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In this paper we present a navigation framework for field deployment for the
hydraulically actuated quadruped, HyQ.1 Our framework uses a lidar sensor
to perceive obstacles and free space around the robot and plans a path through
traversable areas to given goals. A path following procedure generates veloc-
ity and angular rate commands that are sent to a locomotion controller that
produces the trotting gait pattern, following the desired path to the goal.
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1. Motivation

Legged robots are able to access a wide range of terrain types of varying

difficulty. In unstructured environments, where only a number of discrete

footholds are possible (disaster sites, forests, etc.), legged quadrupedal sys-

tems typically use walking gaits.2,3 In environments where smooth, contin-

uous support is available (flats, fields, roads, etc.), where exact foot place-

ment is not crucial for the success of the behavior, legged systems use a

variety of more dynamic gaits, e.g. trotting, pacing, galloping.4,5

Legged robots operating in the field are often directly controlled by a

human. In many use cases, such systems can operate in an autonomous

mode, provided that adequate perception and navigation capabilities are

added. For example, such locomotion autonomy can enable a legged robot

working in a construction site to reach material pick-up and drop-off check-

points without human supervision. To this end we develop a navigation and

locomotion framework that is capable of perceiving obstacles and free space

around the robot using a lidar sensor, then plans and reliably follows paths

to given goals using a trotting locomotion controller.
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Fig. 1. (a): Overall architecture of the approach. (b): The virtual elements used to cal-
culate forces and moments that stabilize the quadruped’s trunk. (c): Trotting trajectories
that correspond to the foot of the left front leg in the robot’s body reference frame. The
different colors denote the three gait cycle phases while the three trajectories correspond
to trotting in place, trotting forward with a velocity of 0.5m/s and 1.0m/s.

1.1. Related work

A large body of literature in robotics is devoted to quadrupedal locomo-

tion. Early examples include the work of Raibert6 on hydraulically and

pneumatically actuated legged machines. Recent examples include Hawker

and Buehler,7 and Remy et al.,8 focusing on passively compliant elements

and light-weight leg structures. Close to our research stands Boston Dy-

namics’ BigDog though little is still known about its control structure or

experimental evaluation. In previous work we experimented with a feed-

back/feedforward control structure similar to the one presented here, cou-

pled with a CPG-based trajectory generation procedure.5 We have also

experimented with an active compliance control structure that emulates a

passive telescopic leg behavior.4

Navigation-level path planning has received relatively small attention

from the legged robots community as many of the applications concern

close distances and often indoor usage. Such cases are often best suited

with a variety of stereo and RGB-D sensors or combinations thereof. On

the other hand many of the teams of the DARPA Urban Challenge made

extensive use of lidar sensors and similar path planning approaches9,10 as

such systems are tailored toward field deployment.
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2. Locomotion & Navigation framework

An overview of our framework is presented in Fig.1(a). Our approach is

divided into a navigation and a locomotion level, which in practice are han-

dled with two separate onboard computers. The details of the locomotion

and navigation levels follow.

2.1. Locomotion

We chose a trotting gait as we are interested in locomotion speeds ranging

from trotting on the spot to fast-paced trot (1m/s). The trot is a symmet-

rical gait in which diagonally opposite legs swing in unison. This allows a

desirable division of the total force that the leg actuators should be able to

produce when supporting the weight of the robot, when thrusting, and when

receiving impact forces at touchdown. Our locomotion approach divides the

control procedure into two subsystems. One generates the trajectories that

the two leg pairs execute given external user input, while the other calcu-

lates a feed-forward trunk stabilizing input according to the current state

of the system. In the interest of space we briefly describe these subsystems

below.

2.1.1. Trajectory generation

While trotting, the four legs are naturally divided into two pairs. Each

pair follows an identical foot trajectory. This trajectory depends on the

commanded forward velocity, turning rate, step and swing height, and the

gait cycle period. The step height dictates the body height in the body

reference frame during the support phase, and the swing height defines the

leg swing apex. The gait cycle period is used to calculate the timing of

the leg trajectories as this is intuitively further subdivided in three distinct

phases; swing, land and support (Fig. 1(c)). We set the step height to -0.65m

and the swing height to -0.55m, according to the dimensions of HyQ.1 In

our experiments we use a gait cycle period of 0.5s (2Hz ), that is suitable

for velocities up to 1m/s.

2.1.2. Trunk stabilization

To stabilize the trunk of the robot we follow a virtual model control ap-

proach.2 We calculate virtual forces and moments according to a reference

state and the current state of the system (Fig. 1(b)) as computed by an

onboard state-estimation algorithm. The virtual forces and moments are

then transformed to forces fi that the feet in contact need to apply. We use
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a least-squares optimization that provides the least norm solution, i.e. the

minimum force solution. The feet forces are subsequently mapped to feed-

forward torques (τff ) for the joint actuators of the legs that are in stance.

This is done by: τff = JT f , where f is the vector of (linear) forces that each

foot in stance needs to apply to emulate the virtual model behavior, and J

is the Jacobian of the legs that are in contact.

2.2. Navigation

The navigation framework deals with all the procedures that are required

for the quadruped to navigate autonomously in a large-scale unstructured

environment. In brief we separate this into four procedures that are needed

to achieve the navigation task. Namely these are: obstacle perception, path

planning and path following, and are explained in detail in the following

sections.

2.2.1. Obstacle perception

The lidar (Velodyne, HDL-32E) produces about 700.000 points per second,

with an 10Hz frame-rate. This produces a pointcloud P = [pi, . . . pn]T by

‘scanning’ the geometry of the environment. We then need to classify the

points to two sets, the obstacles set, O = {pj}, and the free-space set,

F = {pk}. We are most interested in a robust detection of the points

belonging to the obstacle set as this is important for our navigation needs,

i.e. these signify the areas that we need to avoid in the path planning step

that follows.

}}
Fig. 2. Obstacle perception procedure. See
Sec. 2.2.1 for details.

We start by discretizing the

area around the robot into a square

grid where the edge of the square

is L = 10m, while the resolution

is set to ` = 0.1m, i.e. each grid-

cell is 0.1m2. We then consider all

the points that belong to the point-

cloud, P, and accordingly assign

them to their respective grid cells,

gi,j , according to their position.

During this we keep track of the ex-

trema points, in our case the mini-

mum and maximum height points,

that belong to each volume that a

grid-cell defines along the vertical.



April 24, 2015 15:38 WSPC - Proceedings Trim Size: 9in x 6in clawar15havoutis

5

(a) Pointcloud. (b) Obstacle points. (c) Occupancy grid.

Fig. 3. The obstacle segmentation pipeline. (a) The pointcloud scan as published by
the lidar. (b) The points that belong to the obstacle set O. Note that the obstacle points
are visualised as red cubes. (c) The (inflated) occupancy grid. The red cells are the
direct projection of the obstacle points to the horizontal grid. The obstacle cells are then
inflated according to the geometry of the robot, here represented by the grey grid-cells.

If the height difference between these two points is greater than a set obsta-

cle threshold, tO, then all the points that belong to this volume (column)

are added to the obstacle set.

For example consider the pointcloud in Fig.2. The points p1,p2 and p3
belong to the grid-cell gi,j and accordingly to the volume, Vi,j , that this

defines. The difference between the highest (p3) and the lowest (p1) points

of the volume Vi,j is then considered and accordingly all the points that

belong to the volume in question are added to the obstacle set O while

the rest are added to the free-space set F . The obstacle threshold, tO, is

typically set at 0.25m. A real-world example of the obstacle segmentation

procedure is available in Fig. 3(a) and 3(b). The former presents the raw

pointcloud as scanned, while the latter is the result of the obstacle percep-

tion procedure, where obstacle points are visualised as red cubes. Note that

with this procedure there can be grid-cells that are not assigned any points.

This grows with the distance from the sensor as the distance between two

consecutive ‘scan-rings’ increases and is by definition true for areas that are

‘shadowed’ (occluded) by any other geometry present.

According to O we populate an occupancy grid GO that is communi-

cated to the path planning step. Alternatively one can choose a voxel grid

representation if 3D path planning is required. We selected an occupancy

grid representation as it is adequate for navigation-level planning and dras-

tically reduces the communication overhead.

2.2.2. Path planning

The obstacle perception step produces an occupancy grid that contains all

the perceived obstacle areas within the defined grid. To simplify the path
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Fig. 4. Examples of the A* path planning results with the procedure described in
Sec.2.2.2. The planned paths in 3D with the obstacle set points pj ∈ O visualized as
red cubes. Inset plots: Top-down view of the A* planned path to the current goal. The
light-grey path on the grid is the path of cell-centers that is returned by the A* search
algorithm. The orange line is the smoothed path that the quadruped follows.

planning problem we use the obstacle inflation approach. Accordingly all

obstacle cells are ‘inflated’ according to an inflation factor that is depen-

dent on the robot’s geometry. In our trials we use an inflation factor of

0.5m, according to the robot’s width, which in practice works well since

the quadruped has a preferred direction of motion. An omnidirectional lo-

comotion approach would require a more elaborate obstacle inflation step

that would take the possible orientation of the robot into account.

Once the inflated grid has been computed we use the A* search algo-

rithm to find the shortest path from the current position of the robot to the

goal position. The goal position is provided as user input and is expressed

in the odomety (global) frame. For our current A* implementation we use

a four-way connectivity and the Manhattan distance metric, while we use

the Euclidean distance as a heuristic function. The produced path, g1...ni,j , is

a sequence of cells in the inflated occupancy grid that is then transformed

to the sequence of cell center-points.

The choice of four-way connectivity and Manhattan distance for the

shortest path computation serves to keep the computational load to a min-

imum but in general produces non-smooth paths. We use a gradient decent

approach to smooth the resulting path. This works iteratively by computing

a smoothed version, g1...nsm , of the original path according to a smoothing

coefficient. This is run until convergence, which in our experimental trials

was on average below 10 iterations.

2.2.3. Path following

Next the planned path is converted to a meaningful command for the

quadruped to follow. For this we use a ‘carrot’ path follower which operates

as follows. The given path points, ranging from the quadrupeds current lo-
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Fig. 5. Left and middle: Views of the world model that the robot builds-up. Occupancy
grid and planned path to goal. Right : Picture of the HyQ trotting at the parking lot.

cation to the goal position, are sequentially examined. The path point that

is dc (length of the carrot stick) away from the robot is chosen to compute

a twist command, i.e. a linear and angular velocity tc ∈ R6, towards this

intermediate goal. The command is computed in a PD fashion and is con-

strained to forward linear velocity and angular yaw rate. A control logic

that produces turning on-the-spot is also implemented for cases where the

goal is beyond a reachable turning angle. Once no ‘carrot’ goal exists on

the planned path, i.e. ∀gsm@gism ≥ dc, the goal has been reached.

3. Experimental trials

We ran a number of experimental trials with the robot navigating out-

doors (Fig.5). The site of trials was a parking lot where adequate space

was available to evaluate the quadruped’s behavior. On average we main-

tained a relatively cautious upper boundary for the velocity and the angular

rate of the locomotion control which limited the speed at which goals were

achieved. The quadruped never collided with obstacles or people moving

around it. Nonetheless, a cautious inflation factor can limit the ability of

the robot to navigate through narrow passages, for example single doors.

On the other hand we do not expect to encounter such geometries in the

field.

4. Conclusion

In this paper we presented a navigation framework, for legged robots oper-

ating in the field, that can provide locomotion autonomy. We showed how

a lidar sensor can be used to create adequate perceptual input to enable

navigation-level planning. We showed how lidar data can be used to classify

obstacle and free space and subsequently use this world model to compute

paths that avoid static and moving obstacles and reach goals that are tens

of meters away in an outdoor environment. This approach makes use of a

robust trotting controller to handle the robot’s locomotion behavior. This
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way reliable path following was achieved by communicating desired velocity

and angular rate commands.

In future work we aim to enable long and short-range map building and

use semantic information to reason about path suitability. In addition we

are developing a supervision system that will be able to choose between

different locomotion modes, e.g. walking, trotting, galloping, based on the

characteristics of the environment at hand.
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