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Abstract— We present a trajectory optimization framework
for legged locomotion on rough terrain. We jointly optimize
the center of mass motion and the foothold locations, while
considering terrain conditions. We use a terrain costmap to
quantify the desirability of a foothold location. We increase
the gait’s adaptability to the terrain by optimizing the step
phase duration and modulating the trunk attitude, resulting
in motions with guaranteed stability. We show that the combi-
nation of parametric models, stochastic-based exploration and
receding horizon planning allows us to handle the many local
minima associated with different terrain conditions and walking
patterns. This combination delivers robust motion plans without
the need for warm-starting. Moreover, we use soft-constraints
to allow for increased flexibility when searching in the cost
landscape of our problem. We showcase the performance of
our trajectory optimization framework on multiple terrain
conditions and validate our method in realistic simulation sce-
narios and experimental trials on a hydraulic, torque controlled
quadruped robot.

I. INTRODUCTION

Legged locomotion can deliver substantial advantages in
unstructured real-world environments as it can offer mobility
unmatched by traditional vehicles. Such environments are
common in disaster relief, search and rescue, forestry and
construction site scenarios. Despite significant efforts in the
field, motion planning and control over rough terrain remains
an open problem. Moving across challenging environments
requires planning motions while taking into account fu-
ture terrain conditions. In these situations, the Center of
Mass (CoM) motion and foothold selection must be jointly
planned, while handling high-level user commands and se-
lecting appropriate behaviors given the terrain topology.

Recently, trajectory optimization with contacts gained a
lot of attention in the legged robotics community [1][2][3].
These optimization problems are often hard to solve, and
the automatic synthesis of behaviors may be limited by the
non-convexity of such domains, e.g. due to local minima.
However, adaptation and automatic gait discovery can be
solved using low-dimensional parametric models that capture
the most relevant dynamics [4]. In fact, a combination
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Fig. 1. The hydraulically actuated and fully torque controlled quadruped
robot HyQ [5]. Here crossing over a set of sparse stepping stones of varying
height.

of low-dimensional parametric models and stochastic-based
exploration may be able to generate effective behaviors even
without warm-starting the exploration.

This paper presents a trajectory optimization method for
quadrupedal robots. We address the locomotion as a coupled
planning problem of CoM motions and footholds, where the
foothold locations are selected using a terrain costmap while
the trunk height and attitude are adapted for coping with
different terrain elevations. First, we optimize a sequence
of control parameters (the Center of Pressure (CoP) dis-
placement, the phase duration and the foothold locations)
given the terrain costmap. Then, we jointly generate the CoM
trajectory and the swing-leg trajectory using a sequence of
parametric preview models and the terrain elevation map.
To realize the low-dimensional plan, the controller selects
appropriate torque commands, which are computed by the
combination of a trunk controller with a joint-space torque
controller. The proposed trajectory optimization method in-
creases the locomotion capabilities of our legged robot, com-
pared to our previous framework [6][7]. As shown in Fig. 1,
our trajectory optimization framework generates motions that
allow the Hydraulically actuated Quadruped (HyQ) robot to
cross a set of sparse stepping stones of varying height.

The main contribution of this paper is a novel trajectory
optimization approach for locomotion on rough terrain. In
contrast to [4], we consider terrain topologies (in the form of
a terrain costmap) for foothold selection in our trajectory op-
timization. Our method is capable of producing a wide range
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Fig. 2. Overview of the trajectory optimization framework for locomotion
on rough terrain. We compute offline an optimal control sequence U∗

given the user’s goals, the actual state s0 and the terrain costmap. Given
this optimal control sequence, we generate the optimal plan S∗ that copes
with the changes in the terrain elevation through trunk attitude planning.
Lastly, the whole-body controller calculates the joint torques τ∗ that satisfy
friction-cone constraints.

of different locomotion behaviors using low-dimensional
parametric models. The combination of these models with
stochastic-based exploration and receding horizon planning
helps us to automatically synthesize desired behaviors, that
are critical for rough terrain locomotion. Moreover, we
tackle the different terrain elevations by modulating the trunk
height and attitude, and planning in the horizontal frame1.
Additional contributions include trajectory optimization with
different terrain costmaps, a suitable terrain description
through a cost function, that makes the optimization more
efficient, and a method for guaranteeing the dynamic stability
when the robot adjusts the attitude of its trunk (Fig. 2). To
the best of our knowledge, our approach is the first that
jointly optimizes the CoM motion, the phase duration and
the foothold selection while considering terrain topology.

The paper is structured as follows: after discussing previ-
ous research in the field of legged locomotion and trajectory
optimization (Section II), we describe how to generate the
CoM trajectories from a sequence of parametric preview
models (Section III). Next, we describe our trajectory opti-
mization framework for legged locomotion on rough terrain
(Section IV). Section V shows how these desired motions
are accurately and compliantly executed. In Section VI
we evaluate the performance of our trajectory optimization
approach in experimental trials on the HyQ robot [5]. Finally
Section VII draws the conclusions and presents ideas for
future work.

II. RELATED WORK

Extensive research has been conducted in the field of
quadrupedal locomotion on challenging terrain. A number
of successful control architectures [6][8][9][10][11] that plan
and execute footsteps for traversing such terrain have been
proposed. Some avoid global footstep planning by simply
choosing the next best reachable footholds [11], while others

1A horizontal frame is a reference frame whose xy plane is orthogonal
to the gravity vector g with the same origin as that of the base frame. Thus
is a frame that is moving with the robot.

plan the complete footstep sequence from start to goal
[10][12]. In most of the aforementioned approaches a se-
quence of footholds is selected using only kinematic criteria
(i.e. decoupled from CoM planning). Furthermore, those
approaches consider a fixed step duration which limits the
richness of possible behaviors in rough terrain locomotion.

Terrain adaptation and automatic gait discovery can be
approached using general trajectory optimization methods,
similar to [1][2][3][13]. Nonetheless, these optimization
methods tend to be plagued by local minima, limiting their
applicability to rough terrain locomotion. Often, challenging
terrain conditions may increase the non-convexity of the
problem, and defining a good enough warm-start point might
not be possible. Moreover, such approaches are typically
computationally expensive, making them harder to integrate
within an online locomotion framework. We believe that au-
tomatic walking pattern generation can be solved using low-
dimensional models that better handle the problems related to
local minima (i.e., by reducing the problem dimensionality).
We use stochastic-based optimization to solve such non-
convex problems. A similar approach has been recently
proposed for bipedal locomotion on an animated character
in [4]. The authors defined a simple preview schedule that
allows the character to generate three behaviors: standing,
walking and running on even terrain. On the other hand,
a solution using hierarchical combination of optimization
steps, that can be used to deal with local minima problems
and guarantees joint constraints, was proposed in [14].

Preview models have been extensively used for legged
locomotion on flat terrain, e.g. [15]. These approaches often
decouple the foothold selection from the CoM planning,
assuming a fixed step duration, and do not consider atti-
tude planning [6][8][9]. However, in field applications, the
terrain conditions are often rough and irregular. Below we
describe our trajectory optimization framework, which does
not suffer from the aforementioned drawbacks of the current
approaches for rough terrain locomotion.

III. TRAJECTORY GENERATION

This section describes the low-dimensional trajectory gen-
eration from an optimized sequence of control parameters
and a given terrain heightmap. We generate the horizontal
CoM trajectory and the 2D foothold locations using a se-
quence of low-dimensional preview models. In order to cope
with the terrain elevation, we modulate the trunk attitude
and height using an estimate of the support plane, and the
maximum allowed angular accelerations of the trunk (for
more details see Section III-A.2). We describe the sequence
of control parameters w.r.t. the horizontal frame, which
allows us to decouple the CoM and trunk attitude planning.

A. Preview model

Preview models are low-dimensional representations that
describe and capture different locomotion behaviors, such as
walking and trotting, and provide an overview of the motion
[4]. By reducing the dimensionality of the optimization
problem we can generate complex locomotion behaviors and



Fig. 3. A trajectory obtained from a low-dimensional model given a
sequence of optimized control parameters and the terrain heightmap. The
colored spheres represent the CoM and CoP positions of the terminal states
of each motion phase. The CoP spheres lie inside the support polygon (same
color is used). Note that color indicates the phase (from yellow to red). The
trunk adaptation is based on the estimated support planes in each phase.
Since the control parameters are expressed in the horizontal frame, the
horizontal CoM trajectories and the trunk attitude are decoupled.

their transitions. This is more suitable for rough terrain as it
simplifies the problem landscape. In the literature, different
models that capture the legged locomotion dynamics have
been studied [16][17] such as point-mass, inverted pendulum,
cart-table, or contact wrench.

Our preview model decouples the CoM motion from the
trunk attitude2 (Fig. 3). For the CoM motion, we use the
cart-table template [15]. The cart-table model (linear inverted
pendulum) encompasses a point mass assumption which has
no angular momentum. However, to control the attitude we
need to apply a torque to the CoM. High centroidal moments
(e.g. due to high trunk angular acceleration) can hamper the
postural stability condition (e.g. causing shifts on the CoP
that can move it out of the support polygon [18]) making
the robot loses its capability to balance. Consequently, for the
attitude planning, we limit the maximum moments applied to
the CoM by limiting the maximum angular acceleration and
setting a correspondent margin for the CoP on the support
polygon (Section III-A.2).

1) CoM motion: In our previous work [6], we showed that
for fixed step durations, the CoP movement is approximately
linear, i.e.:

pH(t) = pH0 +
δpH

T
t. (1)

Note that pH ∈ R2 is the horizontal CoP position, δpH ∈ R2

the horizontal CoP displacement and T is the phase duration.
Applying this linear control law in the cart-table model,

we derive an analytic solution for the horizontal dynamics
[4]:

xH(t) = β1e
ωt + β2e

−ωt + pH0 +
δpH

T
t, (2)

2In this work, with “trunk attitude” we refer to roll and pitch only.

where the model coefficients β1,2 ∈ R2 depend on the actual
state s0 (horizontal CoM position xH0 ∈ R2 and velocity
ẋH0 ∈ R2, and CoP position), the trunk height h, the phase
duration, and the horizontal CoP displacement:

β1 = (xH0 − pH0 )/2 + (ẋH0 T − δpH)/(2ωT ),

β2 = (xH0 − pH0 )/2− (ẋH0 T − δpH)/(2ωT ),

where ω =
√
g/h and g is the gravity acceleration.

2) Trunk attitude: A trunk attitude modulation is required
when the terrain elevation varies. A simple approach consists
of aligning the trunk with respect to the estimated support
plane, avoiding that the robot reaches its kinematic limits. On
the other hand, adjusting the trunk attitude requires applying
a moment at the CoM, and as consequence, the CoP p ∈ R3

will be shifted by a proportional amount ∆p (for more details
see (5) in [18]):

∆px = −τcomy
/mg, (3)

∆py = τcomx
/mg,

where τcomy
, τcomx

are the horizontal components of the
moment about the CoM. By exploiting a simplified flywheel
model for the inertia of the robot we can link these moments
to the CoP displacement ∆p (rewritten in vectorial form) and
to the angular acceleration ω̇:

τcom = Iω̇, (4)
∆p = τcom ×mg. (5)

where I ∈ R3×3 is the time-invariant inertial tensor ap-
proximation of the centroidal inertia matrix of the robot.
Therefore, we can guarantee the CoP condition by limiting
the angular accelerations ω̇max (i.e. the allowed applied
moments) and setting a corresponding safety margin r on
the support polygon in our optimization (Section IV-C) as:

r = ‖(Iω̇max)×mg‖. (6)

We adapt the trunk attitude in such a way that it does
not affect the CoP condition (i.e. by using the maximum
allowed angular acceleration ω̇max). Note that we compute
ω̇max given the stability margin r (i.e., the support polygon
margin).

We employ cubic polynomial splines to describe the trunk
attitude motion (pitch and roll). The attitude adaptation can
be done in different phases. For instance, we can compute the
required angular accelerations given the phase duration and
guarantee that it does not exceed the allowed angular accel-
erations. The trunk height is computed given the estimated
support plane and we keep it constant along one phase.

B. Preview schedule

Describing quadrupedal locomotion can be achieved
through a sequence of different preview models — a preview
schedule. Using this, the robot can automatically discover
different foothold sequences by enabling or disabling differ-
ent phases in our optimization process.
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Fig. 4. Robot kinematics showing different variables and frames used in
our optimization. The footshift δfLF is described w.r.t. the stance frame.
The stance frame is calculated from the default posture and expressed w.r.t.
the base frame.

In the preview schedule, we build up a sequence of control
parameters that describes the locomotion action of the n
phases:

U =
[
u
s/f
1 · · · u

s/f
n

]
, (7)

where usi =
[
T δpH

>
]>

and ufi =
[
T δpH

>
δf l
>
]>

are the preview control parameters for the stance and step
phases, respectively. Additionally, the footshift δf l is de-
scribed with respect to the stance frame (Fig. 4), which is
calculated from the default posture of the robot. Note that n
is the number of phases, and l is the foot index.

We describe a dynamic walking gait as a combination of 6
different preview phases or timeslots (i.e. n = 6) where 4 of
them are step phases. Our combination of phases is stance,
LH swing phase, LF swing phase, stance, RH swing phase
and RF swing phase3. With this fixed preview schedule, we
can describe different walking patterns by assigning a zero
duration to a specific phase (Ti = 0).

IV. TRAJECTORY OPTIMIZATION

The trajectory optimization computes a sequence of con-
trol parameters U∗ used for the generation of the low-
dimensional trajectories (Section III). We formulate this as a
receding horizon trajectory optimization problem, where the
current timeslot is optimized while taking future timeslots
into account. The horizon is described by a predefined
number of preview schedules N with n timeslots or phases
(e.g. our locomotion cycle has 6 timeslots). Considering
future phases presents several advantages for rough terrain
locomotion. It enables us to generate desired behaviors that
anticipate future terrain conditions, and it results in smoother
transitions between phases.

In our approach, the optimal solution at the current phase
i comprises of a set of control parameters u∗i describing
the duration of phase T ∗i , the CoP displacement δpH

∗
i , and

the footshift δf∗i of the corresponding phase. We define the
footshift in the nominal stance frame which corresponds to

3The robot is in stance phase when all the feet are on the ground. LH,
LF, RH and RF are Left-Hind, Left-Front, Right-Hind and Righ-Front legs,
respectively.

the default posture. Note that there are phases without foot
swing.

A. Receding horizon planning

Given an initial state s0, we optimize a sequence of control
parameters inside a predefined horizon, and apply the optimal
control of the current phase. We find the sequence of con-
trol parameters U∗, through an unconstrained optimization
problem, given the desired user commands (trunk velocities):

U∗ = argmin
U

∑
j

ωjgj(S(U)), (8)

where S =
[
s1 · · · sNn

]
is the sequence of preview

states. The preview state is defined by the CoM position and
velocity (x, ẋ), CoP position p and the stance support region
F, i.e. s =

[
x ẋ p F

]
. Where F =

[
f1 · · · fj

]
is

defined by the position of the stance feet fj . We solve the tra-
jectory optimization using the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [19]. CMA-ES is capable of
handling optimization problems that have multiple local min-
ima, such as those introduced by the costmap and the phase
duration. In the description of our optimization problem, we
use soft-constraints as these provide the required freedom
to search in the landscape of our optimization problem. The
cost functions and soft-constraints gi(S) describe: 1) the user
command tracking with step duration and length, and travel
direction, 2) the CoM energy, 3) the terrain cost, 4) stability
soft-constraint, the i.e. CoP condition, and 5) the preview
model soft-constraint, i.e. the linear inverted pendulum.

B. Cost functions

We encode the desired body velocity from the user by
mapping it into a ‘default’ step duration and length. Ad-
ditionally, the CoM trajectory should accelerate as little as
possible during the phases. Note that this implicitly reduces
the required joint torques. We evaluate the step duration and
length in every locomotion phase i as follows:

gstep−duration =

( Nn∑
i=1

(ti − i Tstep)

)2

, (9)

gstep−length =

( Nn∑
i=1

(di − i dstep)

)2

, (10)

where ti is the sum of individual durations until phase i,
Tstep the desired step duration, di = dT (xi − x0) is the
displacement of the CoM along the desired travel direction
expressed in the horizontal frame (defined by the desired yaw
angle), and dstep is the desired step length.

To encourage movements in the desired travel direction,
we penalize lateral drift just in the 4-feet stance phase:

gstep−drift =

( Ns∑
i=1

d⊥i

)2

, (11)

where s is the number of 4-feet stance phase per locomotion
cycle, d⊥i is the orthogonal vector of the desired travel
direction. Note that step duration and length define the



desired linear velocity and the lateral drift defines the desired
yaw angular velocity of the trunk. This choice of cost terms
encourages equal trunk velocities between all the locomotion
phases.

Minimizing the changes in the CoM accelerations reduces
the required joint torques. We achieve this by applying:

gcom−energy =

Nn∑
i=1

∫ Ti

0

‖ẍ(t)‖2 dt. (12)

To cope with different terrain difficulties, we compute a
costmap from an onboard sensor as proposed in [12]. The
costmap quantifies how desirable it is to place a foot at a
specific location using geometric features such as height
standard deviation, slope and curvature. This allows the
robot to negotiate different terrain conditions (Fig. 5). Thus,
given a footshift and CoM position, we compute the foothold
location cost as:

gterrain = w>T(x, y), (13)

where w and T(x, y) are the weights and feature values,
respectively. We use a cell grid resolution of 4 cm, approxi-
mately equal to the robot’s foot size, and the terrain features
are computed from a voxel resolution of 2 cm. As in [12],
we demonstrated that this coarse map is a good trade-off
in terms of computation time and information resolution
for foothold selection. We cannot guarantee convexity in
the terrain costmap, which has to be considered in our
optimization process.

C. Soft constraints

As we mentioned in Section III-A.2, the CoP trajectory
must be kept inside the support polygon which is shrunk by
a margin r. This margin guarantees dynamic stability when a
maximum moment is applied to the CoM (Section III-A.2).
We use a set of nonlinear inequality constraints to describe
the support region:

l(F)>
[
p
1

]
> 0, (14)

where l(·) ∈ Rl×3 are the coefficients of the l lines, F the
support region defined from the selected foothold locations,
and p the CoP position. Note that the stability constraints are
nonlinear as a consequence of adding the foothold positions
as decision variables.

Due to the decoupling of the horizontal and vertical
motions, we implement a preview model soft-constraint that
ensures the cart-table height is approximately equal to:

h = ‖x− p‖ (15)

where x and p are the CoM and CoP positions, respectively.
Note that when the cart-table is falling down, the CoM
trajectory increases exponentially in (2). This effect arises
from the fact that we decouple the horizontal and vertical
dynamics, hence adding this soft-constraint guarantees the
validity of the model.

To reduce the computation time, we impose both soft-
constraints only in the initial and terminal time of each

Fig. 5. We used a costmap which allows the robot to negotiate different
terrain conditions while following the desired user commands. The costmap
is computed from onboard sensors as described in [12]. The cost values are
continuous and represented in color scale, where blue is the minimum and
red is the maximum cost.

phase, as they will be guaranteed in the entire phase. In
fact, the linear CoP trajectory will belong to the convex
support polygon if the initial and terminal positions are inside
this region. We ensure this by limiting the foothold search
region, i.e. by bounding the footshift (see Fig. 4). These soft-
constraints are described as quadratic cost terms.

V. WHOLE-BODY CONTROLLER

The motion of the robot body (CoM and trunk orientation)
is controlled by a trunk controller [20] that computes the joint
torques necessary to achieve the desired motions without
violating friction constraints.

At the joint-space level, an impedance controller is acting
in parallel to address unpredictable events, such as a foot
slippage on an unknown surface. This controller receives
a set-point which is consistent with the body motion in
order to prevent a conflicting target with the trunk controller.
In nominal operations the biggest part of the torques is
generated by the trunk controller.

Our aim for balancing is to control the position of the
robot’s CoM, and the orientation of the trunk (base link). We
compute a desired linear acceleration for the CoM (ẍdcom ∈
R3) and the trunk angular acceleration (ω̇db ∈ R3) using a
PD control law written in the operational space, i.e. a virtual
model of the form:

ẍdcom = Px(xdcom − xcom) + Dx(ẋdcom − ẋcom),

ω̇db = Pθe(R
d
bR
>
b ) + Dθ(ω

d
b − ωb), (16)

where xdcom ∈ R3 is the desired CoM position, and Rb,R
d
b ∈

R3×3 are the rotation matrices representing the actual and
desired orientation of the trunk respectively, e(.) : R3×3 →
R3 is a mapping from a rotation matrix to the associated
rotation vector, ωb ∈ R3 is the angular velocity of the base.

As shown in [21], if the CoM velocity is used as a
generalized velocity instead of the base velocity, the robot’s
dynamic equations get simplified. In this case, we can write



the centroidal robot dynamics as in [17]:

m(ẍcom + g) =

c∑
i=1

fi = Fcom, (17)

IGω̇b + İGωb =

c∑
i=1

(pcom,i × fi) = Γ, (18)

where IG is the instantaneous centroidal composite rigid
body inertia that represents the aggregate rigid body inertia
of the entire robot computed at its CoM, pcom,i ∈ R3 is
a vector going from the CoM to the position of the ith foot
defined in an inertial world frame, c is the number of contact
points and f1, . . . , fc ∈ R3 are the Ground Reaction Forces
(GRFs). Since our platform has nearly point-like feet, we
assume that it cannot generate moments at the contacts, but
only pure forces. Furthermore, we neglect the term İGωb
since we can assume the legs to be massless4.

Then, the desired wrench Wd = [Fdcom
>
,Γd

>
]> can be

computed from the desired CoM linear and trunk angular
accelerations and by rewriting (18) in matrix form, we can
then map Wd into GRFs:

[
I3×3 . . . I3×3

[pcom,1×] . . . [pcom,c×]

]
︸ ︷︷ ︸

A

f1
...
fc


︸ ︷︷ ︸

f

=

[
m(ẍdcom + g)
IGω̇db

]
︸ ︷︷ ︸

b

.

(19)
The redundancy in the mapping yields 6 equations with
up to 12 unknowns as we can have 4 feet on the ground.
Hence, we can form a quadratic optimization problem aiming
to satisfy additional optimality criteria, such as ensuring
that the GRFs lie inside the friction cones and fulfilling
the unilaterality of the GRFs [20]. We approximate the
friction cones with square pyramids to express them as linear
inequality constraints:

fd = argmin
f∈R3

(Af − b)>(Af − b) + f>Wf

s. t. d < Cf < d̄,
(20)

where f>Wf is a regularization term to keep the solution
bounded. We solve the optimization in real-time with an off-
the-shelf Quadratic Programming (QP) solver.

In a second step we map the optimal solution fd into
desired joint torques τ d ∈ Rn (where n is the number
of joints) considering the gravitational/Coriolis contribution
h(q, q̇):

τff = h− SJ>c (fd), (21)

where Jc ∈ Rk×n+6 is the stacked Jacobian of the contact
points (k = 3 is the number of kinematically constrained
DoFs) and S =

[
0n×6 In×n

]
is a matrix that selects the

actuated degrees of freedom.
Finally, the trunk controller torques τff are summed with

the joint PD torques to form the desired torque command
that is sent to the low-level joint-torque controllers.

VI. EXPERIMENTAL RESULTS

To evaluate our approach, we first validate the trunk
attitude modulation (pitch and roll) for dynamic walking
on flat terrain. Subsequently, we quantify the capabilities of
our framework through a set of different terrain conditions:
crossing a gap and a set of sparse stepping stones. For
that, we plan and execute dynamic walking behaviors which
enable the robot to adapt to different terrain conditions given
the high-level user commands (desired trunk velocity: step
duration and length, and travel direction). All the experi-
ments are conducted with HyQ [5], a 85 kg hydraulically
actuated quadruped robot. The HyQ robot is fully-torque
controlled and equipped with precision joint encoders, a
depth camera (Asus Xtion) and an Inertial Measurement Unit
(MicroStrain). HyQ roughly has the dimensions of a goat,
i.e. 1.0 m×0.5 m×0.98 m (length × width × height). The leg

4In the HyQ robot, the leg masses represent 8% of the robot weight.

(a)

(b)

(c)

Fig. 6. (a) Dynamic attitude modulation. The initial trunk attitude (left
image) is 0.17 and 0.22 radians in roll and pitch, respectively. (b) Body
tracking when walking and dynamically modulating the trunk attitude. The
planned CoM (magenta) and the executed trajectory (white) are shown
together with the sequence of support polygons, CoP and CoM positions.
Note that each phase is identified with a specific color. (c) A lateral view
of the same motion shows the attitude correction (sequence of frames), and
the cart-table displacement. Note that we use the RGB color convention for
drawing the different frames. In (b)-(c) the brown, yellow, green and blue
trajectories represent the LF, RF, LH and RH foot trajectories, respectively.



length ranges from 0.339-0.789 m and the front/hind hip-to-
hip distance is 0.75 m.

A. Dynamic attitude modulation

First, we showcase the automatic adjustment of the trunk
attitude, during a dynamic walk, as illustrated in Fig. 6(a).
To evaluate the attitude modulation feature, we plan a fast5

dynamic walk with an average body velocity of 0.18 m/s.
We do not use the costmap for generating the corresponding
footholds, thus the resulting locations come from the dynam-
ics of walking itself, while maximizing the stability of the
gait. We define a stability margin of r = 0.1 m for all our
optimizations which is a good trade-off between modeling
error and allowed trunk attitude adjustment in HyQ. The
maximum allowed angular acceleration is computed using
the trunk inertia matrix of HyQ, which results in 0.11 rad/s2.
Note that the trunk attitude planner uses the maximum
allowed angular velocity as explained in Section III-A.2.

The resulting behavior shows HyQ successfully walking
while changing its trunk roll and pitch angles. Note that the
trunk attitude planner adjusts the roll and pitch angles given
the estimated support region at each phase. Fig. 6(b) shows
the tracking performance for initial trunk attitude of 0.17 and
0.22 rad in roll and pitch, respectively. In addition, Fig. 6(c)
shows the attitude modulation, which is accomplished in the
first 6 phases (i.e. one cycle of locomotion).

B. Locomotion on challenging terrain

We tested our approach on various challenging terrains:
gap and stepping stones with different terrain heights. For
all these scenarios, we computed the costmap using the
standard deviation of the height values, which is estimated
through a regression in a 4 cm×4 cm window around the
cell of interest. Our costmap is built using a resolution
of (4 cm×4 cm×2 cm) in (x, y, z), respectively. The higher
resolution value in z reduces the difference between the
expected time of foot touch-down and the detected one. Re-
ducing the foothold error improves the tracking performance
of the controller since the desired base and joint positions and
velocities are consistent with each other. We weigh equally
and manually the desired user command and terrain costs,
with a small weight for the CoM energy cost (around 5%).
Both soft-constraints have higher weights, which ensures that
their targets are met provided with enough exploration steps
to the CMA-ES solver. Note that we do not need to define
an initial guess, and moreover this might not even help the
search due to changes in the terrain topology. We used the
same stability margin and allowed angular acceleration (as in
Section VI-A) for the trunk attitude planner, and our horizon
is N = 1, i.e. 1 cycle of locomotion or 4 steps.

Crossing a gap and/or trunk attitude adaptation tends
to overextend the legs, since large motions are required
(Fig. 7(a)). To avoid kinematic limits, we defined a foot
search region that ensures leg kinematic feasibility up
to 12 cm of terrain height difference, as is illustrated in

5fast for common walking gait velocities of the HyQ robot.

Fig. 7(b). For instance, we generated a trajectory with two
stepping stones 6 cm higher than other ones. These terrain
irregularities produce a trunk modulation in roll and pitch
as can be observed in the second sequence. The execution
performance on stepping stones with and without changes in
terrain elevation is shown in Fig. 7(c)-(d). Compared with
our previous work [6], we increased the walking velocity by
approximately 80%, while also modulating the trunk attitude.
Furthermore, the foothold error is on average less than 2 cm,
which increases the success rate of the stepping stones trials
to 90%; an increment of 30% when compared with our pre-
vious work [6]. Despite these improvements, the stochastic-
based optimization tends to increase the computation time
due to the non-convex nature of the problem. For our gap
and stepping stones experiments, it takes around 10 min to
compute the optimal trajectory. For the full sequence of the
experiments, please see the accompanying video6.

Our trajectory optimization framework uses as input the
high-level desired trunk velocities. We believe that this
improves the operability of the system in real-environment
applications. Moreover, optimizing a sequence of control pa-
rameters allows us to integrate reactive behaviors, which are
important for increasing the robustness of the locomotion.

VII. CONCLUSION

In this paper, we presented a trajectory optimization ap-
proach for locomotion on rough terrain that directly uses
terrain information. The approach delivers an optimal CoM
motion and corresponding optimal foothold locations. More-
over, the solution takes into consideration the trunk attitude
modulation required for dynamic walking. We employ a
combination of parametric preview models, stochastic-based
exploration and receding horizon planning for successfully
crossing over various challenging terrains.

We demonstrated how the combination of an impedance
controller—which prevents friction cone violations—
alongside a trunk controller can compliantly, yet
accurately, track the desired whole-body motion. Real
world experimental trials on the HyQ robot crossing over
challenging terrain demonstrated the capabilities of our
framework. Compared with our previous results [6][12], we
improved the locomotion without any loss of performance.
HyQ walked faster while making trunk attitude adjustments.
Moreover, the accuracy of execution was improved, as the
error between desired and achieved footholds was reduced
from 8 cm to approximately 2 cm. This increased the success
rate in the stepping stones by around 30%.

We showed that linear displacements of the CoP in every
phase produce similar results to [6]. This assumption allows
us to describe a movement as a sequence of parameters. Our
experimental results suggest that combining CoM trajectories
and foothold selection produces better solutions in terms of
avoiding joint limits (both in position and torques). In fact,
the foothold locations help to minimize the CoM energy, thus
it reduces the applied joint torques.

6https://youtu.be/79bb2KTULrw

https://youtu.be/79bb2KTULrw
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Fig. 7. Snapshots of experimental trials used to evaluate the performance of our trajectory optimization framework. (a) Crossing a gap of 25 cm while
climbing up 6 cm. (b) Crossing a gap of 25 cm while climbing down 12 cm. (c) Crossing a set of 7 stepping stones. (d) Crossing a sparse set of stepping
stones while dealing with different stone elevations (6 cm).

Future work includes integrating reactive behaviors, such
as haptic triggering of stance and step reflex. Our aim is
to increase the robustness of the system, for coping with
errors in the terrain perception and state estimation. Another
extension can be the automatic gait discovery, i.e. transitions
from walking to trotting, and vice-versa, while crossing a
rough terrain. Finally, working towards online planning is a
crucial feature for real applications.
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behaviors through contact-invariant optimization,” ACM Transactions
on Graphics, vol. 31, no. 4, pp. 1–8, 2012,

[2] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body Motion Planning
with Simple Dynamics and Full Kinematics,” in IEEE/RAS Interna-
tional Conference on Humanoid Robots, 2014,

[3] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory
Optimization Through Contacts and Automatic Gait Discovery for
Quadrupeds,” ArXiv preprint arXiv:1607.04537, 2016,

[4] I. Mordatch, M. de Lasa, and A. Hertzmann, “Robust physics-based
locomotion using low-dimensional planning,” ACM Transactions on
Graphics, vol. 29, no. 4, p. 1, 2010,

[5] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ – a Hydraulically and
Electrically Actuated Quadruped Robot,” Institution of Mechanical
Engineers Part I: Journal of Systems and Control Engineering, vol.
225, no. 6, pp. 831–849, 2011,

[6] A. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell,
and C. Semini, “Planning and Execution of Dynamic Whole-Body
Locomotion for a Hydraulic Quadruped on Challenging Terrain,” in
IEEE International Conference on Robotics and Automation (ICRA),
2015,

[7] A. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, D. G.
Caldwell, and C. Semini, “Path planning with force-based foothold
adaptation and virtual model control for torque controlled quadruped
robots,” in IEEE International Conference on Robotics and Automation
(ICRA), 2014,

[8] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over
challenging terrain,” The International Journal of Robotics Research
(IJRR), vol. 30, no. 2, pp. 236–258, 2010,

[9] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture
for quadruped locomotion over rough terrain,” in IEEE International
Conference on Robotics and Automation (ICRA), 2008, pp. 811–818,

[10] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G.
Atkeson, and J. Kuffner, “Optimization and learning for rough terrain
legged locomotion,” The International Journal of Robotics Research
(IJRR), vol. 30, no. 2, pp. 175–191, 2011,

[11] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and
J. E. Pratt, “A controller for the littledog quadruped walking on
rough terrain,” in IEEE International Conference on Robotics and
Automation (ICRA), 2007, pp. 1467–1473,

[12] C. Mastalli, A. Winkler, I. Havoutis, D. G. Caldwell, and C. Semini,
“On-line and On-board Planning and Perception for Quadrupedal
Locomotion,” in IEEE International Conference on Technologies for
Practical Robot Applications (TEPRA), 2015,

[13] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The International
Journal of Robotics Research (IJRR), 2013,

[14] C. Mastalli, I. Havoutis, M. Focchi, D. G. Caldwell, and C. Semini,
“Hierarchical Planning of Dynamic Movements without Scheduled
Contact Sequences,” in IEEE International Conference on Robotics
and Automation (ICRA), 2016,

[15] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation (ICRA), 2003, pp. 1620–1626,

[16] R. Full and D. Koditschek, “Templates and anchors: neuromechanical
hypotheses of legged locomotion on land,” Journal of Experimental
Biology, vol. 202, no. 23, pp. 3325–3332, 1999,

[17] D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, pp. 161–176, 2013,

[18] M. B. Popovic, A. Goswami, and H. Herr, “Ground Reference
Points in Legged Locomotion: Definitions, Biological Trajectories and
Control Implications,” The International Journal of Robotic Research
(IJRR), vol. 24, pp. 1013–1032, 2005,

[19] N. Hansen, “CMA-ES: A Function Value Free Second Order
Optimization Method,” in PGMO COPI 2014, Paris, France, 2014,

[20] M. Focchi, A. del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell,
and C. Semini, “High-slope terrain locomotion for torque-controlled
quadruped robots,” Autonomous Robots, pp. 1–14, 2017,

[21] C. Ott, M. A. Roa, and G. Hirzinger, “Posture and balance control
for biped robots based on contact force optimization,” in IEEE/RAS
International Conference on Humanoid Robots, 2011, pp. 26–33,


	Introduction
	Related Work
	Trajectory Generation
	Preview model
	com motion
	Trunk attitude

	Preview schedule

	Trajectory Optimization
	Receding horizon planning
	Cost functions
	Soft constraints

	Whole-body controller
	Experimental Results
	Dynamic attitude modulation
	Locomotion on challenging terrain

	Conclusion
	References

