
Challenges in the software architecture design for autonomous legged
robots

Marco Frigerio, Claudio Semini and Darwin G. Caldwell
Dept. of Advanced Robotics,

Istituto Italiano di Tecnologia (IIT),
via Morego, 30, 16163 Genova

<first name>.<last name>@iit.it

Jonas Buchli
Agile & Dexterous Robotics Lab,

ETH Zurich,
Tannenstr. 3, 8092 Zürich

buchlij@ethz.ch

Abstract— HyQ is a fully torque controlled quadruped robot
for research on legged locomotion. This extended abstract gives
an overview of the current software system mounted on the
robot, which allows us to perform successful experiments such
as fast trotting and squat jumping. However, the complexity
of autonomous legged locomotion, and the consequent need to
incorporate additional functionality such as vision, demand for
a more general software architecture. Some of the challenges
and the topics to be addressed in the architectural design will
be briefly discussed.

I. INTRODUCTION

At the Advanced Robotics Department of the Istituto
Italiano di Tecnologia, our research group is developing
HyQ, a high performance quadruped robot with hydraulic
actuation [8, 3, 1, 5]. The software system we developed for
the robot allows us to perform experiments in various fields
such as legged locomotion in complex terrains, whole body
control (see Figure 2).

Our system is the realization of a specific architecture that
has proved to be successful, and can be applied also for
other articulated robots (Section II). However, the final goals
of making the robot autonomous and versatile enough to
perform tasks such as fast running and careful navigation
on rough terrain, demand for a more sophisticated software
architecture. Building on our experience, Section III briefly
illustrates some of the limitations of the existing system and
proposes some ideas for the future work on this topic.

Here and in the following, with software architecture we
mean the design about the overall organization of the compo-
nents of a software system, which highlights properties like
the computational complexity, the frequency of execution,
the entity of information flows among components [7, 2].

II. THE CURRENT CONTROL SYSTEM

The diagram in Figure 1 shows the gross organization of
the hardware and the software of HyQ, which is also a quite
general layout that can be applied to different articulated
robots. We implemented such an architecture on our robot
and achieved promising results [1, 3].

At the base of the diagram we find the hardware and the
operating system, which obviously host all the rest of the
software modules. A general purpose computer is equipped
with input–output (I/O) boards that allow the communication
with sensors and actuators. The most important requirement

CPU board Data I/O 
boards

RealTime OS I/O boards 
driver

Robot Hardware I/O

Motor 
control

Robot 
behaviour

Hardware

sensors/
actuators

Operating
system

User space
software

actuators command
sensors data

sensors data

joints desired
position/force

Fig. 1. Logical view of the current computing setup of the HyQ robot.
Data acquisition boards enable the interaction with the robot hardware (e.g.
sensors). The real–time capable operating system includes a driver giving
access to the facilities of the I/O board. The user level code includes a
library to abstract the hardware and two other active components: the motor
control module and the robot behaviour module, both running as processes.
The sensor data as well as the desired trajectories include the position and
the force at the joints.

for the operating system is to be hard real–time capable,
i.e. support processes that need to be triggered with reliable
timing, without being preempted.

The robot-hardware I/O layer (or “hardware abstraction
layer” – HAL) deals with the sensor measurements being
transmitted to the computer (input), and the commands des-
tined to the drivers of the actuators (output). This component
is a software library that interacts with the I/O boards that
provide the physical connections to the devices. It abstracts
the low level details of the communication and of the specific
sensors, and provides an interface to the numerical control
algorithms. We implemented this component enforcing mod-
ularity, to bound the required software modifications in case
of some change in the actual hardware.

The two modules at the top of Figure 1 control the robot
according to the user plans. The motor control is primarily
responsible for the processing of the sensory data and of the
input commands, in order to produce the appropriate output
commands for the actuators, in a closed-loop fashion (e.g. a



Fig. 2. The HyQ robot performing some interesting motions. From left to right: reacting to lateral disturbances, trotting over obstacles on a treadmill,
trotting outside on rough terrain. All these experiments could be performed also thanks to the software system represented in Figure 1.

PID controller on the joint torque).
The second module – robot behaviour, in the figure (we

will also refer to it as the task module) – generates commands
for the motor control module, in the form of desired positions
or forces at the joints. It is basically a trajectory generator,
even though this term is a bit generic and may hide quite a
broad set of sub-modules interacting according to complex
patterns. The users implements their own behaviours within
this module.

In general, it is highly desirable for the motor control to be
as much as possible agnostic with respect to the task module,
and limit the interaction between the two modules according
to a simple and specific interface. A clear identification of
such interface, i.e. of the information flow, is part of the
definition of the architecture.

The SL simulator and motor controller package basically
provides an implementation of the motor control and the
robot behaviour blocks, so we adopted it for our system
[9]. SL can be configured to have the motor control interact
with a simulator (also included in the package) instead of
a real robot. The task module is unaware of the current
mode of execution, hence it is possible to try behaviours in
simulation and then move to the real robot, without changing
anything in the implementation of the behaviour itself. This
very effective feature is possible thanks to the separation
between the motor-control and the trajectory-generation, two
distinct activities. This is a general principle for designing a
software architecture for an articulated robot, independently
from the use of SL.

III. THE NEED FOR A MORE GENERAL SOFTWARE
ARCHITECTURE

Achieving useful behaviours and autonomy in articulated
robots is a challenging goal. Legged locomotion on rough
terrain is a notable example – and it is also the main topic
of research in the HyQ project.

For such applications, the system described in the previous
section has limitations, some of which are listed here:

• A single-process access to hardware resources (as the
motor control process using the I/O library) does not
handle well information flows that vary in the amount

of data and the frequency. There might be no point, for
example, to sample an Inertial Measurement Unit at the
same high frequency required for position sensors. With
cameras, sampling at e.g. 500Hz is simply unfeasible.

• The robot behaviour module can be arbitrarily com-
plicated. A single component incorporating the whole
logic to generate joint trajectories is not sufficient. This
part of the system depends significantly on the specific
application.

• A single computer for the deployment of the whole
system. Weakly coupled activities or with very differ-
ent requirements (e.g. hard real–time position control
versus image processing) might very well be more
effective (and safe) if executed on different machines.
Constraints like the available space on the robot or the
costs of development on different hardware may bias
this analysis; however, the compromises required to fit
the hardware constraints should ideally be made with
the purely problem-driven architecture available as a
reference.1

In general, it is necessary to devise a proper software ar-
chitecture identifying and quantifying the information flows
and the logical activities the system has to perform. A
logical architecture must be designed with no reference to
any implementation technology, which is a subsequent step
of the process [2]. It sometimes happens in the robotics
community, that the availability of libraries or middlewares
that might have gained a certain fame – sometimes because
they are actually effective – leads to technology driven–
systems, which however is a conceptually flawed approach.

One of the interesting challenges in the development of the
architecture would be to identify the role of controllers within
the whole system. For example, research has shown that
force control (plus model based control) enables compliant
interaction with the environment, which leads to benefits
at the level of the final application, for instance to cope
with unperceived obstacles during locomotion [4, 3]. Which
are the interactions required between low level controllers

1In this case we are referring primarily to the deployment architecture
[2].



and higher level components such as planners, to achieve
autonomy and robustness? For instance, should the controller
notify the presence of an obstacle (e.g. detected by unex-
pected position of the foot) even though it can be handled
by the compliance of the leg? Is it sufficient for the controller
to expose an interface limited to the setting of the gains?

The following points refer more specifically to the ap-
plication of autonomous locomotion in unstructured envi-
ronments, and they also represent issues to be addressed to
devise a coherent architecture.

• Terrain and world modelling: sensors such as cameras
and laser range scanners are useless if their data is not
used to construct some sort of description of the terrain
and the environment the robot has to move in.

• Robot task model: a description of the possible high
level commands for the robot should be identified,
e.g. how to ask the robot to reach a certain position,
with a certain gait and/or a certain velocity, with time
constraints, etc.

• Robot model: the control logic could exploit informa-
tion like the current gait and speed of the robot, the
power availability, the estimated quality of the various
sensor measurements.

Other interesting challenges in the design of the software
system refer to the representation of time and of the own
computing capabilities of the robot (a sort of Quality of
Service measurement [10]); imagine a running robot that
perceives a moving and approaching obstacle (e.g. a car):
avoiding crashing into the obstacle involves reasoning about
its speed and the speed of the robot – which pertains the real
physical time – possibly taking into account the available
computing resources, that is how long the robot can afford
to “think” before taking a decision.

As far as the actual implementation is concerned, it is
important to adopt sound technologies. For example, the code
for low level controllers must be hard real–time capable;
kinematics and dynamics computations are fundamental to
achieve complex behaviours, but it is not straightforward to
implement them, especially when efficiency is important. Our
work described for instance in [6] addresses these issues, and
provides sound tools for the implementation of important
components of the whole architecture.

IV. CONCLUSIONS

The software system currently controlling the HyQ robot
enabled to start a state-of-the-art research in the field of
torque controlled, high performance locomotion. Different
behaviours in the form of generators for the desired joint
positions and forces can be developed and tried on the robot.

However, due to the complexity of the domain such a
system is not the definite solution to actually enable ver-
satility and autonomy for the HyQ robot or other machines
of similar complexity; some limitations and a direction for
future development about the software architecture design
have been highlighted.

The points discussed in this short paper will be the subject
of future research.

ACKNOWLEDGEMENTS

This research has been funded by the Department of Advanced
Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163
Genova. The authors would like to thank Alessio Margan for his
valuable help in the development of the low level software.

REFERENCES

[1] Victor Barasuol, Jonas Buchli, Claudio Semini, Marco Fri-
gerio, Edson R. De Pieri, and Darwin G. Caldwell. “A Reac-
tive Controller Framework for Quadrupedal Locomotion on
Challenging Terrain”. In: IEEE International Conference on
Robotics and Automation (ICRA). [accepted for publication].
2013.

[2] Diego Bernini and Francesco Tisato. “Explaining architec-
tural choices to non-architects”. In: 4th European conference
on Software architecture. ECSA’10. Copenhagen, Denmark:
Springer-Verlag, 2010, pp. 352–359.

[3] Thiago Boaventura, Claudio Semini, Jonas Buchli, Marco
Frigerio, Michele Focchi, and Darwin G. Caldwell. “Dy-
namic Torque Control of a Hydraulic Quadruped Robot”. In:
IEEE International Conference on Robotics and Automation
(ICRA). 2012.

[4] Jonas Buchli et al. “Compliant quadruped locomotion over
rough terrain”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Oct. 2009, pp. 814–
820.

[5] Michele Focchi, Thiago Boaventura, Claudio Semini, Marco
Frigerio, Jonas Buchli, and Darwin G. Caldwell. “Torque-
control Based Compliant Actuation of a Quadruped Robot”.
In: 12th IEEE International Workshop on Advanced Motion
Control (AMC). 2012.

[6] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell.
“Code Generation of Algebraic Quantities for Robot Con-
trollers”. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2012.

[7] David Garlan and Mary Shaw. “An introduction to software
architecture”. In: Advances in Software Engineering and
Knowledge Engineering. Ed. by V. Ambriola and G. Tortora.
Vol. 1. World Scientific Publishing Company, 1993, pp. 1–
39.

[8] Claudio Semini et al. “Design of HyQ – a Hydraulically and
Electrically Actuated Quadruped Robot”. In: IMechE Part I:
J. of Systems and Control Engineering 225 (2011), pp. 831–
849.

[9] Stefan Schaal. The SL simulation and real-time control soft-
ware package. Tech. rep. CLMC lab, University of Southern
California, 2009.

[10] Andreas Steck and Christian Schlegel. “Towards Quality
of Service and Resource Aware Robotic Systems through
Model-Driven Software Development”. In: 1st International
Workshop on Domain-Specific Languages and models for
ROBotic systems (DSLRob). Sept. 2010.


