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Abstract— This paper presents a control law that induces
stable bounding on a model of the quadrupedal robot HyQ
designed specifically for highly-dynamic locomotion. The con-
troller integrates active compliance and torque planning with
the framework of hybrid zero dynamics. Exploiting the hybrid
nature of the system, the control action is developed in bothcon-
tinuous and discrete time to regulate the torques applied atthe
support leg and the motion of the swing leg. It is demonstrated
that the proposed control law is capable of producing stable
periodic bounding gaits. The controller is tested in simulations
under different perturbations, including an unexpected vertical
disturbance in ground height that amounts to 15% of the leg
length, as well as under parameter uncertainty.

I. I NTRODUCTION

Robotic quadrupeds offer attractive solutions to applica-
tions that require enhanced mobility and versatility. A variety
of sophisticated designs has been proposed to realize the
potential of these robots in real-life applications. Focusing
on quadrupeds specifically designed to run in a dynamically-
stable manner, examples include Raibert’s machines [1],
Scout II [2], Tekken [3], KOLT [4], HyQ [5], BigDog [6],
and Cheetah [7] which demonstrated outdoor mobility.

These robots employ various actuation and control
schemes to implement different running gaits. Raibert and
his collaborators used intuitive principles to make various
symmetric gaits possible on a quadruped by generalizing
one-foot gaits through the concept of virtual legs [1]. Along
the same lines, the Scout II quadruped demonstrated efficient
bounding gaits using only one actuator per leg located at
the hip [2]. Dynamic walking and running motions were
implemented on Tekken by combining explicit compliance
with a neural oscillator network [3]. A different paradigm,
employing fuzzy control informed by Raibert-style heuristics
has been introduced in [8]. In connection with this work, the
quadruped KOLT has been used to investigate running in [9],
and a differential leg thrust controller has been applied to
regulate trotting in [4]. Recently, an approach for controlling
the torso dynamics of running quadrupeds based on optimally
scaling the hip forces has been proposed in [7], [10].

Recent progress on bipedal walkers [11], and runners
[12], suggest that established nonlinear control synthesis
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Fig. 1. (a) The Hydraulic Quadruped HyQ. HyQ features three degrees of
freedom per leg, two in the hip abduction/adduction and flexion/extension
joints and one in the knee flexion/extension joint. (b) A sagittal plane model
of HyQ used for the controller design.

methods [13], suitably extended to accommodate the hybrid
dynamics of legged locomotion [14], can be effective in
stabilizing highly agile, dynamic locomotion on bipeds with
complex morphologies. However, the design of controllers
for running quadrupeds based on a rigorous formulation of
the feedback control problem has not received much attention
in the relevant literature. The differences in the morphology
of the bipedal robots with that of the quadrupedal robots,
could make the controllers developed for bipeds inapplicable
on quadrupedal robots [12]. For example, the gravity of
the torso in bipedal robot would only produces a small
torque with respect to the hip axis. This is not the case for
the quadruped, which has its torso horizontal and gravity
produces a much larger torque. A direct application of the
methods in [14] for quadruped would require large torque
to actively stabilization of the torso for quadruped. On the
other hand, this stabilization may not even be necessary for
quadruped bounding gaits [1].

In this paper, we propose a framework for control law
design, that combines torque planning with established
nonlinear control methods to obtain and stabilize periodic
bounding gaits for quadrupeds. The controller harnesses the
hybrid structure of the system by introducing control action
in both continuous and discrete time. In continuous time, the
controller “creates” a virtual spring at the knee of the support
leg during the stance phases. In addition the continuous-
time controller imposes virtual holonomic constraints on the
leg that is in the air, reducing the dimension of the system
on lower-dimensional, suitably parameterized, surfaces in
the robot’s state space. In discrete time, the parameters
introduced by the continuous time controller are updated.
The controller is tested in simulation using a sagittal-plane
model of HyQ, demonstrating good performance in handling
disturbances as well as parameter inaccuracy. A video with
simulated bounding motions accompanies this paper.



The structure of this paper is as follows. Section II devel-
ops a bounding model of HyQ. Section III gives a detailed
account on the controller design. Section IV implements the
controller in simulation and Section V concludes the paper.

II. M ODELING BOUNDING WITH HYQ

In this section, a mathematical model of the quadrupedal
robot HyQ (Hydraulic Quadruped) shown in Fig. 1(a) in
bounding is developed. HyQ is a fully torque-controlled
robot built by the Dynamic Legged Systems Lab of the
Istituto Italiano di Tecnologia (IIT) [5]. The robot weighs
about 86kg in its current configuration and has a height of
1m with fully extended legs. Each leg has three degrees
of freedom: two in the hip (abduction/adduction (HAA)
and flexion/extension (HFE)) and one in the knee (flex-
ion/extension (KFE)). High-performance servovalves enable
joint-level torque and position control with excellent tracking
[15]. The high power-density of hydraulic actuators allow
strong and fast leg motions. The robustness of hydraulic
actuation against impact also makes HyQ a very suitable
platform for dynamic gaits, such as trotting and bounding.

In modeling bounding with HyQ, it is assumed that the
essential features of the robot’s motion take place in the
sagittal plane, resulting in the planar model of Fig. 1(b).
In this model, the four leg abduction-adduction degrees of
freedom are not considered. In Fig. 1(b), the back and front
virtual legs represent the collective effect of the back and
front physical leg pairs, respectively. The geometric and
inertia parameters of the model can be found in Table I.

TABLE I

MECHANICAL PARAMETERS OF THEMODEL

Parameter Value Units

Torso mass (including HAA joints) 72.00 kg

Upper leg mass (virtual leg) 5.30 kg

Lower leg mass (virtual leg) 1.60 kg

Total Mass 85.80 kg

Torso Inertia (including HAA joints) 6.98 kgm2

Upper leg inertia 0.05 kgm2

Lower leg inertia 0.02 kgm2

Hip-to-Hip distance 0.74 m

HAA linkage length 0.12 m

Upper leg linkage length 0.35 m

Lower leg linkage length 0.33 m

Upper leg COM to hip distance 0.162 m

Lower leg COM to knee distance 0.122 m

Depending on the foot in contact with the ground, the
model can be in one of the following phases: flight “f,”
anterior stance “sa,” posterior stance “sp,” and double stance
“sd”. Figure 2 shows the phase sequence of anominal
bounding gait, which does not include a double stance phase;
however, in converging from perturbations, the model can
go through double stance phases. The indices “sw” and
“su” refer to the swing leg and the support leg respectively.
Furthermore, quantities related to the hip and knee joints,
such as torques and angles, will be denoted by “1” and “2,”
respectively.
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Fig. 2. Phase transition of a nominal bounding gait.

A. Dynamics in Floating-base Form

As defined in Fig. 1(b), a convenient choice of generalized
coordinates describing the model’s configuration isq :=
(xcm, ycm, θtor, θp,1, θp,2, θa,1, θa,2)

′. The dynamics can be
written in the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTFext, (1)

where D is the mass matrix,C contains Coriolis and
centrifugal terms,G is the vector of gravity-dependent
forces, andB is the matrix mapping the input vectoru :=
(up,1, up,2, ua,1, ua,2)

′ to the vector of generalized forces.
In (1), J :=

(

Jx′, Jy ′
)′

is the contact Jacobian obtained
by differentiating the position of the foot with respect to an
inertia frame, whileFext = (F x

ext, F
y
ext)

′ is the interaction
force, which is zero when the toe is in flight.

The contact between the toe and the ground is modeled
based on a Coulomb friction model, resulting in

Jy q̈ + J̇y q̇ = 0 (2)

Jxq̈ + J̇xq̇ = 0 or F x
ext = µF y

ext (3)

that are augmented to (1) to solve forq̈ andFext; in (3), µ is
the sliding friction coefficient assumed to be 0.8. Depending
on whether sliding occurs, either constraint in (3) is used.

B. Reduced Dynamics

In the anterior and posterior stance phases, and under the
assumption that the toe does not slide over the ground, the
equations of motion can be written as:

Di(qs)q̈s + Ci(qs, q̇s)q̇s +Gi(qs) = Biu , (4)

for i ∈ {sa, sp}, where the configuration variables areqs :=
(θtor, θp,1, θp,2, θa,1, θa,2)

′.

C. Transitions

For bounding gaits, transitions among phases are triggered
by touchdown (TD) or liftoff (LO) events.



1) Flight-to-stance Transition:Switching from flight to
the anterior or posterior stance, or from the anterior or
posterior stance to double stance, occurs at TD, which is
modeled as a completely inelastic impact that results in
no rebound according to the assumptions listed in [14,
Section 3.4]. Note that the resulting impact maps leave the
configuration variables unaffected, while the corresponding
velocities experience jumps.

2) Stance-to-flight Transition:The robot enters the flight
phase when the support leg takes off. This event is char-
acterized by the zeroing of the normal component of the
ground reaction force. With the knee and hip joints actively
controlled, the liftoff event can be initiated by actively flexing
the joints. Hence, we will assume that the legs take off when
the corresponding knee joint angle is±40◦, where “+” refers
to the posterior and “−” to the anterior leg.

III. C ONTROLLER DESIGN

The proposed controller – see Fig. 3 for an overview of
the control action – is largely inspired by the study of passive
bounding gaits. By commanding appropriate leg touchdown
angles at flight phases, and keeping the leg passive during
the stance phases, self-stable periodic bounding gaits canbe
generated by low-dimension models with mass-less springy
legs [16]. HyQ, however, is neither energy-conservative nor
has any springs in it. Hence, to “mimic” the behavior of the
passive model the knee joint of the support leg is torque-
controlled to create a virtual spring while (virtual) holonomic
constraints are imposed on the joints of the swing leg so
that it lands with a preferred touchdown angle. Furthermore,
in contrast to the passive hip joints of the low-dimensional
models, the hip joint of the support leg is torque-controlled
to compensate for energy losses. The imposed holonomic
constraints introduce parameters that are updated in a discrete
time to render the constraints impact-invariant, leading to the
notion of hybrid zero dynamics.

A. Stance Phase Torque Planning and Motion Control

The stance phase dynamics (4) can be written as

ẋs = fi(xs) + gsui (xs)u
su
i + gswi (xs)u

sw
i , (5)

wherei ∈ {sa, sp} andxs := (q′s, q̇
′

s)
′ is the state vector.

ΓcΓα

Motion and force control

Impact Invariance

Fig. 3. Feedback diagram illustrating the structure of the controller. The
continuous line represents signals in continuous time; thedashed lines
represent signals in discrete time. The continuous-time controller Γc creates
an actively compliant zero dynamics using torque planning and motion
control. The discrete-time controllerΓα updates parameters to ensure
invariance under the transition maps.

The purpose of the controller at stance phases is to
indirectly “shape” the force exerted by the support leg on the
ground, and to place the swing leg at a desired configuration.
To achieve these objectives, a combination of torque planning
and motion control is employed.

1) Active Compliance through Torque Planning for the
Support Leg:To regulate the interaction between the torso
and the environment, the controller commands desired torque
profiles at the hip and knee joints of the leg in contact with
the ground. In more detail, a constant torqueβi, i ∈ {sp, sa}
is commanded at the hip actuator of the support leg as

up,1 = βsp andua,1 = βsa (6)

for the stance-posterior and the stance-anterior phase. Next,
the following torque is commanded at the knee joint

up,2 = ūp,2 + kp(θp,2 − θ̄p,2) (7)

for the stance-posterior phase, and similarly

ua,2 = ūa,2 + ka(θa,2 − θ̄a,2) (8)

for the stance-anterior phase. In (7),kp and θ̄p,2 are the
stiffness and the rest angle of the virtual knee spring for the
posterior leg in the posterior-stance phase; similarly,ka and
θ̄a,2 in (8) are the corresponding constants for the anterior
leg virtual spring in the anterior-stance phase. We require
θ̄p,2 = −θ̄a,2 = 40◦, consistent with the liftoff conditions in
II-C so that the (virtual) spring is completely undeformed at
liftoff. Note that the offsets̄up,2 and ūa,2 in (7) and (8), are
added to ensure that the normal component of the ground
reaction force is sufficiently large to prevent toe slipping.

To summarize, for eachi ∈ {sp, sa}, the commanded
torque profiles for the support leg during the stance-posterior
and stance-anterior phases, can be written in the form

usu
i = Γsu

i (xs, α
su
i ) (9)

for i ∈ {sp, sa}, whereαsu
sp := {ūp,2, kp, βsp} andαsu

sa :=
{ūa,2, ka, βsa}. With this notation, the stance dynamics (5)
for i ∈ {sp, sa} in closed loop with the controller of the
corresponding support leg (9) becomes

ẋi = f sw
i (xs, α

su
i ) + gswi (xs)u

sw
i , (10)

wheref sw
i (xs, α

su
i ) := fi(xs) + gsui (xs)Γ

su
i (xs, α

su
i ). Note

that at double stance, both legs are support legs and are
torque-controlled using the controller described above.

2) Swing Leg Motion Control:The continuous-time con-
trol inputusw in (10) includes the hip and knee joint torques
of the swing leg, and it will be used to prepare the swing
leg for its ensuing touchdown. To achieve this objective, we
associate to (10) the output

yi = hi(qs, α
sw
i ) := Hiqs − hd

i (si(qs), α
sw
i ) (11)

for i ∈ {sp, sa}, whereHiqs is the vector of the controlled
variables, which contains the absolute hip angle and the knee
angle relative to the upper part of the swing leg; i.e.,

Hsp :=

[

1 −1 0 0 0

0 0 1 0 0

]

andHsa :=

[

1 0 0 −1 0

0 0 0 0 1

]

(12)



for the stance-posterior and the stance-anterior phases.
In (11), hd

i is the desired evolution of the controlled
variables, which is represented by smooth polynomials as
detailed in the Appendix. We only mention here that the
polynomials are parameterized by the normalized variables

ssp(qsp) :=
γp(qsp)− γtd

p

∆sp
and ssa(qsa) :=

γa(qsa)− γtd
a

∆sa
(13)

where∆sp and∆sa are constants,γp andγa are the angles
between the vertical and the line connecting the hip with
the foot of the posterior and anterior leg, respectively, and
γtd
p , γtd

a are the corresponding values at touchdown; see
Fig. 1(b). Note that, for eachi ∈ {sp, sa}, si is a monotonic
function of the configuration variables, essentially replacing
time in the parameterization of the polynomials described in
the Appendix. Finally, all the parameters associated with the
design of the desired evolutionhd

i of the controlled variables,
are collected in the arrayαsw

i , which, participates in the
definition of the constraint (11).

The outputs (11) are functions of the configuration vari-
ables only; hence, they can be interpreted as holonomic
constraints, which can be imposed (asymptotically) on the
system by driving (11) to zero. To do so, we differentiate
(11) for given values ofαi := {αsu

i , αsw
i } to get1

d2yi
dt2

= L2
fsw

i

hi(xs, αi) + Lgsw

i
Lfsw

i
hi(xs, αi)u

sw (14)

whereLgsw

i
Lfsw

i
hi(xs, αi) is the decoupling matrix. Upon

verifying the invertibility ofLgsw

i
Lfsw

i
hi(xs, αi),

usw
∗
(xs, αi) := −

(

Lgsw

i
Lfsw

i
hi(xs, αi)

)−1
L2
fsw

i

hi(xs, αi)
(15)

is the unique control input which renders the surface

Zαi
:= {xs ∈ Xi | hi(qs, α

sw
i ) = 0,

Lfsw

i
hi(xs, αi) = 0

} (16)

invariant under the flow of the closed-loop dynamics. Zeroing
the output effectively reduces the dimension of the system by
restricting its dynamics on the zero dynamics surfaceZαi

.
The dynamics of the system restricted onZαi

,

ż = f∗

i |Zαi
(z) (17)

is the corresponding zero dynamics. To ensure attractivityof
Zαi

, the input (15) is modified as

usw = Γsw
i (xs, αi)

=
(

Lgsw

i
Lfsw

i
hi(xs, αi)

)−1

[

υ(yi, ẏi, ǫ)− Lgsw

i
Lfsw

i
hi(xs, αi)

]

(18)

where
υ(yi, ẏi, ǫ) := −

1

ǫ2
KPyi −

1

ǫ
KVẏi, (19)

and KP, KV are gain matrices, andǫ > 0. Under the
influence of the continuous-time feedback lawsΓsw

i for

1Note that the output (11) depends only onαsw
i

; however, when we
differentiate along the dynamics (10) the resulting Lie derivatives depend
also on the parametersαsu

i introduced by the force controller.

i ∈ {sp, sa} the solutions of (10) converge to the invariant
surfaceZαi

exponentially fast.
In what follows, the combined continuous-time control

action during the stance phasesi ∈ {sp, sa} will be denoted
by Γc

i = {Γsu
i ,Γsw

i }, depicted in Fig. 3.

B. Flight Phase Motion Control

The continuous-time control design in the flight phases is
analogous to that of the stance, thus the exposition here will
be terse. Letxf := (q′, q̇′)′ be the state for the flight phase.
Then, the dynamics in both flight phases can be written as

ẋf = ff(xf) + gf(xf)u. (20)

To allow the use of polynomials with different coefficients in
defining the desired evolution of the controlled variables,to
each flight phase – that is, the flight phase after the posterior
leg liftoff denoted by the indexf1, and the flight phase after
the anterior leg liftoff denoted byf2 – we associate the output

yi = hi(xf , αi) := Hfq − hd
i (sf(q), αi), (21)

wherei ∈ {f1, f2}. In (21), the controlled variablesHfq are
the same in both flight phases, and correspond to the absolute
hip and the relative knee angles of the posterior and anterior
legs; that is,Hf is defined as

Hf :=

[

02×2 Hsp

02×2 Hsa

]

. (22)

In (21), for each flight phasei ∈ {f1, f2}, hd
i represents

the desired evolution of the controlled variables, which is
defined by smooth polynomials parameterized through the
monotonic quantity

si(qi) =
xcm − xlo

cm,i

∆i

, (23)

where∆i is a normalizing constant, andxlo
cm,i is the value of

the horizontal coordinatexcm of the torso’s COM at liftoff,
so that (23) represents a monotonically increasing quantity
that replaces time in the parameterization of the polynomials.
The details associated with the polynomials are presented
in the Appendix; we only mention here thatαi are the
parameters associated with the construction ofhd

i in each
flight phasei ∈ {f1, f2}.

To impose the constraints, a continuous-time controller
that zeros the output (21) is designed. The process is similar
to the one employed in the stance phase. In each phase
i ∈ {f1, f2}, the corresponding controller has the form

u = Γc
i (xf , αi)

:= (LgfLffhi(xf , αi))
−1

[υ(yi, ẏi, ǫ)− LgfLffhi(xf , αi)] .
(24)

where the auxiliary control inputυ has the same form with
(19), and it renders the zero dynamics surface

Zαi
= {xf ∈ Xf | hi(qf , αi) = 0, Lffhi(xf , αi) = 0} (25)

invariant and attractive.



C. Discrete-time Control Laws

At discrete transitions, zeroing of the output may be
violated whenx+

i /∈ Zαi
for i ∈ {sp, sa, f1, f2 }. To ensure

that the zero dynamics surface in each phase is invariant
under transitions, the control action updates the parameters
αi according to controllers

α+
i = Γα

i (x
+
i ) (26)

for i ∈ {sp, sa, f1, f2} as detailed in the Appendix.

IV. SIMULATION RESULTS

The bounding gait naturally defines a Poincaré return map.
We select the Poincaré section to be the flight-to-stance-
posterior switching surfaceSf2→sp, when the posterior leg
touches the ground. The corresponding Poincaré mapP :
Sf2→sp → Sf2→sp of the system under the influence of the
combined continuous-time controllersΓc

i and the discrete-
time controllersΓα

i , with i ∈ {sp, sa, sd, f1, f2} becomes

x+
sp[k + 1] = P

(

x+
sp[k]

)

(27)

wherex+
sp[k] is the state after thek-th impact of the posterior

leg with the ground. Then, a nominal periodic running gait
corresponds to a fixed point of the Poincaré return map
defined by

x+
sp = P

(

x+
sp

)

(28)

By using Matlab’sfsolve, a number of fixed points can
be computed for (28). In particular, a fixed point correspond-
ing to an average horizontal velocity 2.527m/s is analyzed
here. Numerical computations reveal that the norm of the
dominant eigenvalue of the linearized Poincaré map (28) at
this fixed point is 0.95, implying local exponential stability.
Note that the resulting nominal motion has neither double
stance phase nor slip of the foot.

To demonstrate the performance of the controller, we
consider the case where the model experiences an unex-
pected variation in the ground height of9cm, which is
approximately equal to15% of the leg length. Figures 4(a)
and 4(b) present the evolution of the torso height and the
horizontal velocity, showing convergence to the nominal gait.
The corresponding continuous-time inputs are presented in
Figs. 4(c) and 4(d), illustrating that the peak torques are well
within the capabilities of the hydraulic actuators of the robot.

Figure 5 presents a numerical estimate of the domain
of attraction of this controller in the (ẋcm, ycm) plane. The
disturbance is added at the end of the stance-posterior phase.
The blue area is the part where the robot eventually converges
back to the original fixed point. Note that the largest portion
of the region of attraction lies in the second quadrant, where
the vertical displacement of the robot is increased while
the velocity is decreased; this is due to the fact that such
disturbances do not drastically increase the total energy of
the system, and can be rejected relatively easily.

Finally, Fig. 6 presents the sensitivity of the controller to
the inaccuracy in the inertia parameters. Here it is assumed
that the mass of the thigh and shank has an inaccuracy
randomly distributed within±30% of the model, while the
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Fig. 4. Response of the system to a9cm step-down disturbance showing
convergence to the nominal orbit. (a) Hopping height; (b) forward velocity;
(c) knee joint actuator torque; (d) hip joint actuator torque. In (a) and (b),
the green squares denote the state at Poincare section. In (c) and (d), the
red lines correspond to the posterior leg and the blue dashedlines to the
anterior leg torques.

torso mass and moment of inertia is either increased or
decreased by20% (corresponding to 14kg and 1.4kg-m2).
For all the points randomly tested, the controller is able to
converge to a periodic gait. Notice that due to the under-
actuation of the system, the robot will not return to the
nominal periodic gait, but it will converge to a nearby orbit.

V. CONCLUSION

This paper proposes a framework for designing controllers
that integrate actively generated compliance and torque
planning with motion control to induce dynamically-stable
bounding gaits on a model of HyQ. In continuous time
the purpose of the controller is twofold. First, it commands
suitably parameterized torque profiles to the support leg
actuators to create active compliance and to compensate for
energy loss. Second, it enforces a set of (virtual) holonomic
constraints to restrict the evolution of the hip and knee
angles on lower-dimensional surfaces in the state space of
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Fig. 5. An estimate of the region of attraction. The blue arearepresents
states that can be accommodated by the controller.



0.7 0.8 0.9 1 1.1 1.2 1.3
0.7

0.8

0.9

1

1.1

1.2

M
2 

di
st

ur
ba

nc
e 

(r
at

io
)

M1 disturbance(ratio)

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3
0.7

0.8

0.9

1

1.1

1.2

M
2 

di
st

ur
ba

nc
e 

(r
at

io
)

M1 disturbance(ratio)

(b)

Fig. 6. Robustness test. The leg massM1 andM2 is randomly perturbed
within ±30% of the nominal value. All the points randomly checked
stabilized to periodic gaits. The torso mass and moment of inertia is
increased by20% (a) and decreased by20% (b).

the system. The parameters introduced through continuous-
time control are updated by the discrete-time controller,
which effectively re-plans the constraint profiles providing
additional control action. Aiming at experimentally verifying
the proposed control method on HyQ, the controller is
tested in simulation under different disturbances, including
unanticipated ground height variation, horizontal velocity, as
wells as parameter inaccuracy.

APPENDIX

This appendix provides more details on the design of the
polynomials that characterize the desired evolution of the
controlled variables. To simplify the presentation, we focus
on a single controlled variableθ with desired evolutionhd

θ .
1) Polynomial Design:We consider the output

y = θ − hd
θ(s(q), α), (29)

wheres is a monotonic function ofq, defined thoughs(q) =
φ(q)−φ0

∆ with φ0 and∆ suitably selected constants that have
the meaning of the constants participating in (13) for the
stance and in (23) for the flight phases. For example, in the
stance-posterior phase,φ is γp, φ0 is γtd

p and∆ corresponds
to ∆sp. Then,hd

θ is selected as

hd
θ(s(q)) :=











4
∑

k=0

aks(q)
k, if s < σ

a5, if s ≥ σ.

(30)

The first part of (30) transfers the corresponding controlled
variableθ over the interval[0, σ) to its target position with
zero final velocity and acceleration. The second part of
(30) keeps the controlled variable equal to constanta5 until
the phase terminates. Lastly, to ensure continuity up to the
second derivative, we impose the following constraints

a4σ
4 + a3σ

3 + a2σ
2 + a1σ + a0 = a5

4a4σ
3 + 3a3σ

2 + 2a2σ + a1 = 0

12a4σ
2 + 6a3σ + 2a2 = 0.

(31)

For each output (two for the stance phase and four for the
flight phases), this procedures introduces a number of pa-
rameters – namely,{a0, ..., a5, σ,∆, φ0} – which participate
in the definition ofα in (29).

2) Coefficient Updates for Invariance:To extend invari-
ance in the hybrid setting we need to ensure that the initial
conditionx+

i for each phase belongs on the corresponding
zero dynamics surfaceZαi

, where the (possible) dependence
of Z. To satisfy this condition, the surfaceZαi

can be
“deformed” by updatingαi so thatx+

i ∈ Zαi
. Consider again

the controlled variableθ, and letθ+ be its initial value. Then,
updating the coefficients in (30) through

a0 = θ+ and a1 = (1/ṡ)θ̇+, (32)

for all the controlled variables ensures invariance under
transitions. Note that (31) and (32) define a system of five
equations with five unknowns, the solution of which provides
the polynomial coefficients.
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