
Journal of Software Engineering for Robotics 7(1), July 2016, 36-54
ISSN: 2035-3928

RobCoGen: a code generator for efficient
kinematics and dynamics of articulated robots,

based on Domain Specific Languages
Marco Frigerio1,∗ Jonas Buchli2 Darwin G. Caldwell1 Claudio Semini1

1 Department of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
2 Agile & Dexterous Robotics Lab, ETH Zürich, John-von-Neumann Weg 9, 8093 Zürich, Switzerland

Abstract—This paper presents the Robotics Code Generator (RobCoGen), an open source program that can generate an efficient
implementation of rigid body dynamics and kinematics algorithms for articulated robots, such as humanoids and manipulators. New
Domain Specific Languages (DSLs) for the specification of robot models and coordinate transforms lie at the core of our software. The
technology of DSLs and code generation allows users to deal only with high level information (like a robot model), and relieves them
from low level coding of critical routines. The generated code is efficient, tailored to each robot and suitable for applications ranging
from simulations to hard real time robot control. This paper describes the rationale and the development of RobCoGen, as well as
experiments that include comparisons with other programs: results show a comparable efficiency with code optimized using symbolic
simplification (average execution time ratio of 1.22 with SD-FAST) and better performance than a general purpose library (ratio of 3.24
with RBDL). Our design criteria were not limited to efficiency, though, but we considered ease of use and flexibility as equally relevant.

Index Terms—Software, articulated robots, dynamics, code generation, domain specific language

1 INTRODUCTION

The software for articulated robots, like simulators [1], [2]
and model–based controllers [3], [4], make extensive use of
algorithms and expressions related to kinematics and dynamics
of multi-rigid-body systems. Despite an established theoretical
understanding of the algorithms, sound implementations still
demand significant resources; this fact has a negative impact
on the progress of the state of the art in robotics.

The lack of reusable components based on general software
models, in addition to the inherent complexity of kinematics
/ dynamics, are some of the reasons of the problem. Coding
becomes even more challenging when the need for hard real
time at high frequency (e.g. control loops in the order of
102Hz) demand for efficient code fulfilling further constraints.

This paper introduces the Robotics Code Generator (RobCo-
Gen), a computer program we developed to generate optimized
code for the dynamics and the kinematics of articulated robots

Regular paper – Manuscript received August 29, 2015; revised January 28,
2016.

• This work was supported by Fondazione IIT. J.B. is supported by a
Professorship Award from the Swiss National Science Foundation.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

[5]. The idea behind RobCoGen is to relieve the user from the
manual development of code which is crucial yet complex,
necessary for most applications yet rarely the actual focus
of the research: namely, state-of-the-art rigid body dynamics
algorithms, coordinate transformation matrices and Jacobian
matrices (i.e. kinematics algorithms). RobCoGen allows its
end users to deal only with high level information, the mini-
mum amount required to define an instance of a problem, and
then leave a computer program to deal with implementation
details, by means of code generation. For example, if one
needs to implement the coordinate transforms from A to B,
one shall only be required to tell the relative position of A with
respect to B. RobCoGen is based on new computer languages
designed for the specification of the high level input for the
code generator.

RobCoGen currently generates C++ and MATLAB code.
In the case of coordinate transforms also MAXIMA code is
generated; MAXIMA is the symbolic engine used by RobCo-
Gen (see Section 5.1). The support for more programming
languages can be implemented within the same framework.
The generated code can be used within applications that
include simulations but also hard real–time robot controllers,
as the C++ code is fast and has deterministic execution time.
The wide range of possible applications is one of the valuable
features of the tool.

www.joser.org - c© 2016 by M. Frigerio et al.

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 37

The current code generation targets include state-of-the-
art efficient algorithms for multibody dynamics: the Com-
posite Rigid Body Algorithm for the computation of the
joint space inertia matrix, the Newton-Euler algorithm for
inverse dynamics and the Articulated Body Algorithm for
forward dynamics [6]. An optimized, tailored instance of the
algorithms is generated for each robot model given as input. In
addition, RobCoGen generates an implementation of arbitrary
coordinate transformation matrices and geometric Jacobians.

1.1 Motivation and contribution
The scarcity of truly reusable robotics software often results
in wasting significant development time on the so called
non–problems; The programmers have to face problems that
have been thoroughly addressed from the theoretical viewpoint
although practical and correct implementations can still be
hard to achieve. This has the unfortunate consequence of
turning these non–problems back to actual ones. Coordinate
transformation matrices may seem a naive example, yet it
is a clear case of a recurring non–problem of almost any
robotics software application. On one hand, the mathematics
of coordinate transforms is text–book knowledge, on the other
hand the mathematical concepts can be confusing and error–
prone when it comes to writing and validating a piece of
software that deals with different coordinate systems.

Furthermore, addressing the requirements of hard real time
is fundamental for the implementation of control algorithms
running on real robot hardware; any failure can lead to severe
consequences. Efficient code is desirable also for simulations
and other applications like sampling based planning, where
the faster the implementation of the dynamics, the better.
Addressing the apparent trade–off between efficiency and flex-
ibility/generality would substantially improve the effectiveness
of software for robotics applications.

Our contribution to this end is a toolchain, RobCoGen, for
the automatic code generation of algorithms for rigid body
dynamics and kinematics, which can be used in simulation and
control applications. RobCoGen represents a progress beyond
state-of-the-art tools since it gathers different effective features
– usually not available together.

• Ease of use: the user is required to deal only with high
level information and is relieved from time consuming
and error–prone code development. Dedicated computer
languages give users a compact and readable format to
specify such information.

• Reliability and robustness: an automated code generation
process is repeatable and does not introduce occasional
mistakes, as opposed to manual coding.

• Efficiency: the generated code can be optimized to ad-
dress the speed and the constraints of fast real time robot
controllers. Efficiency is achieved by generating robot–
specific instances of the general algorithms.

• Flexibility: sound domain models make the software
more general. Any articulated robot (without loops) is

supported, arbitrary coordinate transforms can be chosen,
etc. Code generation in different programming languages
allows to target different platforms.

• Re-use and composability: using the generated code in
a custom application is simple, thanks to the focus on
specific, well defined algorithms (e.g. inverse dynamics)
and modularity in the generated implementation.

In general, RobCoGen offers a good compromise between ef-
ficiency and flexibility/generality. A general purpose dynamics
library (such as ODE [7]) is more flexible than RobCoGen in
that it works with robot models that can be determined at run–
time. However, dynamically building the robot model during
system operation is rarely an actual requirement. Especially in
the case of deployment on a real robot, when its dynamics is
usually the only problem that matters: a dedicated implemen-
tation like robot-specific generated code is more effective to
keep the system lightweight and efficient.

Finally, RobCoGen is open source and it is built with open
source technologies only. Thus it is convenient for the user
to install and use the toolchain, as well as possibly contribute
to it. These points increase the chance of the adoption of our
toolchain in the community.

1.2 The role of DSLs
A Domain Specific Language (DSL) is a computer language
whose notation explicitly refers to concepts of a specific
domain, so that its expressiveness is tailored for a particular
class of problems. External DSLs have their own, custom
grammar and therefore are independent languages, whereas
internal DSLs are realized by a specific use of a general
purpose programming language, from which they inherit the
basic syntax [8], [9].

RobCoGen is based on three external Domain Specific
Languages that we designed (Kinematics-DSL, Motion-DSL,
Transforms-DSL), which in turn are based on general domain
models we devised. These DSLs can be thought of as specifi-
cation languages, for the compact representation of coordinate
transforms and the structure of articulated robots. We chose
external DSLs because they define a textual format that is
easily human and machine readable. Transforms and robot
descriptions are simple enough for a text document to be
convenient for the user. From the perspective of the DSL
developer, instead, we could exploit the extensive support
of modern language workbenches such as Xtext for Eclipse
[10]. Because of our requirement to have code that can
run efficiently also on real robots, typically within existing
frameworks/platforms, code generation in multiple languages
was a better choice than, for example, an internal DSL executed
by an interpreter or a virtual machine.

In summary, external DSLs were the right implementation
technology for our needs. In fact we believe this choice to
be a distinctive feature of RobCoGen that compares favorably
with other similar software packages, as those mentioned in
Section 2.

38 Journal of Software Engineering for Robotics 7(1), July 2016

1.3 Overview
RobCoGen is essentially a Java program that uses the code
generation functions of the DSLs described in this paper. The
core of RobCoGen is the Kinematics-DSL, which defines a
new file format for the description of robot models and whose
generators deal with the rigid body dynamics algorithms. A
robot model in the form of a document of the Kinematics-DSL
is the main input for RobCoGen (see an example in Figure 5).

The DSLs and generators that address the problem of
coordinate transforms (the Motion-DSL and Transforms-DSL)
constitute in fact an independent software. That is, one can
generate the implementation of arbitrary coordinate transforms
without any robot model, since coordinate transforms is an
independent domain (the examples in Figure 4 refer indeed to
a generic use case that is not necessarily related to robotics).
RobCoGen itself uses such a software to generate the coor-
dinate transforms for the particular case of articulated robots.
The development of a standalone code generator for coordinate
transforms is a further contribution of our work.

The structure of the central part of this paper reflect the
logical development process of RobCoGen: analysis of the
domain, design of the domain specific languages, implementa-
tion of the code generators. These three subjects are addressed
respectively in Section 3, 4 and 5. The tool itself as a whole
is the topic of Section 6, while Section 7 illustrates various
experimental results. Section 8 discusses open issues and
future developments, while the final remarks of Section 9 close
the paper.

Before all that, the next Section gives a brief overview of
related work.

2 RELATED WORK

For the past few years, the literature on robotics software
has often discussed the lack of standards, models, rigorous
structure and principles in the development process, even after
decades of research in the robotics field [11]. The available
experience does not get transferred effectively in the software
development process. To address these issues, the fields of
Model Driven Engineering and Domain Specific Languages
have received growing attention by the robotics community
[12], [13]. For an extensive survey about the use of DSLs in
robotics, for example, refer to [9].

The generation of code exploiting symbolic math engines is
not a new idea, and some examples can be found already in old
literature [14]. A well known, commercial computer program
implementing this idea is SD-FAST [15]. SD-FAST produces C
or Fortran implementation of the equations of motions and
various analysis routines for a wide variety of mechanical
systems. It supports also closed loop mechanisms and various
joint types. In comparison with SD-FAST, RobCoGen provides
several advantages: it supports two modern programming
languages (C++ and MATLAB) and can be extended with
others. The C++ classes generated by RobCoGen are more

modular than the C code of SD-FAST, they do not impose
any policy on their usage and therefore are more reusable
(no state machines nor global variables). Our Kinematics-
DSL for the robot description looks simpler than the SD-FAST
file format and at the same time it is more flexible (e.g. it
allows an arbitrary orientation of the reference frames of the
mechanism, at the default joint configuration). Furthermore, a
DSL created with Xtext-Eclipse comes with a dedicated editor
with syntax checks. In addition, RobCoGen is open source,
which is advantageous for the final user, and opens the way
to possible development contributions from the community.

Similar comments apply to Robotran [16]. Robotran has
a graphical editor for the robot model, it generates symbolic
equations of motion and performs simulations interacting with
MATLAB. Robotran is also quite sophisticated and can handle
a variety of mechanisms including closed loops and vehicles.
It includes its own symbolic engine that allows the generation
of optimized code in C language. Simulations though, have to
be performed with MATLAB and Simulink, which refer to the
C code and perform the numerical integration. So Robotran
is tied to these programs, and does not support explicitly the
generation of standalone C code – although one can try to
extract some routines out of it.

In contrast to SD-FAST and Robotran, the code generators
of RobCoGen use symbolic simplification marginally, only for
the coordinate transforms, as detailed in Section 5. Although
symbolic simplification possibly results in code with the
minimum number of operations, there are a few potential
disadvantages with that approach: the reduction of vector
operations to scalar operations, which may make poor use of
possible specialized hardware for vector arithmetic [6]; also,
for the same reason, the generated code would typically be
much less readable and compact. A sophisticated symbolic
engine is required, which can interpret actual algorithms and
is able to deal with potentially thousands of equations. From
the developer perspective, the interaction with the symbolic
engine could make the code generation more complicated, as
opposed to a set of text templates which embed the logic of
the algorithm, as in the case of RobCoGen (see Section 5 for
more details).

Existing software to calculate the dynamics of multibody
systems is obviously not limited to symbolic engines and code
generators. RBDL [17] is a generic C++ library following the
standard approach of an API requiring a robot model, in the
form of a data structure, as an argument. RBDL implements
the same dynamics algorithms as RobCoGen and it uses the
Eigen library for linear algebra, as in the C++ code generated
by RobCoGen. For these reasons RBDL is ideal to be compared
to our work (Section 7.3).

Another well known C++ library in the robotics community
is KDL, which is part of the Orocos project [18]. KDL aims
at providing an uniform API for the forward and inverse
kinematics problem. As far as dynamics is concerned, at the
time of writing it seems to be limited to inverse dynamics

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 39

for linear chains. RobCoGen supports forward kinematics
and forward/inverse dynamics, for kinematic trees. Inverse
kinematics is not supported as an analytical solution might not
exist, and code generation would not be particularly effective
for the generic numerical solvers, as opposed to dynamics
algorithms (see Section 5.2).

Metapod [19] is an interesting application of the technique
of C++ template meta-programming. It exploits the power of
the C++ compiler and templates, to instantiate an optimized,
robot-specific implementation of rigid body dynamics algo-
rithms. Although conceptually very similar to RobCoGen, this
approach has a few drawbacks: it is limited to C++; template
meta-programming is complex, both at development and de-
bugging time, and it is perhaps not an ideal choice for non-
trivial computations such as optimized multibody dynamics.
On the other hand, the implementation of RobCoGen is a
standard program that operates on a normal data structure
representing the robot; thus it leverages the flexibility of a
regular programming language. RobCoGen is also not limited
to the dynamics algorithms, as it also generates reusable
components that address only the coordinate transforms for
the robot.

The Stanford Whole-Body Control (S-WBC) project [20],
was initially released in 2009 as a result of the efforts of the
Stanford Robotics Lab to bring the operational space formula-
tion into software for the community. The S-WBC comprises
a library for joint-space kinematics and dynamics, on top of
which additional components provide the abstractions required
by operational space control. Specific effort has been spent on
the configurability of the framework. Our approach shares with
the S-WBC some goals such as flexibility and robustness, how-
ever RobCoGen is not a full-featured framework; it focuses
on self-contained algorithms to be even more general and be
used within other applications/frameworks. The S-WBC itself
might be an example of these. In fact, our previous work [21]
contains some efficiency comparisons between RobCoGen and
the kinematics/dynamics engine used by the S-WBC.

An interesting work, motivated by the need for standard
models of recurring concepts in robotics, specifically the geo-
metric relations between rigid bodies such as poses, velocities,
coordinates, can be found in [22], [23]. The authors address
the issue of the ambiguities of existing implementations, which
arise from the lack of a standard notation and especially
from the assumptions implicitly hidden in the software. These
assumptions determine incompatibilities, high costs for system
integration and the risk of implementing physically inconsis-
tent operations. Our work stems from similar premises, but
while (a part of) RobCoGen provides the correct implementa-
tion of any coordinate transform, the focus of the cited work
is to ensure a consistent usage of the transforms at run time.
The two approaches can thus be considered complementary,
to an extent.

Other examples of modeling and description languages for
multibody systems, which compare to our Kinematics-DSL,

can also be found in existing packages and programs. In the
OpenHRP simulator [24], the language for the models comes
from the 3D modeling field, and mixes graphical aspects and
sensors with kinematics parameters. In the Robot Operating
System ROS [25], the URDF file format based on XML is the
standard. The URDF also mixes kinematic/dynamics parame-
ters with visualization information. In addition, XML is harder
to read and maintain as compared to a dedicated solution such
as our Kinematics-DSL. To the best of our knowledge, the
OpenHRP format and the URDF do not come with efficient
code generation capabilities.

The XACRO language, also part of ROS, extends the URDF
with macros which improve the flexibility of the language. An
interesting feature enabled by macros is modular descriptions,
so that a part of a robot can be described only once but
referenced multiple times in the full model; for example, the
leg of a humanoid, which is repeated twice. This feature is not
yet available in our Kinematics-DSL, but it is worth including
in future developments.

Part of ROS as well, the tf library [26] provides runtime sup-
port for the management of coordinate transforms in a robotics
application. On the other hand our code generator focuses on
the correct implementation of specific transforms, and as such
it addresses complementary requirements. For example, some
of the transforms that the tf takes care of disseminating to the
entire system, at runtime, could be implemented with our tool.

General purpose modeling languages also exist, like Mod-
elica [27]. Modelica is a multi–domain, object–oriented mod-
eling language for a variety of physical systems, used also
in industry. Comprehensive and very general languages like
Modelica, though, may prove harder to learn (version 3.3 of
the language specification is 282 page long) and not as efficient
as a specialized DSL, for very specific requirements such as
code generation for specific algorithms used in robotics.

3 DOMAIN ANALYSIS
This section briefly describes our analysis of the domains of in-
terest: coordinate transforms and representation of articulated
robots. We identified the relevant features of these domains, for
the practical, ultimate purpose of generating code with limited
user intervention. In the case of coordinate transforms, our
aim was to identify the attributes required for unambiguous
specifications; a prerequisite for an automatic code generation
program, and a typical issue with standard approaches. In
the case of the representation of robots, our goal was to
formalize an established robotics convention (the kinematic
tree representation), to base the design of our Kinematics-DSL
on a solid foundation.

We represent the results of this analysis in the form of UML
class diagrams, as capturing the static relationships among the
concepts of the domain suffices for our purpose [28]. A class
diagram is a compact representation, suitable as a reference
for software development (in our case, for the development of
the grammar of the DSLs – Section 4).

40 Journal of Software Engineering for Robotics 7(1), July 2016

PrimitiveTransform
 - axis: CartesianAxis
 - amount: double

Transform
 - name: String

RefFrame
Translation Rotation

«Enumeration»
MovedFramePosition
left
right

 - leftFrame - rightFrame

 + factors {ordered}

 1..*
 - convention

 - name: String

Fig. 1. The UML class diagram for coordinate transforms. A generic, named Transform results from the product
of several PrimitiveTransforms, which correspond to pure rotations or translations. The MovedFramePosition
property allows to determine uniquely any primitive transform.

3.1 Coordinate transforms
A coordinate transformation matrix X (or just “coordinate
transform”) maps one coordinate vector to another coordinate
vector representing the same abstract vector (e.g. a relative
position), but in a different coordinate system, in general
translated and rotated with respect to the original one:

pB = BXA · pA

where A and B are two frames and p is the coordinate vector.
In the rest of the paper we assume that we deal only with
right-handed, orthogonal coordinate frames, that the sign of
rotation angles is given by the right hand rule and that the
matrix left–multiplies a column vector of coordinates.1

With reference to the layout of the general equation above,
one can say that the transform maps the coordinates on its
right to the coordinates on its left. Let us then introduce the
terms left frame and right frame that refer to the position of
the subscripts of X and therefore to the frames involved in the
transform (respectively B and A in the example): the right
frame (A) is the frame in which the multiplied coordinates
are expressed; the left frame (B) is the frame in which the
resulting coordinates are expressed.2

When developing coordinate transforms by hand or when
using existing code, it is easy to make mistakes because a
unique definition of a transform requires information that is
usually implicit, giving rise to ambiguities. Namely, for a
primitive transform that involves a single rotation/translation,
one must know the direction of the transform: for example,
assume that frame B is rotated by an angle θ about the z
axis, with respect to A; while this information cannot be
misunderstood, an expression identified as a rotation matrix for
the z axis (which we call Rz(θ)) often does not tell explicitly
whether it transforms vectors from B to A or vice versa.
The ambiguity would be easily resolved by augmenting the

1. This is almost always the case in literature and software, thus we believe
it is not a strong limitation. It would be possible to avoid the assumption and
make the model even more general, however we decided to avoid it to keep
the DSL and the code generation software simple.

2. The notation with the double subscript on the left and on the right is very
effective for the user also to understand how to compose multiple matrices,
as nearby subscripts have to match (as in BXCCXA).

generic transform X(θ) with a property stating whether the
moved frame is the left or the right frame. If the available
representation lacks this information, the user wastes time by
investigating the conventions and by making mistakes. As an
example, the code in the MATLAB robotics toolbox [29] uses
one convention about the direction of the transform, while the
6D transforms introduced by Featherstone in [6], [30] use the
other one. That is, a matrix and its transpose are called with
the same name in two different software packages.

Taking into account the considerations above, we designed
the meta–model shown in Figure 1. That is the basis for
our DSL which allows the user to write unambiguous def-
initions of coordinate transforms (Section 4). In the meta–
model, a PrimitiveTransform is associated to a pure
translation/rotation along/about a single Cartesian axis only.
The MovedFramePosition property disambiguates the
direction of the mapping, as explained above. A generic
Transform can be represented as an ordered sequence of
primitive ones, and can also have a custom name. Instances
of this class would be application-specific (e.g. the transform
from foot frame to torso frame, in a legged robot). The
important attributes leftFrame and rightFrame identify
uniquely the role of the transform (e.g. as in footXtorso,
torsoXfoot, etc.). Although a transform generally embeds
both translation and rotation information, the separation mod-
eled with PrimitiveTransform serves to identify simple
terms for the user to specify a transform.

The diagram is roughly a model of abstract transforms
whose actual type (e.g. homogeneous transforms, spatial vec-
tor transforms) is unspecified. One may think of instances of
the main classes PrimitiveTransform and Transform
as generic n×n matrices, composable by means of the regular
matrix product. This idea of an abstract description turns out
to be useful for code generation, as code for different kind of
matrices can be generated given the same input.

3.1.1 Rigid motions

So far we have not discussed the problem of actually finding
the sequence of primitive transforms that result in the desired
transform. Manually finding the sequence is itself a confusing
task, since the composition rules depend upon the direction of

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 41

PrimitiveMotion

 - amount: double

Translation Rotation

Motion

RefFrame
 - name: String

«Enumeration»
CompositionConvention
LocalFrame
FixedFrame

 - primitiveMotions {ordered}

 1..*

 - start - destination

 - convention - axis: CartesianAxis

Fig. 2. A UML class diagram representing rigid motions. A Motion is a sequence of movements, rotations
and translations, a generic body has to perform to go from one pose to another pose; poses are represented
by reference frames. The interpretation of the ordered sequence of primitive motions is unique because of the
CompositionConvention property.

the primitive transforms (discussed above) and the direction
of the desired transform itself (i.e. BXA or AXB). It turns
out that the correct sequence can be determined from the
specification of a rigid motion involving the same coordinate
frames. A rigid motion is a sequence of translations and
rotations of a body (or of a reference frame, which in this
context is the same thing), that move it from a starting pose
to a final pose.

In fact, such a geometric description is really the essential,
high level information underlying the problem, as it enables
the computation of any transform involving the same frames;
as such, it is the information users should preferably deal
with. For example, a user would describe the location of
the camera frame in the robot, rather than working out the
coordinate transform, which is error prone. This facts motivate
the analysis of rigid motions and the development of a
corresponding DSL. Figure 2 shows the UML class diagram. As
expected, the model resembles quite closely the previous one
about transforms, since motions and coordinate transforms are
tightly correlated – although the two domains do not coincide.

The class PrimitiveMotion represents either a pure
rotation or translation of arbitrary amount, about or along
a single Cartesian axis. A composite Motion is instead an
ordered sequence of primitive motions (also called “motion
steps”), and represents any rigid motion. In order for the
step sequence to have a unique interpretation, it is neces-
sary to declare with respect to which reference each step is
defined. An intuitive choice is to assume each motion step
to be performed with respect to the current moving frame,
i.e. the frame resulting from all the previous motion steps.
Another possibility is to use only the frame fixed in the
initial pose, so that the axes for translations and rotations
never change.3 In the diagram of Figure 2, the property
CompositionConvention refers to this point.

The meta–model for motions we have just described, as
well as the previous one for coordinate transforms, include
the properties that ensure that any conforming description (of
transforms/motions) is uniquely interpretable. Such a property
will propagate to the DSLs (Section 4) and will ultimately lead

3. In this case the order of the primitive translations does not matter

to more robust code generators (Section 5).

3.2 Articulated robots

The very well know equation of motion for a multi–rigid–body
system can be written in the following form:

Γ = H(q) q̈ + h(q, q̇) (1)

where q, q̇ and q̈ are respectively the vectors of the scalar
position, velocity and acceleration for each degree of freedom
of the robot, while Γ represents the forces at the joints. H
is the matrix that expresses the inertia seen locally at each
joint, while h is a term that accounts for the position and the
velocity dependent forces (and possibly other additional forces
due to contacts, springs, etc.). In this work, we consider the
dynamics algorithms to compute either Γ (inverse dynamics),
q̈ (forward dynamics) or the matrix H [6].

As noted in [6], in addition to inputs such as the position
and velocity of the joints, these algorithms depend explicitly
on the model of the robot that describes its kinematics and
dynamics. The structure of these models is basically standard
in robotics and mechanism analysis. In short, it is a topological
description which represents the multibody system as a graph,
where joints are arcs and bodies are nodes (quite the contrary
of what graphical intuition might suggest). Joints have a type
(e.g. revolute, prismatic) and bodies have inertia properties;
geometric information about the position of the joints must
also be provided [31], [6]. We shall call this abstraction the
“kinematic tree” meta–model; the robot models we target
in this work conform to such a meta–model. These robots
include humanoids, quadrupeds, manipulators, or analogous
articulated mechanisms. The dependency on the robot model
is a key point about the nature of dynamics algorithms, which
reveals the opportunity to implement specific instances of the
general algorithms, tailored to specific robots (cf. Section 5.2).

Figure 3 shows an UML class diagram reproducing the key
elements of the kinematic tree meta–model. The diagram is
simple but general enough to account for any articulated robot
without kinematic loops. A conforming robot model would
contain all and only the information that fully specifies the

42 Journal of Software Engineering for Robotics 7(1), July 2016

AbstractLink
 # mass: double
 # centerOfMass: Vector3
 # inertiaMatrix: Matrix3
 # ID:

ReferenceFrame
 - name: String

Link

Placement
 - translation: Vector3
 - rotation: Vector3

VirtualLink
 # mass = 0

Joint

 + getStatus(): double

«Singleton»
RobotBase

PrismaticJointRevoluteJoint

 children [1..*]

 parent [0..1]

 + defaultFrame [1]

 + defaultFrame [1]

 frames [*]

Fig. 3. The kinematic tree meta–model as an UML class diagram. It can represent multibody systems, capturing
the role of a joint as the connection between a parent-child pair of links, and emphasizing their association with
reference frames. The convention about the placement of these frames (that cannot be modeled in the diagram) and
the parameters about the relative pose of two successive ones (the Placement class) provide the full geometry
information about the robot.

physics of the system. A few more details about the class
diagram follow.

The abstract class AbstractLink models any rigid body
with inertia properties; we used a few subclasses to repre-
sent special cases: Link for the regular links of the robot.
RobotBase for the special link identified as the root of the
kinematic tree; it can be floating if the robot has a mobile,
underactuated base, such as a humanoid. VirtualLink for
dimensionless bodies that allow the composition of primitive
joints to model more complex mechanisms; this class explicitly
forces the inertia properties of its instances to be zero.

Any link can have multiple children (but only one parent),
which accounts for kinematic branches such as multiple legs
attached to the torso of a legged robot. The parent–child
relationship is induced by joints, whose type determines the
kinematic constraint between the two bodies; for this reason
we chose to make Joint an association-class connected to
the self–association for Link. Also the Joint class is sub-
classed to distinguish between prismatic and revolute joints.
The common operation getStatus() shows that it must be
possible in some way to inspect the joint status variable (a
scalar, since we are dealing with 1-DoF only joints).

Finally, the class ReferenceFrame represents a coordi-
nate system. Each joint and link have a default frame, whose
physical location in the robot is defined by a convention. A
convention is necessary in order to give a meaning to the
geometrical parameters in a robot model. In short, link and
joint frames have the z axis aligned with the joint motion
axis; any joint frame is defined with respect to the frame of
the link that supports the joint; any link frame coincides with
the frame of the previous joint that supports the link. More

information about this convention can be found in Chapter 4
of [6] and in the manual of our Kinematics-DSL (see Section
4). The Placement class wraps the parameters of a relative
pose, and it is used for example to specify the location of a
joint frame with respect to the link frame, as mentioned above.
Although the same information could be represented with the
classes in Figure 2, we picked a less general representation
to keep the model simple; this point is further discussed in
Section 6 and Figure 9. Finally, links can optionally have any
number of additional frames, defined in turn with respect to
the default one.

4 DSLS
This section describes the Domain Specific Languages (DSLs)
that we developed based on the analysis described in the
previous section. Our DSLs are specification languages, to
conveniently specify coordinate transforms and articulated
robot models. They are “external” DSLs, that is, they are
defined by their own, custom grammar. This paper describes
three DSLs: the Kinematics-DSL to specify articulated robot
models; the Motion-DSL and the Transforms-DSL to specify
respectively rigid motions and coordinate transforms.

An external DSL is defined by its grammar, which formally
specifies the syntax of the language: allowed keywords, state-
ments, and so on. The grammar constrains the content of any
possible document, and its structure. A domain model such as
those shown in Section 3, instead, defines the structure of the
information to be conveyed by the documents. Grammar and
domain model are therefore tightly related. Roughly speaking,
the grammar of every DSL of RobCoGen was created by map-
ping each class of the UML diagram to one or more rules of the

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 43

grammar, while adding additional syntax elements to improve
the readability (e.g. parenthesis). Thus, the development of
the grammars was relatively straightforward, and subject to a
sound understanding of the domain.

4.1 Coordinate transforms

Figure 4 shows an excerpt from the grammar and a sample
document of the Motion-DSL and the Transforms-DSL. The
sample documents refer to a possible use-case in which the
user wants to generate the coordinate transforms for each
triplet of Euler angles. To this end, all the possible sequences
of three successive rotations are listed within a document of
the Motion-DSL. The list alone effectively conveys all the
necessary input information and therefore is the only thing the
user has to write. Indeed, the document of the Transforms-DSL
can itself be automatically generated given the specification
of the motions (this step is covered in Section 5.1); therefore
the document of the Motion-DSL is shown first in the figure.
The examples do not include any translational motion, but
obviously those are also possible.

The keywords Convention and MovedFramePos refer
to the corresponding properties described in the meta–models
in Section 3, Figure 2 and 1. They make the documents
content unambiguous. Although in principle the convention is
a property of each single primitive transform/motion (cf. the
meta–model), we decided to have a document–wide property
that applies to all the objects, to keep the syntax simpler. So,
for example, in Figure 4b, all the primitive rotations have to
be interpreted as successive rotations, happening with respect
to the current (i.e. local) frame.

4.2 Articulated robots

Figure 5 refers to the Kinematics-DSL4, which defines the
format of the robot description files that RobCoGen takes as
input.A manual of the language, describing the syntax and
the conventions more in detail, is available online at the wiki
of RobCoGen [5]. The example in the figure describes the
HyL robot (a Hydraulic Leg of HyQ [32]) that we developed
at our lab. It is a three DoF, planar mechanism consisting
of a 2R leg attached to a vertical slider. A Kinematics-DSL
document is neat and simple, yet specifies completely the
dynamics of a robot. The syntax is mostly in the form of
key-value pairs, with paragraphs delimited by curly braces; it
would look familiar to programmers, but it is simple enough
also for other users. The Kinematics-DSL does not include any
property unrelated to the geometry/dynamics of the system,
like graphical attributes, sensors/actuators, etc.; that is, it does
not mix separate concerns.

4. Although a robot model includes both kinematics and dynamics prop-
erties, to keep the name short we chose “Kinematics-DSL” because of the
standard term “kinematic tree”.

4.3 Constants, parameters and variables
In all our DSLs, the numerical properties that appear in
a document belong to one of three categories: constants,
parameters, variables. Conceptually, the distinction between
the three groups is based on the relative frequency scale at
which the values are expected to vary. Given a system in
regular operation, constants do not change, parameters change
from time to time (possibly because of external intervention),
variables change in general continuously (i.e. state variables).
The absolute time scales depend on the actual system. The
possibility to distinguish between constants, parameters and
variables was introduced in the grammars but it is not shown in
the domain models described in Section 3, as it is not specific
of a particular domain.

A robot model, that is, a document of the Kinematics-DSL,
contains only constants or parameters, represented respectively
by constant literals such as 0.456 and identifiers such as
link_mass. Depending on the location in the document
(i.e. the context), a parameter is automatically classified as
a “dynamics parameter” – if it represents an inertia property –
or as a “kinematics parameter” – in the case of a geometrical
property. The distinction allows the code generation logic
to treat the two groups of parameters differently and gives
more flexibility.5 Robot models do not contain any variable
definition. Conceptually, the variables in a multibody system
such as an articulated robot are the joint status variables, but
those do not need to be represented in a static description of
the system.

In the Motion-DSL and Transforms-DSL, instead, identifiers
are treated by default as variables (like a1 a2 a3 in the
examples in Figure 4), unless they are declared explicitly
as parameters, with a specific syntax. These DSLs do not
impose any policy to determine which property belongs to
which group, but, simply, the grammar gives a mechanism
to make the distinction, if necessary. Furthermore, note that
these DSLs have no concept specific to robotics like the joint
status, as their purpose is to do code generation of coordinate
transforms, which is an independent issue. However they are
flexible enough to be used by RobCoGen to generate the
coordinate transforms of a robot. See Section 6.

4.4 Implementation
We implemented all our DSLs with the Xtext application
for Eclipse [10]. We chose Xtext as it seemed convenient,
powerful, and because of the integration with Eclipse, which
was already part of our development tools. The automatic
generation of the DSL infrastructure given the grammar, a
feature of Xtext, was also a strong motivating point. We did not
review other available tools possibly comparable with Xtext as

5. The literature commonly refers to the mass and the moments of inertia
as the “inertia parameters”. To avoid any ambiguity, in this work we refer to
them as the “inertia properties” since we use the term “parameter” for a more
specific concept.

44 Journal of Software Engineering for Robotics 7(1), July 2016

Motion:
start=[Frame] ’->’ end=[Frame]
’:’ primitiveMotions += PrimitiveMotion*
(’[’userName=ID’]’)? ;

PrimitiveMotion: Rotation | Translation;
Rotation: Rotx | Roty | Rotz ;
Translation: Trx | Try | Trz ;

Rotx: ’rotx’ ’(’arg=ArgSpec’)’;
// [...]

(a) Excerpt from the grammar of the Motion-DSL.

// [...]
Convention = l o c a l // motion is wrt current frame
S -> Exyz : ro tx(a11) ro ty(a12) r o t z(a13)
S -> Exzy : ro tx(a21) r o t z(a22) ro ty(a23)
S -> Eyxz : ro ty(a31) ro tx(a32) r o t z(a33)
// [...]

(b) A sample document of the Motion-DSL specifying sequences of three
successive rotations.

Transform:
’{’leftFrame=[Frame]’}’’_X_’’{’rightFrame=[Frame]’}’

’=’ matrices += AbsMatrix*
(’[’userName=ID’]’)? ;

AbsMatrix: Rotation | Translation ;
Rotation: Rx | Ry | Rz ;
Translation: Tx | Ty | Tz ;

Rx: ’Rx’ ’(’arg=ArgSpec’)’;
// [...]

(c) Excerpt from the grammar of the Transforms-DSL.

// [...]
MovedFramePos = r i g h t

{S} X {Exyz} = Rx(a11) Ry(a12) Rz(a13)
{S} X {Exzy} = Rx(a21) Rz(a22) Ry(a23)
{S} X {Eyxz} = Ry(a31) Rx(a32) Rz(a33)
// ...
{Exyz} X {S} = Rz(-a13) Ry(-a12) Rx(-a11)
{Exzy} X {S} = Ry(-a23) Rz(-a22) Rx(-a21)
{Eyxz} X {S} = Rz(-a33) Rx(-a32) Ry(-a31)
// ...
{Exzy} X {Exyz} = Ry(-a23) Rz(-a22) Rx(-a21)

Rx(a11) Ry(a12) Rz(a13)
(d) A sample document of the Transforms-DSL defining a set of
coordinate transforms, generated from the example in (b).

Fig. 4. The DSLs for the specification of coordinate transforms. Excerpts from the Xtext grammars (left) and from
example documents (right). Note that the grammar is a single, fixed specification, whereas the document on the right
is only one of infinitely possible examples, conforming to the grammar. Only part of the text is shown due to space
limitations. S and E· · · are just user defined names for hypothetical reference frames. Also the variable names a·· are
arbitrary; of course numerical constants would also be possible.

that was beyond the scope of our research, and Xtext seemed
to satisfy our requirements.

For each DSL, Xtext also generates a dedicated editor, as an
Eclipse plugin. The editor provides syntax coloring and auto
completion. An interesting feature, although we did not focus
on the DSLs editors, is the extensibility of the static analysis
and validation of the code. For example, by programming an
appropriate extension, the editor would be able to display a
warning in case the inertia tensor specified in a link description
is not positive definite.

5 CODE GENERATION

The ultimate purpose of our DSLs is to generate executable
code, which can be effectively used in custom applications.
So far we developed code generators for MATLAB and C++,
which are suitable for applications ranging from quick pro-
totypes and simulations to hard real time control. Any other
programming language can in principle be supported, by de-
veloping new generators. Code generators are textual templates
that are instantiated for each input model (any document of a
DSL is a model). These templates are written with the Xtend
language [33], which is natively supported by Xtext [10]. Xtext
is in turn the workbench we use to develop the DSLs.

5.1 Coordinate transforms

The code generators of the Motion-DSL and the Transforms-
DSL form a tool for the automatic implementation of coordi-
nate transformation matrices. The output is standalone source
code with the definition of the matrices requested by the user
(e.g. by means of a configuration file). The main user input
is typically a document of the Motion-DSL, which lists the
relative pose of some reference frames of interest. Currently,
our generators supports homogeneous coordinate transforms as
well as transforms for spatial motion/force vectors [6], [34].

Code generation basically relieves the user from the fol-
lowing tasks: (1) finding the correct primitive transforms and
the composition sequence that would result in the desired
composite transform; (2) concretely calculating the result and
implementing it in a programming language, ideally with a
dependency on the variables/parameters of the problem (e.g.
the status of a joint). These tasks are error prone because
identifying the correct sequence and the correct form of each
primitive transform is confusing (cf. Section 3.1). Although
not fundamentally complicated, these tasks are tedious, time
consuming and error prone, and thus preferably solved by a
computer program.

These two tasks are addressed separately, to keep the

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 45

Robot HyL {

RobotBase base {
iner t ia params { /* ... */ }
c h i l d r e n { slider v i a SLIDE }

}

l i n k slider {
id = 1
iner t ia params {

mass = 3.982
CoM = (-0.08315, 0.06849, -0.00654)
Ix =0.037131 Iy = 0.087473 Iz =0.112496
Ixy=0.028543 Ixz=-0.00097 Iyz=0.003392

}
c h i l d r e n { upperleg v i a HFE }

}
l i n k upperleg {

id = 2
iner t ia params { /* ... */ }
c h i l d r e n { lowerleg v i a KFE }

}
l i n k lowerleg {

id = 3
iner t ia params { /* ... */ }
c h i l d r e n {}
frames {

fr_foot {
t r a n s l a t i o n = (0.33, 0.0, 0.0)
r o t a t i o n = (0.0, 0.0, 0.0)

}
}

}

p j o i n t SLIDE {
ref frame {

t r a n s l a t i o n = (0.0, 0.0, 0.0)
r o t a t i o n = (0.0, 0.0, 0.0)

}
}
r j o i n t HFE {

ref frame {
t r a n s l a t i o n = (0.0, 0.13, -0.08)
r o t a t i o n = (-PI/2.0, 0.0, PI/2.0)

}
}
r j o i n t KFE {

ref frame {
t r a n s l a t i o n = (0.35, 0.0, 0.0)
r o t a t i o n = (0.0, 0.0, 0.0)

}
}
}

Fig. 5. A robot model in the Kinematics-DSL format. The grammar of the language is not shown for brevity. In bold
purple are the keywords of the language: for example via states which joint connects a child link to the current link;
{p|r}_joint stand respectively for prismatic and revolute joint. Some of the inertia properties are hidden for brevity.

software simpler and more modular. Specifically, the code
generator of the Motion-DSL only performs the first task, as it
turns the geometric information of its documents (user input)
into an abstract specification of the transforms of interest, in
the form of sequences of primitive transforms. Concretely, the
output of the Motion-DSL generator is in turn a document of
Transforms-DSL, as the latter language defines a format that is
independent of the transform type (homogeneous, spatial, etc.)
and of programming languages. For example, the document in
Figure 4d is generated given the one in Figure 4b. An intuitive
description of relative poses is turned into a more specific, yet
code independent, definition of coordinate transforms. Note
that, for example, given the pose of A and B with respect to
S, the generator can determine (if requested) the transforms
from S to A or B, as well as the one from A to B and also all
the inverses.

On the other hand, the generator of the Transforms-DSL
is only responsible for the generation of actual source code,
as detailed in the next subsections. Note, however, that the
Transforms-DSL was not designed for the sole purpose of be-
ing an intermediate by–product of the overall code generation
process. The user might very well use it explicitly, should he
need to write directly a specification of transforms rather than
motions; for example, in the case of debugging.

5.1.1 Basic strategy
The basic approach of the Transforms-DSL generator consists
in translating the primitive transforms into matrices in the
target language, and the composite transforms into products
of such matrices. When there is a simple library in the target
language that already implements the six primitive transforms
Rx(), . . . , Tz(), it is then enough to generate the correct
sequence of products between the identifiers defined in the
library. However, the code generator must know (by means of
a configuration mechanism) the convention used by the library:
by comparing it with the convention declared in the input
document, the generator can autonomously decide whether
the abstract element Rz(α), for instance, corresponds to its
counterpart in the library or its inverse. This point is explained
in Section 3.1.

5.1.2 Symbolic simplification
In fact, the Transforms-DSL generator uses a symbolic engine
to improve the efficiency of the generated code. The engine
develops the products of the primitive transforms and simpli-
fies the resulting matrix to a compact form. Afterwards, the
generator for an actual programming language (e.g. MATLAB)
can take advantage of the prior knowledge about the matrix:
the analytical expression for each element, which elements

46 Journal of Software Engineering for Robotics 7(1), July 2016

f(model, …) {
 …
 …
}

Code generator
Robot model M Robotspecific

code

f
M
(…) {

 …
 …
}

Fig. 6. Generation of an implementation of dynamics
algorithms tailored for specific robots. The code generator
must embed the knowledge about the abstract algorithm.
A concrete implementation is achieved by turning the
algorithm into code in some language, where the ref-
erences to the robot model are substituted with actual
values and specific instructions.

are constant, which ones are equal to others, which and how
many unique trigonometric functions the matrix depends on.
As a result, the generated code does not perform matrix
multiplication but only evaluates the expressions for the non-
constant elements. Sines and cosines and possibly other com-
mon expressions are evaluated only once. The generation of
code for the symbolic engine itself, which is a prerequisite for
the rest of the process, follows the basic strategy described
before. In the current version of our software, the symbolic
engine we use is Maxima [35].

Symbolic simplification is not intrinsically required to ac-
complish code generation, as the basic strategy could be
used for every target language. However, it can improve the
efficiency of the generated code, by reducing the amount
of algebra, at the sole cost of having more complicated
generators. Considering the need for efficiency we mentioned
in the introduction – to address the constraints of real–time
controllers or fast simulations – symbolic simplification is
desirable.

5.2 Dynamics algorithms
The code generator of the Kinematics-DSL outputs implemen-
tations of rigid body dynamics algorithms: the Composite–
Rigid–Body algorithm for the computation of the joint space
inertia matrix, the Recursive Newton–Euler algorithm for
inverse dynamics and the Articulated–Body algorithm for
forward dynamics, all in the formulation using spatial vectors
algebra [6], [34]. These algorithms are the most efficient ones
for the purpose.

A robot model in the form of a document of the Kinematics-
DSL, allows to resolve the dependency of the algorithms on
the model itself (see Section 3.2). That is, the generated imple-
mentation of a dynamics algorithm is no longer parametrized
with the robot model, but implicitly embed the information of
a specific robot (see Figure 6).

Robot–specific implementations have the advantage of be-
ing faster since they realize a simplified and optimized version

of the algorithm. In the case of C++, the code is also real–time
safe, since it performs purely numerical computations with
predictable execution time (no dynamic memory allocation,
for example). A robot-specific, optimized implementation is
ideal to run fast simulations of the robot or to deploy the code
on the actual real hardware for control.

The code generator of the Kinematics-DSL does not use
symbolic simplification, but still applies optimizations which
are possible thanks to the prior knowledge of the kinematics
of the mechanism. Such knowledge allows to avoid, in the
generated code, all the logic that would be required to be
general: the dimension of vectors and matrices is a compile
time constant; loops are unrolled; all the boolean tests and the
corresponding branches (i.e. if, then, else) are simply
replaced with the implementation of the sole case which is
known to be the right one. Similarly, standard optimizations,
which only apply to special cases, appear in the generated code
without a test for their applicability, since it is determined
in advance. For example, the motion subspace matrix S –
which describes the motion freedom allowed by a joint – for
prismatic and revolute joints is a single column vector with a
single non-zero element; therefore operations with this matrix
can be greatly simplified [6].

Branch–induced sparsity is another significant example of
optimization. The term refers to the sparsity pattern of some
matrices related to the robot kinematics/dynamics, which is
due to the branching of the kinematics structure of the robot.
Specialized algorithms – for both the computation of the
matrix itself and for the operations involving it – avoid any
computations for the elements known to be zero, and might
be significantly more efficient than general purpose ones [6],
[36].
The code generator of the Kinematics-DSL implements the
Composite–Rigid–Body algorithm for the calculus of the
Joint–Space Inertia Matrix (JSIM) H, which exhibits branch–
induced sparsity. The generated code not only avoids to
calculate the zero elements of H, but also does not need to
identify the sparsity at run-time. The information about the
branching is exploited during code generation, and the output
is a tailored algorithm that embeds implicitly knowledge about
the sparsity. Efficient code is generated also for the inverse
H−1; it implements the LTL factorization of H, where L is a
lower triangular matrix that preserves the same sparsity pattern
as H [37], and a custom routine for the inversion of a lower
triangular matrix that takes advantage of the sparsity as well.

6 ROBCOGEN

The Robotics Code Generator (RobCoGen) is composed of the
code generators of the DSLs we have described in this paper.
The main input for RobCoGen is a robot model in the form of
a document of the Kinematics-DSL, which is the only source
file the user has to develop and maintain manually. Another,
secondary input, is a sort of configuration file stating which

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 47

Robot HyL
Frames {
fr_base, fr_slider, fr_upperleg,
fr_lowerleg, fr_foot

}
Transforms {

l e f t f r a m e= fr_foot r ight frame= fr_lowerleg
fr_base <- fr_foot // alternative syntax
fr_base -> fr_foot

}
Jacobians {

base= fr_base t a r g e t= fr_foot
}

Fig. 7. A sample configuration file, stating which trans-
forms/Jacobians to generate.

coordinate transforms and Jacobians the user would like to
generate. The file format is another simple DSL we have not
described for brevity, however Figure 7 shows an example.6

Figure 8 gives an overview of the components and the
data flows involved in the generation of robot–specific code.
The code generator of the Kinematics-DSL directly takes care
of the dynamics algorithms, but also orchestrates the other
generators for the coordinate transforms, as if it was a user of
the other languages. We mentioned before that the generator
for transforms is a standalone software not limited to the case
of articulated robots, however that is the use case we focus on
here.

In this regard, the figure shows that the Kinematics-DSL
software also generates a document of the Motion-DSL, which
describes the pose of the joint frames of the robot. This
step is really just a change of representation of the same
information already encoded in the robot model, via the six
parameters in each joint paragraph. The motivation for this
additional, intermediate step, is the reuse of the code generator
of the Motion-DSL. Although it would be possible to turn the
joint parameters directly into a Transforms-DSL document,
that would require to replicate in the Kinematics-DSL gen-
erator some functionality anyway available in the Motion-
DSL generator. Keep in mind that the Motion-DSL itself is
motivated by the need for code generation for transforms,
which exists independently from the case of robotics (Section
5.1). With respect to the Motion-DSL, the Kinematics-DSL has
a less general way of expressing the pose of a frame, to keep
the grammar simple and thus the documents more readable.
However, a possible development of the Kinematics-DSL could
optionally allow to specify the joint frame pose directly with
the syntax of the Motion-DSL, for maximum flexibility. An
example of this transformation is visible in Figure 9.

In turn, the generator of the Motion-DSL outputs a list
of abstract transforms in the form of a document of the
Transforms-DSL. The list also depends on the configuration
file we mentioned at the beginning of the section. The actual

6. Some transforms are always generated regardless of the user configura-
tion, as they are required by the dynamics algorithms.

Desired
transforms
& Jacobians

Coordinate
transforms

Robot
model

Symbolic
transf.

Symbolic
Jacobians

Frames
placement

gen.

C++
transf.

gen.

C++
Jacobians

gen.

C++
Rigid body
dynamics
algorithms

Fig. 8. Overview of the RobCoGen workflow. Scrolls
represent DSLs documents (left to right: configuration
DSL, Kinematics-DSL, Motion-DSL, Transforms-DSL); the
trapezoids are code generators, while the sheets are
generated source files. The green circle indicates a code
generation step requiring the symbolic engine. The user
only provides the robot model and a configuration file, as
the other DSLs documents are also generated.

implementation of the coordinate transforms is finally gener-
ated by the Transforms-DSL. These last steps are explained in
Section 5.1. When the transforms refer to frames attached to
different links of the robot (which is usually the case), they are
implemented with a dependency on variables that correspond
to the status of the appropriate joints.

6.1 Geometric Jacobians
In this work, the term Jacobian refers to a matrix that maps
joint space velocities to Cartesian velocities of some point of
interest located on the robot, according to the well known
formula:

ẋ = J(q) q̇

Although the code generated with RobCoGen mostly uses the
spatial vector algebra [34], at the current version the generated
Jacobians are not spatial. We use instead the classical defi-
nition of geometric Jacobian that would be familiar to most
roboticists [31]: the generated Jacobians are 6×n matrices; the
six elements of the resulting velocity vectors are coordinates of
an arbitrary reference frame, which account for the 3D linear
velocity of the point and the 3D angular velocity of the robot
link the point is fixed to. The number of columns n is the
same as the number of degrees of freedom of the kinematic
chain whose joints contribute to the velocity of the point.

The user selects a set of desired Jacobians by listing pairs
in the form <frame–point of interest> (e.g. a point on the
foot and the torso frame, in a humanoid). Since Jacobians are
intrinsically defined on a robot model it seemed sensible to im-
plement the code generation within the Kinematics-DSL. The
procedure is as follows: at first the program generates code for
the symbolic engine; this code calculates the Jacobian matrix
given the appropriate coordinate transforms, generated before
(geometric Jacobians can be computed from direct kinematics

48 Journal of Software Engineering for Robotics 7(1), July 2016

r j o i n t HFE {
ref frame {

t r a n s l a t i o n = (0.0, 0.13, -0.08)
r o t a t i o n = (-PI/2.0, 0.0, PI/2.0)

}
}

(a) Specification of the pose of a joint-frame in a robot model (see
the full example in Fig. 5).

// [...]
Convention = l o c a l
upperleg -> HFE : t r y(0.13) t r z(-0.08)

ro tx(-PI/2.0) r o t z(PI/2.0)
(b) Same information in a document of the Motion-DSL. The upperleg
is the robot link supporting the joint HFE. However, for the Motion-
DSL that is just a name for a reference frame.

Fig. 9. The transformation of the geometric information
from a robot model to a motions model (see Fig. 8)

[31]). Afterwards the symbolic code is actually interpreted by
the symbolic engine and actual code is generated in the same
way as for coordinate transforms, as described in Section 5.1.2.

6.2 Parameters and robot classes

Thanks to the support for parameters in our DSLs (see Section
4.3), a robot model can be defined without specifying in
advance all the values of its properties. A parametric robot
model can in fact be thought of as a class of equivalent robots.
The equivalence relation would be formally defined by the
isomorphism between the kinematic tree (i.e. a graph) of the
robots, plus the additional constraint that corresponding joints
must be of the same type (i.e. prismatic or revolute). The effi-
ciency of the generated code in the case of a parametric model
is not affected significantly, since the optimizations applied by
RobCoGen (section 5) depend mainly on the kinematic tree
topology and the joints type, which are invariants of the class.

Parameters represent non-constant numerical properties of
the robot, which vary at a lower average rate than variables.
The joint positions are the only variables in a robot model. A
parametric model can be very effective for simulations sup-
porting the design process of new robots, as interactive tests or
automatic optimization techniques can be applied to determine
ideal values for the unknown robot properties. A parametric
kinematics/dynamics engine may be useful also for existing
real robots with some options for structural reconfiguration. In
any case, the distinction parameter–variable based on the rate
of change is sound, as in general the joints move continuously
for a time interval while the parameters are fixed.

For the actual computation of the kinematics/dynamics,
the values of the parameters must be resolved at run–time,
according to some mechanism. We shall describe here such
a mechanism as implemented in the C++ code generated
by RobCoGen, which applies the well known principle of
programming to an interface [38]. RobCoGen generates two

DynamicsAlgorithm

 + updateParameters()

«Interface»
DynamicsParamsGetter

 + getParam_XXX(): double

CoordinateTransforms
 + updateParameters()

«Interface»
KinematicsParamsGetter

 + getParam_XXX(): double

InertiaProperties

Fig. 10. Simplified layout of the C++ classes dealing
with dynamically changing parameters, as generated by
RobCoGen (the Jacobians class is not shown). The illus-
trated dependencies enable the kinematics/dynamics to
consistently reflect a change of the parameters. Changes
only depends on the user implementation of the interfaces
(in light blue).

interfaces (i.e. virtual C++ classes), respectively for kinematics
and dynamics parameters, which just declare a getter method
for each parameter defined in the robot model. Other generated
classes depend on such interfaces, as they invoke the methods
at run–time to get the actual value of the parameters. The
end user of RobCoGen is required to provide a concrete
implementation of the interfaces to be used in an actual
application.

With this approach, the kinematics/dynamics engines (gen-
erated by RobCoGen) do not hard-code any policy to resolve
the parameters, whereas the user has ample flexibility to
develop different strategies for the purpose. For example,
a simple class that parses a configuration file, or a com-
plex component taking part of a batch of non-interactive
simulations, which varies the parameters automatically. It is
also possible to have a single component implementing both
interfaces, possibly to impose some kind of coupling among
the parameters (e.g. a mass that increases whenever the length
of the link increases).

The classes that rely on the getter interfaces (if the robot
model is parametric at all) are those directly affected by a
change of the dynamics/kinematics parameters: the class that
encapsulates the inertia properties of the links, the one contain-
ing the coordinate transforms and the class with the Jacobians.
These classes expose the method updateParameters(),
used by an external component aware of a variation in the
parameters, to signal the event. The method implementation
requests the interface for fresh values, and triggers the internal
update logic of the class. See Figure 10. This mechanism
conceptually realizes a push–based communication, where a
component – within the application using the RobCoGen
code – actively provides the updated parameters when they
change. This mechanism is more suitable than having the
kinematics/dynamics algorithms to continuously poll for fresh
values, as the average rate of change of parameters is generally

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 49

much lower than the execution rate of the same algorithms
(which would follow the rate of change of the joint status).

7 EXPERIMENTAL RESULTS

This section discusses the concrete usage of RobCoGen and
the benefits for the end user. The numerical results we show
refer primarily to the performance of the generated code, as it
is difficult to find metrics and tests to measure usability and
flexibility. For these tests we usually compare C++ implemen-
tations, but our generator can currently emit also MATLAB
and MAXIMA code; at the price of developing more generator
templates, potentially any language can be supported.

7.1 General remarks
Results from our experience with RobCoGen are promising.
Creating new robot descriptions takes little time, since the
Kinematics-DSL is simple and intuitive. Code generation is not
affected by occasional mistakes, and is more reliable than man-
ual development. Consistency between source code in different
languages, generated given the same input (e.g. a robot model),
is also helpful. For example, one can test Jacobian matrices in
MATLAB with rapidly prototyped simulations, while using the
same quantities in C++ in a real robot controller, with a strong
confidence that they will behave in the same way. Correctness
and consistency allow the user to focus the initial development
and debugging efforts on the models, simpler than code hence
easier to inspect.

To ease the process of learning RobCoGen, for end users as
well as possible contributing developers, it is valuable for the
toolchain to be as clear and as observable as possible. With
this requirement in mind, we designed simple DSLs addressing
well defined and confined problems, so that it is relatively easy
to perform many trials and understand the behavior of the
generators. Clarity in the generated code is also of great help
for debugging and to give the user more chances to understand
and thus be satisfied with the tool. Model–based optimizations
(Section 5.2) as opposed to exhaustive symbolic simplification,
permit to use vector arithmetic in the generated code, which
is thus more compact and readable. Vector arithmetic is in
fact an opportunity to exploit existing libraries specialized for
the purpose. In the case of C++, RobCoGen uses Eigen [39],
a sophisticated library for efficient linear algebra. MATLAB
supports natively vector operations. A few more remarks on
symbolic simplification can be found in Section 2.

On the other hand, a factor that in our experience negatively
influenced the acceptance of RobCoGen among other users, is
the intrinsic lack of generality in the generated code. While
beneficial for efficiency (one of the primary points of this
paper), it is perceived as incompatible with the development of
generic code, i.e. high level algorithms addressing articulated
robots in general. However, languages like C++ do have tools
that allow to write generic interfaces to wrap specialized code
– such as the output of RobCoGen–, namely templates and

(a) Hydraulic leg (b) Fancy

(c) HyQ2Max (d) Centaur

Fig. 11. Some of the simulations created with SL and
RobCoGen.

traits [40]. It is true, though, that these techniques require a
deeper knowledge of the language and make coding harder
and slightly more verbose.

7.2 Validation
In order to validate the numerical correctness of the generated
code we have tested it against other existing and established
implementations, automating the comparison of the numerical
output for different robot models and different inputs (e.g. the
joint status q, q̇ and q̈). We used the MATLAB code available
on Roy Featherstone’s web page about spatial vector algebra
and dynamics algorithms [30], and also the SL software
package, which has been in development for more than fifteen
years and is used in several research labs for simulations and
hard real time model–based control of real robots [41]. The
C++ code has also been compared with all the other tools
subject to our efficiency comparison, described in the next
section.

Furthermore, we are currently using RobCoGen as the
dynamics engine for the simulation of all the robots developed
in our lab, and also in the controllers of the real robots. Our
simulations are currently based on SL, which also includes
components for the low level joint control and for trajectory
generation. To validate RobCoGen, we modified SL by re-
placing the dynamics engines and the kinematics computations
with our generated code, leaving the rest unmodified. The C++
code generated by RobCoGen is self contained and with a neat
interface, therefore it is easily composable with an existing
application. So far, our experience with these simulations,
also in comparisons with experiments with the real robots,
is positive (Figure 11).

50 Journal of Software Engineering for Robotics 7(1), July 2016

RBDL SD FAST RobCoGenxMETAPOD

3 5 12 24
0

5

10

15

20

25

30

DoF

tim
e

[u
s]

#DoF SD-FAST RBDL RobCoGen

3 0.15 0.94 0.43
0.36 2.19 1

5 0.27 1.71 0.70
0.38 2.42 1

12 4.49 20.82 3.02
1.49 6.90 1

24 13.37 28.54 7.67
1.74 3.72 1

(a) The joint-space inertia matrix

3 5 12 24
0

5

10

15

20

DoF

tim
e

[u
s]

SD-FAST RBDL RobCoGen
0.17 1.60 0.46
0.36 3.47 1
0.29 2.50 0.77
0.37 3.24 1
1.30 7.77 3.15
0.41 2.47 1
4.79 14.00 6.35
0.75 2.21 1

(b) Inverse dynamics

3 5 12 24
0

10
20
30
40
50
60
70

DoF

tim
e

[u
s]

SD-FAST RBDL RobCoGen
0.60 3.38 1.00
0.60 3.38 1
0.98 5.87 1.81
0.54 3.24 1

22.44 22.81 7.24
3.10 3.15 1

69.65 38.69 15.10
4.61 2.56 1

(c) Forward dynamics

Fig. 12. Performance comparisons between the C++ code generated by RobCoGen and RBDL, SD-FAST, Metapod–
for three dynamics routines. The plots at the top show the absolute, average execution time in µs versus the number
of degrees of freedom of the robot model. The tables at the bottom refer to the same results, and show the absolute
execution time (regular font) as well as the ratio with the execution time of RobCoGen (italic font).

7.3 Performance comparisons

We performed several speed comparisons between our gener-
ated C++ code and other implementations, to demonstrate that
our approach not only provides ease of use and flexibility, but
also high run time performances. The execution times shown
in the graphs are more relevant as a comparison rather than
in absolute terms, since they also depend on the hardware.7

We measured the execution time of the routines that calcu-
late inverse dynamics, forward dynamics and the joint-space
inertia matrix. We tried our best to make fair comparisons,
by measuring the execution time of the minimum amount of
code required to compute the desired quantity, for each of
the engines we tested. Execution time was measured simply
with the high_resolution_clock of the standard C++
library: the difference between two absolute-time samples
(function now()), taken before and after the code snippet
of interest, gives an estimate of its execution time. In fact, in
our test programs the second sample is taken only after 103

repetitions of the same snippet, in order to make the execution
time longer and cope with the inaccuracy of the clock for
very short time intervals.8 This procedure is repeated several
times, and in every iteration the input variables are randomly
changed. The average execution time is finally calculated for

7. All the tests were executed on a Intel(R) Core(TM)2 Duo CPU, P8700
@ 2.53GHz, with 4GB of RAM

8. The difference between two immediately subsequent calls to now() is
far from being zero. For this offset to be negligible, one should measure time
intervals a few order of magnitude longer.

each engine.
We compared RobCoGen with SD-FAST, RBDL, and, when-

ever possible, with Metapod. These programs/libraries are
good terms of comparison as they are representative of dif-
ferent approaches than RobCoGen. SD-FAST is a well know
program that uses symbolic simplification, whereas RBDL is a
generic library whose API requires the robot model at runtime.
Metapod uses C++ metaprogramming to maximize efficiency,
so it is partially similar to RobCoGen. More information about
these tools can be found in Section 2. The results of our
comparison tests are displayed in Figure 12.

The robot models we used in the tests are: a single leg of
our HyQ robot [32] mounted on a vertical slider (3 DoFs);
a fictitious robot with both prismatic and revolute joints (5
DoFs); our new hydraulic quadruped HyQ2Max (12 DoFs)
[42]; a centaur robot, obtained by adding two of our new
hydraulic arms [43] on the body of HyQ (24 DoFs). A
screenshot from the simulator of each of these models is
visible in Figure 11.

The plots show that RobCoGen performs well, and it is
always comparable with SD-FAST. In fact, in the case of
the inertia matrix and forward dynamics RobCoGen seems to
scale better with the degrees of freedom, and it is faster than
SD-FAST. As expected, RobCoGen is also faster than RBDL
since both engines use the same algorithms but RobCoGen
provides robot-specific optimized implementations. Metapod
performs very well too; only few samples are shown in the
plots because, to the best of our understanding of the library,

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 51

Fig. 13. The hydraulic leg of the HyQ robot.

Metapod does not support prismatic joints (which appear in
the first two robot models), nor more than five children for a
single link (last robot model) nor any algorithm for forward
dynamics.

Additional results from older comparison tests can be found
in [44], [45] and [21].

7.4 Hard real time control
The overall execution times described above, plus the feature
that only predictable-duration instructions are performed, are
alone good evidence of the compatibility of the generated C++
code with hard real time constraints. In order to provide a more
rigorous argument for this claim, we tested the execution of the
generated code within the control processes of actual robots,
in a real time environment. Figure 13 contains a few snapshots
of an experiment with the hydraulic leg of HyQ that consists
in tracking a very fast (5Hz) sinusoidal position trajectory at
the joints.

The desired motion commanded to the robot is so fast that
proper position tracking is only possible using an inverse dy-
namics based controller (this experiment was in fact originally
designed to demonstrate the effectiveness of our force con-
troller; proper force control is required to use inverse dynamics
[46]). The RobCoGen implementation of inverse dynamics for
the leg was executed at 250 Hz without issues, especially
without violating the real time constraints (a violation such
as a dynamic memory allocation would be signaled by the
real time operating system).

Another example of the use of RobCoGen on a real robot
can be found in [47]. In this work the authors propose a
planning and execution framework for quadrupedal locomo-
tion over rough terrain. The implementation of the required
kinematics/dynamics routines on the real HyQ robot is based
on RobCoGen.

7.5 Robot design
The kinematics/dynamics engines generated by RobCoGen
allow to investigate task–based optimizations of the robot
design, thanks to the support for parametric models (see
Section 4.3 and 6.2). This section describes a couple of simple

0.32 0.34 0.36 0.38 0.4

0.32

0.34

0.36

0.38

0.4

Lower leg length [m]

N
or

m
. h

ei
gh

t

(a) Squat jump varying the length of the lower legs (the upper leg is 36.4cm
long). The plot shows the distance traveled by the trunk, from the lift-off
position to the apex of the jump, normalized by the lower leg length. The
trunk is roughly 90× 30cm long.

0.6 0.8 1 1.2 1.4 1.6

76

78

80

Upper-leg / lower-leg length

P
ow

er
 [W

]

(b) Mechanical power employed by the hip and knee of one leg of the
quadruped during trotting. Each data point is the average value over a single
step. The x axis shows the ratio of the length of the upper and lower leg.

Fig. 14. Two examples of simulations with a parametric
quadruped model.

yet illustrative examples about this feature, which give an idea
of the possibilities of the parametric engines. We ran the tests
with a model of a preliminary design of our new hydraulic
quadruped HyQ2Max [42]. The results for both examples are
illustrated in Figure 14.

The first example stems from a study about the torque
requirements for a quadruped performing a squat jump, with
respect to the leg size [48]. In that work, a few assumptions
on the robot kinematics simplify the problem and make an
analytical analysis possible. In our case instead, we can
consider a more realistic scenario by leveraging the flexi-
bility of our numerical simulator. We performed repetitive
simulations where the length of the lower leg of the robot
is changed automatically before performing the squat jump.
The purpose is to find a possibly optimal value with respect
to the effectiveness of the motion, measured as normalized
jump height (Fig. 14a). As the leg length varies in a narrow
range, we assume a constant mass of the links (note that it
would have been perfectly possible to include a variable mass
also). The jump is achieved by imposing a vertical force on
the trunk, that is then mapped into desired joint torques by a
simplified version of the trunk controller described in [49].

The second example involves the simulation of a trotting
gait with the same quadruped model [49]. We analyze the
effect of moving the position of the knee with respect to
the trunk, without altering the robot height; this effect is
achieved by varying the length of the two links of the leg
while keeping their sum constant. Since trotting is a periodic
motion (as opposed to the squat jump), the results refer to
a single simulation run for a given time interval; to avoid

52 Journal of Software Engineering for Robotics 7(1), July 2016

injecting abrupt disturbances in the trot controller, the lengths
are changed smoothly during the motion. Figure 14b shows
the plot of the mechanical power requirements of the hip and
knee joints, summed together and averaged over a single trot
step.

In both examples the results basically tell that there seem
to be an optimal configuration corresponding to the upper
and lower leg having the same length. However, note that in
the case of trotting changing the desired forward velocity of
the robot also changes the power profile, suggesting that the
relations among the various quantities are not so intuitive, and
require further investigation.

8 FUTURE DEVELOPMENTS

One of the main limitations of the current version of RobCo-
Gen is the lack of support for mechanisms with kinematic
loops. A kinematic loop is a closed chain of connected
links. The topology of these mechanisms cannot be modeled
with a tree, but a general graph is required. Rigid body
dynamics algorithms for this class of mechanisms are also
known in the literature [6], and they could be implemented
within RobCoGen. However, the new feature would require
some modifications starting already from the domain model
presented in Section 3.2. For example, the concept of loop joint
has to be included. A loop joint is a joint that does not induce
the parent–child relationship between two links, it just adds a
further kinematic constraint. The concept of spanning tree may
be also useful. A spanning tree is a connected graph without
loops that include all the nodes of the original graph but drops
the arcs that close the loops, i.e. the loop joints. Choosing
the spanning tree is really choosing which joints are to be
considered loop joints. These and other improvements of the
domain model would allow to robustly extend the Kinematics-
DSL and the code generator. The class of mechanisms without
loops include anyway a large set of articulated robots, which
is why the first version of RobCoGen does not address loops;
starting with a simpler case was another reason for our choice.

In our experience with DSLs, we realized that a limitation
of code generation based on textual templates is the coupling
between the target programming language and the target
algorithm. That is, the knowledge about the algorithm is
embedded implicitly in the code generation template, which
forces the developer to repeat totally similar logic in templates
targeting the same algorithm but in a different language. In
our case these repetitions pertain not only the algorithms
themselves, but also the robot–specific optimizations (Section
5.2), which obviously do not depend on the target language.
For example, the fact that the velocity of the first link of a
fixed base manipulator is due only to the joint velocity (the
parent velocity is zero); it is a special case to be implemented
with simpler code, regardless the language. Ideally, both the
robot model and the dynamic algorithm would be real inputs
to the code generation infrastructure, as illustrated in Figure

Robot model
RobCoGen

Algorithm

...

Fig. 15. Ideal inputs of RobCoGen. Having an indepen-
dent model of the algorithm, in addition to the model of the
robot, would make the code generator more extensible.

15. A possible approach to tackle this issue is a new DSL
to implement rigid body dynamics algorithms in a neutral
format; a sort of general–purpose pseudo–code, with additional
directives specific for the case of dynamics algorithms. Adding
a new algorithm to RobCoGen would then be a matter of
expressing it with this DSL. A new target language would
require mainly development on the generators of this DSL.
Evaluating the feasibility and the effectiveness of such a
solution is part of our future work.

A technological factor that in our experience slowed the
development of RobCoGen was the symbolic engine – in
our case Maxima. The complexity of integrating the symbolic
engine was simply due to the need for programmatic interac-
tion with an external application. In addition, such application
is originally meant to be used interactively, and the textual
input/output interface forced us to develop solutions for the
robust interpretation of strings, adding further complexity to
the generator as a whole. Future developments of RobCoGen
might switch to more sound technological solutions better
suitable for programmatic interaction (e.g. the Python SymPy
[50]). However, as mentioned already in this paper (see
Sections 2, 5.1.2, 5.2) RobCoGen uses symbolic simplification
only marginally, for coordinate transforms.

9 SUMMARY AND CONCLUSIONS

This paper presented RobCoGen, a Java program that gen-
erates efficient code for articulated robot kinematics and
dynamics. The program is based on three Domain Specific
Languages (Motion-DSL, Transforms-DSL, Kinematics-DSL)
for the description of high level models, and corresponding
code generators that turn the models into executable code.
Despite apparently overlapping, the languages (i.e. the under-
lying models) refer to different concepts that as such should be
modeled separately (e.g. rotations of a rigid body and rotation
matrices)9; this separation results in code generators that fulfill
independent tasks yet can be used effectively together.

9. A limited, actual semantic overlap between the Motion-DSL and the
Kinematics-DSL is mentioned in Section 6 and Figure 9.

M. Frigerio et al./ RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on DSLs 53

The Kinematics-DSL defines a new, simple file format for
the description of articulated robot models conforming to
the kinematic tree meta–model. The language exposes only
concepts pertaining the kinematics/dynamics of the robot.
After reading a model, RobCoGen automatically generates a
robot–specific implementation of three common rigid body
dynamics algorithms, as well as Jacobians and coordinate
transforms. The implementation is optimized, and it is suitable
for both simulation and real control. RobCoGen takes care of a
significant part of the software infrastructure typically required
in robotics applications, such as model based controllers, and
thus allows the roboticist to speed up the development process
and focus on actual research questions.

When plugged into a simulator, the kinematics/dynamics
engines generated by RobCoGen allow to investigate task–
based optimizations of the robot design, thanks to full support
for parametric models. That is, any number of the geometrical
or inertial properties of the robot (e.g. link lengths) can
be changed at run–time; this feature is ideal for multiple
interactive simulations as well as non–interactive, automatic
optimization and learning techniques, which can discover
optimal values for the parameters.

RobCoGen compares to existing tools which use symbolic
simplification to generate optimize code, but it leverages the
modern technology of DSLs. The result is a tool that is easy to
use and easier to extend, e.g. by supporting more programming
languages. External DSLs have a custom syntax tailored to
a specific purpose, such as describing the structure of an
articulated robot, and thus can be clear and neat; they expose
explicitly high level domain concepts and thus are effective as
specification languages. In addition, with modern workbenches
such as Xtext it is easy to create the software infrastructure for
new languages, including code generators. Therefore DSLs are
an effective technology to implement a tool like RobCoGen,
whose purpose is to allow the users to focus their effort on a
high level specification of the problem rather than on the low
level coding.

The experimental results showed that the efficiency of the
generated code (C++) is comparable with the case of symbolic
simplification, and is higher than with a general purpose
dynamics library. RobCoGen has been successfully used in
our lab to implement the kinematics/dynamics engines of all
our robot simulations, as well as in some of the controllers
running on real robots. These results are a good evidence of
the actual applicability of our tool for concrete use cases. In the
design of RobCoGen the ease of use and the generality of the
generated code were equally important criteria as performance.

In conclusion, we believe our work to be a useful contribu-
tion to the robotics community, as it constitutes a new tech-
nological opportunity for the concrete implementation of the
software of a robot. It is also a notable example of exploitation
of Domain Specific Languages and code generation; as far as
RobCoGen is concerned, DSLs were in turn identified as a
technological opportunity, which proved to be effective.

ACKNOWLEDGEMENTS

This research has been funded by the Fondazione Istituto Italiano
di Tecnologia. J. Buchli is supported by a Swiss National Science
Foundation Professorship.

REFERENCES

[1] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS) 2013, 2013, pp. 1321–1326. 1

[2] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), vol. 3, 2004, pp. 2149–2154. 1

[3] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987. 1

[4] N. Hogan, “Impedance control: An approach to manipulation: Part II
– Implementation,” Dynamic Systems, Measurement, and Control, vol.
107, pp. 8–16, 1985. 1

[5] M. Frigerio. The Robotics Code Generator wiki. [Online]. Available:
bitbucket.org/mfrigerio17/roboticscodegenerator/wiki/Home 1, 4.2

[6] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008. 1,
2, 3.1, 3.2, 3.2, 5.1, 5.2, 5.2, 8

[7] R. Smith. (2013) The Open Dynamics Engine simulation library.
[Online]. Available: www.ode.org 1.1

[8] M. Fowler, Domain-Specific Languages. Addison-Wesley, 2010. 1.2
[9] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on

domain-specific languages in robotics,” in Int. Conf. on Simulation,
Modeling, and Programming for Autonomous Robots, 2014. 1.2, 2

[10] S. Efftinge et al. (2013) Xtext. [Online]. Available: www.eclipse.org/
Xtext/ 1.2, 4.4, 5

[11] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyn-
inckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld, J. Broenink,
D. Brugali, and N. Tomatis, “BRICS – best practice in robotics,” in
IFR Int. Symposium on Robotics (ISR), 2010. 2

[12] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in Int. Conf. on
Advanced Robotics (ICAR), July 2009, pp. 1–8. 2

[13] T. D. Laet, W. Schaekers, J. de Greef, and H. Bruyninckx, “Domain
specific language for geometric relations between rigid bodies targeted
to robotic applications,” in 3rd Int. Workshop on Domain-Specific
Languages and models for ROBotic systems (DSLRob), 2012. 2

[14] R. W. Toogood, “Efficient robot inverse and direct dynamics algorithms
using microcomputer based symbolic generation,” in IEEE Int. Conf. on
Robotics and Automation, vol. 3, May 1989, pp. 1827–1832. 2

[15] M. Sherman and D. Rosenthal. (2013) SD/FAST. [Online]. Available:
www.sdfast.com/ 2

[16] CEREM. (2013) Robotran. Center for Research in Mechatronics
(CEREM), iMMC, UCL. [Online]. Available: www.robotran.be/ 2

[17] M. Felis. The Rigid Body Dynamics Library. [Online]. Available:
http://rbdl.bitbucket.org/ 2

[18] The Orocos Project. [Online]. Available: http://www.orocos.org/ 2
[19] M. Naveau, J. Carpentier, S. Barthelemy, O. Stasse, and P. Souères,

“Metapod - template meta-programming applied to dynamics: CoP-CoM
trajectories filtering,” in Int. Conf. on Humanoid Robotics, 2014. 2

[20] R. Philippsen, L. Sentis, and O. Khatib, “An open source extensible
software package to create whole-body compliant skills in personal
mobile manipulators,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), September 2011, pp. 1036 –1041. 2

[21] M. Frigerio, J. Buchli, and D. G. Caldwell, “Code generation of
algebraic quantities for robot controllers,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012. 2, 7.3

[22] T. D. Laet, S. Bellens, R. Smits, E. Aertbelien, H. Bruyninckx, and
J. D. Schutter, “Geometric relations between rigid bodies: Semantics
for standardization,” IEEE Robotics and Automation Magazine, 2012,
accepted for publication. 2

[23] T. D. Laet, S. Bellens, H. Bruyninckx, and J. D. Schutter, “Geometric
relations between rigid bodies (part 2) - From semantics to software,”
IEEE Robotics and Automation Magazine, 2012. 2

bitbucket.org/mfrigerio17/roboticscodegenerator/wiki/Home
www.ode.org
www.eclipse.org/Xtext/
www.eclipse.org/Xtext/
www.sdfast.com/
www.robotran.be/
http://rbdl.bitbucket.org/
http://www.orocos.org/

54 Journal of Software Engineering for Robotics 7(1), July 2016

[24] OpenHRP group. (2013) OpenHRP. [Online]. Available: http://
fkanehiro.github.io/openhrp3-doc/en/index.html 2

[25] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009. 2

[26] T. Foote, “tf: The transform library,” in IEEE Int. Conf. on Technologies
for Practical Robot Applications (TePRA), April 2013, pp. 1–6. 2

[27] Modelica Association. (2013) Modelica and the modelica association.
[Online]. Available: www.modelica.org 2

[28] M. Fowler, UML distilled. Addison-Wesley, 2003. 3
[29] P. Corke, “A robotics toolbox for Matlab,” IEEE Robotics Automation

Magazine, vol. 3, no. 1, pp. 24–32, mar 1996. 3.1
[30] R. Featherstone. (2013) Spatial vectors and rigid-body dynamics.

[Online]. Available: royfeatherstone.org/spatial/ 3.1, 7.2
[31] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics. Modelling,

Planning and Control, M. J. Grimble and M. A. Johnson, Eds. Springer,
2009. 3.2, 6.1

[32] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ – a hydraulically and electrically
actuated quadruped robot,” IMechE Part I: J. of Systems and Control
Engineering, vol. 225, pp. 831–849, 2011. 4.2, 7.3

[33] S. Efftinge and S. Zarnekow. (2013) The Xtend language. [Online].
Available: www.eclipse.org/xtend/ 5

[34] R. Featherstone, “A beginner’s guide to 6-d vectors,” IEEE Robotics &
Automation Magazine, vol. 17, no. 3, pp. 83–94, 2010. 5.1, 5.2, 6.1

[35] Maxima. (2011) Maxima, a Computer Algebra System. version 5.25.1.
[Online]. Available: maxima.sourceforge.net/ 5.1.2

[36] R. Featherstone, “Exploiting sparsity in operational-space dynamics,”
The Int. J. of Robotics Research, vol. 29, no. 10, 2010. 5.2

[37] ——, “Efficient factorization of the joint-space inertia matrix for
branched kinematic trees,” The Int. J. of Robotics Research, vol. 24,
no. 6, pp. 487–500, 2005. 5.2

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1997. 6.2

[39] G. Guennebaud, B. Jacob et al. (2013) The Eigen library v3. [Online].
Available: http://eigen.tuxfamily.org 7.1

[40] N. C. Myers, “A new and useful technique: “traits”,” C++ report, vol. 7,
no. 5, pp. 32–35, June 1995. 7.1

[41] S. Schaal, “The SL simulation and real-time control software package,”
CLMC lab, University of Southern California, Tech. Rep., 2009. 7.2

[42] C. Semini, J. Goldsmith, B. U. Rehman, M. Frigerio, V. Barasuol,
M. Focchi, and D. G. Caldwell, “Design overview of the hydraulic
quadruped robots HyQ2Max and HyQ2Centaur,” in The Fourteenth
Scandinavian Int. Conf. on Fluid Power (SICFP), 2015. 7.3, 7.5

[43] B. U. Rehman, M. Focchi, M. Frigerio, J. Goldsmith, D. G. Caldwell,
and C. Semini, “Design of a hydraulically actuated arm for a quadruped
robot,” in Int. Conf. on Climbing and Walking Robots (CLAWAR), 2015.
7.3

[44] M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain specific language
for kinematic models and fast implementations of robot dynamics
algorithms,” in 2nd Int. Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob), September 2011. 7.3

[45] ——, “Model based code generation for kinematics and dynamics
computations in robot controllers,” in 7th workshop on Software De-
velopment and Integration in Robotics (ICRA SDIR VII), 2012. 7.3

[46] T. Boaventura, C. Semini, J. Buchli, and D. G. Caldwell, “Actively–
compliant leg for dynamic locomotion,” in Int. Symposium on Adaptive
Motion of Animals and Machines (AMAM), 2011. 7.4

[47] A. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and
C. Semini, “Planning and execution of dynamic whole-body locomotion
for a hydraulic quadruped on challenging terrain,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), May 2015. 7.4

[48] C. Semini, H. Khan, M. Frigerio, T. Boaventura, M. Focchi, J. Buchli,
and D. G. Caldwell, “Design and scaling of versatile quadruped robots,”
in Climbing and Walking Robots (CLAWAR), 2012. 7.5

[49] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. D. Pieri, and D. G.
Caldwell, “A reactive controller framework for quadrupedal locomotion
on challenging terrain,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2013. 7.5, 7.5

[50] S. D. Team. SymPy, a python library for symbolic mathematics.
[Online]. Available: http://www.sympy.org/en/index.html 8

Marco Frigerio received his B. Sc. and M. Sc.
degrees in computer science from the Univer-
sity of Milano Bicocca, respectively in 2006 and
2008, and the Ph. D. degree in Robotics from
the Istituto Italiano di Tecnologia (IIT) in 2013.
He is currently a Post-Doc researcher at the
Dynamic Legged Systems lab of IIT. His re-
search interests include software for robotics,
software architectures, kinematics and dynam-
ics of mechanisms.

Jonas Buchli is a SNF Assistant Professor for
Agile and Dexterous Robotics at ETH Zurich
since May 2012. He holds a Diploma in Elec-
trical Engineering from ETH Zurich (2003) and
a Ph. D. from EPF Lausanne (2007). From 2007
to 2010 he was a Post-Doc at the CLMC Lab at
the University of Southern California, where he
led the USC Team for the DARPA Learning Lo-
comotion challenge. In 2010-12 he was a Team
Leader at the Advanced Robotics department of
the Istituto Italiano di Tecnologia (IIT). He has

received a Prospective and an Advanced Researcher Fellowship from
the Swiss National Science Foundation (SNF). In 2012 he received a
SNF Professorship Award. His research interests include model based
control of legged robots and human locomotion and manipulation, ma-
chine learning and adaptive control, and dynamic and versatile service
and field robots.

Darwin G. Caldwell received the B.S. and Ph.D.
degrees in robotics from University of Hull, Hull,
U.K., in 1986 and 1990, respectively, and the
M.Sc. degree in management from University
of Salford, Salford, U.K., in 1996. He is the
Director of Advanced Robotics at the Istituto
Italiano di Tecnologia, Genoa, Italy. He is a Visit-
ing/Honorary/Emeritus Professor with University
of Sheffield, the University of Manchester, and
University of Wales, Bangor. His research inter-
ests include innovative actuators and sensors,

haptic feedback, force augmentation exoskeletons, dexterous manipula-
tors, humanoid robotics, biomimetic systems, rehabilitation robotics, and
telepresence and teleoperation procedures.

Claudio Semini received his M. Sc. degree in
Information Technology and Electrical Engineer-
ing from ETH Zurich, Switzerland, in 2005. For
his Master thesis he visited the Hirose Robotics
laboratory at the Tokyo Institute of Technology. In
2005/2006 he was a robotics researcher at the
Toshiba’s Corporate R+D Center in Kawasaki,
Japan. Subsequently, he joined the Advanced
Robotics department of the Istituto Italiano di
Tecnologia (IIT), Italy, from where he received
his Ph. D. degree in Robotics in 2010. Claudio

Semini is the lead designer of the hydraulic quadruped robot HyQ and
currently the head of the Dynamic Legged Systems lab of the IIT. His
research interests lie in the field of the design and control of versatile,
highly-dynamic robots with legs and arms.

http://fkanehiro.github.io/openhrp3-doc/en/index.html
http://fkanehiro.github.io/openhrp3-doc/en/index.html
www.modelica.org
royfeatherstone.org/spatial/
www.eclipse.org/xtend/
maxima.sourceforge.net/
http://eigen.tuxfamily.org
http://www.sympy.org/en/index.html

	Introduction
	Motivation and contribution
	The role of dsls
	Overview

	Related work
	Domain analysis
	Coordinate transforms
	Rigid motions

	Articulated robots

	DSLs
	Coordinate transforms
	Articulated robots
	Constants, parameters and variables
	Implementation

	Code generation
	Coordinate transforms
	Basic strategy
	Symbolic simplification

	Dynamics algorithms

	RobCoGen
	Geometric Jacobians
	Parameters and robot classes

	Experimental results
	General remarks
	Validation
	Performance comparisons
	Hard real time control
	Robot design

	Future developments
	Summary and conclusions
	References
	Biographies
	Marco Frigerio
	Jonas Buchli
	Darwin G. Caldwell
	Claudio Semini

