on the HyQ robot (see Section 3.1 for a description of it); the
explanation aims at giving the reader a clear idea of what is required, in terms
of software and hardware, to bring a complex robot into the state in which pre-
liminary but also more sophisticated experiments can be performed.
HyQ is a quadruped robot that is about one meter long and 70 kg heavy, with
electric and hydraulic actuation. The powerful actuation system and the chal-
lenging goals of the project make HyQ a very good example of a robot that
needs a robust, reliable and efficient software which is also inevitably going to
be quite complex. For example it is critical for certain computational modules
to be very reliable (see also the paragraph about real-time 4.2.1) since certain
failures while using the hydraulic actuation are potentially dangerous for the
human operators and the robot itself.

For these reasons the HyQ robot is taken as a representative example of the
class of sophisticated, articulated robots, but the information included in this
chapter is of general value.
The chapter starts with an overview of the current computing system, and then
describes general issues such as real–time computation and each single block of
the system with greater detail.

4.1 Overview

This section gives a general overview of the computing system currently available
on the HyQ robot, covering both the hardware and the software aspects. More
details about each part will be given in the following section.

The diagram in Figure 4.1 shows the main software blocks implementing the
control of the robot, and gives a rough idea of the role of each one with respect
to the whole. The purpose of the diagram is to show both the organization of
the software on HyQ but also a quite general layout that can be applied to a
variety of robots with analogous features.
This organization by no means represents the definitive solution to build a
complex system that controls a real robot and makes it autonomous, as it has

27

28 Chapter 4: Software control of articulated robots

CPU board Data I/O
boards

RealTime OS I/O boards
driver

Robot Hardware I/O

Motor
control

Robot
behavior

Hardware

sensors/
actuators

Operating
system

User space
software

actuators command
sensors data

sensors data

joints desired
position/force

Figure 4.1 – Logical view of the current computing setup of the HyQ robot.
Data acquisition boards enable the interaction with the robot hardware (e.g.
sensors); the green parts represent physical connections. The real–time ca-
pable operating system includes a driver giving access to the facilities of the
I/O board. The user level code includes a library to abstract the hardware
and two other active components: the motor control module and the robot
behavior module, both running as processes. The sensor data include po-
sition and force measurements at the joints, while the trajectories contain
desired positions, velocities and forces for the joints.

some limitations that will be discussed in Section 8.1. However it is already
effective for trying complex behaviors with the robot and address open research
questions (such as quadrupedal locomotion), i.e. it is a representative system
that serves to illustrate the challenges and our solutions. We implemented such
an architecture on our robot and achieved promising results (see Section 7.1).

At the base of the diagram of Figure 4.1 we find the hardware and the
operating system, which obviously host all the rest of the software modules. A
general purpose computer board is equipped with input–output (I/O) boards
that provide the means to communicate with the other electronic components
of the robot (e.g. sensors – see Figure 4.2). Even just this simple description
reveals the important deployment choice of using a single computer running the
whole system, a point that will be further discussed at the end of the thesis, in
Section 8.1.
The most important requirement for the operating system is to be hard real–time
capable, that is, capable of dealing with processes which need to be triggered
with precise and reliable timing, and which must not be interrupted by other
processes in the middle of their execution.

The next module depicted in the diagram is the hardware abstraction layer
(hal), or the hardware I/O layer. In this case the term hardware refers to the
robot hardware, that is all the electric and electronic devices that are neces-
sary to enable the automatic control of the robot. These devices are typically
sensors that provide numerical information about the status of the robot and
the environment, and actuators that provide the mechanical power required to
move the links of the robot. The terms input and output refer respectively to

4.1 Overview 29

Figure 4.2 – The computer with the data acquisition boards currently run-
ning the control software of HyQ. The black board on the top is a regular
Pentium–based motherboard compliant with the pc104 standard, while the
other blue boards (Sensoray 526) stacked below provide input and output
capabilities for both digital and analogue signals.

the sensor measurements being transmitted to the computer, and the actuators
command flowing from the computers to the drivers of the actuators.
This layer is entirely implemented in software, but it obviously must communi-
cate with the I/O boards that provide the actual, physical connections to the
devices and in fact constitute the boundary between hardware and software.
The main purpose of the hal is to abstract from the low level details of the
communication with the hardware and provide a neat and clean interface to the
numerical algorithms which do the actual control.

The following two modules implement the lowest level numerical algorithms
which allow to move the robot according to user–defined trajectories. The first
one is the primary consumer of the sensory data, and it is mainly responsible
for the so called motor control. This term basically refers to the processing of
the input data coming from sensors and other external modules, in order to
produce the appropriate output commands for the actuators, in a closed-loop
fashion. Probably the most common and simple realization of this module is
a pid (Proportional, Integrative, Derivative) controller on the position of the
joints of the robot.
The second module – robot behavior, in the figure – generates in turn commands
for the motor control module, that is, it provides directives about how to move
the robot. One might think of this module as a trajectory generator, that is some
sort of machinery which determines a set of desired positions (i.e. joint angles)
at each time step (adopting a certain degree of discretization of the physical
time). However this term is a bit generic and may hide quite a broad set of sub-
modules interacting according to complex patterns. It is indeed quite intuitive
that providing directives about how to move the robot is something that can be
done in a variety of different ways, from very simple algorithms (e.g. arbitrarily
impose a sinusoidal trajectory to each joint of the robot) to approaches involving
complex reasoning (e.g. using input data from stereo cameras, or exploiting
probabilistic models).
Unless otherwise specified, we will refer to this module as the task module, to

30 Chapter 4: Software control of articulated robots

mean the part of the system which has to determine which movements the robot
should perform. Also because this module can be realized in many different
ways, it is highly desirable for the motor control to be as much as possible
agnostic with respect to it, and limit the interaction between the two modules
according to a simple and specific interface.

The next section will give some more details about the components men-
tioned in the previous paragraphs.

4.2 Key aspects of the platform

4.2.1 Real–time

The term real–time is typically used to describe computations whose correct
outcome, which in principle can be anything, does not depend only on the
correctness of the implementation of the algorithm, but also on the actual timing
of the execution of the same implementation. The timing usually refers to a
deadline, a duration, which should not be exceeded for the result to be usable
and also to guarantee the proper functioning of the overall system.
It is also very important to realize that, in principle, real–time does not imply
the requirement of being as fast as possible, since the actual constraints of a
compliant implementation depend solely on the characteristics of the specific
application domain, with reference to time constants. The fundamental point
of real–time computations concerns the guarantee that a certain function can
be executed within a certain time interval, whatever the length of such interval.

A typical example is software for the decoding of compressed audio and
video streams, i.e. media players. Most of the time videos contain data which
cannot be directly visualized because it is compressed in some form in order
to save disk space. At the same time it cannot be uncompressed entirely at
the beginning because of memory limitations. Therefore all the computations
required to decompress the streams and then visualize the video (and play the
audio) must happen on line, that is while the video is being displayed. It
follows that such computations must happen at a speed that is compatible with
the physical time constraints imposed by this specific application, for instance
display on the screen 25 frames per second. In other words, all the operations
should take less than 1/25 seconds to be executed. The case of multimedia
is a well know example of soft real–time, which means that the consequences
of not meeting the deadlines can be acceptable up to a certain extent (which
again depends heavily on the domain). For example, it does not matter much
if some frames are not exactly displayed for 1/25s each (because the human
eye/brain would not perceive it), and if there are occasional delays during the
visualization.

On the other hand, hard real–time refers to application domains in which
respecting the time deadlines is a critical requirement, since otherwise the result
of the computation might be completely useless or even lead to severe conse-
quences. This is for example the case for robot control, which is what we are
going to discuss here and in general the application domain we will be referenc-
ing throughout the whole text.
A perhaps obvious but fundamental difference between robotics software and
standard software (e.g. a media player or a warehouse management applica-

4.2 Key aspects of the platform 31

tion) is that we do not simply want it to provide us with some meaningful
results (whatever they might be), but we want it to make a robot perform some
meaningful action. In a first approximation, the gap existing between purely
numerical results – typically delivered in some form to a human user – and
concrete actions performed by a mechanical system, is filled by implementing
control theory techniques (see Section 2.2).

For a variety of factors – whose description would go beyond the scope of
this work – the proper functioning of control techniques fundamentally depends
on the frequency of their execution, as well as the time accuracy of their or-
chestration. Hence their implementation and the execution environment must
be real–time capable.
Intuitively, a controller should be real–time because its purpose is to influence
a concrete system that lives in the physical world and evolves according to its
own dynamics (e.g. a moving rigid body); such dynamics must be observed and
influenced in a timely manner for the control to work properly. For example, if
a joint controller does not sample regularly the status of the joint, the link of
the robot might keep moving beyond the desired position before any corrective
action is taken. The frequency of the controller (i.e. its speed) depends on the
application domain: how fast the motion of the link needs to be changed, which
is the frequency of possible disturbances to be rejected.

Therefore a critical part of the software for real robots, as in the case of HyQ,
is the implementation of control algorithms, as for instance a pid controller for
the positions of the joints of the robot.
Real–time capability is a critical issue for the control of real robots, since a
failure in the controller (which also happens when a deadline is not respected)
would lead to unpredictable effects on the robot like random movements of the
links (at random speed) which might be harmful for the robot itself but also
for human users working in the surroundings. This is really a critical point of
the system development especially when working with powerful robots such as
HyQ, which in order to fulfil the long term goals of the research project has
been designed with an actuation system that can deliver a lot of power, enough
to seriously hurt a person.

4.2.1.1 The Xenomai framework

In order to satisfy the requirements described above, it is then mandatory to
have computers which are capable of running processes with real–time guaran-
tees. In principle, a very simple micro-controller executing periodically a single
numerical algorithm could very well be considered as a real–time machine, as-
suming its clock to be as fast as needed for the specific problem. This is because
the duration of the computation is fixed, there is no concurrency between mul-
tiple processes and so no rescheduling, and therefore the frequency of execution
of the routine would be guaranteed.

However, when developing entirely a new robot it is desirable to have as
much as possible standard platforms and development tools, to reduce to the
minimum the overhead due to the issues inherent to more elaborated solutions
with custom components. For example, using an off-the-shelf computer with a
general purpose operating system, allows to maintain all the code on a single
machine, equipped with standard facilities and tools that drastically ease de-
velopment, building and testing (including systems for version control, which

32 Chapter 4: Software control of articulated robots

would be much harder on diverse hardware platforms).

A Linux operating system, for example, can be enriched with Xenomai,
which is a patch capable of bringing real–time capabilities to the existing kernel
(Gerum 2004; Yaghmour et al. 2008) thus allowing to use it for the control of
robots. Xenomai is a so called co–kernel that lives next to the regular Linux
kernel and it is responsible for the management of the real–time tasks running on
the machine. This architecture is enabled by an additional software component
called I–pipe, which sits between the hardware and the kernels; it basically
overrides the hardware interrupt mask provided by the cpu with a set of virtual
masks, one for each running kernel (called “domain”). These kernels (typically
Xenomai and Linux) are assigned a fixed priority (Xenomai having the highest),
which determines the order interrupts and other hardware events are notified
by the I–pipe to the domains. The highest priority domain (Xenomai) can

Linux Kernel
Xenomai
co-Kernel

Interrupt pipeline (I-pipe)

Hardware

Decreasing priority

interrupts,
faults, ...

virtual
interrupt

mask

Figure 4.3 – A simplified architecture of a Xenomai–patched Linux system,
which has its foundation in the I–pipe component for the prioritized delivery
of events, such as interrupts. The dashed arrow refers to the dependency of
Xenomai on the Linux kernel for non real–time services like fault handling
and regular system calls.

handle events very quickly first, possibly passing some of them to lower priority
domains. This also allows Xenomai to rely on all the existing Linux facilities
(such as handlers of exceptions) without need to reimplement them. See Figure
4.3 for a simplified view of the Xenomai architecture.

From the user’s perspective, a very convenient feature of Xenomai is the
capability of running real–time tasks in user space. This term coming from the
operating systems theory refers to the execution mode of regular applications
which features a limited set of privileges and a separate memory area. Kernel
space, on the other hand, is the execution mode for the kernel of the operating
system where everything is allowed. A mistake in some kernel space code (such
as a kernel module providing some more functionality to the operating system)
may lead to an unrecoverable system failure, making development of kernel
space applications very inconvenient. If real–time capabilities are available in
user space, then developing and trying new real–time applications such as a
robot controller becomes much less demanding.

4.2.2 Communication with the robot hardware

The real–time capabilities described in Section 4.2.1 are required to make the
software reason meaningfully about the physical environment as far as the time
is concerned. For example to react to a slippage of a leg of the robot within a

4.2 Key aspects of the platform 33

certain time threshold, or to make sure a control loop is running at the proper
frequency.
Another fundamental issue in the software of a robot is how concretely data is
exchanged with the available hardware components like sensors (just hardware,
hereinafter). There must be a way for the software to access the information
about the status of the robot and the surroundings (input), as well as a way to
turn some of the numerical results into physical signals that affect the actions of
the machine (output). Very common examples of these points are the reading
of the current position of the joints, to make the control logic aware of the
positions of the robot links, and the sending of voltage signals to the electric
motors that move the links.

To enable this interaction between the two different domains (hardware and
software) it is necessary to have components lying at the boundary and acting
as a bridge, transforming numerical values into physical signals and vice–versa.
This is the realm of micro–controllers, data acquisition boards, DSP (Digital
Signal Processing units), fpga (Field Programmable Gate Arrays), etc. An ex-
haustive description of these alternatives and of their distinctive features goes
beyond the scope of this work, so we will give only a few examples with partic-
ular reference to the solution adopted on the HyQ robot.
In general, these components are required to have the electronics for the in-
put/output of digital and analogue signals, like adc (Analogue to Digital Con-
verters), digital counters to read encoder signals, simple electric connectors to
read and send digital bits, and so on. The actual set of features obviously de-
pends on the requirements of the project. In addition, the component should
expose some sort of digital interface to configure and to access its functionalities
by means of a computer program. The actual hardware/software boundary of-
ten lies in a chip equipped with a micro architecture, i.e. capable of interpreting
numerical codes received on a bus as instructions. See Figure 4.4.

The control system of HyQ is equipped with five Sensoray526 general–
purpose I/O electronics boards which provide exactly the aforementioned fea-
tures. They are compliant with the pc104 standard so they can be physically
stacked on top of each other together with the cpu board. The communication
with software running on the computer is very convenient, since the registers
of the boards are directly mapped into some memory segments, so that reading
and/or writing to a particular location in memory of the computer results in the
actual read or write of a register of the boards. Registers are used for configura-
tion, to trigger certain functions such as an analogue to digital conversion, and
to read back results. In this way the Sensoray526 is implementing the actual
hardware–software bridge required for the input–output subsystem.

Once a hardware technology for the I/O is chosen, typically one needs to
develop some sort of driver that allows client code to access the facilities of such
hardware. In general, the purpose of this pure software module is to abstract
the details of the underlying device, relieving the client code and therefore the
developer from knowing its internals.
The device driver obviously fundamentally depends on the hardware it is tar-
geting and on the environment it is going to run in (e.g. the operating system
of the computer), and it is a low–level component of the whole architecture1.

1With “low–level” we refer to the conceptual localization of a component of the system
(e.g. a software module) addressing issues that, in comparison to the general domain of the

34 Chapter 4: Software control of articulated robots

HW

Control logic
(digital electronics)

commandsdata

ADC, DAC, counters,
registers, etc.

digital

analogue

Figure 4.4 – An abstract schema of the components enabling the communi-
cation between the software and the hardware of a robot, like sensors (e.g.
analog temperature sensors, digital encoders). The arrows represent physical
connections, i.e. electric wires; the blue boxes are composed of digital elec-
tronics and components at the boundary of the two realms, i.e. analog/digital
converters; the control logic block is essentially a cpu that interprets some
signals as commands and triggers the other components. Such commands
are digital as well as the data flowing in the opposite direction: they are
produced and consumed by other components with a similar structure, e.g.
a computer where the control logic is a powerful cpu running higher level
software.

On HyQ this functionality has been implemented with two software components
specific for the Sensoray526 board (see Figure 4.5):

• the actual device driver, which is a module for the Linux operating sys-
tem with Xenomai, compliant with the Real Time Driver Model (Kiszka
1997). It is a compact module written in C that basically hides the low–
level memory reading and writing to access the actual registers of the
Sensoray526 board.

• an additional software wrapper further abstracting the low–level interface
available in the driver, providing in turn another interface that is much
more intuitive and closer to the actual functionalities available on the
board. This code was developed in C++.

A fundamental requirement of these software pieces, as well as of any other
additional components that may be used within the processes implementing the
robot control, is to be compatible with the constraints of real–time execution.
This basically means that the entire code these modules are comprised of must
not rely on any operation whose execution time cannot be guaranteed, such as
general purpose I/O operations.
In other words, if on one hand the deployment environment (e.g. a certain
computer with a certain operating system) must be capable of providing real–
time guarantees, on the other hand the user’s software itself must obey strict
constraints to ensure that the time deadlines can actually be respected.

application (e.g. robot grasping), are less abstract and/or more related to technological details.

4.2 Key aspects of the platform 35

Sensoray526

Sensoray
driver

CPU board

computer
memory

ISA bus

Sensoray
wrapper

Hardware I/O library

Client code

Hardware

Software

Running process

Figure 4.5 – The software components used to provide a convenient access
to the facilities of the Sensoray526. The ISA bus maps the registers of the
device into the computer memory, hence low level I/O operations performed
by the driver boil down to reads and writes into the memory. The wrap-
per introduces additional abstraction exposing a higher level interface, e.g.
functions to read an adc or to raise a digital output port. These functions
are used in turn by a library, described in Section 4.2.2.1. Thanks to these
components, I/O applications using sensors and other devices can be quickly
developed on a computer equipped with one ore more Sensoray526 boards
(which is indeed what has been done for the HyQ robot).

4.2.2.1 Hardware abstraction

Before focusing on the software modules performing some meaningful computa-
tions about the control of the robot (e.g. position control of the joints, attitude
estimation for a walking robot, etc.), it is desirable to have yet another abstrac-
tion layer which provides a convenient access to sensors and actuators data, in
a transparent way.
Basically the purpose of this layer is to prevent the dependencies on the under-
lying hardware from reaching higher–level components, by providing a generic
interface that solely depends on the information that has to be exchanged with
the hardware. For example, it is almost mandatory to be able to get the current
angles of the revolute joints of the robots (e.g. values expressed in radians) with-
out any reference to the actual sensors performing the measurements nor the
technology used to communicate with the same sensors. This separation of con-
cerns, or modularity, improves the maintainability and enforces the re-usability
of the software (Dijkstra 1982). For example, it allows to subsequently change
anything in the lower layers (from the actual sensor model to the technology
for the I/O) without affecting the components above, which in turn makes it
possible to exploit technological opportunities – like a new, more precise sensor
on the market.

The idea behind the design of this layer is to abstract as much as possible
the hardware components available on the robot (just hardware, hereinafter),
focusing strictly on the semantics of its data. On the other hand this layer
should not incorporate any application specific logic that might compromise the

36 Chapter 4: Software control of articulated robots

reuse of the code in different contexts. It should be as thin as possible and
perform only very general processing such as turning a raw value into a more
meaningful sample of some physical quantity, that is the processing which is
likely to be required by any possible client application.
The concrete implementation of the public interfaces still depends on the under-
lying layers because it involves some communication with the hardware, however
none of the details should arise at the client’s level. Ideally, this layer should
be the last part of the system requiring an update as a consequence of modifi-
cations in the hardware of the robot.
As mentioned before, the implementation should also be real–time compatible,
not to break the guarantees required for a proper functioning of the control.
Even if real–time is not in principle related to absolute speed, it is also impor-
tant for the implementation to be thin and efficient, since it will be executed
within processes running at high frequencies (e.g. a control loop at 500Hz).

A concrete example In the following, a concrete example taken from the
software running on the HyQ robot will be shown. All the code of this layer is
written in C++.
The example pertains position sensors (e.g. encoders), since they are amongst
the most common type of sensors used in robotics, due to the fundamental need
of providing the robot with a perception of the position of its own links.
Figure 4.6 gives an overview of the classes involved in the representation of
position sensors. The organization of the classes follow a general pattern that
exploits the inheritance of object orientation (Meyer 1997; Snyder 1986); it has
been adopted also for other sensors, encoders are just a notable example. In

Figure 4.6 – Layout of the classes modelling position sensors, as implemented
in the software platform for HyQ. The AEDA3300BE1 is the specific model
of the relative encoder mounted on the robot. An Encoder gives just a
number, while an EncoderWrapper gives an actual angle. Note that the
relative encoder is configured with a function call (that can happen at any
time), while the configuration of the absolute encoder happens only once in
the constructor (i.e. at the startup of the application).

particular, the left part of the diagram shows the separation between the higher–
level class, an abstract encoder with a minimal interface, and the other classes
that instead exhibit dependencies on the actual hardware of the robot. These
classes (colored in the diagram) are further partitioned to represent the specific
model of sensor and the technology used to communicate with it (the Senso-
ray526 in our case).

4.2 Key aspects of the platform 37

The former (AEDA3300BE1 in the figure) wraps information and details related
to the sensor itself, which often are simply factory parameters; a typical ex-
ample for an encoder is its resolution. The latter instead (AEDA3300BE1 s526),
contains the actual code to read data from the sensor and hides the details of
the communication; in our example, this class interacts with an instance of the
wrapper class of the Sensoray526 (see above). This is the only class that would
be replaced should the underlying I/O mechanism change.

The purpose of the classes Encoder and EncoderWrapper (on the top of the
diagram) is to separate the modelling of encoders purely as displacement sen-
sors and as actual angle sensors. The former is therefore simply the software
representation of the hardware device, abstracted as a provider of a single mea-
surement. The latter instead adds a bit more information to the measurement
by converting it to a meaningful angle, expressed in radians, according to its
configuration parameters (which are determined elsewhere). The encoder wrap-
per is independent of the actual type of the encoder instance providing the raw
measurement.
The separation of concerns principle stressed in this design makes the implemen-
tation modular and provides significant advantages. The classes are lightweight
and self contained, and it is easy to change a component without affecting the
others. This does not mean that, for instance, changing the technology for the
communication with the hardware would result in trivial modifications of the
software, but at least the affected components would be limited and the need
for fixes would not propagate much.

Table 4.1 shows the actual interface for relative encoders and absolute en-
coders as implemented for the HyQ robot. The former measure the displacement
– in the form of a rotation or a translation – with respect to the initial position
at the start–up of the system (i.e. when the sensors are powered); the latter
instead give a value which depends solely on the absolute physical configuration
of the sensor (e.g. the position of an axle with respect to the casing of the sen-
sor), and therefore does not change from time to time. The interface is minimal,

Relative encoder Absolute encoder

double getAngle();

double getResolution();

void setReferenceAngle(angle);

AbsoluteEncoder(rawValue,

angle);

double getAngle();

double getResolution();

Table 4.1 – The interface for the class representing relative and absolute en-
coders.

very simple, and basically includes only a function to read an angle. The class
itself is independent on conventions, ranges etc. about the angles, which is an
information that should be encoded elsewhere, but instead it takes parameters
to be able to turn the relative readings from the sensor into angles meaningful
for the application.
In particular, the relative encoder takes an angle of reference (which must be
already expressed in the proper units, e.g. si units) so that relative measures
taken afterwards can be turned into the absolute angles that are much more

38 Chapter 4: Software control of articulated robots

useful for the application. The formula is very simple:

θ = θref + (raw − rawref) ·R

where θref is the angle set by the client code, raw is the current raw reading
of the sensor, rawref is the reading at the instant in which θref was set, and
R is the resolution of the encoder (expressed in radians, assuming that the raw
readings of the encoder are dimensionless). θref must be set by a run–time call
of the corresponding setter function, since the actual value can be determined
only at run–time and the user might want to use this function more than once,
to recalibrate the sensor.
On the other hand the absolute encoder provides a constructor with the required
parameters, to emphasize that these values do not change during the life of the
application (i.e. they are configuration parameters). As a matter of fact such
parameters depend purely on the physical layout of the sensor when mounted on
the robot, and on the conventions about the joint angles as desired by the user.
The configuration parameters are a raw reading value and the corresponding
physical angle, and they allow to turn any other reading of the absolute encoder
into an angle. The formula is exactly the same as before. The difference, as
already mentioned, is that rawref and θref do not need to be determined at
run time.
A typical use of absolute encoders is to read the absolute joint angles of the
robot at the start up of the system, and then use such a value to configure
the relative encoders (typically much more precise and therefore more suitable
for the control of the robot). This approach relieves the user from moving the
joints to a known position (e.g. at the mechanical limits) every time the system
is started, to manually calibrate the position sensors.

4.2.2.2 Robot specific layer

Note that the software for encoders described in the previous section, presented
as an example of a component of the hardware abstraction layer hal, is quite
general and does not depend on any specific robot. This reflects the obvious
fact that some hardware (like commercial sensors) is not constrained to be used
on a single machine only. It is desirable that as many components as possible
share this property, since it allows the reuse of the same code for different ap-
plications, as for instance different robots with similar sensors/actuators.
An additional layer exploiting the general purpose hal components and plug-
ging in more specific information about the robot is therefore necessary. The
content of such layer is heavily dependent on the specific robot, and its purpose
is to provide a tailored I/O interface for client components which are also aware
of the details of the robot (e.g. how many actuated joints there are).
This layer should have components that read and use the whole set of configu-
ration parameters which depend on how the robot is assembled, how its electric
and electronic components are wired and connected, etc.

A possible objection to this layered architecture concerns efficiency, which
is critical when the system has hard real–time requirements at high frequencies
of execution. However one has to keep in mind that having a number of logical
layers does not necessarily imply an equal number of complex subsystems doing
computations and exchanging large amounts of data. In other words such layers
can be thin and smart enough not to introduce a significant run–time overhead,

4.2 Key aspects of the platform 39

but rather providing a useful partitioning of the components.
Moreover, as far as the actual code is concerned, languages such as C++ allow
to enforce such a modularity in the implementation, yet providing good effi-
ciency and speed compromises.
For example, the components described above for the encoders are very simple,
and essentially more effort was required to design the structure rather than to
provide the actual implementation. Everything is suitable for real–time execu-
tion at high frequencies.

4.2.3 Motor control and robot behavior

The last two blocks of the proposed architecture shown in Figure 4.1, are respon-
sible for the motor control and for the generation of task–specific trajectories
for the joints of the robot. These are the first elements of the system which are
not just providing a static service to clients but instead actively perform some
computations, i.e. they are implemented as processes.
The different nature of the operations and the (generally) different frequencies
of their execution lend to the natural choice of implementing them with two
separate modules (e.g. one real–time process for each) exchanging information
through some sort of communication channel.

4.2.3.1 The motor control block

The primary role of the motor control block is to implement one or more nu-
merical algorithms taken from control systems theory, which allow to drive the
actuators and move the robot links as desired. The primary input information
required for this purpose is the status of the robot, in terms of position and
velocity of its joints. The force at the joints might also be required, depending
on the control scheme (as a rule of thumb, it is necessary to sample the actual
value of the quantities that one wants to control, the position of the joints being
the most common example of such quantities). Other input values may include
lower–level information such as the status of the actuators (e.g. the current flow-
ing in an electric motor, the oil pressure in the chambers of a hydraulic cylinder)
since they also constitute sub–systems the robot is comprised of. The motor
control is therefore the primary client of the hardware I/O modules, which must
provide access to all the necessary sensors and to the actuator drivers (such as
the power electronics of a brushless DC motor, or the solenoids driving hydraulic
valves).
Given the input, the algorithm computes the output commands for the actu-
ators that should move the robot as desired. This procedure of sampling the
system state and computing the commands happens periodically, with a certain
frequency (e.g. 500Hz) and constitutes the core functionality of the component.
A reliable timing is fundamental for the algorithm to be successful in controlling
the actuators, therefore it is necessary to use a hard real–time process for the
implementation. For the same reasons one has to ensure that all the code pos-
sibly referenced by such process (like the code for the hardware I/O) is suitable
for real–time.

A deeper discussion about various low–level control approaches and their
input data would go beyond the scope of this work. However, a proper under-
standing of control schemes, of their features, of the consequences of choosing

40 Chapter 4: Software control of articulated robots

one or another, is important to devise a more general and effective software
architecture for the whole system.
A generic control scheme is depicted in Figure 4.7 to give the reader an idea
of a plausible structure of the motor control block, together with the involved
data types. The scheme shows three nested control loops, each one providing

Position
controller

Force
controller

Robot
dynamicsqref f ref x ref

qfActuator
controller

Actuator
dynamics

[actuator specific variable]

u

Figure 4.7 – Block diagram showing a very generic control loop. Actual control
approaches may drop some blocks or introduce new ones. The suffix ref
denotes a desired value a controller has to track; q represents the position
of the joints, f the force acting about the respective axes. The innermost
loop controls some quantity that depends on the actuation systems (it might
be pressure for hydraulics, current for electric motors). The frequency of
execution of the loops is determined by the controller designer and through
experimentation.

the reference input for the next, more inner one. The innermost loop is specific
for the actuation technology adopted at the joints of the robot, and therefore
its input measurements can be very diverse (e.g. current, rotational speed, oil
pressure, etc.). So is the output command, which goes directly to the actuator
drivers, and could be a current, a voltage, the duty cycle of a pwm signal, and
so on.
The next loops target respectively the force and the position at the joints, these
also being the quantities that should be sampled by sensors. As drawn in the
picture, the outermost position control loop takes a reference from an external
source, and provides a force reference (i.e. the force that is desired to be acting
on the joints) to the force control loop, which in turn sends its output to the
actuator control loop.
All the loops as shown in the figure are purely based on error feedback, that is
their output is a function of the difference between the reference value and the
measured one. However some sort of model based control taking advantage of
prior knowledge about some part of the system may be used (e.g. electromag-
netism for electric motors, pressure/flow relationship for hydraulic cylinders,
etc.). See also Section 2.2.
Note that the diagram in the figure is just an example, and different schemes
are possible. For example, the current controller of the HyQ robot is based on a
position control and an inner, model–based force control specific for hydraulics,
while there is no further explicit control loop for other quantities (Boaventura,
Semini, Buchli, Frigerio, et al. 2012).

4.2.3.2 The robot behavior block

The role of the last block included in the overview picture of Fig. 4.1 is basically
generating the reference inputs for the motor control, typically in the form of
desired joint trajectories, i.e. a set of subsequent desired positions (called set

4.2 Key aspects of the platform 41

points). Alternatively, desired forces might be produced if the outermost posi-
tion control loop is deactivated.
Set points must be emitted in a timely manner possibly without abrupt dis-
continuities, to avoid undesired jerky movements of the robot or general in-
stabilities in the controller. Therefore a real–time process is also necessary for
the trajectory generation. However the frequency at which the set points are
generated may be different from the one of the motor control, and typically a
lower frequency is enough for a smooth trajectory and proper overall results.
The lower–level motor control usually has to run faster, so that a few control
loops are executed for each set point (again, a deeper discussion of the role of
frequency in control theory is not in the scope of this work).

As discussed in the overview (Section 4.1), determining the desired joint
trajectories and therefore how the robot has to move is possibly a very complex
task that can be achieved in different ways. In a first approximation though, one
can think of a single process implementing a periodic loop, whose core function
is to compute the next set point according to some logic, chosen by the user.
For example, one may use the sine function of any math library to generate the
points of a sinusoidal trajectory, for some of the joints, to test the response of
the controllers or simply the status of the mechanics of the robot.
This approach for the implementation of the robot behavior (or robot task),
though not very extensible, is quite general and very effective to do many ex-
periments on a robot, and for this reason it has been implemented on the HyQ
robot. As soon as the logic for the specification of the behavior of the robot
becomes more complex though, for instance if some sort of artificial vision is
involved (e.g. stereo cameras, laser scanners), than it is obvious that a single–
process, all–in–one block for the robot behavior is not appropriate anymore
and a more effective architecture and implementation have to be devised. See
Section 8.1.

4.2.4 The SL package

The software system described in the previous paragraphs has been successfully
implemented on the HyQ robot, enabling the actual experimentation after the
mechanical structure was built.
The sl simulator and motor controller package was chosen for our system since
it basically provides an implementation of the motor control and the robot
behavior blocks (Schaal 2009) (see also Section 3.5). sl was initially designed
for a multi–processor architecture and implements the two blocks with two real–
time processes interacting via shared memory (these two processes are called
respectively the “motor servo” and the “task servo”). It is entirely written in
C language, and can be built and executed on top of a real–time Xenomai–
based Linux system, to control real robots. The software for the I/O with the
hardware has to be provided and interfaced with the motor servo, to realize a
complete system as described before.

An interesting and useful feature of sl is that it can be configured to have
the motor servo interact with an additional process implementing a simulator
(also included in the package), instead of a real robot. The task servo, on the
other hand, is unaware of the current mode of execution. This feature, which
is possible thanks to the modular design described in the previous sections, is
very useful since it allows to try robot behaviors first in a physics simulator and

42 Chapter 4: Software control of articulated robots

Figure 4.8 – A screenshot of the graphical output of the simulator of sl,
showing the model of the HyQ robot. The intersecting lines above the robot
(red, green and blue) represent the axes of the world reference frame. The
light-blue lines coming from the feet of HyQ represent the ground reaction
forces, while the tiny red ball on the ground is the projection of the center
of mass of the robot.

then on the real robot, without changing anything in the implementation of the
behavior itself.
Figure 4.8 shows a snapshot of the graphics window of sl captured during a
simulation with the HyQ model.

Chapter 5

Domain analysis and
software models

In this chapter we describe the domain we address in our code generation frame-
work. We focus on a specific yet fundamental area of the robotics software which
deals with model–based control and more generally with kinematics and dynam-
ics, which are the subject of the next sections. We designed simple yet general
domain models of the relevant aspects of the kinematics and dynamics of ar-
ticulated robots, to then build Domain Specific Languages on top of them; the
final purpose is to automatically generate code (Chapter 6 describes the actual
implementation of the code generation framework).

This chapter is structured as follows: Section 5.1 gives an overview of the
kinematics and the dynamics for articulated robots. This overview leads to a
more rigorous analysis in view of the development of software, in the section
about domain models (5.2).

5.1 Kinematics and dynamics of articulated
robots

This section provides an overview of the most important algorithms and quan-
tities related to the kinematics and the dynamics of articulated robots. It in-
troduces the issues related to their implementation which motivate the content
of the other sections.
Briefly, kinematics deals with the geometry of the robot (lengths, configuration
of the links), the position and the velocity of points of interests. Dynamics
considers also forces, inertia, accelerations and the physics laws that relate such
quantities together. It would be wrong though, to think of these two aspects
as completely independent, since the dynamics computations for a multibody
system depend strongly on its geometry and thus on kinematics quantities.
These algorithms are required by model–based controllers but also by other
components of the whole software system. Some of them are mandatory to re-
alize simulations and basic controllers, making their implementation a critical
step in the development of any robotics application.
For example the so called forward kinematics (i.e. coordinate transformation

43

44 Chapter 5: Domain analysis and software models

matrices) is necessary to calculate the position of any point of the robot with
respect to a reference frame, for any given configuration of the joints. Most
applications require this functionality; for example one needs to know the ac-
tual position of a certain sensor (like a stereo camera) to properly interpret its
measurements. More specific approaches like the operational space control are
heavily based on a wide set of matrices related to kinematics and dynamics:
coordinate transforms, Jacobians, inertia matrices and so on (see the related
work section 3.2).

Despite an established theoretical understanding of kinematics and dynam-
ics, sound designs and implementations – possibly meeting some of the features
listed in Section 2.1 – are far from being trivial, yet they are critical for suc-
cessful simulation and control and therefore for the safety of the robot itself.
Writing this kind of software is error prone and time consuming, because of
the inherent complexity of the algorithms but also because of the lack of es-
tablished, general software models which address these concepts, and thus the
lack of reusable implementations. Some algebraic quantities like the transforms
typically suffer from ambiguities in their definition or in their usage (see below),
so that developing them by hand is even more problematic.
An approach based on generating code out of higher level models follows nat-
urally from (a) the nature of the dynamics and kinematics algorithms (see for
example Section 5.1.2.3), (b) the issues inherent to manual development (e.g.
Section 5.1.1.1), (c) the apparently conflicting requirements of efficiency and
real–time capability on one hand, and ease of use and flexibility on the other
hand.

5.1.1 Kinematics

5.1.1.1 Coordinate transformation matrices

A coordinate transformation matrix X (or just “coordinate transform” or “roto–
translation matrix”) maps a coordinate vector to another coordinate vector
representing the same physical entity (e.g. a point), but in a different reference
frame which is in general translated and rotated with respect to the previous
one:

pB = BXA · pA
where A and B are two frames, p is the coordinate vector; more on the notation
in the following.
When developing these matrices by hand or when using existing code, it is
very easy to make mistakes because a proper and unique definition of a trans-
form requires some specifications that are usually implicit and therefore lead
to ambiguities. The most important one is the direction of the transform: as
an example, assume that frame B is rotated by an angle θ about the z axis,
with respect to A; this information cannot be misunderstood (assuming right
handed frame and right hand rule for the angle sign), but the expression for
the rotation matrix Rz(θ) does not tell whether it transforms vectors from B
to A or vice versa, thus is ambiguous. See also Figure 5.1. If one specified
all the necessary information (e.g. positive rotations are counter clockwise) and
chose a convention so that, for instance, Rz(θ) must map coordinates from B
(the rotated frame) to A, then one of the matrices in the figure would simply
be wrong (the one on the right, in this case); in fact it would be the matrix

5.1 Kinematics and dynamics of articulated robots 45

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

  cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Figure 5.1 – Two rotation matrices both representing a rotation of an angle θ

about the z axis (Rz(θ)). One matrix is actually the inverse of the other (or,
equivalently, the transpose, since rotation matrices are orthogonal). They
map coordinate vectors between two reference frames which are rotated with
respect to each other.

representing a rotation of −θ. But the problem is exactly that this information
is often missing, and the user wastes time by manually investigating about the
conventions and by making mistakes. For instance, the code in the Matlab
robotics toolbox (Corke 1996) uses one convention about the direction of the
transform, while the 6D transforms introduced by Featherstone in (Featherstone
2008) use the other one.

For the sake of simplicity we will focus only on the direction property, as-
suming to deal always with right handed, orthogonal coordinate frames and
left–multiplication (i.e. the matrix always left–multiply a column vector of co-
ordinates), these being other possible ambiguities in the usage of the transforms.
This assumption is not a big limitation since different choices are quite uncom-
mon in the literature as well as in existing software.

5.1.1.2 Jacobians

A Jacobian, in common robotics usage, is a matrix that maps velocities in
different coordinate systems; usually a Jacobian J transforms the velocity vector
containing all the scalar velocities of the joints (i.e. the joints–space velocity q̇)
to the Cartesian velocity of some point of interest ẋ located in the robot (Figure
5.2). The well known formula is

ẋ = J(q) q̇

The equation also says that the matrix is a function of the current configuration
q of the robot. Jacobians are of fundamental importance in many robotics
applications since they encode effectively information about the configuration
of the robot (e.g. one can determine it is approaching a kinematic singularity
by looking at the Jacobian) that is also very useful for dynamics computations.

The literature usually makes a distinction between analytical Jacobian and
geometric Jacobian, these being respectively the matrix of the partial deriva-
tives of the forward kinematics function (this matches the common definition of
Jacobian in mathematics) and a matrix determined by a geometric procedure.
The two are in general not equal, but they are always related by a linear trans-
formation (Khatib 1995; Siciliano et al. 2009). In this work we focus only on
geometric Jacobians because they can be computed by a procedure that iterates
over the joints; they also have the property of expressing the rotational velocity
of the point of interest in terms of the angular velocity pseudo vector ω, and

46 Chapter 5: Domain analysis and software models

x

y v

q1

q2

J =

(
− sin (q2 + q1)− sin q1 − sin (q2 + q1)
cos (q2 + q1) + cos q1 cos (q2 + q1)

)

Figure 5.2 – A simple example of a planar two–bar linkage and the correspond-
ing Jacobian for the tip of the second bar (to simplify the results, the bars
have unit length). Note that J is a function of the joint status variables
q1 (negative, in this example) and q2; the equation is v = J · [q̇1 q̇2]T . A
few rows of the Jacobian have been dropped since they contain only zeros,
because motion is mechanically constrained in the xy plane.

not in terms of the derivatives of the angular position coordinates (which is the
case of the analytical Jacobian).

For a description of the procedure to compute geometric Jacobians see (Si-
ciliano et al. 2009). In short, such a procedure iteratively determines the contri-
bution of the motion of each joint of the robot to the linear and angular velocity
of the point of interest, by using information about the kinematics of the robot
(e.g. the length of links, the orientation in space of the rotation axes of the
joints).
This procedure can also easily lead to mistakes if followed manually, and on the
other hand it lends itself well to an automated, generic implementation.

5.1.2 Dynamics

5.1.2.1 Reference equations

The very well know equation of motion for a multi–rigid–body system can be
written in the following form:

Γ = H(q) q̈ + h(q, q̇) (5.1)

where q, q̇ and q̈ are respectively the vectors of the scalar position, velocity
and acceleration for each degree of freedom of the robot (i.e. for each joint,
assuming only 1–dof joints), while Γ represents the forces at the joints; here
and throughout the rest of this work, unless otherwise specified, we use the
term “forces” to mean “generalized forces”, which accounts for both the cases
of linear forces or torques (respectively for prismatic or revolute joints). H is
the matrix that expresses the inertia seen locally at each joint, while h is a term
that accounts for the position and the velocity dependent forces; this last term
– often called the “bias force” term – is in fact a place–holder for the sum of two
components representing the Coriolis/Centripetal forces and gravity terms (and
possibly other additional forces determined for instance by contacts, springs,

5.1 Kinematics and dynamics of articulated robots 47

etc.). The equation can then be rewritten as:

Γ = H(q) q̈ + C(q, q̇) + G(q) (5.2)

Two main sub–problems of dynamics can be usually identified, and they are
simply called the inverse dynamics problem and the forward dynamics problem.
The opposite “direction” of the two refer to the opposite role played by accel-
erations and forces: the inverse dynamics problem aims at finding the proper
forces that would lead to certain know accelerations, while a forward dynamics
procedure computes the accelerations resulting from the application of known
forces. We can write:

Γ = id(q̈,q, q̇) (5.3)

q̈ = fd(Γ,q, q̇) (5.4)

Generally speaking, inverse dynamics is used in the controllers of real robots
since they have to determine the forces to be delivered by the actuators (cf.
Section 2.2). On the other hand forward dynamics is mostly used in simulators,
which need to estimate the acceleration response of a multibody system in order
to provide physically consistent simulations. In first approximation, on real ro-
bots the second case obviously does not apply because motion happens for real
and the accelerations can be measured. However, a sophisticated control strat-
egy of a robot (in the broad sense of the term) might very well run dynamics
simulations about its own robot model, in order to plan or predict behaviors or
events.
Whichever use of these routines, once again we shall stress the importance of
efficient implementations. Fast and predictable execution times allow to run dy-
namics computations in hard real–time controllers, leaving more room for other
procedures. Faster dynamics simulations improve the user experience, allow a
simulator to be augmented with more complex models, and also enable sophis-
ticated controller logic such as sampling–based planning techniques (LaValle
2006).

5.1.2.2 Algorithms

By comparing equation 5.3 with 5.1 it is easy to identify a correspondence
and guess, for instance, that one can solve the inverse dynamics problem by
computing H and h. However this is not always the case for the dynamics
algorithms. For example, the fastest know algorithm for inverse dynamics, the
Recursive Newton–Euler algorithm, does not compute explicitly (i.e. as a side
result) the coefficients of the equation of motion, since that is not the most
efficient strategy to get the accelerations.

Another algorithm considered in this work is the Composite–Rigid–Body
algorithm, which instead computes exactly H; this matrix is known as the Joint
Space Inertia Matrix (jsim). As opposed to the inverse dynamics case, H is
used explicitly to solve the forward dynamics problems, together with a routine
to compute h (which is an inverse dynamics routine!) and another one to solve
equation 5.1 for q̈ – even though, depending on the characteristics of the robot,
this approach might not be the fastest (Featherstone 2008).
The jsim also appears explicitly in the formulation of operational space control
and impedance control (Hogan 1985; Khatib 1995). For example it is required to

48 Chapter 5: Domain analysis and software models

compute the inertia weighted pseudo–inverse of the Jacobian matrix; this inverse
is extensively used in operational space control and in the task prioritization
approach (Sentis et al. 2005). The corresponding equation is the following:

J = H−1 JT
(
J H−1 JT

)−1
(5.5)

Another fast algorithm used to solve the forward dynamics problem is the
Articulated–Body algorithm, which belongs to the so called “propagation meth-
ods” (Featherstone 2008); our framework can also generate an optimized imple-
mentation of this algorithm, for any kinematic tree.
Roughly speaking, all the algorithms mentioned in this section share a common
behavior which is induced by the nature of multibody systems. Basically it
always happens that some quantities (like forces or velocities) are computed for
some body and then propagated to the rest of the system according to the geom-
etry of the robot. Bodies are ordered by establishing a directed path from the
robot base to its extremities (see Section 5.2.1.1). For example, for a fixed base
robot, the velocity of a body Bi contributes to the velocities of all the following
bodies, according to their distance from Bi (an independent contribution to a
body velocity, instead, comes from the actuation at the corresponding joint).
The instantaneous inertia properties of a subset of rigid–bodies connected to-
gether are determined by a weighted sum of the inertia of the single bodies,
which again depend on distances and angular displacements.

5.1.2.3 Dependency on the robot model

The simple equations 5.3 and 5.4 already show the dependency on position and
velocity for both inverse and forward dynamics: the instantaneous relation be-
tween forces and accelerations depend on the kinematic configuration of the
robot.
As noted in (Featherstone 2008, 2013) though, what they do not show explicitly
is the additional dependency on the model of the robot describing its kinematics
and dynamics; such a model is required to interpret properly the other param-
eters (e.g. a specific force leads to very different accelerations if the links of the
robot are twice as heavy, or half as long). This is a key point about the nature
of dynamics algorithms which can be exploited by the code generation process.
In essence, the robot model can be thought of as an additional parameter of
the dynamics problems, which reveals the possibility of implementing specific
instances of the general algorithms tailored for specific robot models.

5.2 Domain models

This section complements the previous ones with some further information re-
garding the kinematics/dynamics of articulated robots, in order to devise the
software models – in the form of uml class diagrams, in this case – which our
toolchain is based on. These models provide several advantages; they serve as a
concise yet formal representation of the information we are interested in, which
is what the languages and code generators described later are based on; specif-
ically, we refer to the kinematic tree abstraction for articulated robots (Section
5.2.1) and to rigid motions (translation and rotations – Section 5.2.2). The
models are not only useful for the development of the code generation system

5.2 Domain models 49

itself, but also for its usage by third party users. In other words the models
also serve as documentation, in that they can communicate the ideas and the
assumptions underlying the software, making its re-use easier.

5.2.1 Kinematic trees

The previous section about dynamics introduced the concept of model–based
algorithms, which are parametrized on the kinematics/dynamics description of
a robot; we call such a description a robot model, since it is an abstraction of the
actual physics of a multibody assembly. The main assumption underlying the
models is that all the bodies comprising the system are perfectly rigid, hence
they do not bend nor deform.
As far as dynamics is concerned, it is also assumed that joints are equipped with
idealized sources of force, neglecting the dynamics of possible concrete actuation
systems (like electric or hydraulic motors); the mass, the position of the center
of mass and the inertia tensor of each rigid body are the sole parameters that
need to be specified.
As far as kinematics is concerned, we shall give here a description of the struc-
ture and the amount of information embedded in the model, to provide the
background for the rest of the work. For an extensive and authoritative discus-
sion on the kinematic tree abstraction, which is a standard approach in robotics,
see (Featherstone 2008; Siciliano et al. 2009).

5.2.1.1 Basic model

In kinematic models, a robot is an assembly of bodies, often referred to as links,
and joints: a link is a rigid body with inertia properties while a joint is mod-
elled as a kinematic constraint between exactly two bodies (the predecessor and
successor), that is, it is an abstract, massless object that constrains the possible
relative motion between the two bodies. In general the joint is not a purely
rigid junction but it leaves certain degrees of freedom (dof) to the attached
link. Note that the mass of the real, mechanical joint (e.g. the extremities of
two links, the bearings, the axle, etc) has to be included in the inertial proper-
ties of the connected links, or neglected. In essence, the model has to specify
the type of each joint, which tells the mobility of the link and the position of
the joints with respect to the bodies; this data fully describes the geometry of
the robot.
The overall description of the robot is topological, since the whole structure can
be represented by a graph where joints are arcs and bodies are nodes (quite the
contrary of what graphical intuition might suggest); see also figure 5.3.1

This work focuses only on kinematic trees, which are assemblies that do
not exhibit loops and represent a wide class of the robots used in industry and
research; the graph abstraction is where the term “tree” comes from, since a
graph with no loops is called tree. The full generalization of the model is one of
the natural topics for future development, and can be done by integrating the
methods described again in (Featherstone 2008) into our framework.
As a further simplification, we deal only with 1–dof joints, that is joints that

1This abstraction suggests how graph–related data structures and algorithms may be used
in computer programs to implement the kinematic tree model.

50 Chapter 5: Domain analysis and software models

= trunk link
= hip links
= leg links
= lower leg links

Figure 5.3 – The structure of articulated robots can be modelled with a graph
where the rigid links are the nodes and the joints the arcs. This example
shows a graph isomorphic to the kinematic structure of the quadruped robot
HyQ, also shown on the left with a stylized drawing, for reference.

guarantee only rotational motion about one axis (revolute joints) or linear mo-
tion along one axis (prismatic joints). More complex mechanisms can still be
modelled by multiple simpler joints, which therefore can be thought of as vir-
tual joints; this approach is convenient since it does not affect kinematics and
dynamics routines. In certain situations though, more complex and dedicated
models would be needed to cope with specific issues; for instance the straight-
forward modeling of a 3-dof spherical joint as a sequence of three revolute joints
would possibly suffer from the well know singularities related to the parametriza-
tion of rotations with three numbers (Featherstone 2008; Siciliano et al. 2009;
Stuelpnagel 1964). This point will be addressed in future developments of this
work.

One particular link of the robot is called the robot base, which is the logical
root of the kinematic tree. A robot anchored to the environment, like an indus-
trial manipulator, is called fixed–base and its actual base is the link attached
to the environment; such link does not move thus is neglected in any dynamics
computation.
Robots like humanoids or quadrupeds, on the other hand, are called floating
base since the whole robot position is not constrained somewhere in the envi-
ronment; in this case the choice of the base link is arbitrary in principle, even
though some guidelines may be applied. For example a typical choice for a
legged robot is the trunk, since it matches our intuition and minimize the depth
of the branches (legs and arms), which can be helpful for the efficiency of certain
algorithms.
The choice of the base also determines the logical hierarchy among the links,
that is which link is the parent of which other link. It also influences the num-
bering of joints and links, even though in case of branches (see below) the user
still has some freedom in assigning the numbers (details about these points are
not relevant here, see (Featherstone 2008)). We shall give here a few more
definitions related to kinematic trees that will be used in the rest of the text;
compare them also with Figure 5.4. Note that they apply to the simplified case
that assumes no kinematic loops and neglects the joint polarity property; for a
more exhaustive description of the kinematic model of rigid body systems please
refer to chapter 4 of (Featherstone 2008).

• When referring to a link, we call “supporting joint” the joint that moves

5.2 Domain models 51

fixed base

successor

predecessor

joint

(a) A fixed-base manipulator arm with a
linear structure (the KUKA–DLR robot
arm (Bischoff, Kurth, et al. 2010)). The
highlighted predecessor-successor pair re-
fer to the joint whose axis is highlighted.

branches

unconstrained base

(b) A floating base robot with kine-
matic branches (the humanoid robot
COMAN (Tsagarakis et al. 2013)).

Figure 5.4 – Two examples of articulated robots – fixed and floating base –
illustrating some of the main elements of the kinematic tree model.

such a link (and thus the whole sub–tree rooted at it – for example the
elbow is the supporting joint of the lower arm); when referring to a joint,
we also call “supporting link” the link that is carrying that joint (the
upper arm with respect to the elbow);

• For any section of the tree in the form link P - joint J - link S, where P
is the link supporting joint J and S is the link supported in turn by J ,
we call P and S respectively the predecessor and the successor of J . The
same two links may be equivalently referred to as the parent and the child
link.

• Kinematic branches or simply branches are forks in the structure of the
robot that happen when a link is supporting two or more joints (which are
in turn supporting other links). For example, the trunk of a quadruped
robot is supporting the four joints that act as hips and shoulders.

• A kinematic chain is a linear sequence of links connected through joints,
with no branches. An arm of a humanoid robot up to the wrist (neglecting
a possible hand) is an example of a chain.

5.2.1.2 Reference frames

The geometry of the bodies and their connections is required to dynamically
compute the pose of the bodies, the dynamical effects of the movements, such
as Coriolis and centrifugal forces, and so on. To this end, various reference
frames must be placed in known points of every body and every joint of the
tree. The parameters for a set of transformations among different frames plus

52 Chapter 5: Domain analysis and software models

a convention about the placement of them (e.g. the z axis of the frame of a
joint is always aligned with the rotation axis) basically encode all the required
geometric information. Figure 5.5 shows the layout of the reference frames on

y

x

zy

x

y

x

zz

x
y

z

zz

Figure 5.5 – Layout of reference frames for a generic section of a kinematic
chain. Fp and Fs are the frames respectively of the predecessor and successor
link of joint J , whose frame is FJ . Fp and FJ do not move with respect to
each other, while FJ and Fs do, according to the joint behavior. Fl shows a
possible additional frame located on the link.
For further information about the convention please refer to (Featherstone
2008, 2010b)

.

a generic section of a kinematic chain. We shall emphasize here some of the
main characteristics of the convention about the placement of frames which are
relevant for the overall understanding of the model and hence of the language
described in Section 6.1.

• The joint frame FJ is always placed with the z axis aligned with the
actual joint axis, either a rotation axis or a translation one. This way, the
placement of FJ fully specifies the motion allowed by the joint.

• The transform JXp for the joint frame is a constant, since it describes the
placement of FJ (thus of the joint itself – see the previous point) expressed
in the reference of the supporting link (the predecessor); in other words

JXp solely depends on static, geometrical parameters of the robot (usually
included in its documentation papers), which can be completely arbitrary.

• Two reference frames are located at each joint (FJ and Fs), and they are
fully overlapped when the joint status (i.e. the actual angle or displace-
ment) is zero. Only the second frame (Fs) moves as the joint is actuated,
as it is attached to the successor link. This frame is chosen to be the
default frame of such a link.

• From the previous points, it follows that no additional parameters have to
be specified for the link, since its reference frame is uniquely determined
by the convention about the placement of the joint frames, and the joint
status.

• The generic transform sXJ between the two frames at the joint (FJ and
Fs) is the only one which depends on the joint status. Note also that sXJ

captures the type of the joint, that is whether it is revolute or prismatic.

5.2 Domain models 53

Note that the procedure described by the above points poses no constraint on
the actual shape or layout of the mechanical system to be modeled. It also does
not constrain the user to a limited set of predefined frames that may not fit her
or his needs, since additional, arbitrary reference frames can be added as will
(see Section 6.1).

5.2.1.3 Software model

Figure 5.6 shows an uml class diagram representing the key elements described
in the previous paragraphs. Class diagrams are the typical choice when the ob-
jects of a system and the static relationships among them have to be represented
(Fowler 2003). In our case we want to formalize the description of our domain
of interest, which is the representation of robots as kinematic trees, which is
common in robotics.
Before moving further with the explanation it is worth spending some words to
avoid confusion about the terminology. The representation of articulated robots
as a tree–like assembly of links and joints, is itself referred to as the “kinematic
model”; however, a specific description of a single robot is often called the robot
model as well. The same term is used for two things that are conceptually very
different: the latter refers to the description of a specific robot, while the former
deals with how the descriptions themselves are structured. To be more precise
then, one might refer to the kinematic tree model as a meta–model, since it does
not address directly robots but rather the way they can be represented. Robot–
models shall then be thought of as instances of the meta–model. However, the
distinction is not always fundamental, but it becomes relevant when there is the
need to differentiate between the two cases.
The uml class diagram can also be called a model, or a domain model; to avoid
further confusion, it can just be thought of as a graphical representation of the
kinematic tree meta–model that has been described in words before. Such a
representation is more compact and formal, thus more appropriate to serve as
a reference for software development.

The class diagram is simple but general, and can be applied to any robot
made by rigid links, provided that no kinematic loops are present. As expected,
the main classes are Link and Joint. Since tree–joints induce a parent–child
relationship among links, which is further specified by the type of joint, we chose
to represent this feature by making Joint an association class connected to the
self–association for Link.
Any link can have multiple children (but only one parent), which allows to
represent kinematic branches such as multiples legs attached to a single trunk
link in a legged robot. On the other hand kinematic loops are not addressed
in this class diagram: another type of joint not determining any new child link
but rather connecting two existing links would be required. Kinematics loops
have not been addressed in this work mainly because the dynamics algorithms
for such a class of mechanisms are much more involved (however, support for
closed loop systems may be added in the future including the methods that are
available in the literature).
The abstract class Link actually models any rigid body with inertia properties,
and has a few subclasses to differentiate among special cases:

• ChainLink: a generic piece of the kinematic chain; this is what is usually
referred to as link.

54 Chapter 5: Domain analysis and software models

Figure 5.6 – The kinematic tree (meta–)model as an uml class diagram. It
can represent multibody systems, capturing the role of a joint as the con-
nection between a parent-child pair of bodies (links), and emphasizing their
association with reference frames. The convention about the placement of
these frames (that cannot be modeled in the diagram) and the parameters
about the relative pose of two successive ones (the Placement class) provide
the full geometry information about the robot.

• RobotBase: a special link which represents the root of the kinematic tree.
It can be floating if the robot is mobile, such as a locomoting robot. The
stereotype Singleton means that only one instance of this class shall exist
for each robot model, since any robot has only one base.

• VirtualLink: a dimensionless body to allow the composition of primitive
joints to model more complex mechanisms (see Section 5.2.1.1); this class
explicitly forces the inertia parameters of its instances to be zero. Floating
base robots can be thought of as connected via a virtual six-dof joint (i.e.
no constraint), to an arbitrary point in the world (cf. (Featherstone 2008)).

The Joint class is also sub-classed to distinguish between prismatic and
revolute joints. The common operation getStatus() shows that it must be
possible in some way to inspect the joint variable value (a scalar, since we are
dealing with 1-dof only joints) about the current position of the joint. The
vector containing all the scalar values at a specific instant is the joint–space
state variable, commonly called q.

Finally, the diagram of Figure 5.6 also includes reference frames with the
class RefFrame, associated with both Link and Joint; in addition to the prop-
erty defaultFrame that refers to the main reference frames located at links
and joints according to the convention, links can have any number of additional
frames as required by the user. Note that since a frame per se does not really
have any property nor behavior (we assume all to be right–handed), the rele-
vant information is in fact encoded in Placement, which contains the positioning
parameters of a frame with respect to another one.

5.2 Domain models 55

5.2.2 Rigid body motions

The other problems we are interested in are coordinate transformation matrices
and geometric Jacobians. The kinematic tree model already exposes the con-
cepts of reference frames and relative pose of two frames, as they are required
to specify the geometry of the robot. Coordinate transformations though, rep-
resent an independent problem that as such deserves separate treatment; as
described later, this separation improves the re–usability of the code generator
facilities.
As we did for kinematic trees, we shall devise some sort of software model that
can point out the main objects and relationships of the domain, to serve as
reference for software development (in our specific case the development of a
Domain Specific Language and code generators). As introduced before (Section
5.1.1.1), coordinate transforms suffer from some ambiguities that make their
manual development and usage prone to errors. One of the purposes of devising
formal models is to tackle such issues.

It turns out that the actual foundation of the coordinate transforms prob-
lem are rigid body motions, that is translations and rotations of rigid bodies
(or of reference frames, which as far as we are concerned is the same thing).
Figure 5.7 contains another uml class diagram concerning rigid body motions.
It formalizes the information that can uniquely express any motion, thought of
as the sequence of movements to be applied to a reference frame to bring it in
the same pose of another frame.

Figure 5.7 – A uml class diagram representing rigid motions. A rigid motion
(Motion) is a sequence of movements, rotations and translations, a generic
body has to perform to go from one pose to another pose; poses are rep-
resented by reference frames. The interpretation of the ordered sequence
of primitive motions constituting a composite one, is unique because of the
convention property.

The class PrimitiveMotion represents either a pure rotation or a pure trans-
lation of arbitrary amount, about or along a single Cartesian axis; instances of
this class are basically members of one–dimensional subgroups of SO(3) (the
group of special orthogonal matrices that represent arbitrary pure rotations)
and of R3 (arbitrary translations). A composite motion – class Motion – is
basically an ordered sequence of primitive motions, since by composing simple
rotations and translations one can achieve any motion.

56 Chapter 5: Domain analysis and software models

Note that this information is not yet enough to uniquely determine a motion:
it must be specified with respect to what reference the primitive motions (also
called “motion steps”) have to be taken. The natural choice is to assume that
each motion step is performed with respect to the current moving frame, so
that, for instance, a simple rotation about the y axis happens about the y axis
of the moving frame in its current pose (i.e. after all the previous motion steps).
However, one might want all the motion steps to be expressed with respect to
the frame in the initial position, so that the reference axes for translations and
rotations never move. Note that in this case the order of the primitive trans-
lations does not matter. Although even more conventions could be adopted,
for simplicity and because of the low probability of encountering them, we shall
stick with these two; the point is more about the need of explicitly exposing
properties that can resolve ambiguities of this kind, especially if software deal-
ing with these objects has to be developed. In the diagram of Figure 5.7, the
property convention refers exactly to this point.

At this point an instance of the model represented by the class diagram
contains all the required information to identify uniquely a set of rigid body
motions, which is the foundation to develop coordinate transformation matri-
ces.
In mathematics, the group of rigid motions is denoted with SE(3), the Special
Euclidean group, which is also a Lie group of dimension 6 (i.e. an unconstrained
rigid body in space has six degrees of freedom). There exist different repre-
sentations of SE(3), which are defined as linear maps whose image is one of
the general linear groups GL(n) (whose elements are n × n matrices) (Selig
2005). One can indeed think of a coordinate transform as a representation of a
rigid motion; more than one of such representations are possible, but what we
are mostly interested in here are homogeneous coordinate transforms (that are
4 × 4) and spatial vector transforms (that are 6 × 6) (Featherstone 2010a,b).
As we will see, this idea of different representations of the same information
turns out to be very useful for code generation, because code for different kind
of matrices can be generated given the same input, significantly easing the work
of the developer.

5.2.2.1 Coordinate transforms

Figure 5.8 – The uml class diagram for coordinate transforms. A generic,
named transformation matrix results from the product of several primi-
tive transforms, which correspond to pure rotations or translations. The
convention property allows to determine uniquely the elements of a primi-
tive transform.

Figure 5.8 shows a class diagram for coordinate transformation matrices. As
expected, this diagram resembles quite closely the previous one about motions,

5.2 Domain models 57

since there is a tight correlation between motion and coordinate transforms,
even though the two domains are not the same thing. The diagram is roughly
a model of the possible representations of rigid body motions, that is, generic
coordinate transforms whose actual type (homogeneous transforms, spatial vec-
tor transforms, or even quaternions if only the rotation part is of interest) is
unspecified.
Thus, one can think of instances of the main classes PrimitiveTransform and
Transform as n× n matrices, which can be composed by means of the regular
matrix product. It is assumed that the matrix is always left multiplying a col-
umn vector of coordinates2, so that it transforms the coordinates on its right to
the coordinates on its left, as in the following notation (already used in Section
5.1.1.1):

pB = BXA · pA

In the remainder of the text, we use the terms left frame and right frame refer-
ring to the position of the subscripts of X and therefore to the frames involved
in the transform (respectively B and A in the example): the right frame is the
frame in which the coordinates being multiplied are expressed; the left frame is
the frame in which the resulting coordinates are expressed.

Some details about the classes follow:

• PrimitiveTransform represents plain coordinate transformation matri-
ces associated to primitive motions (translations or rotations involving
one Cartesian axis only). The convention property serves to avoid the
ambiguity described before in Section 5.1.1.1 and in Figure 5.1. It tells
whether the frame FM that is moved with respect to the starting one FS

(for example by a rotation of θ radians about the z axis) is the right or
the left frame for the matrix; this information determines uniquely its el-
ements. Specifically, if the property value is right, then the matrix maps
coordinates expressed in the moved frame to coordinates in the original
frame, i.e. it takes this form: SXM ; in the other case it is simply the other
way round.

• The class Transform is defined as an ordered sequence of simple transforms
(i.e. a product of matrices), which can also have a user specific name.
The important attributes leftFrame and rightFrame identify uniquely
the role of the matrix by stating explicitly which are the frames whose
coordinates are involved in the transformation, and the direction of the
transformation itself (see Section 5.1.1.1). As explained above already,
the transform is supposed to multiply a vector of coordinates in the frame
rightFrame and give as a result the coordinates in the frame leftFrame.

It is clear that also in this case a relevant part of the diagram lies in the
properties that ensure that any instance of the model (i.e. some data structure
representing coordinate transforms) is uniquely interpretable. This is funda-
mental in order to make a software capable of dealing robustly and consistently

2This is almost always the case in research literature and books. It would be possible to
avoid the assumption and make the model and the software even more flexible by adding one
more property and additional logic. However we decided to avoid it for the sake of simplicity
and because the other convention (right multiplying) is quite rare. Similar comments apply
for the case of left handed coordinate frames (see Section 5.1.1.1).

58 Chapter 5: Domain analysis and software models

with these objects; for example, a code generator that can emit the code im-
plementing the correct transformation matrix given the sequence of the simple
transforms it is composed of.

5.2.2.2 Jacobians

As for a coordinate transform, also a geometric Jacobian is uniquely identi-
fied by two reference frames, which we call the “target frame” and the “origin
frame”. They are respectively the frame of the body whose velocity (or force)
is of interest and the frame in which the velocity (or force) will be expressed.3

In the robotics literature it is common to find expressions like “end-effector Jaco-
bian” or “constraint Jacobian”, where these expressions are really just shortcuts
to identify the frame of interest, without mentioning the origin one, since it is
assumed to be known from the context (and often coincides with the robot base
frame). However, to have software deal automatically with these objects in a
general way, this information cannot be left implicit.

Figure 5.9 – The class diagram of Figure 5.8 with the addition of class to
model geometric Jacobians.

The domain model including Jacobians is shown in Fig. 5.9. The diagram
shows, by means of a dashed arrow – as in the uml specification –, the de-
pendency with the NamedTransform, since any geometric Jacobian can be fully
computed on the basis of direct kinematics (Siciliano et al. 2009). Since this
dependency exists as an algorithm, it cannot be detailed in this diagram that
captures structural features. The diagram is indeed quite straightforward and
shows only the explicit link with the reference frame class, to model the target
and the origin frame of Jacobians.

3Actually Jacobians depend on the origin frame and on one point somewhere else in the
multibody structure; the orientation of a possible frame in such a point is not relevant and can
be set to any value. We did not introduce an additional element in the design for simplicity,
and because a reference frame object can be easily used instead of a point.

Chapter 6

Implementation of the code
generation framework

This chapter describes the actual toolchain we developed to create a code gen-
erator for the kinematics and the dynamics of articulated robots. Section 6.1
describes the design of three Domain Specific Languages for the specification of
the kinematic model of a robot, for rigid motions and for coordinate transforms.
Section 6.2 deals more specifically with the actual code generation process im-
plemented within the languages infrastructure.

The technologies we used for the implementation of the framework include
primarily the Xtext workbench for Eclipse (Eysholdt et al. 2010), which is specif-
ically designed to support the development of custom dsls. It provides a spec-
ification language (that happens to be a dsl itself) to create grammars that
should be easier to read and understand if compared to conventional methods
(such as the Backus–Naur Form bnf technique) (Efftinge et al. 2013).
The infrastructure of a dsl created by Xtext supports the transformation of
the models (defined by documents) into text, i.e. code generation. The actual
code generation logic must be implemented in Java or Xtend; Xtend is a high
level language that compiles into Java and, among other things, provides good
support for string concatenation, that is useful for code generation (Efftinge
and Zarnekow 2013). We also use the symbolic engine Maxima (Maxima 2011),
whose role within the framework is described in Section 6.2.2.3.
All these tools are open source and work with a variety of platforms, and allowed
us to implement our approach without any commercial technology.

6.1 The specification languages

This section provides a detailed description of the languages we designed on top
of the domain models described in Section 5.2. The languages allow the user
to specify conveniently the input information for the code generation, as for
instance the kinematic description of a robot.

59

60 Chapter 6: The code generation framework

6.1.1 Overview

The introduction about dsls in Section 2.3, the analysis of the problems domain
of Chapter 5, and the general aim of relieving the user from manual development,
provide a good evidence that the dsl technology is suitable for our requirements.
We can design languages that allow the user to easily specify instances of the
domain models we presented in Chapter 5, e.g. to describe the kinematic model
of an articulated robot, or a set of coordinate transforms of interest. These
documents can be parsed, checked for semantics constraints and transformed,
primarily into executable computer code such as an inverse dynamics algorithm
tailored for a particular robot. The end user only deals with a high level, simple
facade (i.e. the languages themselves, and the documents) over such a machinery,
and the simple models he or she has to specify are decoupled from the coding,
which is more complex and can be partially automated.

We chose external dsls, whose documents can be plain text files, with a clear
aspect (syntax) and intuitive semantics. This choice was almost straightforward
also because of the good technological support provided by Xtext; it relieves
the user from manually developing the language parser and the rest of the
infrastructure, which are among the main drawbacks of external languages.

In general, dsls happen to be a very effective implementation technology
for our framework; part of the contribution of the present work in the field of
robotics software indeed lies in the investigation and in the exploitation of such
a technology within the development process of software for articulated robots.

6.1.2 General features of the grammars

The core of an external dsl is the language grammar, which is a set of formal
specifications concerning the syntax of the language: which are the allowed
keywords, the allowed statements, the punctuation, and so on.
Basically the grammar indirectly defines the content of any possible document,
and its structure. For this reason the grammar happens to be naturally coupled
with the domain model of the language (Section 2.3), which in turn defines the
structure of the information to be carried in the documents. This concept is
explained in Figure 6.1, and it was applied for the development of the grammars
presented in the following sections. In general, after the model is reasonably
established the design of the grammar is quite straightforward, as the required
effort is limited and secondary with respect to a sound understanding of the
domain. This confirms the nature of dsls as a thin layer on top of a model of
the semantics.
Obviously the grammars of the dsls also provide additional syntax elements
that do not have a direct counterpart in the domain model, but are required to
improve readability and make the language usable.

The following sections will show the details of the grammars and examples of
documents to give the reader an idea about the actual design of the languages.

6.1.3 The kinematics DSL

The main language of our framework, which is the foundation of the code gen-
eration, is the language that allows to describe the kinematics (and dynamics)
model of an articulated robot, according to the convention described in Section

6.1 The specification languages 61

Link lf_leg{
 …
}
Joint lf_HAA {
 …
}
[…]

DSL documentRobot model

Robot:
'Robot'
name = ID '{'
base = RobotBase
links += Link+
joints += Joint+
'}';
[…]

DSL grammarUML (meta) model

Link

Joint

Figure 6.1 – The conceptual relationship between the domain model and the
grammar of an external dsl, as well as the role of the instances of the two.
Shortly, both the grammar and the domain model lie in the meta–level since
they are both specifications of the general structure of actual items of the
domain. Any instance document of the grammar uniquely specifies how to
instantiate the model (e.g. the actual kinematics of a specific robot). Note
that on the other hand the grammar does not specify the model, but it is
based on it; different grammars for the same model may be devised.

5.2.1. We call it just the “kinematics dsl”, for brevity.
Using this domain specific language, users can easily encode all the relevant
kinematic and dynamic information about their own robots, in a compact and
readable format that can be later used as input for the code generator.

6.1.3.1 The grammar

As explained before, the grammar resembles quite closely the domain model,
and basically each class of the uml diagram has a corresponding element in
the grammar that in turn results in some text in the documents. See Figure
6.2; the grammar is reasonably simple and even an inexperienced reader may
guess a rough meaning, also with the help of Figure 6.3 that shows an example
document.

The root of the document is the Robot element, which has a name and
includes a base, links and joints. The class hierarchy for links is reflected in
the grammar, that defines keywords for the robot base (that can be floating or
fixed) and the regular links of the structure, all with inertia parameters.
An important part of the grammar are the rules that allow to express the actual
graph–like structure of the robot: this is achieved by inserting the element
childrenList in the Link elements, which expands to a possibly null list of
joint-link pairs, one for each child link and the corresponding supporting joint.
General syntax features include the use of curly braces to enclose sections of
text (as the set of properties of a link), which is a common feature taken from
programming languages that however has an intuitive meaning even for non
programmers. Other features include the syntax <key> = <value> which is

62 Chapter 6: The code generation framework

[continue]

[continue]

Figure 6.2 – Almost the entire Xtext grammar for the kinematics dsl– at the
most recent version at the time of writing –, which reflects the domain model
shown in Figure 5.6. Details about the definition of the element var have
been omitted for brevity (basically its grammar rule matches floating point
numbers or simple expressions like −π/2). Every constant text enclosed in
quotes (’) is a keyword of the language that will appear in the documents as
it is here in the grammar; upper case literals (e.g. ID or FLOAT) are terminal
rules (i.e. they expand to terminal symbols and do not trigger any further
rule); literals starting with a capital letters are parser rules for compound el-
ements (e.g. PrismaticJoint), while lower case literals are properties (called
features in the Xtext jargon) of such elements (e.g. name and refFrame).
For more information and a complete reference, see the online documentation
of Xtext (Efftinge et al. 2013).

6.1 The specification languages 63

straightforward as well; it is used for instance to allow the insertion of the
values of inertia parameters.

6.1.3.2 Documents

Figure 6.3 shows an example document compliant with the proposed grammar,
which allows us to further explain the features of the language. The format
is very simple, neat and intuitive, yet it includes all the information to fully
specify the physics of the system according to the rigid body dynamics model.
All the constants of any document are implicitly expressed in SI units (e.g.
inertia moments in [kg m2], rotations in [rad], etc.).1 Other relevant points are
the following:

• The part of the text describing the floating base link (the trunk) is an
example of how to model a branched structure, which simply boils down
to inserting more than one item in the children sub–block. Each of
those items is in the form <link name> via <joint name>, and together
they specify all the parent–child relationships of the kinematics model (see
Section 5.2.1.1).

• The numerical parameters in the blocks of the joints specify the pose
of the joint frame with respect to the default frame of the supporting
link; these numbers are a fundamental part of the specification of the
actual kinematics of the robot. Six values are required: the first three
are interpreted as a translation vector (field translation), the others as
successive rotations about the x, y and z axis, in this order, each one
expressed with respect to the current frame.

• The lower–leg link shows another important feature of the language that
allows to add an arbitrary amount of additional reference frames to any
link of the robot, defined with respect to the default frame (in this case
the frame is only one, called foot, making the description more flexible.
As an example, the user might want to mark in the model the position
and the orientation of specific sensors or simply points of interests in the
structure, especially since coordinate transforms for these frames can be
generated automatically (see Section 6.2.2).

• Inertia parameters have to be inserted as numerical constants. The six
distinct moments of inertia of each rigid body can be entered in any order,
and there is a distinct keyword for each of them, i.e. the user does not
have to enter a ordered sequence of numbers; this may seem a little detail,
but prevents very common mistakes and waste of time. Note also that the
values are the moments of inertia and not the elements of the 3×3 inertia
tensor, even if the difference is just a sign.

1A proper modelling of physical quantities and units of measure is a fundamental issue in
software – not only for the robotics domain –, as it is a major source of numerical errors and
human mistakes. A proper solution to such an issue is beyond the scope of this work, thus
relying implicitly on the most acknowledged standard about units is the best available option.

64 Chapter 6: The code generation framework

// EOF

[continue]

[continue]

[...]

[...]

Figure 6.3 – An excerpt from an instance document of the kinematics dsl,
modeling the quadruped robot HyQ (Semini, Tsagarakis, et al. 2011). It
shows the trunk link (which is also the floating base of the robot) and
the parts of one of the four legs, since the others are almost identical.
LF stands for left-front, RH for right-hind, and so on; HAA stands for Hip-
Abduction-Adduction, HFE for Hip-Flexion-Extension and KFE for Knee-
Flexion-Extension. The lower-leg link defines an additional reference frame
with origin in the foot of the leg. Compare the model with the grammar of
the language shown in Figure 6.2.

6.1 The specification languages 65

6.1.4 The rigid body motions DSL

The purpose of this language is to provide a tool to the end user for uniquely
specifying rigid body motions; for example to express that the reference frame in
the shoulder of a humanoid robot is translated with a certain vector and rotated
about two axes with respect to the reference frame of the trunk. As introduced
in Section 2.4, the aim of this language together with the one presented in the
next section, is to provide a toolchain to do robust code generation of arbitrary
coordinate transforms (and also geometric Jacobians).
This language and the following one are completely independent from the previ-
ous one about kinematics tree, and in principle they can be used as standalone
tools by the end users. It follows that they can also be put together, enabling
the development of a rich code generation framework for robots; that is indeed
what we have done, as detailed in Section 6.2.3.
We will refer to this language throughout the text as the “motion dsl”.

Figure 6.4 shows the code of the grammar, which also in this case replicates
closely the structure of the domain model, while Figure 6.5 gives an example of
a document of the language.
The generic document starts with a name, followed by a list of declarations of
the reference frames that will be mentioned in the text; reference frames are
just named entities, so the list is really just a set of identifiers. For brevity,
the convention about the composition of primitive motions is written only once
in the preamble of the document, so that each declared motion is assumed to
follow that convention.
Motions are identified by a pair of reference frames that correspond to the initial
and final pose of the imaginary reference frame that is moving, according to the
list of rotations and translations. The tokens for primitive motions are self-
explanatory; their argument can be a floating point number, an identifier or a
simple expression like 2π.

6.1.5 The coordinate transforms DSL

This language was designed to let the user write a list of abstract coordinate
transformation matrices, defined as sequences of simple transforms. The idea
is that code implementing various realizations of these transforms – like ho-
mogeneous transforms and spatial vectors transforms – can then be generated
automatically starting from the same document.
As you can see in Figures 6.6 and 6.7, the grammar and the resulting documents
are very similar to the ones of the motion dsl, although the same differences in
the corresponding models still hold here in the languages.

As before, a document contains a name, a declaration of the frames refer-
enced afterwards and a document–wide property, TransformedFramePos, ex-
plained below. The property is followed by a list of the user–defined transfor-
mations written with a syntax that clearly identifies the left and right frame
attributes ({B} X {A} as in the notation BXA), even though an optional cus-
tomized name can be added at the end of the line, within square brackets.
Tokens in the form Rx(), Ty(), . . . , are keywords of the language and repre-
sent the atomic transformations. The possibility of using custom identifiers as
their arguments is useful to show the dependency on some kind of variable, for
example the identifier for the status of a joint. The same identifier is possibly

66 Chapter 6: The code generation framework

Figure 6.4 – The grammar of the dsl for rigid motions. The definitions of
FloatLiteral and Expr have been omitted for brevity; in essence they match
floating point numbers such as 3.141, simple expressions like 2.0 PI (2π),
and also arbitrary identifiers like x, A, var name.

Figure 6.5 – A possible document compliant with the motion dsl. This ex-
ample lists all the six possible combinations of three successive rotations of
a rigid body. The last line shows a motion that also includes translations.

6.1 The specification languages 67

Figure 6.6 – The grammar of the dsl for coordinate transforms. See Figure
6.4 for the description of the ArgSpec element.

(a) Convention left (b) Convention right

Figure 6.7 – Two documents compliant with the transforms dsl, both showing
the coordinate transforms corresponding to the rigid motions shown in Figure
6.5. Note the sign inversion in the arguments of the primitive transforms,
because the two documents use a different convention but model the same
information (see Section 5.2.2.1).

68 Chapter 6: The code generation framework

propagated in the generated code, where it will eventually have to be resolved to
an actual value (with any mechanism that is not part of the dsl infrastructure).

The value of the TransformedFramePos property of the document (that is
either left or right) basically sets the convention property (see Section 5.2.2)
of all the atomic transforms used in the document (as in the previous language,
the property is global to the document rather than being an attribute of each
transform, in order to simplify the notation). This property is fundamental
to enable the generation of correct code implementing the matrices; the same
sequence of simple transforms translates in general to different code, if the
convention changes.

6.2 Code generation

This section finally describes the code generators implemented on top of the
languages described before. With little additional logic to orchestrate the code
generators of each language, we obtain a rich generator specific for articulated
robots, which can produce various implementations of dynamics and kinematics
algorithms. This point is the subject of the last sub-section (6.2.3), while the
preceding ones describe the single generators.

A technical note To understand better the whole functioning of the code
generation framework based on Xtext, it is worth explaining that the grammar
of the languages not only defines the content of compliant text documents, but
also serves as a plan for the parser of the language to create the run–time data
structure matching the parsed document. In other words, given a valid input
file, say one of the kinematics dsl, the language infrastructure will create a data
structure that matches such a description, with first–class objects representing
the joints, links, etc. This structure will then be available to the code generator
software, which can effectively take it as an input during the generation process.

6.2.1 Robot–specific dynamics routines

One of the crucial points about the code generation for dynamics algorithms
is that the generator is provided with a full model of a robot, with which it
can resolve the dependency of the algorithms on such a model (see Section
5.1.2.3). Resolving the dependency means that the generated implementation
is no longer parametrized with the robot description, but that information is
implicitly embedded into it (see Figure 6.8).

Robot–specific implementations have the advantage of being faster since they
realize a simplified version of the algorithm, stripped of all the logic required
to be general. For example there is no need to navigate at run–time a data
structure describing the robot geometry, making loops and boolean tests unnec-
essary. Prior knowledge about the structure and the parameters of the robot
also allows to do numerical optimizations, like avoiding useless operations. For
instance, in the assumption of having only plain prismatic or revolute joints,
the matrix S describing the motion subspace of a joint is a single column vector
with only one non-zero element, thus operations with this matrix can be greatly
simplified (Featherstone 2008).

6.2 Code generation 69

f(model, …) {
 …
 …
}

Code generator
Robot model M Robot­specific code

f
M
(…)

Figure 6.8 – The generation of the implementation of the dynamics algorithms
tailored for specific robots. The code generator must embed the knowledge
about the abstract algorithm. A concrete implementation is achieved by
turning the algorithm into code in some language, where the references to
the robot model are substituted with actual values and specific instructions.

Another meaningful example of the benefits of this approach is related to
the branch–induced sparsity ; this term refers to the sparsity pattern (the pres-
ence of constant zeros in fixed positions) observable in certain matrices involved
in kinematics/dynamics computations, as a consequence of the branches in the
kinematics structure of the robot (Featherstone 2008, 2010c). The performance
of computations can benefit from the sparsity both during the computation of
the matrix itself, as well as in the operations involving the same matrix.
Specific algorithms – such as those described in the works just cited – take ad-
vantage of how the branches induce the sparsity, so they skip the computations
for the elements known to be zero; therefore they are usually more efficient than
the general purpose ones. Note that this is also an example of the need to look
into the robot structure (in this case to identify branches), something that with
our approach happens off–line, in the code generator itself, as we said before.
Therefore the generated code can exploit both things combined: sparsity pat-
terns and prior knowledge about the robot structure. It does not contain any
instruction for the zero-elements, nor it has to find at run–time which are such
elements.

Currently our system can generate efficient code for the Composite–Rigid–
Body algorithm for the calculus of the Joint–Space Inertia Matrix (jsim) H,
which indeed exhibits a sparsity pattern due to kinematic branches (see also
Section 5.1.2.2). It can also generate efficient code that computes the inverse
H−1; this code implements the LTL factorization of H, where L is a lower
triangular matrix that preserves the same sparsity pattern as H (Featherstone
2005), and a custom routine for the inversion of a lower triangular matrix that
takes advantage of the sparsity as well.
In general, the dynamics algorithms we support are known in the literature to
be the fastest for their task, and the generated code includes the minimum set
of instructions implementing them for a specific robot; therefore, the generated
code has in theory a run–time performance that is close to the maximum achiev-
able. The high performance of these implementations and the purely numerical
nature of the algorithms (e.g. no I/O operations, unless naively implemented)
allow to use some of the generated code (the C++ code in our case) in hard
real–time controllers running at high frequencies.

70 Chapter 6: The code generation framework

Note that the approach of code generation for robot–specific implementa-
tions basically solves the apparent tradeoff between generality/flexibility and
efficiency: usually a general purpose library or similar (like a dynamics engine)
can be used for a variety of inputs but is not as efficient as a dedicated implemen-
tation. On the other hand developing tailored procedures for each specific case
sacrifices re–usability and increases the software development effort. Trading
off these two qualities is indeed a known issue in software engineering (Ghezzi
et al. 2002).
However, a code generation process does not have such drawbacks and solves the
trade off, since it is still flexible enough to be used for a wide class of inputs (it
can be used with any articulated robot) yet provides the benefits of optimized
implementations.

6.2.2 Coordinate transforms

As explained before in the text, coordinate transforms are a fundamental part of
almost any software for articulated robots, but at the same time the calculus and
the coding of such objects can be very tedious and error prone. Moreover, the
need for efficient implementations described in Section 4.2.1 still holds, since
they are also used in real–time controllers and anyway faster code is always
preferable, if it does not come with an additional cost. Therefore coordinate
transforms are also an ideal target for code generation, and our framework
supports this feature.

6.2.2.1 Rationale

The idea behind the motion dsl and the transforms dsl and their generators is
that the user specifies some high level input information, for example a sequence
of roto–translations a body has undergone, and she receives as output the code
implementing some coordinate transform matrices of interest. For example she
specifies the pose of a reference frame FA fixed on a rigid body with respect
to frame FO fixed on the same body, and she gets the Matlab code for the
6× 6 spatial–velocity transform from FO to FA.2 The user deals only with high
level information and he does not have to perform tedious calculus and manual
implementation that are usually of no interest, but still require a lot of effort.
Basically the user has to be relieved from doing two macro–tasks:

1. Find the appropriate sequence of simple coordinate transforms that match
the relative pose between the two frames.

2. Find the actual value of each of the simple transforms, develop the mul-
tiplications and get the resulting matrix; implement this with a program-
ming language, possibly making it parametric with respect to possible
changes in the pose.

As explained in Section 5.2.2 both these tasks can be tricky and confusing, when
performed manually.

2This is the matrix that multiplies the coordinate vector with the linear and angular
velocity of frame FO, giving as a result the velocity of frame FA. The two velocity vectors
express the same motion of the body (which is obviously unique, at each instant).

6.2 Code generation 71

While in principle it could be possible to automate all these tasks within
the infrastructure of the motion dsl (since all the information is in its docu-
ments), two distinct languages allow to partition the implementation of the code
generator, identifying two distinct roles:

• The code generator of the motion dsl deals with the first task, that is it
transforms a user written description of a rigid motion into the correct se-
quence of coordinate transforms. This relieves the user from remembering
how the matrices are composed, which also depends on the convention the
primitive motions are expressed with (see again Section 5.2.2).
Since the other language is designed exactly to write sequences of coor-
dinate transforms, the code generator of the motion dsl can very well
generate just a document that is compliant with the transforms dsl.

• The code generator of the transforms dsl, on the other hand, creates
source code (potentially in any language) with the correct numerical im-
plementation of the coordinate transforms listed in its documents. This
is possible since any simple transform is uniquely determined, when the
value of the convention attribute is set (see Section 5.2.2.1).

Note that the transforms dsl alone is also useful if for some reason the user
wants to explicitly input a sequence of transformation matrices instead of a
rigid motion, that is the user is only concerned with the second of the tasks
listed above; this might happen for example for tests or comparisons with ex-
isting implementations (e.g. to compare a manually developed matrix with the
generated one).
In general the distinction between the two languages and the corresponding code
generators simply reflects the fact that rigid motions and coordinate transforms
are two distinct problems, though tightly correlated.

6.2.2.2 Basic strategy

The basic approach to generate code for the transforms simply consist in trans-
lating the atomic transforms into matrices in the target language, and the com-
posite transforms into the actual products of such matrices. This approach
is very convenient when a small library in the target language that already
implements the six basic transforms Rx(), . . . , Tz() is available: in this case
the job basically reduces to generate a sequence of products of the identifiers
corresponding to the atomic transforms. This is the technique that we use to
generate code for the symbolic engine – see below.
In this case the software needs to know (e.g. by means of a configuration file)
the convention used by the library to be referenced in the generated code, and
compare it with the one adopted in the input document. In this way it is able
to decide whether the abstract element Rz(α), for instance, correspond to its
counterpart in the library or its inverse. This is a practical demonstration of
the need of a proper identification of the relevant properties of the objects of
interest, and of the need to explicitly expose such properties, an issue discussed
in the section about the domain model (5.2.2.1).
A more sophisticated approach for the code generation, which is the one actually
implemented in our framework, is described below in Section 6.2.2.3.

72 Chapter 6: The code generation framework

6.2.2.3 The role of the symbolic computation engine

A symbolic engine is a software capable of manipulating mathematical expres-
sions as such, applying the rules of algebra and of more complex calculus. For
example, it can develop a matrix–vector product where the elements of the two
operands are simply symbols or functions, like x, a, cos(2θ), without assigning
a numerical value to them.

In our framework the symbolic engine is used to achieve higher efficiency in
the code generated for coordinate transforms. The idea is to use the engine to
develop the multiplications between the atomic transforms and get the resulting
matrix, possibly simplified to a compact form, as an explicit step of the code
generation process. Therefore the engine must be able to perform linear algebra
and possibly some simplifications of trigonometric functions.
Then, a generator for another language can take advantage of prior knowledge
about the structure of the resulting matrix: which elements are constant, which
ones are equal to some other, which and how many unique trigonometric func-
tions the matrix depends on, so that the generated code does not compute the
same thing multiple times (like sines and cosines, typically the most expensive
functions) and does not compute at all the constant elements.

Code for the symbolic engine itself is generated with the standard approach
described above, to have the engine develop the products in a second step. Other
languages are addressed during subsequent steps.

Some technical notes The symbolic engine we have employed in our work-
flow is called Maxima, it is open source, based on the LISP language, and can
be built for a variety of platforms (Maxima 2011). It is maybe not as sophisti-
cated as some commercial alternatives, but it is more than enough for our needs,
and it satisfies our project constraint of implementing the whole framework with
open source technologies only.
A main drawback of Maxima– that would not necessarily be solved by other
commercial engines though – is that it is primarily meant to be used as a com-
mand line tool interacting with the user; textual results are obtained in response
to textual input commands. In order to use the engine programmatically within
the code generator software, we adopted the Jacomax wrapper, which provides
a Java interface to access the facilities of the engine and runs it in a separate
process (McKain 2013).
However, this does not solve the issue of text–based input/output, so that com-
mands and especially results have to be plain strings, making the pieces of the
code generator interacting with Maxima a bit cumbersome and awkward.

To achieve a robust and general method to deal with the textual output
of Maxima, instead of digging into the internals of the engine and the LISP
language, we developed yet another simple Xtext grammar specifically tailored
for this purpose: output expressions of Maxima (which in our case are limited
to matrices whose elements are trigonometric functions) happen to be compliant
with the language, so that it provides us with a proper parser that constructs a
first–class object representation of the textual expressions (i.e. a strongly typed
data structure that mirrors the analytical expressions, telling which sines and
cosines are there, how they are composed, which are the arguments). We can
therefore analyze the expressions, find which optimizations are possible and
transform them into other languages in a principled way. Figure 6.9 shows a

6.2 Code generation 73

short example of a document of this language.

Figure 6.9 – An example of a text document compliant with the dsl designed
to parse Maxima expressions. It contains the declaration of the referenced
variables and then a list of arbitrary long algebraic expressions that can
include sines and cosines.

6.2.2.4 A complete example

Figure 6.10 illustrates most of the steps involved in the actual generation of
executable implementation of coordinate transformation matrices:

1. The starting point may be a document of the motion dsl specifying a
set of rigid motions that relate the pose of various reference frames – see
Figure 6.10a. When working with a robot model, this file itself can be
automatically generated and it contains the geometrical parameters of the
robot (see Section 6.2.3 and Figure 6.13).

2. From the information about rigid motions, an abstract specification of
coordinate transforms can be generated, in the form of a transforms dsl
document. The transforms to appear in this document can be chosen with
a configuration file (see Figure 6.11). Note that it is possible to get the
transform between frames that are “connected” by some rigid motion, even
if such motion does not appear explicitly in the motion dsl document; for
example, two motions like A->B and B->C allow to ask for the transform
between A and C. See Figure 6.10b.

3. The code generator software of the transforms dsl can turn the specifica-
tion of transforms into Maxima code, specifically into the proper sequence
of products between the Maxima matrices implementing the basic trans-
forms (see Section 6.2.2.3). Figure 6.10c shows how Maxima displays the
resulting matrix after developing the products and doing some simplifica-
tions (plus some variable substitution for the sake of displaying the code
in the figure).

4. Finally, after generating the code for the symbolic engine, the engine itself
is invoked by the generator for another language, to access the resulting
matrix and turn it into code for that language. The example in Figure
6.10d shows Matlab code, and specifically the set of assignments that
update the matrix (called X). The sines and the cosines of the status of
each revolute joint have to be computed as well; the corresponding code
is generated but it is not shown for brevity.

74 Chapter 6: The code generation framework

(a) The positions of the various frames of
the robot, in a document of the motion
dsl.

(b) The specification of a transform, gen-
erated from (a), in a document of the
transforms dsl.

[-c_HFE s_KFE -c_KFE s_HFE s_HFE s_KFE -c_HFE c_KFE 0
[
[s_HAA s_HFE s_KFE -c_HFE c_KFE s_HAA c_HFE s_HAA s_KFE +c_KFE s_HAA s_HFE c_HAA
[
[c_HAA s_HFE s_KFE -c_HAA c_HFE c_KFE c_HAA c_HFE s_KFE +c_HAA c_KFE s_HFE -s_HAA
[
[0 0 0

-0.33 c_HFE s_KFE -0.33 c_KFE s_HFE -0.35 s_HFE]
]

0.33 s_HAA s_HFE s_KFE -0.33 c_HFE c_KFE s_HAA -0.35 c_HFE s_HAA -0.08 s_HAA]
]

0.33 c_HAA s_HFE s_KFE -0.33 c_HAA c_HFE c_KFE -0.35 c_HAA c_HFE -0.08 c_HAA + sld]
]

1.0]

(c) The matrix as computed by the symbolic engine Maxima, by multiplying together
all the factors visible in Figure (b); sld is the status of the slider. The fourth column
is displayed below the first three to fit the page.

X(1,1) = (- c_HFE * s_KFE) - (s_HFE * c_KFE);
X(1,2) = (s_HFE * s_KFE) - (c_HFE * c_KFE);
X(1,4) = (- 0.33 * c_HFE * s_KFE) - (0.33 * s_HFE * c_KFE) - (0.35 * s_HFE);
X(2,1) = (s_HAA * s_HFE * s_KFE) - (s_HAA * c_HFE * c_KFE);
X(2,2) = (s_HAA * c_HFE * s_KFE) + (s_HAA * s_HFE * c_KFE);
X(2,3) = c_HAA;
X(2,4) = (0.33 * s_HAA * s_HFE * s_KFE) - (0.33 * s_HAA * c_HFE * c_KFE)

- (0.35 * s_HAA * c_HFE) - (0.08 * s_HAA);
X(3,1) = (c_HAA * s_HFE * s_KFE) - (c_HAA * c_HFE * c_KFE);
X(3,2) = (c_HAA * c_HFE * s_KFE) + (c_HAA * s_HFE * c_KFE);
X(3,3) = - s_HAA;
X(3,4) = q(1) + (0.33 * c_HAA * s_HFE * s_KFE) - (0.33 * c_HAA * c_HFE * c_KFE)

- (0.35 * c_HAA * c_HFE) - (0.08 * c_HAA);

(d) The Matlab code to update the transform matrix X. The terms {c|s} XXX must
be updated every time the joint status vector q changes (q(1) is the status of the
slider). No instruction is generated here for the constant elements of the matrix;
those assignments are contained in another file to be run only once.

Figure 6.10 – The steps involved for the generation of code for coordinate
transformation matrices. The examples refers to the transform from the
foot to the base of the HyL robot, a hydraulic leg of HyQ (see Figure 6.3
for the meaning of the labels). HyL is a fixed–base robot with a prismatic
joint allowing vertical movement (a slider). The terms {c|s} XXX represent
the cosine and the sine of the joint status variable XXX.

6.2 Code generation 75

Figure 6.11 shows an example of a document of another very simple language
we designed to write configuration files, with which the user can specify the
desired transformation matrices whose implementation has to be generated.

Figure 6.11 – A simple configuration file to declare the coordinate transforms
and the Jacobians of interest for the user. They are identified by the name
of the two reference frames they refer to. Note that requesting a particular
Jacobian might trigger the generation of additional transforms that are not
explicitly listed in this file, since the computation of the Jacobian depends
on them. This example has been used to get the Jacobian matrix shown in
Figure 5.2

6.2.3 Putting all together: the robotics code generator

Figure 6.12 gives an overview of all the components and the data flows involved
in the generation of robot–specific code, which is in fact a particular usage of
the infrastructure provided by our specification languages.
As expected, the main information source at the foundation of the process is the
kinematics and dynamics model of an articulated robot. The code generator of
the kinematics dsl is directly implementing the generation of the dynamics algo-
rithms, as illustrated above, but is also orchestrating the other generators for the
coordinate transforms, as if it was a user of the other languages. Note that the
dynamics algorithms themselves depend heavily on the coordinate transforms
generated separately, which is yet another reason for striving for efficiency also
for the transforms.

As illustrated in the figure, another direct product of the generator of the
kinematics dsl is the specification of the geometry of the robot, extracted from
the position parameters of the joint frames, in the form of a document of the
motion dsl; that is the kinematics dsl generator writes an instance document
of the motion dsl. As a matter of fact, the six parameters about the pose of the
joint frames in the kinematics dsl document are nothing else than a specification
of a rigid motion, which can be equivalently expressed with the motion dsl. The
generation of the motion dsl document is really just a change of representation
of the same information already encoded in the kinematics dsl document (see
Figure 6.13). In the kinematics dsl we use a custom representation (the six
parameters as explained in Section 6.1.3) to make the document more readable
and keep the grammar simple.

This approach has the advantage that the code generators of the motion
dsl and the transforms dsl can be completely reused, and no additional logic

76 Chapter 6: The code generation framework

Desired
transforms
& Jacobians

Coordinate
transforms

Robot
kinematics

Symbolic
transf.

Symbolic
Jacob.

Symbolic
engine

Frames
placement

gen.

C++
transf.

gen.

C++
Jacob.

gen.

Rigid body
dynamics
algorithms

1 2

34

5
6

7

Figure 6.12 – Overview of the robotics code generator workflow. The scroll-like
blocks are instance documents of the dsls (left to right: the configuration
dsl, kinematics dsl, motion dsl, transforms dsl); the trapezoidal blocks
perform computation, while the sheet-like ones are resulting code blocks.
The curved blue arrows illustrate a code generation step, while the straight
black ones are generic input/output data flows (the dashed arrow shows the
dependency of the symbolic Jacobians on the transforms). The numbers
give the reader an idea about the sequence of the steps, even though certain
things do not have dependencies, like dynamics algorithms.

Kinematics DSL
Rigid motions DSL

Figure 6.13 – The transformation of the joint positioning parameters in the
kinematics description to a document of the motion dsl. This step is purely
a change of the representation of the same information. This example refers
to the HAA (Hip Abduction Adduction) joint for the left-front leg of the robot
HyQ; the frame of the joint (in blue) can be reached from the frame of the
trunk (in green) with a translation of about (0.37, 0.2, 0) meters, followed by
a rotation of −π/2 about the y axis and π about the z axis.

6.2 Code generation 77

has to be added (actually replicated) in the kinematics dsl infrastructure. The
generation of the implementation of the coordinate transforms then happens as
explained in Section 6.2.2: the motion dsl document containing the geometry
information serves as the main input to generate a list of abstract transforms in
the form of a transforms dsl document, which also depends on the configuration
file the user fills with the list of the desired transforms (e.g. the transform from
the foot frame to the trunk frame, in a humanoid robot).3

If the desired transforms refer to frames belonging to separate links on a kine-
matic chain – which is very likely to happen – then they will be defined with
a dependency on some variables that correspond to the status of the joints on
the same kinematic chain.

6.2.3.1 Geometric Jacobians

The code generation for geometric Jacobians has been implemented directly in
the kinematics dsl infrastructure, since no dedicated language was necessary for
the purpose. And if calculus related to rigid motions and coordinate transforms
does not necessarily require a robot model, on the other hand Jacobians are
always defined for points of a multibody system, such as a robot, so it is sensible
to support them within the kinematics dsl.
As described in Section 5.2.2.2, Jacobians are uniquely identified by a pair of
reference frames as for the coordinate transforms, and those desired by the user
can be specified in the same configuration file used for transforms (see Figure
6.11), with a very similar syntax; the section Jacobians has to be added at the
bottom of the file.

The actual code generation happens in a way quite similar to coordinate
transforms, since Jacobians are also matrices and we can use the symbolic en-
gine to generate optimized code. For each Jacobian the software generates code
for the symbolic engine that in turn depends on the symbolic code for the coor-
dinate transforms. This code basically implements the algorithm to compute a
geometric Jacobian from the forward kinematics functions of the robot, which
is nothing else than coordinate transforms. For example, the computation of
a Jacobian with respect to frame FB requires the direction in space of all the
joint axes in the path from FB to the point of interest: such information can be
extracted by the third column of the homogeneous transforms (i.e. the direction
cosine for the z axis, which is always lying on the joint axis by convention) from
the frame of each joint to FB .
During a second step the engine is required to interpret this code so that an
actual matrix is obtained, and this matrix can then be translated into code with
the same mechanisms seen before for the coordinate transforms.

3Some coordinates transforms are always generated regardless of the user configuration,
since they are required by the dynamics algorithms.

Chapter 7

Experimental results

7.1 Control software for articulated robots

This section gives an overview of the main results achieved on the HyQ robot
also thanks to the implementation of all the software components described in
chapter 4. The purpose of the section is to demonstrate that the proposed
design works, is effective, and compatible with the strict real–time requirements
of the motor control of an articulated robot. It has been used to bring a real,
sophisticated robot to the stage in which it can be controlled by computer code
and can be used to address open research questions, e.g. concerning artificial
legged locomotion.

Figure 7.1 shows several snapshots of the HyQ robot when performing some
walking experiments. In this case – as well as in any other motion – some higher
level logic computes the trajectories to be followed by the legs as a sequence of
set–points for the positions of the joints, which are transformed into commands
to be sent to the hydraulic valves; this mapping from desired positions to ac-
tuator commands is done through a control process that continuously monitors
the actual position of the joints, to determine more accurately how much the
valves have to be opened in one of the possible directions. Therefore the I/O
with the hardware is a critical section of the control process.
Besides showing that the robot can actually perform non–trivial motions, this
example is meaningful in reference to the flexibility of the I/O library. The pic-
tures in Figure 7.1 show two different walking experiments performed while the
robot is equipped with two completely different types of hydraulic valves (with
respect to internal functioning, input commands, performance, etc.). After the
hardware update (i.e. the change of the valves) the whole client code working
on top of the hardware I/O does not need any particular change since the port
of interaction with the hardware was designed since the beginning as a generic
interface (Figure 7.2 shows the simple interface for hydraulic valves). The only
necessary changes are confined in the concrete implementation of the interface,
which has to deal with the details of the specific hardware model. A new tuning
of the gains of the controllers is also likely to be required since the system as
a whole and so its dynamic behavior have changed, but this point is related
to the functioning of the controllers and is basically unavoidable (unless more
sophisticated, adaptive or learning controllers are used).

79

80 Chapter 7: Experimental results

Figure 7.1 – Snap shots of walking experiments performed with the HyQ robot,
before and after the replacement of the hydraulic valves. Thanks to the
modular design of the hardware I/O library, this change did not affect the
client code responsible for the generation of the feet trajectories, which could
be entirely reused.

Figure 7.2 – The simple C++ interface designed to abstract the hydraulic
valves used to actuate the legs of the HyQ robot. A and B are the names
commonly used in the literature to identify the two ports of a hydraulic
valve, i.e. the two possible directions in which the oil can flow and so the
directions of motion of the actuator attached to the valve. Somewhere else
in the software system there must be some sort of configuration mapping the
direction of motion of the joints with the ports of the corresponding valves,
matching the conventions and the physical connections on the robot.

7.1 Control software for articulated robots 81

As described in Chapter 4, the first layer addressing the hardware abstrac-
tion for the HyQ robot has been designed to be general and robot–independent,
so that it can be used in different robots that share some of the sensors and/or
actuators. We have indeed installed it on some platforms used to support the
research on HyQ, such as an exact copy of the hydraulic leg constrained to a
vertical slider.
This robot is mainly used to investigate the behavior of hydraulic actuation and
the corresponding controllers, and it uses the same encoders, force sensors and
hydraulic valves mounted on the quadruped, as well as an analogous computer
and the same technology for the low level I/O of analogue and digital signals.
Figure 7.3 shows some snapshots taken during a hopping experiment with the

Figure 7.3 – Snap shots of a hopping experiment performed on the hydraulic
leg of the HyQ robot. The computing system controlling the robot uses the
same hardware I/O library described in Section 4.2.2, designed primarily for
the HyQ but re–usable on analogous hardware. Experiments on the single
hydraulic leg allowed to gain deeper insights about the behavior of hydraulic
actuation, and develop effective hydraulic controllers (Boaventura, Semini,
Buchli, Frigerio, et al. 2012).

leg, that was possible thanks to the same hardware I/O library implemented
for HyQ (Boaventura, Semini, Buchli, and Caldwell 2011). The low level control
loop used for this experiment, whose process also has to sample position/force
sensors and send commands to the valves, is running with a frequency of 1
KHz with hard real–time requirements, therefore the I/O components of the li-
brary have to be compatible with such strict requirements. Obviously, only the
robot–specific part of the hardware abstraction had to be rewritten, to match
the number of sensors, the actual electrical connections with the I/O boards,
etc. Basically this part can be seen as a mere configuration layer.
Similarly, some components of the I/O library were re–used in other simpler
platforms also designed to investigate the hydraulic technology; specifically, the
software wrappers for the hydraulic valves, as part of the library, have been
used on a mechanism with a single hydraulic cylinder moving a small cart con-
strained on a rack, and for another simple mechanism mounting a hydraulic
rotary actuator, which is currently undergoing some tests.

Figure 7.4 shows the position and the force tracking at the right hind knee
joint of the HyQ robot, during a squat jump (Boaventura, Semini, Buchli, Frige-
rio, et al. 2012; Semini, Khan, et al. 2012). The purpose of this figure is to show
the capability of our software system to control the robot during field experi-
ments. In addition, since the plots were originally meant to show the accuracy
of the force control and the dynamic model of the robot, they also show the im-
portance of inverse dynamics for fast and dynamic movements such as a jump.

82 Chapter 7: Experimental results

−2
−1.6
−1.2
−0.8

J
o
in
t

A
n
g
le

[r
a
d
]

−100

0

100
160

J
o
in
t

T
o
rq
u
e
[N

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−100

−50
0

50
100

Time [s]

T
o
rq
u
e

R
ef

[N
m
]

(a) Inverse dynamics active.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time [s]

(b) Inverse dynamics never ac-
tive.

Figure 7.4 – Position and force tracking of the right hind knee joint during a
squat jump experiment with the HyQ robot. The initial acceleration phase
lasts until 0.55s; during this interval, the inverse dynamics was activated. In
the first two plots, the red solid lines indicate the reference command (—),
while the black dashed ones the actual value (- -). The last plot shows how
the reference torque τref is generated as the sum of the feed–forward (- -)
and the position error feedback (- -) term: τref = τff + τfb. The reference
torque is almost completely obtained by the feed–forward term computed by
the inverse dynamics algorithm.

Therefore Figure 7.4 provides an evidence about the importance of model based
control for high performance behaviors in articulated robots, which is one of the
motivations behind the development of our code generation framework.

The last picture sequence, in Figure 7.5, shows a few snapshots of the robot
performing more advanced tasks, such as trotting, traversing moderately rough
terrain and responding to lateral disturbances such as kicks. The purpose of

Figure 7.5 – The HyQ robot performing a few more advanced tasks. From left
to right: reacting to sideways disturbances, trotting over small obstacles on
a treadmill, trotting outside on rough terrain.

these images is once again to demonstrate the effectiveness of the control soft-
ware system, also for more sophisticated robot behaviors that require a non
trivial logic. All the details about the methods implemented to achieve such

7.2 Evaluation of the code generator 83

results can be found in (Barasuol et al. 2013).
The robot behavior logic underlying the actions illustrated in the figure is actu-
ally pushing the limits of the architecture described in Chapter 4, because of the
complexity and the variety of the algorithms, making a more detailed design of
the internal structure of the robot behavior block necessary. The most evident
limitations of the current system will be described in the conclusions, Section
8.1.
However, as detailed in the reference mentioned before, the control algorithms
running during the experiments of the figure are heavily based on kinematics and
dynamics computations, confirming once again their importance in the imple-
mentation of sophisticated behaviors of articulated robots. This is indeed one
of the motivations behind the development of our code generator framework,
whose preliminary results are shown in the next section.

7.2 Evaluation of the code generator

This section discusses the concrete usage of the dsls infrastructure described
in Chapter 6 and the benefits for the end user. Most of the numerical results
concern primarily the performance of the generated code, since it is difficult
to find metrics and thus tests to measure usability and flexibility, besides an
explicit description and some examples about these features. For these tests we
usually compare C++ implementations, but our generator can currently emit
also Matlab and Maxima code; at the price of developing more generator
templates, potentially any language can be supported.

7.2.1 General remarks

As far as the usage of the languages is concerned, results from our experience
are promising. With the kinematics dsl, for example, creating new robot de-
scriptions is a matter of minutes, since the dsl is simple and intuitive; most
of the time is typically spent looking in the robot documentation for the iner-
tia parameters and the geometrical parameters. Once the code generators are
properly verified, by means of trials, tests and comparisons, it is impossible to
introduce bugs such as memory leaks or logical errors in the implementations
for kinematics and dynamics.
Another benefit of our approach is that the code generator can give guarantees
about the consistency between its diverse outputs (i.e. source code in different
languages), which have been produced given the same input information (e.g.
a robot model). It is then possible, for instance, to generate exactly the same
Jacobian matrices in C++ and in Matlab, using the second to quickly verify
them and try them in rapidly prototyped algorithms such as controllers. After-
wards the C++ Jacobians can be used in the software deployed on the embedded
computer controlling a real robot, knowing that they will behave exactly as the
Matlab counterparts.
These guarantees are of great significance to the user who can be relieved from
the manual analysis of the generated code and can then focus the debugging on
the models, that are simpler hence easier to inspect, or on other parts of the
system.

However, the trust of the user for a new tool requires time, during which the

84 Chapter 7: Experimental results

correctness of the tool itself is not given for granted. To support the end user in
this phase, but also the same developers of the code generation framework, it is
valuable for the whole toolchain to be as clear and as observable as possible. To
a certain extent, this feature is achieved by having simple languages that target
well defined and confined problems, so that it is relatively easy to perform
many trials and understand the behavior of the generators. The clarity in the
generated code is also of great help in the debugging and also to give the user
more chances to understand and thus be satisfied with the tool. For example,
the generated code in C++ – which is what we focus on in these paragraphs,
since it is the fastest code and it can also be used in real–time controllers – uses
the Eigen linear algebra library: Eigen is a modern, carefully designed and quite
well documented library for efficient computations with matrices, which allows
to have much more compact and readable code for algebra operations rather
than custom solutions, without thereby compromising efficiency (Guennebaud
et al. 2013). Quite the opposite, Eigen is specifically designed with performance
in mind, and with proper use of its facilities code for hard real–time controllers
can be developed.

7.2.2 Validation

In order to validate the numerical correctness of the generated code we have
tested them against other existing and established implementations, automating
the comparison of the numerical output for different robot models and different
inputs (e.g. the joint status q, q̇ and q̈). For example we used the Matlab
code available on Roy Featherstone’s web page about spatial vector algebra and
dynamics algorithms (Featherstone 2013), and also the sl software package,
which has been in development for more than fifteen years and is used in several
research labs for simulations and hard real–time model–based control of real
robots (Schaal 2009).

As an additional validation, we partially rewrote a controller for our quadru-
ped robot HyQ using our approach. This program – which is detailed in another
paper from our research group (Focchi et al. 2012) – controls the impedance
of a single leg of the robot, and exploits coordinate transforms, the Jacobian

baseJfoot, and so on. We replaced the original implementation of some of these
quantities and we managed to obtain the same behavior from the robot. More
importantly, once the task was developed, it was a matter of minutes to gen-
erate the same expressions for a different leg and have the software control its
impedance instead.

7.2.3 Performance comparisons

As mentioned in the beginning of this section, we focused on speed comparisons
between our generated C++ code (using the Eigen library) and other imple-
mentations, to demonstrate that our approach not only provides ease of use and
flexibility, but also high run time performances. The execution times shown in
the graphs are more relevant as a way of comparing two programs rather than in
absolute terms, since they depend also on the specific computer that run them1.

1All the tests were executed on a Intel(R) Core(TM)2 Duo CPU, P8700 @ 2.53GHz, with
4Gb of ram

7.2 Evaluation of the code generator 85

However, the absolute execution time and the repeatability of it are also impor-
tant to show compatibility with real–time loops at frequencies in the order of
few hundred Hz, so these aspects will also be addressed in the experiments.

We estimate the execution time of the various functions by means of the
standard library function std::clock(). Calling repeatedly the same function
multiple times (see e.g. the test of Figure 7.6), and possibly averaging the results,
helps in smoothing unpredictable time variations not due to the algorithms
themselves (e.g. cpu load). However, we are not interested in measurements
with millisecond precision, but rather on more significative differences.

We made some comparisons with the sl simulator; as mentioned in Section
3.5, although sl is not optimal as far as usability and flexibility are concerned,
it generates a highly optimized low level C code implementation whose per-
formance can very well be considered as a reference. The graph in Figure 7.6

4 5 7
0

2

4

6

8

No. of DOF

T
im

e
[s

]

SL
Gen. code

(a) The Recursive Newton–Euler algorithm
for inverse dynamics

4 5 7
0

2

4

6

8

No. of DOF

T
im

e
[s

]

SL
Gen. code

(b) The Articulated–Body algorithm for
forward dynamics

Figure 7.6 – Performance comparison between the code generated by our
framework (C++) and the sl software. Both plots show the cumulative
execution time for 106 calls of the function (a) Γ = id(q̈, q, q̇) (inverse dy-
namics) and (b) q̈ = fd(Γ,q, q̇) (forward dynamics), as a function of the
number of degrees of freedom of three robot models.

illustrates some results related to the Recursive Newton–Euler algorithm and
the Articulated–Body algorithm to solve respectively the inverse and the for-
ward dynamics of an articulated robot. The graphs show how the algorithms
scale as a function of the number of dofs, and at the same time they show
a speed comparison. We used a four-dof robot (a leg of HyQ attached to a
vertical slider), a five-dof robot with revolute and prismatic joints and finally
a seven-dof model obtained by adding a two link branch to the previous robot.
As can be seen from the plot, the execution times of the two implementations
basically have the same order of magnitude, with our implementation being
slightly faster. The point of the comparison is that we achieved a performance
analogous to a software created to do real–time control more than fifteen years
ago (hence extremely concerned about efficiency), but with a process where the

86 Chapter 7: Experimental results

ease of use and the maintainability and observability of the modeling/generation
process are greatly improved.

As discussed in Section 6.2.1, we can generate the Composite–Rigid–Body
algorithm to efficiently compute the joint space inertia matrix H. This algorithm
is known to be the most efficient for this job, especially because it exploits a
possible sparsity pattern in the matrix. The algorithm requires almost all the
spatial force vector transforms in the form parentXchild and the motion vector
transforms childXparent, where child and parent refer to a pair of connected
links, thus its performance depends also on their implementation, which is also
taken care of by the code generator.
We performed some comparisons of the execution time with the S-wbc software
(see Chapter 3) and the results are summarized in Figure 7.7.
Tests were executed with two different robot models:

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

No. of calls

T
im

e
 [
s
]

Stanford−wbc

Gen. code

Time [s]
+ �
0 0

0.01 0
0.07 0
0.81 0.02
7.91 0.25

(a) A 5-dof robot model, with a linear struc-
ture. The average time ratio is 36.07.

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

No. of calls

T
im

e
[s

]

Time [s]
+ �

0.01 0
0.05 0
0.45 0
4.49 0.05
44.57 0.41

(b) A 12-dof quadruped robot. Average time
ratio of 99.25.

Figure 7.7 – Performance comparison between the code generated by our
framework (black plus) and the Stanford Whole Body Control software
(green square), for the calculation of the Joint Space Inertia Matrix (both
implementations are in the C++ language and use the Eigen library). The
x axis represents the number of calls to the function, the y axis the total
execution time – also written in the table. The average ratio between the
two graphs quantifies roughly the difference in performance.

1. A 5-dof fictitious robot, composed of a linear kinematic chain with three
revolute joints and two prismatic joints, alternated.

2. A 12-dof robot (our quadruped HyQ), which has four 3-dof legs and
therefore exhibits a branched kinematic structure determining a significant
sparsity in its 12× 12 inertia matrix.

We measured the cumulative execution time of multiple calls to update H(q), by
means of the standard library function clock(). For the S-wbc, for instance,

7.2 Evaluation of the code generator 87

this simply means to measure the single call computeMassInertia() of the
joint space model class. Even though we do not claim these to be definite and
exhaustive comparisons, the plots clearly show a significant faster execution of
our implementation, by a factor of about 35 for the first robot.
For the second robot with a branched structure the gain raises dramatically
up to 100, most probably because in the S-wbc the sparsity of H cannot be
exploited. In fact, the implementation we tried (version 1.1) is based on a
general purpose dynamics engine, and the computation of H is performed via
multiple calls to an inverse dynamics routine (that is a known alternative way
to compute H, though not the most efficient). This amounts to computations
for each of the 144 elements of the matrix of this example, even though 108
of them are actually zero, which in addition to the general lower speed of the
dynamics engine results in a much longer execution time.

Figure 7.8 shows an additional comparison with the S-wbc of the compu-
tation time for the null space projector N. This is a common ingredient of the
operational space control formulation, used to compute velocities and torques
at the joints that do not result in motion at the end effector of the robot. One
possible definition is the following:

N = I−H−1 JT
(
J H−1 JT

)−1
J

where all the terms (besides obviously the identity matrix) are function of the
joint status q. As you can see, it requires a Jacobian (e.g. the base to end-effector
Jacobian) and the inverse of H, so we are basically comparing the computation
of both these terms in the S-wbc and in our software (without performing the
actual product of all the terms, which would not make the comparison more
meaningful).
We performed the test only on the same 5-dof model of the previous example,

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

No. of calls

T
im

e
 [
s
]

Stanford−wbc

Gen. code

Time [s]
+ �
0 0

0.02 0
0.18 0
1.85 0.02
18.21 0.36

Figure 7.8 – Performance comparison with the S-wbc of the computation of
the inverse of the Joint Space Inertia Matrix and the end–effector Jacobian,
for a 5-dof robot. The x axis represent the number of repeated calls to
the appropriate functions, while the y axis is the total execution time. The
average ratio between the two plots is 71.54.

88 Chapter 7: Experimental results

not to include the effect of sparsity since we know already how significantly
it affects the gap between the S-wbc and the generated code. We selected a
hypothetical end–effector at the tip of the last link, and used the corresponding
Jacobian.
Also for this case the plot demonstrates a better performance for the code gen-
erated with our approach. The average ratio of the execution time is even higher
than before (approximately 70 versus 35), as one might have expected because
we now have two terms computed possibly in a more efficient way. We get H−1

by computing the factorization H = LTL and then the product L−1L−T = H−1;
these steps are also implemented by generated code exploiting the robot–specific
sparsity (if any – see Section 6.2.1). These operations obviously add a cost to
the computation of H, which however seems less than the increase in execution
time observed in the S-wbc to compute H−1 with respect to H; for these tasks,
the current implementation of the S-wbc uses a call respectively to the forward
dynamics and the inverse dynamics routines.
The computation of the Jacobian is also relevant in determining the perfor-
mance: our implementation is highly optimized since it has been generated in
advance for a specific, known point of the kinematic tree, and therefore out-
performs a regular, generic implementation that relies only on computations at
run–time.

7.2.4 Simulation and control

Figure 7.9 refers to a simulation we performed using the generated code for the
Articulated–Body algorithm. In particular, we modified the existing implemen-
tation of the sl simulator (Schaal 2009) to replace its dynamics engine with
the code generated by our framework. We could then run the program without

(a) Screenshot of the graphic in-
terface. The red circle high-
lights the first (revolute) joint
of the model.

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

Jo
in

t a
ng

le
 [r

ad
]

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

Time [s]

(b) Position tracking at the first joint, without and with
inverse dynamics (respectively top and bottom plots).
The solid green line (—) is the actual status of the
joint, while the dashed blue (- -) is the reference tra-
jectory.

Figure 7.9 – A simulation with sl, modified to use the generated code for
the forward dynamics. The simulated robot is a fictitious 5-dof robot (the
same model used in some of the tests shown above), visible in (a). The
simulated behavior consists in a sinusoidal trajectory at each joint; the plots
in (b) show the position tracking at the first joint, and the improvement of
the performance when inverse dynamics is used. Also the inverse dynamics
terms in this experiment are computed by our generated code.

7.2 Evaluation of the code generator 89

additional modifications, and simulate the motion of the robot with any desired
trajectory, for example a sinusoidal trajectory at each joint. The behavior of the
simulator was indistinguishable from the one obtained with the original version
of the program. This exeperiment provides a strong evidence about the cor-
recteness of our implementation of the forward dynamics, and also shows that
our C++ code is easily reusable. The steps required to replace the dynamics
engine are limited to replacing the call to the forward dynamics function, after
properly copying the joints status variables in the appropriate structure, and
adding an additional library to the building system.
In fact, we also replaced the call to the inverse dynamics function, which is used
by the controller running within sl. In this way all the dynamics computations
performed by sl were actually replaced by our generated code. The example
of Figure 7.9 shows the tracking of the position of a joint of the robot, that
dramatically improves when inverse dynamics is turned on (see Section 2.2).

The execution times illustrated in the previous section and the knowledge
that the generated C++ code basically contains only numerical operations per-
formed on memory allocated at initialization time, already provide significant
evidence of the compatibility with real–time execution (see Section 4.2.1).
However, to provide a more rigorous argument for this claim, we performed
some tests where some of the generated code is running within the control pro-
cesses of actual robots, in a real–time environment. Figure 7.10 contains a few
snapshots of an experiment run on the hydraulic leg of HyQ that consists in
tracking a very fast (5 Hz) sinusoidal trajectory at the joints. The desired mo-

Figure 7.10 – An experiment with the hydraulic leg of HyQ using the generated
C++ code for inverse dynamics in the control loop. The task of the robot is
to track a sinusoidal trajectory at a frequency of 5 Hz at both joints. This
test proved the full compatibility of the generated code with the constraints
of real–time execution at 250 Hz.

tion commanded to the robot is so fast that proper position tracking is only
possible using an inverse dynamics based controller, which takes advantage of
the knowledge about the dynamics of the robot to compute more effectively the
commands for the actuators (see Section 2.2 and 5.1). This experiment was
in fact originally designed to demonstrate the effectiveness of a force controller
based on a hydraulic model, since a proper force control is required to use in-
verse dynamics (Boaventura, Semini, Buchli, and Caldwell 2011).
In this test we modified the control software based on sl and on our hardware
I/O components, by plugging in the implementation of inverse dynamics gener-
ated for the model of the leg. This part of the software ran at 250 Hz without

90 Chapter 7: Experimental results

issues, especially without violating the real–time guarantees.2

2In a Xenomai based real–time environment such as the one we use on our robots, this
is certified by the absence of the so–called mode switches; these events happen whenever a
real–time process executes an illegal operation that would violate the real–time constraints,
forcing the real–time operating system to downgrade it temporarily into the non–real–time
class.

Chapter 8

Conclusions and future
work

Developing robotics software is a challenging activity because of a variety of
tasks that have to be performed in a well orchestrated manner. Conflicting
requirements such as efficiency and modularity make the problem even harder,
together with the inherent complexity of certain functions, such as those related
to rigid body dynamics. The lack of general models and implementations of-
ten results in poor or missing design and high integration costs; sometimes the
reason is that a certain problem is still subject of research and hence not yet
fully understood, but often it is simply because research explicitly on robotics
software has not been pursued as much as research on control, actuation, me-
chanical design (which are obviously equally fundamental for a progress in the
field).

The software system currently controlling the HyQ robot (Chapter 4) en-
abled to start a promising research. Different behaviors in the form of gener-
ators for the desired joint positions and forces can be developed and tried on
the robot. The results of this work have been presented in Section 7.1; they
demonstrate that the existing software satisfies the strict requirements of hard
real–time control and also exhibits a good degree of flexibility and generality,
with respect to changes in the actual robot hardware.
However, such a system is not the definite solution to actually enable versatil-
ity and autonomy for the HyQ robot or other machines of similar complexity;
some limitations and a direction for future development are discussed below in
Section 8.1.

Motivated by the importance of model–based control for articulated robots,
the thesis then shifts its focus on software for the kinematics and the dynamics
of this class of robots. This particular domain includes some common, recurring
problems that as such should be solved by principled and general approaches,
to free resources for the required exploratory sides of robotics research.

We have designed a few Domain Specific Languages for the specification of
the kinematics and dynamics models for articulated robots, and of algebraic
quantities like coordinate transforms and Jacobians, which are ubiquitous in

91

92 Chapter 8: Conclusions and future work

robot controllers.
The dsls are based on general domain models that capture the relevant in-
formation of the problem, such as the parameters required to fully specify the
physics of a multibody system. By using this information it is possible to gen-
erate executable code, for instance rigid body dynamics algorithms; such code
is efficient and compatible with real–time constraints at high frequencies, e.g. in
low level control loops. Code in different programming languages can be gener-
ated, addressing different deployment scenarios (e.g. control of a real robot and
simulations).

A general aim of our efforts is to relieve roboticists from spending time on
non–problems, which are issues well understood in theory and therefore often
of scarce scientific interest, but yet critical for successful robotics applications.
Effective software solutions for these (non-)problems can still be demanding, and
contribute significantly to the costs of development and especially maintenance
of the system. The code generation relieves researchers from manually coding
critical and complex parts of the software, as well as parts that would just be
time consuming and error prone.

Our approach has proved to be effective, in that it exhibits a diversity of
desirable features for robotics software: it is easy to use because the user only
deals with high level information; the use of sound domain models improves
the observability of the process and documentation in general; it is robust and
limits human mistakes because it is based on automatic code generation; yet it
is effective for real–time robot control, because the generated implementation
is fast and efficient.

8.1 A software architecture for the HyQ robot

Achieving sophisticated behaviors with a high degree of autonomy in articu-
lated robots is a challenging objective. Legged locomotion on rough terrain is a
notable example of such behaviors – and it is also the main topic of research in
the HyQ project, currently under development at our lab (Boaventura, Semini,
Buchli, Frigerio, et al. 2012; Focchi et al. 2012; Semini, Tsagarakis, et al. 2011).

For such applications, the architecture described in Chapter 4 has some
limitations, and the required improvements will be the subject of future research.
Two main limitations that can be immediately identified are:

• A single-process access to hardware resources (as the motor control process
using the I/O library) does not handle well different kind of information
flows, which typically differ in the amount of data and the frequency.
There is no point, for example, of continuously sampling an Inertial Mea-
surement Unit at the same high frequency which is instead required for
position sensors, to make the controller work. With a stereo camera emit-
ting depth maps, it is not only inappropriate, but also unfeasible.

• The robot behavior module can be arbitrarily complicated, and as such
it requires dedicated analysis and design phase. A single function imple-
menting some logic to generate joint trajectories is not sufficient. This
part of the system depends significantly on the specific application.

In general, it is necessary to devise a proper, sound software architecture for
the autonomous control of an articulated robot. This activity implies identify-

8.1 A software architecture for the HyQ robot 93

ing and quantifying the information flows and the logical activities the system
has to perform, according to the domain requirements. A logical architecture
of the system must be designed with absolutely no reference to any implemen-
tation technology, which has to be chosen in a subsequent step (Bernini et al.
2010). As a matter of fact, sometimes in the robotics community the availabil-
ity of libraries, components, middlewares that might have gained a certain fame
(sometimes because they are actually effective), leads to technology driven sys-
tems. This is a fundamentally flawed approach, since the technologies should be
chosen afterwards, among those matching the requirements of the design (even
though it is still rather unlikely for the analysis-design-implementation process
to be purely linear and sequential).

The system described in Chapter 4 also describes the deployment of the
software on a single computer that acts as the “brain” of the HyQ robot. The
use of a single computer is also a possible limitation, since the code for weakly
coupled activities or with very different requirements (e.g. low level, hard real–
time position control versus the processing of camera images) might very well
be more effective if deployed on different machines.
It is true though, that often in robotics there is not really much choice about
the hardware, because of other strict constraints that are not arising from the
problem domain: room and power availability on the robot, costs associated to
the development and maintenance on different platforms – something that can
significantly affect how the project progresses. However, any known limitations
of this kind should not influence the first design of the architecture; the possible
adaptations required to fit the system within any hardware constraint should be
made afterwards, with the ideal, purely problem-driven architecture available
as a reference.1

The actual problem of making a robot such as HyQ capable of moving au-
tonomously in unstructured environment, requires a significant amount of analy-
sis about various issues, to devise a coherent architecture. As possible directions
for future work, we can briefly list here some topics that are likely to require
some investigation:

• Terrain and world modelling: sophisticated sensors such as cameras and
laser scanners are useless if their data is not used to construct some sort
of description of the terrain and the environment the robot has to move
in. Such a description must be formalized.

• Robot task model: a description of the possible high level commands
for the robot should be identified, e.g. how to ask the robot to reach a
certain position, with a certain gait and/or a certain velocity, with time
constraints, etc.

• Robot model: the control logic could exploit information like the current
gait and speed of the robot, the power availability, the estimated quality
of the various sensor measurements.

The remark about the use of dynamics simulations on the robot itself – men-
tioned earlier in Section 5.1.2.1 – also raises some interesting points related to

1In this case we are referring primarily to the deployment architecture, which specifies
the technologies and the hardware platforms best suited to implement and run the logical
components identified in previous stages of the design (Bernini et al. 2010).

94 Chapter 8: Conclusions and future work

the design of the architecture, such as the representation of time and of the own
computing capabilities of the robot (a sort of Quality of Service measurement);
for example, one can imagine a quadruped robot that while running perceives
a moving and approaching obstacle (such as a car): planning a behavior that
would avoid crashing with the obstacle involves reasoning about its speed and
the speed of the robot (which pertains the real physical time of the events in
the environment) but possibly taking into account how long it would take to
do the reasoning itself, that is how long the robot can afford to “think” before
making a decision.

8.2 The robotics code generator

8.2.1 Discussion

The results presented in Chapter 7 provide substantial evidence that our ap-
proach and the resulting code generation framework are effective, and can be
used to aid the development of simulators and controllers. Naturally, many im-
provements and developments are now possible, and this section tries to sum-
marize some of them as well as provide some hints for discussion.

We met the project goal of building the framework with open source tech-
nologies only, increasing the chances that the tool gets adopted by a wide com-
munity that would then provide useful feedback. A possible release of our source
code with a similar license would also enable a contribution from the community
at the development level.
It is however crucial to avoid the proliferation of features that would not be
coherent with the existing models, as well as polluting the same models with
concepts belonging in fact to other domains (e.g. adding elements related to a
possible graphical interface in the kinematics dsl). It can indeed be tempting to
incrementally add features to the existing software just by following the needs
of the community (which are obviously not limited to software for kinematics
and dynamics), without careful analysis of the new issues.

Springs in the actuators or in the joints of the robot is a typical example,
since their usage has become quite common with the recent trends in robotics
research (Hutter et al. 2012; Tsagarakis et al. 2013), so that appropriate software
solutions related to such mechanisms are required. All our framework is based
on the Rigid Body Dynamics model, that does not deal with any dynamics of
the actuation and assumes ideal force sources at the joints. Therefore topics
like Series Elastic Actuators shall not be introduced in the current framework.
It is actually an interesting point – related to both control theory and software
– whether it is possible for such mechanisms to be controlled in such a way that
higher level software can abstract them as force sources, or, on the contrary,
which information about their peculiar dynamics have to flow across different
software layers.
Springs in parallel to actuators, on the other hand, typically result simply in
additional forces acting on the links of the robot. Dynamics algorithms such as
those described in Section 5.1.2.2 already handle the case of additional external
forces acting on the rigid bodies, so no particular development of the framework
seems necessary.

8.2 The robotics code generator 95

As explained earlier in the text (e.g. Section 7.2) the C++ code generated
with our framework is based on the Eigen library for linear algebra. The in-
jection of such a dependency in the generated code, especially in the targets
that can be used in real–time controllers, may be seen in contrast to the idea of
having full control over the code running on a real robot, which is also one of the
motivations for our framework (e.g. as opposed to relying on some general pur-
pose dynamics engine that may have other dependencies, may not be real–time
compatible, etc.). However we believe this is not a severe limitation, since Eigen
is a carefully designed library, focused on performance, which has been shown
in our results to be appropriate for real time; in other words, Eigen seems to be
a good tool for the job, worth the minor drawback of having a dependency.
If properly used (e.g. no dynamically sized matrices) Eigen leads to compiled
code that is likely to be faster or as fast as the code that would be gener-
ated by expanding all the vector operations into scalar ones, i.e. products and
sums addressing the elements of the matrices one by one. This approach is
possible but results in a much more complicated generation software as well as
much more complicated generated code; another drawback is that non-vector
operations cannot exploit possible hardware specialized for vector arithmetic
(Featherstone 2008) (Eigen does perform optimizations based on the target ar-
chitecture).
Note that similar facilities as those provided by Eigen in C++ might not be
available in other programming languages. In such cases the transformation of
all the algebra into scalar operations would be mandatory.

Another remark about efficiency and symbolic generation concerns sparsity
and sparse matrix implementations. The use of sparse matrices in the gener-
ated code might make generic computations (sums and products in user code)
faster. In principle, given a known matrix (say, a coordinate transform), the
generator could choose whether or not to use a sparse matrix implementation
in the target language when generating code. However it is quite difficult to
devise such criteria in general (when is it worth to use a sparse matrix? For
which degree of sparsity?) also because the actual benefits highly depend on
the specific implementation.
In fact literature refers to the use of symbolic engines to identify the multiplica-
tions by zero to avoid generating code for such operations (Featherstone 2008).
This would require to transform vector arithmetic in scalar operations or to rely
on a sparse matrix implementation taking care of the zeros, both points just
discussed above.
Note that this approach is different from the optimizations we have described in
Section 6.2.1. Our code generators take advantage of prior information about
the kinematics of the robot so that they know in advance that certain numbers
will be zero, without relying on a symbolic engine. Refer to the explanations
and the examples in Section 6.2.1, about the motion subspace matrix and the
branch–induced sparsity.
In our framework, element–wise optimizations take place for coordinate trans-
forms and Jacobians, in that elements recognized as constant are not recomputed
each time the matrix is updated with a new joint status vector q (cf. Section
6.2.2.3). On the other hand, the products having these matrices as operands
are not explicitly optimized, even if they contain a few zeros. Drawbacks about
optimizations based on null elements have just been described. Whether it is
still worth doing them must be evaluated with experiments, and may be a topic

96 Chapter 8: Conclusions and future work

for future research.

Another topic worth mentioning in this discussion concerns the flexibility of
our framework. One of the strong motivations behind the use of a code gen-
eration system is that it provides efficient implementations without sacrificing
generality. In fact some of the flexibility available with general purpose libraries
is lost, but it is quite negligible since it is limited to very unlikely use cases.
For example, with our approach it is not possible to dynamically (i.e. at robot-
run-time) change the dynamic model being used for control/simulations. But
the chances that a robot changes its structure while active on the field are quite
limited (unless one is dealing with modular and reconfigurable robots (Schultz
et al. 2007)). On the other hand, the generated code can easily deal with the
much more likely case of a change in the mass or the mass distribution, e.g. if
new payload is being carried: simply, new parameters have to be loaded (the
generated code should not have numerical constants spread all over the sources,
even if automatically generated, exactly for these reasons).
Another argument one may raise is about Jacobians. It is obvious that we
cannot generate the code for Jacobians for any arbitrary point determined at
run–time. While it is common that some points of interests on the robot are
known or can be estimated in advance (e.g. the end-effectors), it is true that
other points depend on run–time operation (e.g. contact points). However, our
framework already provides a robust way to address also these issues: as an
example, one might generate the Jacobians for every link of the robot, and pick
one of them at run–time once a specific point on the same link is identified;
then the link Jacobian can be used for velocity or force computations simply
by computing the appropriate transform that takes care of the distance of the
point from the default link frame (to which the link Jacobian refers to).

In conclusion to this point about flexibility, note that in scenarios where
the robot control system is at an advanced level, it is definitively plausible to
imagine the code generation facilities themselves as part of the software of the
robot. In certain conditions the robot may compute different models than those
it is currently embedding, stop, generate code out of them, and then start using
the fresh new code, when the speed of execution is a critical issue.
Stopping and reasoning as a reaction of a difficult situation or an unforeseen
event is a totally sensible approach, adopted by humans as well.

8.2.2 Future improvements

In general, various improvements and further features can be added to the exist-
ing code generation framework, also because it is not only meant to be a proof
of concept of basic research, but it aims at being concretely a useful tool for
roboticists. Below is a list of some possible future developments:

• Add to the software models the explicit notion of task and task space. In
this way the software could reason about properties such as the dimension
of a task space, for example to generate a Jacobian with the significant
rows only, to automatically detect task–specific redundancy, or to identify
the subset of joints involved in a specific task.

• Additional classes like Chain and Tree, explicitly modelling sub-parts of
the whole robot assembly, should be added. This point is related to the

8.2 The robotics code generator 97

previous one, since particular task spaces may be associated to specific
sub-trees of the robot (e.g. the positioning of a hand of a humanoid and
the corresponding arm).

• Perform more experiments with real robots using the generated code.
Compare the performances of the C++ code with additional existing tools,
such as Robotran and SD/Fast.

• Add other targets for the code generation, addressing for instance algo-
rithms for floating base robots, and the articulated body algorithm for the
forward dynamics problem.

• Extend the models and the code generation targets to support closed loop
systems. As an example, the notion of loop joint should be added to the
class diagram of Figure 5.6 noting that a distinctive feature of this kind
of joints is that they do not induce a parent-child relationship, and they
solely constitute additional kinematic constraints.

• Deal explicitly in the framework with 3-dof spherical joints, to avoid nu-
merical singularities that may arise when modelling them with a sequence
of three simple revolute joints.

• Include in the kinematics dsl elements about the range of motion of the
joints, which is not relevant for dynamics algorithms but it is definitely
part of a description of the kinematics of a robot.

• Improve the validation of the dsl documents with checks of semantic
constraints which cannot be enforced by the grammar – e.g. a link cannot
be the child of more than one other link; the inertia tensor of each link
must be a positive definite matrix.

• Devise the relation between the joint parameters in the kinematics dsl
(see Section 5.2.1.1) and the Denavit–Hartenberg parameters. A clear and
robust conversion routine between the two conventions would facilitate
the use of our software within the community, since roboticists tend to
be familiar with DH parameters, and the specifications of many robots
provide only them. Note that DH parameters can represent only a subset
of configurations with respect to the six parameters of the kinematics dsl
(Featherstone 2008); therefore the conversion to DH parameters might not
always be possible.

• Further optimizations. Currently, in the generated C++ code, the up-
date of a transform or a Jacobian computes only once a set of unique
trigonometric functions (sin(q1), cos(q3), etc.), even if multiple elements
of the matrix depend on the same ones. This kind of optimization is not
yet happening at the global level, among different matrices that might
be function of some shared terms (e.g. baseXlink1, baseXlink2, baseXlink3,
etc.). Realizing this improvement is mainly a matter of tuning the existing
implementation; it may also require enriching explicitly the representation
of a transform with the kinematic chain it refers to, to detect overlaps.

• Make the software more configurable by the user, e.g. by means of config-
uration files. It would then be possible to further customize the generated
code, and better suit the needs or the taste of the users.

98 Chapter 8: Conclusions and future work

• Address other programming languages, such as Java or Python.

Appendix A

Generated code example

This section shows an example of the C++ code generated by our framework,
to give a general idea of how the output code currently looks like. The exam-
ple refers to the implementation of the Recursive Newton–Euler algorithm for
inverse dynamics, for the robot HyL (a single leg of HyQ, attached to a vertical
slider).

Currently, code is generated in the form of a class with a few methods, which
implement the full algorithm or simplified versions to compute e.g. only the
gravity compensation terms. The namespace iit::rbd contains some utility
defintions, like a type representing a 6D force vector. These definitions are
provided by a few static (i.e. non–generated) header files that are available for
download together with the framework. Besides these headers, all the generated
code depends solely on the Eigen library for linear algebra (Guennebaud et al.
2013).

For more information, please refer to:

• Figure 6.10 and 7.10 about the HyL robot.

• Section 5.1.2.2 and 6.2.1 about dynamics algorithms and code generation.

• Chapter 5 of (Featherstone 2008) for an in–depth description of the algo-
rithm.

A.1 Header file

#ifndef IIT_HYL_INVERSE_DYNAMICS_H_

#define IIT_HYL_INVERSE_DYNAMICS_H_

#include <Eigen/Dense>

#include <iit/rbd/rbd.h>

#include <iit/rbd/InertiaMatrix.h>

#include <iit/rbd/utils.h>

#include "declarations.h"

#include "transforms.h"

#include "link_data_map.h"

namespace iit {

namespace HyL {

99

100 Chapter A: Generated code example

namespace dyn {

typedef iit::rbd::InertiaMatrixDense InertiaMatrix;

typedef LinkDataMap<iit::rbd::ForceVector> ExtForces;

/**

* The Inverse Dynamics routine for the robot HyL.

*

* In addition to the full Newton-Euler algorithm, specialized versions to

* compute only certain terms are provided.

* The parameters common to most of the methods are the joint status \c q, the

* joint velocities \c qd and the accelerations \c qdd. The \c torques parameter

* will be filled with the computed values.

* Additional overloaded methods are provided without the \c q parameter.

* These methods use the current configuration of the robot; they are provided

* for the sake of efficiency, in case the kinematics transforms of the robot

* have already been updated elsewhere with the most recent configuration (eg

* by a call to setJointStatus()), so that it is useless to compute them again.

*/

class InverseDynamics {

public:

InverseDynamics();

/** \name Inverse dynamics

* The full Newton-Euler algorithm for inverse dynamics

*/ ///@{

void id(const JointState& q, const JointState& qd, const JointState& qdd,

JointState& torques);

void id(const JointState& q, const JointState& qd, const JointState& qdd,

const ExtForces& fext, JointState& torques);

///@}

/** \name Gravity terms

* The torques acting on the joints due to gravity, for a specific

* configuration. In order to do gravity compensation, torques with the

* opposite sign should be applied.

*/ ///@{

void G_terms(const JointState& q, JointState& torques);

void G_terms(JointState& torques);

///@}

/** \name Centrifugal and Coriolis terms

* The torques acting on the joints due to centrifugal and Coriolis effects.

*/ ///@{

void C_terms(const JointState& q, const JointState& qd,

JointState& torques);

void C_terms(const JointState& qd, JointState& torques);

///@}

/** Updates all the kinematics transforms. */

void setJointStatus(const JointState& q) const;

public:

iit::rbd::SparseColumnd gravity;

protected:

void firstPass(const JointState& q, const JointState& qd,

const JointState& qdd);

void secondPass(JointState& torques);

private:

iit::rbd::Matrix66d spareMx; // support variable

// Link ’slider’ :

InertiaMatrix slider_Imx;

iit::rbd::VelocityVector slider_v;

iit::rbd::VelocityVector slider_a;

iit::rbd::ForceVector slider_f;

// Link ’hip’ :

A.2 Definitions file 101

InertiaMatrix hip_Imx;

iit::rbd::VelocityVector hip_v;

iit::rbd::VelocityVector hip_a;

iit::rbd::ForceVector hip_f;

// Link ’leg’ :

InertiaMatrix leg_Imx;

iit::rbd::VelocityVector leg_v;

iit::rbd::VelocityVector leg_a;

iit::rbd::ForceVector leg_f;

// Link ’lowerleg’ :

InertiaMatrix lowerleg_Imx;

iit::rbd::VelocityVector lowerleg_v;

iit::rbd::VelocityVector lowerleg_a;

iit::rbd::ForceVector lowerleg_f;

};

inline void InverseDynamics::setJointStatus(

const JointState& q) const

{

transforms6D::fr_slider_X_fr_base(q);

transforms6D::fr_hip_X_fr_slider(q);

transforms6D::fr_leg_X_fr_hip(q);

transforms6D::fr_lowerleg_X_fr_leg(q);

}

}}}

#endif

A.2 Definitions file

#include "inverse_dynamics.h"

#include "inertia_params.h"

using namespace std;

using namespace iit::rbd;

using namespace iit::HyL::dyn;

iit::HyL::dyn::InverseDynamics::InverseDynamics() {

gravity.resize(6);

gravity.insert(5) = 9.81;

slider_v.setZero();

hip_v.setZero();

leg_v.setZero();

lowerleg_v.setZero();

InertiaParameters linkInertias;

slider_Imx = linkInertias.getTensor_slider();

hip_Imx = linkInertias.getTensor_hip();

leg_Imx = linkInertias.getTensor_leg();

lowerleg_Imx = linkInertias.getTensor_lowerleg();

transforms6D::initAll(); // initializes coordinates transforms

}

void iit::HyL::dyn::InverseDynamics::id(

const JointState& q, const JointState& qd,

const JointState& qdd, JointState& torques)

{

transforms6D::fr_slider_X_fr_base(q);

102 Chapter A: Generated code example

transforms6D::fr_hip_X_fr_slider(q);

transforms6D::fr_leg_X_fr_hip(q);

transforms6D::fr_lowerleg_X_fr_leg(q);

firstPass(q, qd, qdd);

secondPass(torques);

}

/**

* \param fext the external forces acting on the links. Each external force

* must be expressed in the frame of the link it is exerted on.

*/

void iit::HyL::dyn::InverseDynamics::id(const JointState& q,

const JointState& qd, const JointState& qdd,

const ExtForces& fext, JointState& torques)

{

transforms6D::fr_slider_X_fr_base(q);

transforms6D::fr_hip_X_fr_slider(q);

transforms6D::fr_leg_X_fr_hip(q);

transforms6D::fr_lowerleg_X_fr_leg(q);

firstPass(q, qd, qdd);

// Add the external forces:

slider_f -= fext[SLIDER];

hip_f -= fext[HIP];

leg_f -= fext[LEG];

lowerleg_f -= fext[LOWERLEG];

secondPass(torques);

}

void iit::HyL::dyn::InverseDynamics::G_terms(

const JointState& q, JointState& torques)

{

transforms6D::fr_slider_X_fr_base(q);

transforms6D::fr_hip_X_fr_slider(q);

transforms6D::fr_leg_X_fr_hip(q);

transforms6D::fr_lowerleg_X_fr_leg(q);

G_terms(torques);

}

void iit::HyL::dyn::InverseDynamics::G_terms(JointState& torques) {

// Link ’slider’

slider_a = transforms6D::fr_slider_X_fr_base.col(5)*(-iit::rbd::g);

slider_f = slider_Imx * slider_a;

// Link ’hip’

hip_a = (transforms6D::fr_hip_X_fr_slider * slider_a);

hip_f = hip_Imx * hip_a;

// Link ’leg’

leg_a = (transforms6D::fr_leg_X_fr_hip * hip_a);

leg_f = leg_Imx * leg_a;

// Link ’lowerleg’

lowerleg_a = (transforms6D::fr_lowerleg_X_fr_leg * leg_a);

lowerleg_f = lowerleg_Imx * lowerleg_a;

secondPass(torques);

}

void iit::HyL::dyn::InverseDynamics::C_terms(

const JointState& q, const JointState& qd,

JointState& torques)

{

transforms6D::fr_slider_X_fr_base(q);

transforms6D::fr_hip_X_fr_slider(q);

transforms6D::fr_leg_X_fr_hip(q);

transforms6D::fr_lowerleg_X_fr_leg(q);

C_terms(qd, torques);

A.2 Definitions file 103

}

void iit::HyL::dyn::InverseDynamics::C_terms(

const JointState& qd, JointState& torques)

{

// Link ’slider’

// velocity:

slider_v(5) = qd(0);

// force:

Utils::fillAsForceCrossProductMx(slider_v, spareMx);

slider_f = (spareMx * slider_Imx).col(5) * qd(0);

// Link ’hip’

// velocity:

hip_v = (transforms6D::fr_hip_X_fr_slider * slider_v);

hip_v(2) += qd(1);

// acceleration and force:

Utils::fillAsMotionCrossProductMx(hip_v, spareMx);

hip_a = (spareMx.col(2) * qd(1));

hip_f = hip_Imx * hip_a + (-spareMx.transpose() * hip_Imx * hip_v);

// Link ’leg’

// velocity:

leg_v = (transforms6D::fr_leg_X_fr_hip * hip_v);

leg_v(2) += qd(2);

// acceleration and force:

Utils::fillAsMotionCrossProductMx(leg_v, spareMx);

leg_a = (transforms6D::fr_leg_X_fr_hip * hip_a) + (spareMx.col(2) * qd(2));

leg_f = leg_Imx * leg_a + (-spareMx.transpose() * leg_Imx * leg_v);

// Link ’lowerleg’

// velocity:

lowerleg_v = (transforms6D::fr_lowerleg_X_fr_leg * leg_v);

lowerleg_v(2) += qd(3);

// acceleration and force:

Utils::fillAsMotionCrossProductMx(lowerleg_v, spareMx);

lowerleg_a = (transforms6D::fr_lowerleg_X_fr_leg * leg_a) +

(spareMx.col(2) * qd(3));

lowerleg_f = lowerleg_Imx * lowerleg_a +

(-spareMx.transpose() * lowerleg_Imx * lowerleg_v);

secondPass(torques);

}

void iit::HyL::dyn::InverseDynamics::firstPass(const JointState& q,

const JointState& qd, const JointState& qdd)

{

// First pass, link ’slider’

slider_v(5) = qd(0);

slider_a = (transforms6D::fr_slider_X_fr_base * gravity);

slider_a(5) += qdd(0);

Utils::fillAsForceCrossProductMx(slider_v, spareMx);

slider_f = slider_Imx * slider_a + ((spareMx * slider_Imx).col(5) * qd(0));

// First pass, link ’hip’

hip_v = (transforms6D::fr_hip_X_fr_slider * slider_v);

hip_v(2) += qd(1);

Utils::fillAsMotionCrossProductMx(hip_v, spareMx);

hip_a = (transforms6D::fr_hip_X_fr_slider * slider_a) +

(spareMx.col(2) * qd(1));

hip_a(2) += qdd(1);

104 Chapter A: Generated code example

hip_f = hip_Imx * hip_a + (-spareMx.transpose() * hip_Imx * hip_v);

// First pass, link ’leg’

leg_v = (transforms6D::fr_leg_X_fr_hip * hip_v);

leg_v(2) += qd(2);

Utils::fillAsMotionCrossProductMx(leg_v, spareMx);

leg_a = (transforms6D::fr_leg_X_fr_hip * hip_a) + (spareMx.col(2) * qd(2));

leg_a(2) += qdd(2);

leg_f = leg_Imx * leg_a + (-spareMx.transpose() * leg_Imx * leg_v);

// First pass, link ’lowerleg’

lowerleg_v = (transforms6D::fr_lowerleg_X_fr_leg * leg_v);

lowerleg_v(2) += qd(3);

Utils::fillAsMotionCrossProductMx(lowerleg_v, spareMx);

lowerleg_a = (transforms6D::fr_lowerleg_X_fr_leg * leg_a) +

(spareMx.col(2) * qd(3));

lowerleg_a(2) += qdd(3);

lowerleg_f = lowerleg_Imx * lowerleg_a +

(-spareMx.transpose() * lowerleg_Imx * lowerleg_v);

}

void iit::HyL::dyn::InverseDynamics::secondPass(JointState& torques) {

// Link ’lowerleg’

torques(3) = lowerleg_f(2);

leg_f = leg_f + transforms6D::fr_lowerleg_X_fr_leg.transpose() * lowerleg_f;

// Link ’leg’

torques(2) = leg_f(2);

hip_f = hip_f + transforms6D::fr_leg_X_fr_hip.transpose() * leg_f;

// Link ’hip’

torques(1) = hip_f(2);

slider_f = slider_f + transforms6D::fr_hip_X_fr_slider.transpose() * hip_f;

// Link ’slider’

torques(0) = slider_f(5);

}

Appendix B

Publications

• Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell (2012a). “Code
Generation of Algebraic Quantities for Robot Controllers”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)

• Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell (May 2012b). “Mo-
del based code generation for kinematics and dynamics computations in
robot controllers”. In: Seventh workshop on Software Development and
Integration in Robotics (ICRA SDIR VII) (extended abstract)

• Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell (Sept. 2011). “A
Domain Specific Language for kinematic models and fast implementa-
tions of robot dynamics algorithms”. In: 2nd International Workshop on
Domain-Specific Languages and models for ROBotic systems (DSLRob)

The software described in the present thesis and in the papers just cited, can
be downloaded from the web at the following address (last checked on March
the 17th, 2013):
www.iit.it/en/article/10-advanced-robotics/1253-robotics-code-generator.html

Should the url above not work anymore, please use a search engine with the
following keywords: frigerio, iit, robotics code generator.

Ohter publications:

• Victor Barasuol, Jonas Buchli, Claudio Semini, Marco Frigerio, Edson
R. De Pieri, and Darwin G. Caldwell (2013). “A Reactive Controller
Framework for Quadrupedal Locomotion on Challenging Terrain”. In:
IEEE International Conference on Robotics and Automation (ICRA). [ac-
cepted for publication]

• Thiago Boaventura, Michele Focchi, Marco Frigerio, Jonas Buchli, Claudio
Semini, Gustavo A. Medrano-Cerda, and Darwin G. Caldwell (2012). “On
the role of load motion compensation in high-performance force control”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

• Claudio Semini, Hamza Khan, Marco Frigerio, Thiago Boaventura, Michele
Focchi, Jonas Buchli, and Darwin G. Caldwell (2012). “Design and Scal-

105

www.iit.it/en/article/10-advanced-robotics/1253-robotics-code-generator.html

106 Chapter B: Publications

ing of Versatile Quadruped Robots”. In: Climbing and Walking Robots
(CLAWAR)

• Thiago Boaventura, Claudio Semini, Jonas Buchli, Marco Frigerio, Michele
Focchi, and Darwin G. Caldwell (2012). “Dynamic Torque Control of a
Hydraulic Quadruped Robot”. In: IEEE International Conference on Ro-
botics and Automation (ICRA)

• Michele Focchi, Thiago Boaventura, Claudio Semini, Marco Frigerio, Jonas
Buchli, and Darwin G. Caldwell (2012). “Torque-control Based Compliant
Actuation of a Quadruped Robot”. In: 12th IEEE International Workshop
on Advanced Motion Control (AMC)

• Claudio Semini, Jonas Buchli, Marco Frigerio, Thiago Boaventura, Michele
Focchi, Emanuele Guglielmino, Ferdinando Cannella, Nikos G. Tsagarakis,
and Darwin G. Caldwell (Apr. 2011). “HyQ – A Dynamic Locomotion
Research Platform”. In: International Workshop on Bio-Inspired Robots

References

Barasuol, Victor, Jonas Buchli, Claudio Semini, Marco Frigerio, Edson R. De
Pieri, and Darwin G. Caldwell (2013). “A Reactive Controller Framework for
Quadrupedal Locomotion on Challenging Terrain”. In: IEEE International
Conference on Robotics and Automation (ICRA). [accepted for publication]
(cit. on p. 83).

Bernini, Diego and Francesco Tisato (2010). “Explaining architectural choices
to non-architects”. In: 4th European conference on Software architecture.
ECSA’10. Copenhagen, Denmark: Springer-Verlag, pp. 352–359. isbn: 3-642-
15113-2, 978-3-642-15113-2 (cit. on p. 93).

Bischoff, Rainer, Tim Guhl, Erwin Prassler, Walter Nowak, Gerhard Kraet-
zschmar, Herman Bruyninckx, Peter Soetens, Martin Haegele, Andreas Pott,
Peter Breedveld, Jan Broenink, Davide Brugali, and Nicola Tomatis (2010).
“BRICS – Best practice in robotics”. In: IFR International Symposium on
Robotics (ISR) (cit. on pp. 4, 7, 21).

Bischoff, Rainer, Johannes Kurth, Guenter Schreiber, Ralf Koeppe, Alin Albu-
Schaeffer, Alexander Beyer, Oliver Eiberger, Sami Haddadin, Andreas Stem-
mer, Gerhard Grunwald, and Gerhard Hirzinger (June 2010). “The KUKA-
DLR Lightweight Robot arm – a new reference platform for robotics research
and manufacturing”. In: 41st International Symposium on Robotics (ISR),
pp. 1–8 (cit. on pp. 16, 17, 51).

Boaventura, Thiago, Claudio Semini, Jonas Buchli, and Darwin G. Caldwell
(2011). “Actively–compliant Leg for Dynamic Locomotion”. In: Interna-
tional Symposium on Adaptive Motion of Animals and Machines (AMAM)
(cit. on pp. 81, 89).

Boaventura, Thiago, Claudio Semini, Jonas Buchli, Marco Frigerio, Michele Foc-
chi, and Darwin G. Caldwell (2012). “Dynamic Torque Control of a Hy-
draulic Quadruped Robot”. In: IEEE International Conference on Robotics
and Automation (ICRA) (cit. on pp. 11, 19, 40, 81, 92).

Bordignon, Mirko, Ulrik Pagh Schultz, and Kasper Støy (Oct. 2010). “Model-
based kinematics generation for modular mechatronic toolkits”. In: ACM
SIGPLAN Notices 46 (2), pp. 157–166. issn: 0362-1340 (cit. on p. 21).

Brooks, Alex, Tobias Kaupp, Alexei Makarenko, Stefan Williams, and Anders
Oreback (Aug. 2005). “Towards component-based robotics”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 163–168 (cit. on p. 22).

107

108 REFERENCES

Brugali, Davide (2010). “From the Editor-in-Chief: A New Research Commu-
nity, a New Journal”. In: Software Engineering for Robotics 1, pp. 1–2 (cit.
on p. 21).

CEREM (2013). Robotran. Center for Research in Mechatronics (CEREM),
iMMC, UCL. url: www.robotran.be/ (cit. on p. 24).

Corke, Peter (Mar. 1996). “A robotics toolbox for Matlab”. In: IEEE Robotics
Automation Magazine 3.1, pp. 24–32. issn: 1070-9932 (cit. on p. 45).

Dijkstra, Edsger Wybe (1982). “On the role of scientific thought”. In: Selected
Writings on Computing: A Personal Perspective, pp. 60–66 (cit. on p. 35).

Efftinge, Sven et al. (2013). Xtext. url: www.eclipse.org/Xtext/ (cit. on
pp. 59, 62).

Efftinge, Sven and Sebastian Zarnekow (2013). The Xtend language. url: www.
eclipse.org/xtend/ (cit. on p. 59).

Eysholdt, Moritz and Heiko Behrens (2010). “Xtext: implement your language
faster than the quick and dirty way”. In: ACM international conference com-
panion on Object oriented programming systems languages and applications
companion. SPLASH ’10. New York, NY, USA: ACM, pp. 307–309. isbn:
978-1-4503-0240-1 (cit. on p. 59).

Featherstone, Roy (2005). “Efficient Factorization of the Joint-Space Inertia
Matrix for Branched Kinematic Trees”. In: The International Journal of
Robotics Research 24.6, pp. 487–500 (cit. on p. 69).

— (2008). Rigid Body Dynamics Algorithms. Springer (cit. on pp. 3, 18–20, 24,
45, 47–50, 52, 54, 68, 69, 95, 97, 99).

— (2010a). “A Beginner’s Guide to 6-D Vectors (Part 1)”. In: IEEE Robotics
& Automation Magazine 17.3, pp. 83–94 (cit. on pp. 20, 56).

— (2010b). “A Beginner’s Guide to 6-D Vectors (Part 2)”. In: IEEE Robotics
& Automation Magazine 17.4, pp. 88–99 (cit. on pp. 20, 52, 56).

— (2010c). “Exploiting Sparsity in Operational-space Dynamics”. In: The In-
ternational Journal of Robotics Research 29.10, pp. 1353–1368 (cit. on p. 69).

— (2013). Spatial Vectors and Rigid-Body Dynamics. url: royfeatherstone.
org/spatial/ (cit. on pp. 20, 48, 84).

Focchi, Michele, Thiago Boaventura, Claudio Semini, Marco Frigerio, Jonas
Buchli, and Darwin G. Caldwell (2012). “Torque-control Based Compliant
Actuation of a Quadruped Robot”. In: 12th IEEE International Workshop
on Advanced Motion Control (AMC) (cit. on pp. 11, 84, 92).

Fowler, Martin (2003). UML distilled. Ed. by Rumbaugh Booch Jacobson.
Addison-Wesley (cit. on p. 53).

— (2010). Domain-Specific Languages. Addison-Wesley (cit. on pp. 11, 12, 24).

Gerum, Philippe (Apr. 2004). Xenomai – Implementing a RTOS emulation
framework on GNU/Linux (cit. on p. 32).

Ghezzi, Carlo, Mehdi Jazayeri, and Dino Mandrioli (2002). Fundamentals of
Software Engineering. Ed. by Second. Pearson Prentice Hall (cit. on pp. 20,
70).

www.robotran.be/
www.eclipse.org/Xtext/
www.eclipse.org/xtend/
www.eclipse.org/xtend/
royfeatherstone.org/spatial/
royfeatherstone.org/spatial/

REFERENCES 109

Guennebaud, Gaël, Benôıt Jacob, et al. (2013). The Eigen library v3. url:
eigen.tuxfamily.org (cit. on pp. 84, 99).

Hogan, Neville (1985). “Impedance control: An approach to manipulation: Part
II – Implementation”. In: Dynamic Systems, Measurement, and Control 107,
pp. 8–16 (cit. on pp. 2, 47).

Hutter, Marco, Christian Gehring, Michael Bloesch, Mark A. Hoepflinger,
C. David Remy, and Roland Siegwart (2012). “StarlETH: A compliant
quadrupedal robot for fast, efficient, and versatile locomotion”. In: 15th
International Conference on Climbing and Walking Robot (CLAWAR)
(cit. on pp. 15, 17, 94).

Khatib, Oussama (1987). “A unified approach for motion and force control of
robot manipulators: The operational space formulation”. In: IEEE Journal
on Robotics and Automation 3.1, pp. 43–53 (cit. on pp. 2, 18, 19).

— (Feb. 1995). “Inertial Properties in Robotics Manipulation: An Object-Level
Framework”. In: International Journal of Robotics Research 14.1, pp. 19–36
(cit. on pp. 18, 45, 47).

Khatib, Oussama, Luis Sentis, Jaeheung Park, and James Warren (2004).
“Whole-Body Dynamic Behavior and Control of Human-like Robots”. In:
International Journal of Humanoid Robotics 1.1, pp. 29–43 (cit. on p. 18).

Kiszka, Jan (1997). The Real-Time Driver Model and First Applications (cit. on
p. 34).

Klotzbücher, Markus, Peter Soetens, and Herman Bruyninckx (Nov. 2010).
“OROCOS RTT-Lua: an Execution Environment for building Real-time
Robotic Domain Specific Languages”. In: Internation Workshop on Dynamic
Languages (DYROS) (cit. on p. 21).

Laet, Tinne De, Steven Bellens, Herman Bruyninckx, and Joris De Schutter
(2012). “Geometric Relations between Rigid Bodies (Part 2) - From Se-
mantics to Software”. In: IEEE Robotics and Automation Magazine (cit. on
p. 22).

Laet, Tinne De, Steven Bellens, Ruben Smits, Erwin Aertbelien, Herman Bruyn-
inckx, and Joris De Schutter (2012). “Geometric Relations between Rigid
Bodies: Semantics for Standardization”. In: IEEE Robotics and Automation
Magazine. accepted for publication (cit. on pp. 8, 22).

LaValle, Steven M. (2006). Planning algorithms. Cambridge University Press
(cit. on p. 47).

Mattingley, Jacob and Stephen Boyd (Mar. 2012). “CVXGEN: a code generator
for embedded convex optimization”. English. In: Optimization and Engineer-
ing 13.1 (1), pp. 1–27. issn: 1389-4420 (cit. on pp. 25, 26).

Maxima (2011). Maxima, a Computer Algebra System. Version 5.25.1. url:
maxima.sourceforge.net/ (cit. on pp. 59, 72).

McKain, David (2013). Jacomax, the Java wrapper for Maxima. url: www.wiki.
ed.ac.uk/display/Physics/Jacomax (cit. on p. 72).

eigen.tuxfamily.org
maxima.sourceforge.net/
www.wiki.ed.ac.uk/display/Physics/Jacomax
www.wiki.ed.ac.uk/display/Physics/Jacomax

110 REFERENCES

Mernik, Marjan, Jan Heering, and Anthony M. Sloane (Dec. 2005). “When and
how to develop domain-specific languages”. In: ACM Computing Surveys
37.4 (4), pp. 316–344. issn: 0360-0300 (cit. on p. 11).

Meyer, Bertrand (1997). Object-oriented software construction. Prentice Hall
(cit. on p. 36).

Mistry, Michael, Jonas Buchli, and Stefan Schaal (2010). “Inverse dynamics
control of floating base systems using orthogonal decomposition.” In: ICRA.
IEEE, pp. 3406–3412 (cit. on pp. 11, 20).

Mistry, Michael, Jun Nakanishi, Gordon Cheng, and Stefan Schaal (Dec. 2008).
“Inverse kinematics with floating base and constraints for full body hu-
manoid robot control”. In: 8th IEEE-RAS International Conference on Hu-
manoid Robots, pp. 22–27 (cit. on p. 20).

Modelica Association (2013). Modelica and the Modelica Association. url: www.
modelica.org (cit. on p. 25).

Nakanishi, Jun, Michael Mistry, and Stefan Schaal (2007). “Inverse dynamics
control with floating base and constraints”. In: International Conference on
Robotics and Automation (ICRA), pp. 1942–1947 (cit. on p. 19).

Nayar, Hari D. and Issa A.D. Nesnas (Nov. 2007). “Re-usable kinematic models
and algorithms for manipulators and vehicles”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 833–838 (cit. on
p. 22).

OpenHRP group (2013). OpenHRP. url: www.openrtp.jp/openhrp3/en/

index.html (cit. on p. 25).

Philippsen, Roland, Luis Sentis, and Oussama Khatib (Sept. 2011). “An open
source extensible software package to create whole-body compliant skills in
personal mobile manipulators”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1036 –1041 (cit. on p. 23).

Pratt, Jerry, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt
(2001). “Virtual Model Control: An Intuitive Approach for Bipedal Loco-
motion”. In: The International Journal of Robotics Research 20.2, pp. 129–
143 (cit. on p. 7).

Quigley, Morgan, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng (2009). “ROS: an open-source Robot
Operating System”. In: ICRA Workshop on Open Source Software (cit. on
pp. 9, 12, 14, 25).

Reckhaus, Michael, Nico Hochgeschwender, Paul G. Ploeger, and Gerhard K.
Kraetzschmar (2010). “A Platform-independent Programming Environment
for Robot Control”. In: 1st International Workshop on Domain-Specific Lan-
guages and models for ROBotic systems (DSLRob) (cit. on p. 21).

Schlegel, Christian, Thomas Haßler, Alex Lotz, and Andreas Steck (July 2009).
“Robotic software systems: From code-driven to model-driven designs”. In:
International Conference on Advanced Robotics (ICAR), pp. 1–8 (cit. on
p. 21).

www.modelica.org
www.modelica.org
www.openrtp.jp/openhrp3/en/index.html
www.openrtp.jp/openhrp3/en/index.html

REFERENCES 111

Schultz, Ulrik P., David Christensen, and Kasper Støy (2007). “A Domain-
Specific Language for Programming Self-Reconfigurable Robots”. In: Auto-
matic Program Generation for Embedded Systems (APGES) (cit. on pp. 22,
96).

Selig, Jon M. (2005). Geometric Fundamentals of Robotics. Ed. by David Gries
and Fred B. Schneider. Springer (cit. on p. 56).

Semini, Claudio, Jonas Buchli, Marco Frigerio, Thiago Boaventura, Michele Foc-
chi, Emanuele Guglielmino, Ferdinando Cannella, Nikos G. Tsagarakis, and
Darwin G. Caldwell (Apr. 2011). “HyQ – A Dynamic Locomotion Research
Platform”. In: International Workshop on Bio-Inspired Robots (cit. on p. 15).

Semini, Claudio, Hamza Khan, Marco Frigerio, Thiago Boaventura, Michele
Focchi, Jonas Buchli, and Darwin G. Caldwell (2012). “Design and Scaling of
Versatile Quadruped Robots”. In: Climbing and Walking Robots (CLAWAR)
(cit. on p. 81).

Semini, Claudio, Nikos G. Tsagarakis, Emanuele Guglielmino, Michele Focchi,
Ferdinando Cannella, and Darwin G. Caldwell (2011). “Design of HyQ –
a Hydraulically and Electrically Actuated Quadruped Robot”. In: IMechE
Part I: J. of Systems and Control Engineering 225, pp. 831–849 (cit. on
pp. 15, 64, 92).

Sentis, Luis and Oussama Khatib (2005). “Synthesis of whole-body behav-
iors through hierarchical control of behavioral primitives”. In: International
Journal of Humanoid Robotics 2.4, pp. 505–518 (cit. on pp. 11, 18, 48).

Sherman, Michael and Dan Rosenthal (2013). SD/FAST. url: www.sdfast.
com/ (cit. on pp. 14, 24).

Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo (2009).
Robotics. Modelling, Planning and Control. Ed. by Michael J. Grimble and
Michael A. Johnson. Springer (cit. on pp. 18, 45, 46, 49, 50, 58).

Schaal, Stefan (2009). The SL simulation and real-time control software package.
Tech. rep. CLMC lab, University of Southern California (cit. on pp. 25, 41,
84, 88).

Smith, Russell (2013). The Open Dynamics Engine simulation library. url:
www.ode.org (cit. on p. 3).

Snyder, Alan (June 1986). “Encapsulation and inheritance in object-oriented
programming languages”. In: ACM SIGPLAN Notices 21.11, pp. 38–45.
issn: 0362-1340 (cit. on p. 36).

Steck, Andreas and Christian Schlegel (Sept. 2010). “Towards Quality of Service
and Resource Aware Robotic Systems through Model-Driven Software De-
velopment”. In: 1st International Workshop on Domain-Specific Languages
and models for ROBotic systems (DSLRob) (cit. on p. 21).

Stuelpnagel, John (Oct. 1964). “On the Parametrization of the Three-
Dimensional Rotation Group”. In: SIAM Review 6.4, pp. 422–430 (cit.
on p. 50).

www.sdfast.com/
www.sdfast.com/
www.ode.org

112 REFERENCES

Toogood, R. W. (May 1989). “Efficient robot inverse and direct dynamics al-
gorithms using microcomputer based symbolic generation”. In: IEEE Inter-
national Conference on Robotics and Automation, 1827 –1832 vol.3 (cit. on
p. 23).

Tsagarakis, Nikos G., Stephen Morfey, Gustavo Medrano Cerda, Zhibin Li, and
Darwin G. Caldwell (2013). “Development of Compliant Humanoid robot
COMAN: Body design and Stiffness Tuning”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). [accepted for publication] (cit.
on pp. 16, 17, 51, 94).

Yaghmour, Karim, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum (2008).
Building Embedded Linux Systems. Ed. by Andy Oram. O’Reilly (cit. on
p. 32).

	Introduction
	Motivation
	Contribution
	Outline

	Basic concepts
	Software principles and features
	Error–feedback and model–based control
	Domain Specific Languages
	Overview of the code generation framework

	Related work
	Articulated robots
	Model–based control
	Operational space control
	Joint–level inverse dynamics control

	Rigid body dynamics
	Robotics software
	Robot modelling and code generation

	Software control of articulated robots
	Overview
	Key aspects of the platform
	Real–time
	Communication with the robot hardware
	Motor control and robot behavior
	The SL package

	Domain analysis and software models
	Kinematics and dynamics of articulated robots
	Kinematics
	Dynamics

	Domain models
	Kinematic trees
	Rigid body motions

	The code generation framework
	The specification languages
	Overview
	General features of the grammars
	The kinematics DSL
	The rigid body motions DSL
	The coordinate transforms DSL

	Code generation
	Robot–specific dynamics routines
	Coordinate transforms
	Putting all together: the robotics code generator

	Experimental results
	Control software for articulated robots
	Evaluation of the code generator
	General remarks
	Validation
	Performance comparisons
	Simulation and control

	Conclusions and future work
	A software architecture for the HyQ robot
	The robotics code generator
	Discussion
	Future improvements

	Generated code example
	Header file
	Definitions file

	Publications

