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Abstract— This paper presents a control law that induces
stable bounding on a model of the quadrupedal robot HyQ
designed specifically for highly-dynamic locomotion. The an-
troller integrates active compliance and torque planning vith
the framework of hybrid zero dynamics. Exploiting the hybrid
nature of the system, the control action is developed in bothon-
tinuous and discrete time to regulate the torques applied athe
support leg and the motion of the swing leg. It is demonstrate
that the proposed control law is capable of producing stable
periodic bounding gaits. The controller is tested in simuléions
under different perturbations, including an unexpected vetical
disturbance in ground height that amounts to 15% of the leg

(b)

length, as well as under parameter uncertainty. Fig. 1. (a) The Hydraulic Quadruped HyQ. HyQ features thregreles of
freedom per leg, two in the hip abduction/adduction and dieéextension
. INTRODUCTION joints and one in the knee flexion/extension joint. (b) A #agplane model

. . . . of HyQ used for the controller design.
Robotic quadrupeds offer attractive solutions to applica-

tions that require enhanced mobility and versatility. Aietr
of sophisticated designs has been proposed to realize tRgthods [13], suitably extended to accommodate the hybrid
potential of these robots in real-life applications. Faegs dynamics of legged locomotion [14], can be effective in
on quadrupeds specifically designed to run in a dynamicallptabilizing highly agile, dynamic locomotion on bipedstwit
stable manner, examples include Raibert’s machines [1§oMplex morphologies. However, the design of controllers
Scout I [2], Tekken [3], KOLT [4], HyQ [5], BigDog [6], for running quadrupeds based on a rigorous formulation of
and Cheetah [7] which demonstrated outdoor mobility. the feedback control problem has not received much attentio
These robots employ various actuation and contrdn the relevant literature. The differences in the morphglo
schemes to implement different running gaits. Raibert ar@f the bipedal robots with that of the quadrupedal robots,
his collaborators used intuitive principles to make vasioucould make the controllers developed for bipeds inapplecab
symmetric gaits possible on a quadruped by generalizif}) quadrupedal robots [12]. For example, the gravity of
one-foot gaits through the concept of virtual legs [1]. Ajon the torso in bipedal robot would only produces a small
the same lines, the Scout Il quadruped demonstrated efficidfrque with respect to the hip axis. This is not the case for
bounding gaits using only one actuator per leg located the quadruped, which has its torso horizontal and gravity
the hip [2]. Dynamic walking and running motions wereProduces a much larger torque. A direct application of the
implemented on Tekken by combining explicit compliancénethods in [14] for quadruped would require large torque
with a neural oscillator network [3]. A different paradigm,t0 actively stabilization of the torso for quadruped. On the
employing fuzzy control informed by Raibert-style hetidst other hand, this stabilization may not even be necessary for
has been introduced in [8]. In connection with this work, théluadruped bounding gaits [1].
guadruped KOLT has been used to investigate running in [9], In this paper, we propose a framework for control law
and a differential leg thrust controller has been applied tdesign, that combines torque planning with established
regulate trotting in [4]. Recently, an approach for corlingl  nonlinear control methods to obtain and stabilize periodic
the torso dynamics of running quadrupeds based on optimalipunding gaits for quadrupeds. The controller harnesses th
scaling the hip forces has been proposed in [7], [10]. hybrid structure of the system by introducing control attio
Recent progress on bipedal walkers [11], and runnefs both continuous and discrete time. In continuous time, th
[12], suggest that established nonlinear control synshesiontroller “creates” a virtual spring at the knee of the supp
leg during the stance phases. In addition the continuous-

Financial support by the European Union (European SociadfSF)  time controller imposes virtual holonomic constraints ba t
and Greek national funds through the Operational Prograocé&bn and

Lifelong Learning of the National Strategic Reference Feamrk Research Ieg that is !n the.a'r' redu?'ng the dlmenspn of the system
Funding Program: THALES: Reinforcement of the interdioary and/or on lower-dimensional, suitably parameterized, surfaces i

interinstitutional research & innovation is also acknaiged. This work the robot’s state space. In discrete time, the parameters
is supported in part by NSF grant CMMI-1130372 and ARO cattra . . . ;
WO11NF-12-1-0117. introduced by the continuous time controller are updated.

X. Liu and I. Poulakakis are with the Department of Mechan-The controller is tested in simulation using a sagittakpla
Sglulngggfg?de|Ung§ﬁ'ty of Delaware, DE, USA{xinliu,  model of HyQ, demonstrating good performance in handling
C. Semini is with the Department of Advanced Robotics, ustititaliano disturbances as well as parameter inaccuracy. A video with

di Tecnologia (IIT), Genova, Italycl audi 0. senmi ni @it.it simulated bounding motions accompanies this paper.



The structure of this paper is as follows. Section Il devel-
ops a bounding model of HyQ. Section Il gives a detailed
account on the controller design. Section IV implements the
controller in simulation and Section V concludes the paper.
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II. MODELING BOUNDING WITH HYQ Stance

In this section, a mathematical model of the quadrupedal
robot HyQ (Hydraulic Quadruped) shown in Fig. 1(a) in
bounding is developed. HyQ is a fully torque-controlled
robot built by the Dynamic Legged Systems Lab of the
Istituto Italiano di Tecnologia (IIT) [5]. The robot weighs
about 86kg in its current configuration and has a height of
1m with fully extended legs. Each leg has three degrees =
of freedom: two in the hip (abduction/adduction (HAA)
and flexion/extension (HFE)) and one in the knee (flex- Fig. 2. Phase transition of a nominal bounding gait.
ion/extension (KFE)). High-performance servovalves émab
joint-level torque and position control with excellentdking A. Dynamics in Floating-base Form
[15]. The high power-density of hydraulic actuators allow as gefined in Fig. 1(b), a convenient choice of generalized
strong and fast leg motions. The robustness of hydrauligygrdinates describing the model's configurationgis.=
actuation against impact also makes HyQ a very suitab ems Yern Orors O 1, 0p.2, 01, Oa »)'. The dynamics can be
platform for dynamic gaits, such as trotting and bounding.yritten in the form

In modeling bounding with HyQ, it is assumed that the
essential features of the robot's motion take place in the D(q)i+ C(q,q)g+ G(q) = Bu+ J' Foy, (1)
sagittal plane, resulting in the planar model of Fig. 1(b).

In this model, the four leg abduction-adduction degrees ofhere D is the mass matrixC' contains Coriolis and
freedom are not considered. In Fig. 1(b), the back and frosentrifugal terms,G is the vector of gravity-dependent
virtual legs represent the collective effect of the back antprces, andB is the matrix mapping the input vectar:=
front physical leg pairs, respectively. The geometric anfup,1,up 2, ta1,ua2) to the vector of generalized forces.
inertia parameters of the model can be found in Table I. In (1), J := (J*, Jy’)' is the contact Jacobian obtained
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TABLE | by differentiating the position of the foot with respect to a
MECHANICAL PARAMETERS OF THEM ODEL inertia frame, whileF,,, = (F~,,FY,) is the interaction
. force, which is zero when the toe is in flight.
Parameter Value Units .
Torso mass (including HAA joints) 72,00 kg The contact betweeq the toe and the g.round is modeled
Upper leg mass (virtual leg) 530 kg based on a Coulomb friction model, resulting in
Lower leg mass (virtual leg) 1.60 kg . .
Total Mass 85.80 kg UG+ I =0 (2)
Torso Inertia (including HAA joints) 6.98 kan?2 .
Upper leg inertia 0.05  kgn2 JG+J%G=0 or Fi, =l 3)
- 5

t'?;v g:ji Iglesgi ce %'_331 gn m that are augmgnted to (1) to solve fpand Foys; in (3), i is .
HAA linkage length 0.12 m the sliding fr|c't|(.)n coefﬂmentlassumed to .be .0.8. D.epegdln
Upper leg linkage length 035 m on whether sliding occurs, either constraint in (3) is used.
Lower leg linkage length 0.33 m
Upper leg COM to hip distance 0.162 m B. Reduced Dynamics
Lower leg COM to knee distance 0122 m In the anterior and posterior stance phases, and under the

Depending on the foot in contact with the ground, théssumption that the toe does not slide over the ground, the
model can be in one of the following phases: flighit’* €quations of motion can be written as:

anterior stancesh,” posterior stancesp,” and double stance . L B
“sd”. Figure 2 shows the phase sequence ohaminal Di(as)¢s + Cilas, Gs)ds + Gilas) = Biw 4)
bounding gait, which does not include a double stance phasfg'r i € {sa, sp}, where the configuration variables afe:—
however, in converging from perturbations, the model Caﬂ9 P "9 ’9 0 2) °

go through double stance phases. The indices” “and tors Ve, 1a p,20 Fas 1y Fa,2 )

“su” refer to the swing leg and the support leg respectively, "

Furthermore, quantities related to the hip and knee jointsc,' Transitions

such as torques and angles, will be denoted by “1” and “2,” For bounding gaits, transitions among phases are triggered
respectively. by touchdown (TD) or liftoff (LO) events.



1) Flight-to-stance Transition:Switching from flight to The purpose of the controller at stance phases is to
the anterior or posterior stance, or from the anterior dndirectly “shape” the force exerted by the support leg an th
posterior stance to double stance, occurs at TD, which ground, and to place the swing leg at a desired configuration.
modeled as a completely inelastic impact that results iho achieve these objectives, a combination of torque pfanni
no rebound according to the assumptions listed in [14nd motion control is employed.

Section 3.4]. Note that the resulting impact maps leave the 1) Active Compliance through Torque Planning for the
configuration variables unaffected, while the correspogdi Support Leg: To regulate the interaction between the torso
velocities experience jumps. and the environment, the controller commands desired éorqu

2) Stance-to-flight TransitionThe robot enters the flight profiles at the hip and knee joints of the leg in contact with
phase when the support leg takes off. This event is chahe ground. In more detail, a constant torgliei € {sp,sa}
acterized by the zeroing of the normal component of this commanded at the hip actuator of the support leg as

round reaction force. With the knee and hip joints activel
gontrolled, the liftoff event can be initiated by Frjlcitively)ﬂng g Up = fop AN a1 = fra ©
the joints. Hence, we will assume that the legs take off wheli@r the stance-posterior and the stance-anterior phasd, Ne
the corresponding knee joint angletig0°, where ‘" refers  the following torque is commanded at the knee joint

to the posterior and-" to the anterior leg. Ups = Tip.o + kp(Op.2 — Op.2) )
[1l. CONTROLLERDESIGN for the stance-posterior phase, and similarly
The proposed controller — see Fig. 3 for an overview of Uao = Un2 + ka(fa2 — Oa2) (8)

the control action — is largely inspired by the study of passi . ~
bounding gaits. By commanding appropriate leg touchdomfr?.rﬁthe star;jc't[ar;anterior plhas?.thln (.7?? Trlld Op.2 are tpe h
angles at flight phases, and keeping the leg passive duriR ?@S alm . ethres ar:g €o ¢ evir l;]a r.1ee_z S.i;ng e(;r
the stance phases, self-stable periodic bounding gaitbeang sterior leg in the posterior-stance phase; similaglyan

generated by low-dimension models with mass-less sprinig’2 in (8) are the corresponding constants for the anterior

legs [16]. HYQ, however, is neither energy-conservative n g virtual spring in the anterior-stance phase. We require

has any springs in it. Hence, to “mimic” the behavior of thip-r2 = —ba2 = 40°, consistent with the liftoff conditions in

passive model the knee joint of the support leg is torqu I-C so that the (virtual) spring is completely undeformed a

controlled to create a virtual spring while (virtual) hotonic 'Z?jﬁ'd'\ltme that thfhof‘:'ﬁtmp’2 an?ﬂa72 in (7) ?ndf (tf]) are d
constraints are imposed on the joints of the swing leg gguaed fo ensure that the normal component ot the groun
that it lands with a preferred touchdown angle. FurthermoréeaCtlon force is sufficiently large to prevent toe slipping

in contrast to the passive hip joints of the Iow-dimensionatl To sum::;arl?e, tfr?r each fl {S%’ S?.l}' :Ee (iommanmd;td
models, the hip joint of the support leg is torque-contille orque protiles for the support leg during he stance-puster

to compensate for energy losses. The imposed holononﬁgd stance-anterior phases, can be written in the form
su

constraints introduce parameters that are updated in gethisc u;t =I5 (xs, 05") 9)
time to render the constraints impact-invariant, leadmthe

9 su . 27 sSu . __
notion of hybrid zero dynamics. for i € {sp,sa}, whereag; := {up.», kp, fip} and a3y =

{ia,2, ka, Bsa }- With this notation, the stance dynamics (5)
for i € {sp,sa} in closed loop with the controller of the
corresponding support leg (9) becomes

i = [ (s, 0f") 4+ g7 (ws)ui™, (10)

where f5% (x5, a5") == fi(zs) + ¢5%(xs) 5" (s, &5"). Note
wherei € {sa,sp} andzs := (¢}, ¢.)’ is the state vector. that at double stance, both legs are support legs and are
torque-controlled using the controller described above.

2) Swing Leg Motion ControlThe continuous-time con-
trol input«% in (10) includes the hip and knee joint torques
of the swing leg, and it will be used to prepare the swing
leg for its ensuing touchdown. To achieve this objective, we
associate to (10) the output

A. Stance Phase Torque Planning and Motion Control
The stance phase dynamics (4) can be written as

s = filws) + 97" (@)ui" + g7 (ws)ui™, ()

I

- -l

Motion and force control Yy = hi(qS’ Osz) = H;qs — h?(si(qs)’ Osz) (11)

i for ¢ € {sp,sa}, where H,¢s is the vector of the controlled
variables, which contains the absolute hip angle and the kne

Fig. 3. Feedback diagram illustrating the structure of tbetwller. The angle relative to the upper part of the swing leg; i.e.,
continuous line represents signals in continuous time; dhshed lines
represent signals in discrete time. The continuous-tinmgrobber I'® creates 1 =1 0 0 O 1 0 0 =1 0
an actively compliant zero dynamics using torque planning enotion Hg,:= and H, :=
control. The discrete-time controlleF® updates parameters to ensure 0 01 .00 0 0 0 0 1
invariance under the transition maps. (12



for the stance-posterior and the stance-anterior phases. i € {sp,sa} the solutions of (10) converge to the invariant
In (11), hd is the desired evolution of the controlledsurfaceZ,, exponentially fast.

variables, which is represented by smooth polynomials asIn what follows, the combined continuous-time control

detailed in the Appendix. We only mention here that thection during the stance phases {sp, sa} will be denoted

polynomials are parameterized by the normalized variableby I'¢ = {I'S*, IV}, depicted in Fig. 3.

Yo (gsp) — ¥E4

td
a\dsa) — Va i i
Sep(@sp) 1= X and se(gsa) = Ya(gsa) — 7 B. Flight Phase Motion Control
sp

Asa 13 The continuous-time control design in the flight phases is
whereA,, and A, are constantsy, and~, are the angles analogous to that of the stance, thus the exposition hete wil
sp sa P a

between the vertical and the line connecting the hip witR€ terse. Lets := (¢',¢')’ be the state for the flight phase.
the foot of the posterior and anterior leg, respectivelyl an! "en: the dynamics in both flight phases can be written as
7 , 7t4 are the corresponding values at touchdown; see L
F|g 1(b). Note that, for eache {sp,sa}, s; is @ monotonic = Ji@n) + gi(ar) (20)
function of the configuration variables, essentially replg  To allow the use of polynomials with different coefficients i
time in the parameterization of the polynomials descrilved idefining the desired evolution of the controlled variabtes,
the Appendix. Finally, all the parameters associated with t each flight phase — that is, the flight phase after the posterio
design of the desired evolutidr} of the controlled variables, leg liftoff denoted by the inde;, and the flight phase after
are collected in the array;™, which, participates in the the anterior leg liftoff denoted bfg — we associate the output
definition of the constraint (11). J

The outputs (11) are functions of the configuration vari- Yi = hi(we, 05) := Heq — hi (se(q), o), (21)

ables only; hincﬁ thei; can be ijnterpreted aS”hObno%erez € {fy,f,}. In (21), the controlled variableH;q are
constraints, which can be imposed (asymptotically) on thg s same in hoth flight phases, and correspond to the absolute
‘?up and the relative knee angles of the posterior and amterio

(11) for given values ofy; := {a5%, a5V} to get legs: that is,H; is defined as

d?y; i
=I>2 swhi Ts, ;) + LgswLpswhy(xg, o )u™ 14 0212 Hs
T2 ( )+ Lgsw Lgewhy( ) (14) Hem [0 x Hp} (22)
where Lgew Lpswhi(zs, o) is the decoupling matrix. Upon 22 s

verifying the invertibility of Lz L go hi (s, i), In (21), for each flight phase € {f,f,}, hd represents

wS (25, ) 1= — (L o L g hi a‘))—ng hi(s, ) the desired evolution of the controlled variables, which is
oA ! e Fer s 15) defined by smooth polynomials parameterized through the

is the unique control input which renders the surface monotonic quantity

lo

. . . SWYy Lem — xcm;i
Zo, ={xs € Xy | hi(gs, 05") =0, (16) si(qi) = — (23)
Lyswhi(s,06) =0} i
invariant under the flow of the closed-loop dynamics. Zegoin'WhereA; is a normalizing constant, and® ; is the value of

the output effectively reduces the dimension of the systgm Bhe horizontal coordinate.., of the torso's COM at liftof,
restricting its dynamics on the zero dynamics surfae. S° that (23) represents a monotonically increasing guyantit

The dynamics of the system restricted Bp,, that replaces time in the parameterization of the polyntmia
' The details associated with the polynomials are presented
2= f{lz.,(2) (17) in the Appendix; we only mention here that; are the

parameters associated with the constructiompfin each
flight phasei € {f;,fs}.
To impose the constraints, a continuous-time controller
u™ =T (2, ) that zeros the output (21) is designed. The process is simila
_ (Lg;:waswh-(a"S,ai))_l (18) tp the one employed in the stance phase. In each phase
. i € {f1,12}, the corresponding controller has the form
[U(yia Yi, E) - LgwaffWhi(xsa Oéi)]

is the corresponding zero dynamics. To ensure attractfity
Z,,, the input (15) is modified as

u = Fg(va ai)
—1 .
U(Yi, Jis €) = _ngPyi - lK\/?)i, (19) = (L Lchi(we, i) [v(yi, gir €) — Lgfofhi(xfaoéiz)‘]lj
€ €
and Kp, Ky are gain matrices, and > 0. Under the Where the auxiliary control input has the same form with
influence of the continuous-time feedback lawg” for (19), and it renders the zero dynamics surface

where

INote that the output (11) depends only ef"; however, when we Za; ={we € X | hi(gr, ) =0, Lyhi(wg, o) = 0} (25)
differentiate along the dynamics (10) the resulting Lieidgives depend . )
also on the parameters;" introduced by the force controller. invariant and attractive.



C. Discrete-time Control Laws

At discrete transitions, zeroing of the output may be
violated whenz;” ¢ Z,, for i € {sp,sa,f;,f }. To ensure
that the zero dynamics surface in each phase is invarian
under transitions, the control action updates the paramete
«; according to controllers

af =T () (26)
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for i € {sp,sa,f1,f2} as detailed in the Appendix.
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IV. SIMULATION RESULTS

The bounding gait naturally defines a Poincaré return map.
We select the Poincaré section to be the flight-to-stance-
posterior switching surfacé:,_,s,, when the posterior leg
touches the ground. The corresponding Poincaré fap
St,—sp — St,msp Of the system under the influence of the * Time e * time
combined continuous-time controllef¥ and the discrete- (© (d)
time controllers'?, with ¢ € {sp, sa, sd, f1,f2} becomes

ue (N.m)
g

=)

=3

Hip Torque (N.m)
|
g

Knee Tor
iR
5]
3

N
@
S

)

Fig. 4. Response of the system t®an step-down disturbance showing
k1] = + 1k 27 convergence to the nominal orbit. (a) Hopping height; (syverd velocity;
xSp[ +1]=P (ISP[ ]) (27) (c) knee joint actuator torque; (d) hip joint actuator tagqin (a) and (b),
+ ; ; ; the green squares denote the state at Poincare section) &amdo(d), the
Where_xSP [k] is the state after thk‘th_lmpaCt ,Of t_he pos'terlor red lines correspond to the posterior leg and the blue dakhesl to the
leg with the ground. Then, a nominal periodic running gaifnterior leg torques.
corresponds to a fixed point of the Poincaré return map

defined by L .
£ =P (af) (28) torso mass and moment of inertia is either increased or

5P 5P decreased bR0% (corresponding to 14kg and 1.4kg*m

By using Matlab’sf sol ve, a number of fixed points can For all the points randomly tested, the controller is able to
be computed for (28). In particular, a fixed point corresponctonverge to a periodic gait. Notice that due to the under-
ing to an average horizontal velocity 2.527m/s is analyzesactuation of the system, the robot will not return to the
here. Numerical computations reveal that the norm of theominal periodic gait, but it will converge to a nearby orbit
dominant eigenvalue of the linearized Poincaré map (28) at

Z

this fixed point is 0.95, implying local exponential statyili V. CONCLUSION
Note that the resulting nominal motion has neither double Thjs paper proposes a framework for designing controllers
stance phase nor slip of the foot. that integrate actively generated compliance and torque

To demonstrate the performance of the controller, Wgjanning with motion control to induce dynamically-stable
consider the case where the model experiences an Ung¥unding gaits on a model of HyQ. In continuous time
pected variation in the ground height 6fm, which is the purpose of the controller is twofold. First, it commands
approximately equal td5% of the leg length. Figures 4(a) gyjtably parameterized torque profiles to the support leg
and 4(b) present the evolution of the torso height and thgctyators to create active compliance and to compensate for
horizontal velocity, showing convergence to the nominél ga energy loss. Second, it enforces a set of (virtual) hologomi
The corresponding continuous-time inputs are presented dgnstraints to restrict the evolution of the hip and knee

Figs. 4(c) and 4(d), illustrating that the peak torques a8 W angles on lower-dimensional surfaces in the state space of
within the capabilities of the hydraulic actuators of thbat

Figure 5 presents a numerical estimate of the domain 0.12
of attraction of this controller in thei(,,, y.m) plane. The ~ 01
: . . £
disturbance is added at the end of the stance-posterioephas > 0.08f
The blue area is the part where the robot eventually congerge 2 108
back to the original fixed point. Note that the largest partio 5 0.04
of the region of attraction lies in the second quadrant, eher 2
the vertical displacement of the robot is increased while 8 gl
the velocity is decreased; this is due to the fact that such S5 0
disturbances do not drastically increase the total enefgy o 2 -0.02-
the system, and can be rejected relatively easily. ~0.04"
Finally, Fig. 6 presents the sensitivity of the controller t 1 05 0 05 1
the inaccuracy in the inertia parameters. Here it is assumed Horizontal Velocity Disturbance(m/s)

that the mass of the thigh and shank has an inaccuragy. 5. An estimate of the region of attraction. The blue aegesents
randomly distributed withint=30% of the model, while the states that can be accommodated by the controller.
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2) Coefficient Updates for Invariancefo extend invari-
ance in the hybrid setting we need to ensure that the initial
condition z;~ for each phase belongs on the corresponding
zero dynamics surfacg,,, where the (possible) dependence
of Z. To satisfy this condition, the surfacg,, can be
“deformed” by updatingy; so thatz;” € Z,,. Consider again
the controlled variablé, and letd™ be its initial value. Then,

o
o
3

12 13

o
o~
3

8 09 1 11 8 09 1 11
M1 disturbance(ratio) M1 disturbance(ratio)
@ (b)

Fig. 6. Robustness test. The leg mads and M> is randomly perturbed
within £30% of the nominal value. All the points randomly checke
stabilized to periodic gaits. The torso mass and moment eftian is
increased by20% (a) and decreased 30% (b).

d for

the system. The parameters introduced through continuous-
time control are updated by the discrete-time controller,
which effectively re-plans the constraint profiles prowmigli
additional control action. Aiming at experimentally veiiig

the proposed control method on HyQ, the controller is
tested in simulation under different disturbances, initigd
unanticipated ground height variation, horizontal velpas
wells as parameter inaccuracy.

(1]
(2]

(3]

APPENDIX "
4
This appendix provides more details on the design of the
polynomials that characterize the desired evolution of tthS]
controlled variables. To simplify the presentation, weu®c
on a single controlled variabl¢ with desired evolutiorh.

1) Polynomial Design:We consider the output

y=0—hy(s(q),a),

wheres is a monotonic function o, defined though(q) =
2lal=¢o with ¢, and A suitably selected constants that have
the meaning of the constants participating in (13) for the[g]
stance and in (23) for the flight phases. For example, in the
stance-posterior phasg;is v, ¢o is 'y;d andA corresponds 9]
to Ayp,. Then,hd is selected as

[6]
(29)

(7]

(10]

4
Zaks(q)k, if s<o (30)
k=0
if s>o.

hi(s(a))

a5, [11]

The first part of (30) transfers the corresponding contdolle
variabled over the interval0, o) to its target position with
zero final velocity and acceleration. The second part atl
(30) keeps the controlled variable equal to constgntintil

the phase terminates. Lastly, to ensure continuity up to the

second derivative, we impose the following constraints [13]
a404 + a303 + a202 + a0+ ag=as [14]
4&40’3 + 3&30’2 + 2as0 + a1 =0 (31) [15]

12a402 + 6azo + 2as = 0.

For each output (two for the stance phase and four for the
flight phases), this procedures introduces a number of p%fs
rameters — namelyfao, ..., as, 0, A, ¢o } — which participate
in the definition of« in (29).

updating the coefficients in (30) through

ap =0 and a; = (1/$)07, (32)

all the controlled variables ensures invariance under

transitions. Note that (31) and (32) define a system of five
equations with five unknowns, the solution of which provides
trs1e polynomial coefficients.
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