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Abstract— The successful execution of complex modern
robotic tasks often relies on the correct tuning of a large
number of parameters. In this paper we present a methodology
for improving the performance of a trotting gait by learning
the gait parameters, impedance profile and the gains of the
control architecture. We show results on a set of terrains, for
various speeds using a realistic simulation of a hydraulically
actuated system. Our method achieves a reduction in the gait’s
mechanical energy consumption during locomotion of up to
26%. The simulation results are validated in experimental trials
on the hardware system.

I. INTRODUCTION

Legged robots can perform complicated tasks, such as
running, balancing and locomotion over challenging terrains,
where they offer a clear advantage over wheeled platforms.
Yet, in real-world scenarios, biological systems easily out-
perform legged robots. One of the main reasons is that
selecting the ”best” gait is not trivial, as it requires the
generation and execution of complex behaviours. The success
of these behaviours often relies on tuning a large number
of parameters, which can be a lengthy empirical procedure,
requiring an expert user. In the absence of such an expert
the task becomes significantly more difficult and, sometimes,
even impossible.

To obtain locomotion policies, multiple learning algo-
rithms, such as Hill Climbing, Amoeba [1], Genetic [2] and
Policy Gradient algorithms [3] were used on a commercially
available quadruped (Sony’s AIBO) and comparisons were
made based on factors such as learning time, final policies
and performance in the presence of noise [4]. The compar-
ison showed that in this kind of task the Policy Gradient
algorithm is superior on all factors. More recent examples
of policy learning based algorithm can be found in Policy
Learning by Weighting Exploration [5], Relative Entropy
Policy Search [6] and The Policy Improvements with Path
Integrals (PI2) [7]. These policy search methods inspired by
expectation-maximisation are expected to be able to learn a
high dimensional policy effectively [8].

The PI2 algorithm is employed in [9], [10], where the
basic idea is to use a well understood dynamical system
(from an analytic point of view) and modulate it such that it
achieves a desired attractor behaviour. Dynamic movement
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primitives are used to encode the dynamics (i.e., a special
case of parametrised policies). The PI2 algorithm is applied
in this context for optimal planning and/or gain scheduling.
Since this method does not require matrix inversion or
gradient learning rates, the update equations are simple
and numerically stable. It also scales very well to high
dimensionality problems. In [11] the PI2 algorithm is applied
not only for planning, but also to optimise variable gain
feedback controllers. This makes it a good candidate for
this work, with the aim of creating a practical method to
automatically tune the locomotion parameters, without the
need for expert knowledge.

Using compliance can give robotic systems the ability
to increase their gait stability and energy efficiency. This
can be implemented by using compliant elements (passive
compliance) [12], [13], or by emulating their behaviour using
software (active compliance) [14], [15]. While the latter
approach can modulate the impedance in an on-line fashion,
for a theoretically infinite range and speed, it is unable to
store energy or exploit the natural dynamics. Defining an
optimal impedance profile for a legged robot is not trivial
and the complexity of the task scales with that of the design.
Reinforcement learning provides us with a feasible strategy
for determining such a profile, alongside other parameters of
interest, avoiding the common practice requirement to hand
tune these values.

Learning algorithms can require a large number of trials
over a long time to find the optimal desired behaviour. A
successful locomotion strategy will have to be able to handle
a wide variety of terrain scenarios, which implies learning
new parameters when changes in the operating conditions
render the old values sub-optimal. Hence, the learning time
becomes a critical factor in the ability to find an optimal
strategy for large numbers of tasks and scenarios.

In this work, we improve on the methodology published
in [16], which focused on improving a trotting gait [17]
by modulating the end-effectors’ impedance. We improve
the performance of the trotting gait for our quadrupedal
system, replacing the manual gain tuning with our learning
procedure. The main contributions of our work are: We
focus on a previously unexplored application of the approach,
by setting the secondary goal (after achieving the desired
travel speed) to improve energy efficiency. The procedure
delivers the learned: gait parameters (i.e., step height, step
length, stride frequency, duty factor), feet impedance profile
in Cartesian coordinates, and gains of the control architecture
(i.e., trunk controller). We augment the abilities of the



procedure by significantly improving the learning time (from
over 90 minutes to under 10 minutes required for learning a
new task). Our method achieves a reduction in the gait’s
mechanical energy consumption of up to 26%, compared
to the hand tuned values provided by an expert user (as
traditionally employed on the platform). Despite using only
active impedance modulation, we noticed that part of this
improvement is due to the learned impedance profile. We
present results obtained in a realistic stimulation of the
hydraulic, torque controlled quadruped HyQ [18] for a set of
varying terrains and desired speeds. These simulation results
are validated in experimental trials.

Adapting parameters based on the particularities of the
task and environment was previously used for a biped [19]
system, but the approach uses separate methods to indi-
vidually adjust parameters of the running cycle. Similarly,
in [20] the gait of a quadruped is adapted using a set of
reflexes, each triggered by a specific process. In our work
we tackle automated learning and simultaneous tuning of
the desired parameters, based on proprioceptive information.
The recent study in [21] adjusts a similar set of parameters
for autonomous locomotion, but in a non-learning fashion
and the approach relies on additional visual information.

The rest of the paper is structured as follows. In Section
II we present details of our implementation, by introducing
the controller framework used and the relevant details of the
PI2 algorithm in the context of our investigation. We also
detail the cost function encoding the desired behaviour and
discuss the steps taken to improve the speed of the learning
procedure. Section III gives a brief overview of the hardware
used and the experimental setup. In Section IV we present
the results of our investigation in the simulation environment,
while Section V shows the performance obtained on the
hardware system. We follow up in Section VI with a brief
summary and discussion of our results. Finally, in Section
VI we present ideas for future research.

II. TECHNICAL APPROACH

We aim to improve the locomotion energy efficiency
of the HyQ quadruped by learning the gait parameters, a
variable impedance strategy and the gains of the controller
architecture for a walking trot (at a desired velocity), while
maintaining stability. The impedance profile in Cartesian
space is mapped into the feedback gains of the PD torque
controller of the joints, as discussed in [16].

A. The Reactive Controller Framework

The underlying gait is generated using our Reactive Con-
troller Framework (RCF) [17], designed for robust legged
locomotion. The RCF consists of two main modules: a
motion generation and a motion control block. The former
uses a network of nonlinear oscillators, one for each foot. The
outputs of the oscillators are passed through a nonlinear filter,
which results in an elliptic trajectory during the swing phase
of each foot. In the stance phase, once the foot makes contact
with the ground, the ellipses are cut (i.e., follow a straight

trajectory). The oscillators are encoded in the form of gait pa-
rameters (i.e., step height, step length, stride frequency, duty
factor). Using inverse kinematics, these ellipse trajectories
are mapped into desired joint space trajectories. A trajectory
tracking controller, incorporating a linear feedback loop, is
then used to track these desired trajectories:

τ = InvDyn(qd , q̇d , q̈d)+KPS(qd−q)+KDS(q̇d− q̇) (1)

where qd , q̇d , q̈d are the desired joint positions, velocities and
accelerations, q, q̇ are the current positions and velocities, τ

the generalised force vector and KP,KD the feedback gains
of the impedance controller. Additionally, a trunk controller
maintains the attitude of the robot and compensates for
deviations in the roll and pitch angles of the trunk. The
stabilisation forces from the trunk controller are mapped into
joint torques, independently from the joint trajectories.

In the context of the RCF architecture described above
three sets of learning variables are improved: i) gait pa-
rameters (i.e., step height, step length, stride frequency, duty
factor), ii) the end effectors’ (i.e., feet) impedance profiles
(these are subsequently used to compute the feedback gains
of the PD torque controller of the joints), and iii) the feedback
gains of the trunk controller (for the pitch and roll angles).
The impedance profile is encoded as a mixture module of von
Mises basis functions [22], which can model periodic signals.
The number of the basis functions was selected empirically
as 10, based on the approach in [16].

B. PI2 algorithm

As mentioned previously, we use the PI2 learning algo-
rithm in our study. At each episode, the method evaluates Q
rollouts of the learning variables (listed above). These values
are obtained by injecting zero-mean Gaussian noise into the
current policy. We collect data on the trotting behaviour
generated by these parameters (approx. 5 to 15sec), which
is evaluated using the following cost function:

R = φ +
P

∑
i=0

ri, (2)

where (φ ) is the terminal cost term and (ri) is the running cost
term (defined in Section II-C) at each time step i ∈ [0,P]. In
the update rule, the contributions of each rollout set is scaled
by their performance with respect to the cost [7].

In our implementation, at each iteration, the policy is
updated using the current (Q = 8 rollouts). This requires a
minimum of 8 rollouts before the first policy update can be
applied, after which only two new rollouts are performed in
between policy updates. Thus, we reuse the previous best 6
rollouts for the next policy update, which results in faster
learning, due to the reduction in the data collection time, at
each iteration.

C. Cost function design

The cost function (2) needs to encode the desired be-
haviour, with the weights of each term reflecting their
importance. The running cost r is defined as:

r = rs + re + rlim + rτ + r f t , (3)



with:

rs = ws

∣∣∣1− v
v∗
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m v∗
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where the subscript i is omitted in each term for simplicity.
Here, rs is the speed tracking error, calculated as the

average of all instantaneous velocity tracking errors, with v
and v∗ representing the actual and desired forward velocities
of the system, respectively. This simultaneously penalises the
average forward velocity tracking errors and its variations.
The energy efficiency cost re is measured as the mechanical
Cost of Transport (CoT) [23], with ω the joint angular
velocity and τ the joint torques, which are summed over
the joints (N = 12) and m is the mass of the robot.

The cost in the joint limits rlim uses a barrier function f
(7), which tracks the distance between the current joint angle
(θ j) and the joint limit (θlim j ):

f (θ j,θlim j) = exp(−(u(θlim j −θ j))
2), (7)

where u is a scaling factor that defines the threshold value at
which the barrier starts growing exponentially (e.g., u = 14
for 10◦). The term rτ penalises high torques and prevents
them from exceeding the maximum allowed values τmax.

The RCF contains reactive modules, such as the step-
up reflex [24], which demand minimal foot tracking errors.
Although these modules are not used in the learning, the
result should be compatible with their operation. Therefore
an extra cost r f t , for the tracking of the end effectors (i.e.,
feet) (M = 4) is added:

r f t = w f t

M

∑
k=1

∣∣∣∣∣∣
 xk

yk
zk

−
 x∗k

y∗k
z∗k

∣∣∣∣∣∣ , (8)

where [xk,yk,zk]
T and

[
x∗k ,y

∗
k ,z
∗
k

]T represent the actual and
respectively desired positions of the end-effectors in the base
frame1. The terms ws, we, wlim, wτ and w f t denote the
corresponding weights of each term of the running cost func-
tion. The values used in our experiments are ws = 0.0375,
we = 0.0001, wlim = 0.25, wτ = 0.0025 and w f t = 0.25.

The final cost in (2) is defined as: φ = φtm +φ f ail , where
φtm is a measure of the motion of the trunk and φ f ail is a
Boolean variable which applies a large penalty cost in the
case when the policy causes the robot to slip and fall. The
motion of the trunk is calculated as:

φtm = wtmVar(|pCoP− pCoM|), (9)

where wtm is the associated weight and pCoP and pCoM repre-
sent the positions of the robot’s Centre of Pressure (CoP) and
the Centre of Mass (CoM), respectively. Hence, (9) is based

1This frame’s axes and origin are aligned to that of the robot base.

on the variation of the trunk motion estimator that will be
presented in Section II-D. In our experiments we used a value
of wtm = 1. The values of the cost function weights were
obtained empirically by starting with the primary objectives
and gradually augmenting the cost with all the required
terms. To account for the discrepancy between the ranges
of individual non-weighted terms (e.g., magnitude of 1 for
joint angles vs. one of 104 in the CoT) the weights were
scaled accordingly and normalised.

D. Improving learning speed

As mentioned previously, one of the important components
in learning is the time to learn. Reducing the required
exploration episodes is a crucial step towards achieving an
autonomous adaptive strategy that could be employed on-
line on the hardware system. As the PI2 computation time
is negligible, this duration represents the exploration time,
during which the robot trots with real time factor of 1,
collecting behaviour data (i.e., during rollouts).

To reduce the evaluation time of the rollouts, the cost
function is constructed based on stable values. This is
achieved in three ways. Firstly, instead of using the noisy
direct measurement of the trunk motion (i.e. the roll and
pitch angles), a stable estimator is used. This trunk motion
estimator is chosen as the distance between the CoP and the
CoM. This value shows a strong correlation with the peaks of
the roll and pitch of the trunk, but is more steady. Secondly,
we discard the data collected at each iteration while the robot
was still accelerating from zero towards the desired limit
cycle. Finally, we remove the effect of small variations in
the cost function by ignoring values below thresholds on:
the foot tracking (0.04 m), the speed tracking error (5%), the
energy consumption (70 J/m), and the trunk motion (0.01 m).

As described in Section II-B, the algorithm generates
rollouts by injecting Gaussian noise into the current learning
policy. Unfeasible values for the learning variables (e.g.,
negative duty factor) are excluded by imposing an admissible
region for the sampling. The rollouts with high costs will
be obviously rejected after each iteration. As the trotting
motion is periodic, after a few locomotion cycles, a reliable
estimate can be calculated for the cost function of the current
rollout. This allows us to discard early on any rollout that
will result in a high cost. In this work, a rollout is aborted
if the estimated cost after five cycles is more than 150% of
the cost of the current policy.

To reduce the number of rollouts needed for the cost
function convergence, the number of learning variables has
been kept to a minimum. This was achieved mainly by
learning the impedance only for the swing phase including
the touchdown and liftoff, while using a constant impedance
value for the stance phase. This is possible since the main ad-
vantages of the impedance optimisation arise from the effect
of modulation during swing time (as described in Section IV-
C). Additionally, the number of learning variables is reduced
using critical damping. Hence, the damping profiles of the
end effectors (i.e., feet) are indirectly improved, without
increasing the number of learning variables.



III. EXPERIMENTAL SETUP

To evaluate the method proposed in this work, we use the
80 kg HyQ quadrupedal robotic system. The platform is fully
torque controlled, with 12 hydraulically actuated joints. Each
limb has 3 actuators: HAA (hip abduction/adduction), HFE
(hip flexion/extension) and KFE (knee flexion/extension).
The corresponding kinematic ranges are 95◦, 120◦, 120◦,
respectively. The completely stiff structure allows high band-
widths, while the hydraulic actuation gives a good power to
weight ratio and the ability to deal with high impact forces.
Hence, the system can perform highly dynamic locomotion
tasks on different kinds of terrain. The platform constitutes a
perfect candidate to demonstrate how a stiff robot can benefit
from active impedance modulation to increase its energy
efficiency, without compromising the performance.

The proposed learning algorithm was tested in simulation
on two environments: i) flat terrain and ii) rough terrain
with cobblestones (as depicted in Fig. 1), with the desired
forward velocity varying between 0.2 m/s and 0.8 m/s.
The methodology is evaluated on the learning time, the
improvement in energy efficiency.

Fig. 1: The HyQ robot trotting on cobblestones in simulation.

The learning time is defined as the time until the total cost
function converges (Section II-D). The energy efficiency will
be measured using the CoT (Section II-C). We validate the
results in terms of disturbance rejection using the Gait Sen-
sitivity Norm (GSN) [25]. The GSN measures the influence
of a disturbance on the current and future cycles. It shows
a good correlation with the real disturbance rejection in
limit cycle walkers and can be calculated from the observed
behaviour. This makes the metric suitable for our scenario.

The behaviour obtained after learning is compared to the
performance of a hand tuned strategy, as currently employed
on the platform, in order to highlight the improvements. Tra-
ditionally, for each individual task, the expert user would be
required to empirically find a new set of values. In practice,
a feasible set of values could be applied to a wider range
of tasks (i.e., for a desired velocity within a given range,
on flat terrain, the same set of parameters would allow for
a stable gait). Evidently, the performance of this generalised
set would be worse than that of individually found values, for
each respective task. In order to demonstrate the robustness
of our approach we perform several learning trials for each
task, starting from randomised set of values (including sets
that would result in both stable and unstable gaits).

IV. SIMULATION RESULTS

In this section we present the results obtained in simulation
on the set of terrains and speeds used. We follow with a brief
discussion, before proceeding to the hardware experiments
section. In our setup, we employ a realistic model of the
system with the Gazebo simulator environment [26], which
is able to accurately represent real world scenarios.

A. Flat terrain

In the flat terrain there are no surface height variations,
thus a reduced number of cycles is needed to calculate a
reliable cost function. Hence, a rollout time of 7 sec is used.
In this scenario the cost function converges relatively fast
and shows a smooth learning curve, on average (Fig. 2). We
note that the joint limits are not reached and the end feet
tracking error is below the accuracy threshold, consequently
their associated costs are zero. Additionally, at low speed
(0.2 m/s) the trunk motion is below the selected threshold,
resulting in no corresponding penalty in the cost (Fig. 2 (a)).
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(a) Flat terrain. Trotting at 0.2 m/s.
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(b) Flat terrain. Trotting at 0.5 m/s.
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(c) Flat terrain. Trotting at 0.8 m/s.

Fig. 2: Evolution of the cost during learning in the flat terrain
scenario, at low (0.2 m/s), intermediate (0.5 m/s) and high (0.8 m/s)
speed, respectively.



Compared to the baseline behaviour (i.e., based on the
hand tuned parameters used previously) we report an energy
efficiency improvement of 10%, 12% and 26% at 0.8 m/s,
0.5 m/s and 0.2 m/s, respectively. The values of the gait
parameters obtained are presented in Table I.

Terrain Forward Step Step Step Duty
type velocity Frequency Height Length Factor
Flat 0.2m/s 1.429Hz 0.073m 0.083m 0.55
Flat 0.5m/s 1.72Hz 0.066m 0.1752m 0.55
Flat 0.8m/s 1.783Hz 0.067m 0.268m 0.55

Cobblestones 0.3m/s 1.50Hz 0.077m 0.127m 0.55
Cobblestones 0.5m/s 1.63Hz 0.079m 0.181m 0.55

TABLE I: Learned gait parameters.

Fig. 3 shows the impedance profile in the flat terrain
scenario (rose lines for 0.2 m/s, blue lines for 0.5 m/s and
green lines for 0.8 m/s speed, respectively). The profile is
plotted against the normalised duration of the swing phase
(which represents 45% of the step cycle2). We show the
evolution of the values during learning from the start (black),
after 5 (dotted, coloured lines) and 10 (thin, coloured lines)
learning episodes and the final values (thick, coloured lines).
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Fig. 3: The impedance profile in the flat terrain scenario (rose
lines for 0.2 m/s, blue lines for 0.5 m/s and green lines for 0.8 m/s
speed, respectively).

B. Cobblestone terrain

In the cobblestone terrain there are stochastic variations
(i.e., the terrain height varies between 0 and 0.03 m).
Therefore, a larger number of cycles is needed to compute
a reliable average of the disturbances occurring during a
locomotion cycle. Hence, a rollout time of 15 sec, chosen
empirically, is used.

2Determined by the duty factor, which is one of the gait parameters.

The obtained gait parameters are presented in Table I.
Compared with the results in the flat terrain we observe
an increase in the step height and a decrease in the step
frequency. They can be both attributed to the solution trying
to prevent the robot from stumbling and reducing the number
of height variations acting on the system.

In this scenario the cost function shows variations, even
after 9 min, since the frequency and amplitude of the dis-
turbances vary every rollout (Fig. 4). However, a significant
improvement in the cost is still obtained and the convergence
threshold can be adjusted to accommodate this particularity
of the scenario (i.e.,10−2). As before, the joint and torque
limits are not reached and their associated costs are zero. We
obtained an energy efficiency improvement of 14% and 21%
at high (0.5 m/s) and low (0.3 m/s) speed, respectively.
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(b) Rough terrain. Trotting at 0.5 m/s.

Fig. 4: Evolution of the cost during learning on the cobblestone
terrain, at low (0.3 m/s) and high (0.5 m/s) speed, respectively.

Fig. 5 shows the impedance profile in this scenario (or-
ange lines for 0.3 m/s and blue lines for 0.5 m/s speed,
respectively). As before, we plot the profile against the
normalised duration of the swing phase and the evolution
of the values during learning from the start (black), after 5
(dotted, coloured lines) and 10 (thin, coloured lines) learning
episodes, and the final values (thick, coloured lines).

C. Discussion

We investigate the disturbance rejection performance, cal-
culated using the GSN, as described in Section III. When
comparing the different terrain results, we notice a 15%
higher performance in the rough terrain, independent of
the forward velocity. We compare the performances of the



0.5 0.6 0.7 0.8 0.9

% Period

1150

1200

1250

1300

1350
g
a

in
 X

0.3m/s

0.5m/s

0.5 0.6 0.7 0.8 0.9

% Period

1200

1300

1400

g
a

in
 Y

0.5 0.6 0.7 0.8 0.9

% Period

4300

4400

4500

4600

4700

g
a

in
 Z

Final #10 #5 Inital

Fig. 5: The impedance profile in the rough terrain scenario (orange
lines for 0.3 m/s and blue lines for 0.5 m/s speed, respectively).

initial hand tuned values and the learned ones, on rough
terrain. The expert (hand)tuned parameters show an optimum
disturbance rejection at 0.5m/s (where it slightly outperforms
our values). This performance decreases while moving away
from this velocity (at 0.3m/s our learned values outperform it
by 12%). The learned parameters show a similar performance
in each terrain type, independent of the velocity. This is
expected, as the learning is not taking into consideration any
disturbances other than those encountered during exploration.

We summarise the improvements obtained in Table II. The
learning time varies between 5 and 10 min. As mentioned
previously, the PI2 computation time is negligible and the
learning time is dominated by the exploration time, during
which the robot trots with real time factor of 1, collecting
behaviour data. This is a significant improvement compared
to a similar procedure presented in [16] which requires
at least 90 minutes. This improvement was achieved by
implementing the modifications discussed in Section II-D.

Terrain Forward Improvement Learning
type velocity CoT time
Flat 0.2m/s 26% 6min
Flat 0.5m/s 12% 6min
Flat 0.8m/s 10% 9min

Rough 0.3m/s 21% 10min
Rough 0.5m/s 14% 8min

TABLE II: Overview of the Cost of Transport (CoT) improvement
obtained in each scenario and the corresponding learning time.

To get an overview of the contributions of the three learn-
ing variables groups to the improvement of the performance
we ran an initial study on flat terrain with a speed of 0.5m/s
(Fig. 6). We performed a set of experiments where just one
group of the variables was used as the learning variables and
the resultant performance was recorded. We found that 68%

to 75% of the energy efficiency improvement comes from
learning the gait parameters and the controller gains, with
24% to 31% coming from the variable impedance strategy.

Fig. 6: An overview of our study into the individual contribution
of the groups of learning variables to the overall improvement.

The analysis indicates that learning the full cycle leads up
to a doubling of the computation time. On the other hand,
over 80% of the overall energy efficiency improvement can
be achieved just by learning the impedance during the swing
phase including the touchdown (TD) and liftoff (LO).

Since we use active impedance modulation, which cannot
store energy, the contribution of the impedance to the energy
performance improvement can be explained by the solution
exploiting other advantages of compliance (e.g., reducing the
trunk motion). The RCF’s trunk controller corrects unwanted
trunk motions by generating stabilisation torques. Thus,
reducing the need for these forces results in energy savings.

As the PI2 method is stochastic, we conduct a brief study
into how sensitive the solution is to the initial values and
the irregularity of the exploration noise. We use the flat
terrain with desired speed of 0.5m/s as the benchmark task.
We construct two distinct scenarios, in which we repeat the
learning procedure 10 times, monitoring the convergence of
the cost.

In the first scenario, we repeat the learning task, always
starting from the same set of decision parameters (i.e., the
same hand tuned values). Fig. 7 depicts the evolution of the
cost as the average (black line) and variance (blue) computer
over the 10 instances of learning. The cost converges on
average slower than in the experiment reported in Fig. 2(a),
but those results fall within the observed variance.
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Fig. 7: Evolution of the cost (benchmark task: flat terrain trot
at 0.5m/s). Mean (black) and variance (blue) computed over 10
learning instances (same initialisation of the decision parameters).

In the second scenario, we start each learning from a
random set of values for the decision parameters. These
values are sampled from within the respective admissible



regions. We note than although each initial value is feasible,
some combinations of parameters can result in completely
inadequate gaits.
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Fig. 8: Evolution of the cost (benchmark task: flat terrain trot at
0.5m/s). Mean (black) and variance (blue) computed over 10 learn-
ing instances (random initialisation of the decision parameters).

Fig. 8 depicts the evolution of the cost function in time as
the average (black line) and variance (blue) computer over
the 10 instances of learning. We note that the evolution of
the cost is much slower compared to the behaviour reported
in Section IV-A. This suggests that a larger exploration
noise might be required in some of the cases, which can
be easily addressed by using a methodology with sampling
noise adaptation (e.g., the PI2 extension proposed in [27]).

V. HARDWARE EXPERIMENTS

Following the results obtained in the simulation environ-
ment, we conducted validation experiments on the hardware
platform. In the work presented in this section we focused
on a flat terrain trot for a speed of 0.2m/s We evaluate the
performances of: i) the default RCF values (as tuned by the
expert user) and ii) the final values obtained at the end of
our learning procedure. Table III show a brief comparison of
the performances of the the two solutions in both simulation
and hardware.

rs re rτ rlim rft θtm

Std RCF (Sim) 0.013 0.09 0.017 0.0 0.0 0.00
Std RCF (Hw) 0.037 0.34 0.017 0.0 0.0041 0.24
Learned (Sim) 0.003 0.07 0.017 0.0 0.0 0.00
Learned (Hw) 0.027 0.21 0.016 0.0 0.0023 0.13

TABLE III: Overview of the performance of the standard RCF
and the learned values in both simulation and hardware for the flat
terrain trot at 0.2 m/s.

The hardware results are consistent with the simulation in
terms of joint and torque limits (the small cost values relate
to penalties applied to larger torques, but a limit violation
would result in much higher ones, as expressed in (4)). The
error in the tracking of the feet trajectories and the trunk
velocity are higher in the hardware, explained by the higher
values in the trunk motion. This additional trunk movements
can be attributed to slight discrepancies between the robot
model and/or state estimation used [28] in simulation, and
the real hardware realities. Consequentially, we observe an

overall energy efficiency improvement of 26% and 38%, after
learning in simulation and hardware, respectively.

Fig. 9 shows the CoT, feet tracking error and CoM velocity
tracking error for the gaits obtained with: i) the standard
RCF values and ii) the learned values in the hardware
experiments. The values are displayed as average (thick lines)
and variance (shaded surfaces) over one cycle of locomotion.
The gait obtained after learning is characterised by a similar
mean tracking performance, but with a reduced variance
(particularly in the velocity tracking behaviour). An overall
decrease in the total energy consumption is observed, as
expected from the values reported in Table III.
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Fig. 9: Performance on the hardware system: CoT (top), feet
tracking error (middle) and CoM speed tracking error (bottom) for:
i) the standard RCF parameters (blue) and ii) gait with the learned
values (green). The behaviour is displayed over one locomotion
cycle as: mean (thick line) with variance (shaded surfaces).

These experimental results indicate that the simulation is
a good representation of the system and more importantly,
the values obtained during the learning were able to improve
the performance of the real hardware. A video showcasing
the results in both simulation and hardware is available in
the additional material.

VI. CONCLUSIONS & FUTURE WORK

We presented a methodology for improving the perfor-
mance of a locomotion gait by learning a wide set of
parameters. Previously, most of these parameters were hand
tuned by an expert user (the procedure taking sometimes
several hours). We focus on improving the performance of
a trotting gait by learning the gait parameters, impedance
profile and the gains of the trunk controller. We tackle a
previously unexplored aspect, by choosing the secondary
goal (after achieving the desired travel speed) of improving
energy efficiency (measured using the CoT). We show that



this can be achieved by software based active impedance
control, despite no ability to store energy.

The method proved effective on various terrains and
speeds. By using a dedicated cost function and limiting the
number of optimisation parameters, we significantly improve
the learning time (from over 90 to just under 10 minutes),
compared to previous approaches [16]. The results obtained
in simulation are validated in hardware experiments, with
comparable performances. The focus of our investigation
goes beyond that of [16] by investigating multiple scenarios
and validating our experiments on the HyQ platform.

As mentioned in Section II-D, we learn the impedance
profile only for the swing phase, including the touchdown
and liftoff. We justify this simplification by the decrease in
learning time, weighted against the relatively small benefit
of a full impedance profile optimisation. In future work we
would like to investigate scenarios where full impedance pro-
file learning might be required and/or alternative approaches
(e.g., learning the best constant value required in the stance
phase). Since the former has been shown to significantly in-
crease the required learning time, new strategies to overcome
these difficulties will have to be devised.

In our investigation we start the learning task from a
feasible set of parameters, resulting in a viable gait. We
note in Section IV-C that random initialisation might require
sampling noise adaptation. Extensions to the standard PI2,
such as [27] can provide this capability.

Additionally, by integrating perception into the learning,
the initial values can be pre-set to the terrain. Thus, one
could benefit from a predefined policy library, where terrain
characteristics are coupled with stored values of the learning
variables. Lastly, extending the set of experiments to faster
movements and various terrains (including the cobblestone
scenario) is the focus of future work.
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