
Planning and Execution of Dynamic Whole-Body
Locomotion on Challenging Terrain

carlos mastalli

Università degli Studi di Genova
Istituto Italiano di Tecnologia

March 2017

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy (PhD)

Carlos Mastalli:
Planning and Execution of Dynamic Whole-Body Locomotion on Challenging Terrain
Doctor of Philosophy in Bioengineering and Robotics
Genoa, Italy - March 2017

tutors:

Prof. Darwin G. Caldwell
Advanced Robotics Department - Director
Istituto Italiano di Tecnologia (IIT)

Dr. Claudio Semini
Dynamic Legged Systems Lab - Head
Advanced Robotics Department
Istituto Italiano di Tecnologia (IIT)

co-tutor:

Dr. Ioannis Havoutis
Robot Learning and Interaction Group - Senior Researcher
Idiap Research Institute

reviewers:

Dr. Olivier Stasse
Laboratory for Analysis and Architecture of Systems - Researcher Director
Centre National de la Recherche Scientifique (CNRS)

Prof. Kris Hauser
Intelligent Motion Lab - Associate Professor
Pratt School of Engineering
Duke University

Copyright © 2017 by Carlos Mastalli
All rights reserved

a Dios por bendecirme,
a mi familia por su amor incondicional,

y al espiritud que me impulsa a ser una mejor persona

Success consists of going from failure to failure without loss of enthusiasm.
Winston Churchill

Abstract

Legged vehicles present a potential advantage over traditional wheeled systems
since they offer greater mobility in rough and challenging terrain. However, most
legged robots are still confined to structured and flat terrain. One of the main
reasons for this is the difficulty in planning complex whole-body motions while
taking into account future terrain conditions. Previous research in locomotion fo-
cused either on generating reactive behaviors that tackle small terrain changes
or planning kinematically foothold locations with relative terrain information. Al-
ternatively legged motion planning approaches focus on synthesizing complex
whole-body motions but these do not consider the terrain characteristics.

The goal of this thesis is to close the gap between locomotion approaches and
legged motion planning methods. The problem of planning motions for navigating
on rough terrain is high-dimensional. For instance, we need to consider the robot’s
dynamics and the terrain model in a suitable formulation of the planning problem.
This thesis addresses these challenges by presenting three different motion plan-
ning methods. I initially present a locomotion framework that plans online, and
kinematically, the foothold sequences from the terrain costmap and then generates
dynamic whole-body motions. For that, I developed a method that builds online
and onboard the terrain costmap. Next, I brought the foothold kinematic planning
and the dynamic execution closer by proposing a novel trajectory and foothold op-
timization method. This second method jointly optimizes body motion, step dura-
tion and foothold selection while considering terrain topology. Finally, I propose a
hierarchical trajectory optimization method that synthesizes dynamic maneuvers
by considering the contact forces. This last method can generate a wider range of
behaviors by discovering possible contact sequences.

My motion planner methods allow the legged robot to cross various terrains,
and to plan highly dynamic motions for complex tasks. Fist, unlike previous work,
the locomotion framework can plan online and onboard motions from perceived
terrain conditions. It exploits a terrain-aware heuristic function for reducing the
computation time. Second, the trajectory and foothold optimization method al-
lows the robot to adapt its walking gait timing while considering terrain topology.
To the best of my knowledge, this is the first approach that automatically adapts
the walking gait timing for rough terrain locomotion. Finally, the hierarchical tra-
jectory optimization plans behaviors without scheduling a contact sequence. This
method ensures the joint torque limits of the robot. My method is the first to have
been validated in a real-system.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

Genoa, Italy, March 2017

Carlos Mastalli
March 6, 2017

vii

Publications

Journals

• Mastalli, C., Havoutis, I., Focchi M., Caldwell, D. G. and Semini, C. (under-
review). Motion planning for quadrupedal locomotion: coupled planning,
terrain mapping and whole-body control. The International Journal of Robotics
Research (IJRR).

Conferences

• Winkler, A., Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G. and Semini,
C. (2015). Planning and Execution of Dynamic Whole-Body Locomotion for a
Hydraulic Quadruped on Challenging Terrain. IEEE International Conference
on Robotics and Automation (ICRA).

• Mastalli, C., Winkler, A., Havoutis, I., Caldwell, D. G. and Semini, C. (2015).
On-line and On-board Planning and Perception for Quadrupedal Locomo-
tion. IEEE International Conference on Technologies for Practical Robot Applica-
tions (TEPRA).

• Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G. and Semini, C. (2016).
Hierarchical Planning of Dynamic Movements without Scheduled Contact
Sequences. IEEE International Conference on Robotics and Automation (ICRA).

• Mastalli, C., Focchi, M., Havoutis, I., Radulescu, A., Calinon, S., Buchli, J.,
Caldwell, D. G. and Semini, C. (2017). Trajectory and Foothold Optimiza-
tion using Low-Dimensional Models for Rough Terrain Locomotion. IEEE
International Conference on Robotics and Automation (ICRA).

Workshop Posters

• Mastalli, C., Havoutis, I., and Semini, C. (2014). Planning and Control of
Whole-Body Motions for Robots with Legs and Arms. Autonomous Learning
Summer School.

• Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G. and Semini, C. (2015).
Dynamic Movements with Hierarchical Optimization. Workshop on Perception
and Planning for Legged Robot Locomotion in Challenging Domains (IROS-15).

ix

https://hal-laas.archives-ouvertes.fr/hal-01673438/document
https://hal-laas.archives-ouvertes.fr/hal-01673438/document
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/winkler15icra.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/winkler15icra.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/mastalli15tepra.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/mastalli15tepra.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/icra16mastalli.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/icra16mastalli.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/mastalli17icra.pdf
https://old.iit.it/images/stories/advanced-robotics/hyq_files/publications/mastalli17icra.pdf

• Mastalli, C., Havoutis, Radulescu, A., I., Focchi, M., Caldwell, D. G. and
Semini, C. (2016). Preview Optimization for Learning Locomotion Policies
on Rough Terrain. Workshop on Dynamic Locomotion and Manipulation (DLMC
2016).

x

Acknowledgments

Before starting my PhD studies I could never imagine how many challenges, both
from my professional and personal life, I would face during this period. Definitely
without the truth support of many persons (family, friends and colleague) this
works could not bring to the end. I learned many lesson from all of you. These
fews words are for you.

I am happy with what I accomplished in this PhD thesis. In the first year, Ioan-
nis Havoutis (my supervisor) defined clear goals and together with Alexander
Winkler successfully developed a motion planning method. This was the first con-
tribution which enjoyed to see successfully accomplished, it was amazing to make
the HyQ robot navigate various challenging terrain conditions. I really thank Ioan-
nis for having well defined goals from the very beginning of my PhD. It definitely
helps to re-think about future works! Ioannis also held me to grow as a researcher,
he trust in my potentiality and give that suitable degree of freedom to explore as
much as wish but without losing the path.

Another important person during this studies was Michele Focchi. He was al-
ways ready to help. All the controller developed in this thesis were based on his
work and experience in the HyQ robot. He is definitely pretty skilled researcher
and engineer, it was a great pleasure to work together with a person with his inten-
sity and curiosity. We always worked up to the point of “sono estasiato”, it was not
good enough to say that “tutto funziona”. Furthermore, I enjoyed with him many
other activities (hiking, climbing, barbecue, playing guitar, etc) that was crucial in
this period.

Marco Frigerio definitely has to be in this list. He supported the entire team by
developing the low-level software of HyQ, he was in the dark side of the moon! He
is also a pretty good software developer which help me to make better software.
Additionally, Felipe Polido was a key person for the progress of the entire software
of the lab. He supported and extended all my ideas to all the different platforms.
We worked together towards a “better” software infrastructure, which allowed me
(and other colleagues) to move forward.

I will like to thank Claudio Semini and Darwin G. Caldwell, they gave me this
wonderful opportunity as PhD student in one of the top lab in the world. In this
lab, I had the opportunity to be in tough with worldwide media channels such
as: Discovery channel, Reuters, Euro news, etc. I could also exchange ideas in
different important events, and more important for me, to share my passion for
the robotics with the littlest ones (i.e. kids).

As you might know a PhD is not only about research and papers, it’s about
the path!. In this path, I discovered the swing dance thanks to Sep Driessen; I got
immediately attract to this amazing music. I would also want to thank the Swingin’
Genova staff for sharing with me this passion: Marco Agote, Alida Ascari, Mattia

xi

Russolino and Alberto Meucci. And of course, I had the amazing opportunity to
share this passion with Romeo Orsolino and Andreea Radulescu (my colleagues
and friends).

Last but not least, I would like to thank Eduardo Mastalli and Wilma Cadenas
(my parents) for all the endless love, especially when I most needed, and Jose
Mastalli and Samuel Mastalli (my brothers) who love and support. Despite the
distance and time, they were closer to my heart from the very first second of this
period. Finally, I would like to thank Ilaria Rizzuti, she joined me in the last period
of my PhD. She brought a light in life, I hope to know always how to make another
light in her life.

xii

Contents

List of Figures xv

List of Tables xvii

Acronyms xviii

1 Introduction 1

1.1 Motivation . 2

1.1.1 Terrain modeling . 3

1.1.2 Robot modeling . 4

1.1.3 Motion planning . 4

1.2 Contributions . 5

1.2.1 Decoupled motion and foothold planning 6

1.2.2 Coupled motion and foothold planning 6

1.2.3 Whole-body motion planning with contact forces 8

1.3 Thesis Outline . 10

2 Related Work 13

2.1 Overview . 13

2.2 Legged Locomotion on Rough Terrain 16

2.2.1 Overview . 16

2.2.2 Terrain modeling . 17

2.3 Planning of Motion Sequences . 19

2.3.1 Decoupled motion and contact planning 19

2.3.2 Coupled motion and contact planning 23

2.4 Summary . 26

3 Robotic System and Perception Module 29

3.1 HyQ . 29

3.1.1 HyL . 30

3.2 Perception . 30

3.2.1 Terrain costmap . 33

3.2.2 Terrain heightmap . 34

4 Decoupled Motion and Foothold Planning 37

4.1 Foothold Planning . 38

4.1.1 Body action planning . 39

4.1.2 Local foothold planning . 45

4.2 Motion Planning . 46

4.2.1 Dynamic stability . 47

xiii

xiv contents

4.2.2 Trunk attitude and swing-leg trajectory 49

4.3 Control and Execution . 49

4.3.1 Virtual Model . 50

4.3.2 Floating- Base Inverse Dynamics 50

4.4 Results . 51

4.4.1 Evaluation of path and foothold planning 52

4.4.2 Trials . 54

4.4.3 Evaluation of whole-body motion generation and execution . . . 55

4.5 Discussion . 60

4.6 Conclusion . 61

5 Coupled Motion and Foothold Planning 63

5.1 Trajectory Generation . 63

5.1.1 Preview model . 64

5.1.2 Preview schedule . 66

5.2 Trajectory Optimization . 67

5.2.1 Receding horizon planning . 68

5.2.2 Cost functions . 68

5.2.3 Soft-constraints . 70

5.3 Control and Execution . 70

5.4 Results . 73

5.4.1 Dynamic attitude modulation . 73

5.4.2 Locomotion on challenging terrain 73

5.5 Discussion . 76

5.6 Conclusion . 78

6 Whole-body Motion Planning with Contact Forces 79

6.1 Hierarchical Planning . 79

6.1.1 Generating dynamic motions . 80

6.1.2 Contact model . 81

6.2 Trajectory Optimization . 82

6.2.1 Centroidal trajectory optimization 82

6.2.2 Full trajectory optimization . 83

6.3 Results . 84

6.3.1 Motion through dynamical relaxation 85

6.3.2 Reaching goals that are kinematically not feasible 86

6.3.3 Discovery of new contacts . 86

6.4 Discussion . 86

6.5 Conclusion . 89

7 Conclusion and Future Work 91

7.1 Conclusion . 91

7.2 Future work . 93

bibliography 95

List of Figures

1.1 Dogs have been trained for search and rescue in natural disaster in
part because of their ability to navigate such environments 2

1.2 Overview of the decoupled motion and foothold planning framework
for rough terrain locomotion . 7

1.3 Overview of the trajectory optimization framework for locomotion on
rough terrain . 8

1.4 Overview of the proposed hierarchical trajectory optimization 9

2.1 Left: the LittleDog quadruped robot traversing a rocky terrain [68].
Right: the two copies of HyQ robots, fully torque-controlled
hydraulically actuated quadruped robots [76]. 14

2.2 An overview of the planning and control architecture for quadruped
locomotion over rough terrain . 17

2.3 An overview of a multi-modal planning over contact sub-manifold . . . 20

2.4 Multi-modal planning [26] . 21

3.1 HyQ: a Hydraulic actuated Quadruped robot 30

3.2 HyL: one hydraulically-actuated and fully torque controlled leg of the
quadruped robot HyQ [76] . 31

3.3 The HyQ robot mapping the terrain using Octomap [35] 32

3.4 A set of surface normals are extracted from the RBGD sensor 33

3.5 The costmap generation from RGBD (Asus Xtion) camera data 34

4.1 An overview of the perception, planning and control framework 38

4.2 A sketch of the body action graph . 40

4.3 Illustration of graph construction of the least-cost path 42

4.4 Computation of the potential shin collision 43

4.5 Different footstep search regions according to the body action 44

4.6 The cart-table model . 47

4.7 Disjoint support triangles due to the added stability margin r 48

4.8 A virtual model control scheme is used to close a feedback loop at the
robot-body level . 51

4.9 The planning benchmarks used to analyze the quality of the produced
plans . 52

4.10 The body action (green line) and foothold sequence plan of A∗ (left)
and ARA∗ (right) given the costmap (grey scale) 54

4.11 (Re-)planning and perception on-board 55

4.12 Snapshots of pallet trial used to evaluate the performance of our
planning approach . 55

4.13 Snapshots of 4 experimental trials used to evaluate the performance of
our framework . 56

4.14 Overview of experimental trials . 57

xv

xvi List of Figures

4.15 The HyQ robot when walking over the stepping stones 59

5.1 Overview of the trajectory optimization framework for locomotion on
rough terrain . 64

5.2 A trajectory obtained from a low-dimensional model given a sequence
of optimized control parameters and the terrain heightmap 65

5.3 Sketch of different variables and frames used in our optimization 67

5.4 A costmap allows the robot to negotiate different terrain conditions
while following the desired user commands 71

5.5 Dynamic attitude modulation . 74

5.6 Snapshots of experimental trials used to evaluate the performance of
our trajectory optimization framework . 75

6.1 The proposed hierarchical trajectory optimization reduces the
complexity of the motion planning problem by considering two
different optimization phases: centroidal and full trajectory optimization 80

6.2 Snapshots of three experimental trials with the HyL robot
(Section 3.1.1) used to evaluate the performance of our hierarchical
trajectory optimization approach . 85

6.3 Optimized CoM and foot trajectory for a jumping task 87

6.4 Optimized CoM and contact sequence for reaching and keeping a
desired trunk position . 87

List of Tables

2.1 Brief overview of existing motion planning approaches, classified as
decoupled and coupled . 15

3.1 System overview of the HyQ robot . 31

4.1 Cost of the plan (Cost), number of expansions (Exp.) and computation
time (Time, in seconds) averaged over 9 trials of A∗ and ARA∗. 53

4.2 Forward speed and success rate of experiments averaged over 10 trials
and compared to previous results from [85]. 56

5.1 Forward speed and success rate of experiments averaged over 10 trials
and compared to the decoupled planner results from [86]. 76

6.1 Time and cost reduction over 8 trials compared to a single full
trajectory optimization. 86

xvii

Acronyms

HyQ Hydraulically actuated Quadruped

HyL Hydraulically actuated Leg

LF Left-Front

RF Right-Front

LH Left-Hind

RH Right-Hind

HAA Hip Abduction/Adduction

HFE Hip Flexion/Extension

KFE Knee Flexion/Extension

PTU Pan and Tilt Unit

IMU Inertial Measurement Unit

DoFs Degree of Freedoms

CoM Center of Mass

CoP Center of Pressure

ZMP Zero Moment Point

CMP Centroidal Moment Pivot

GRFs Ground Reaction Forces

CMM Centroidal Momentum Matrix

RNEA Recursive Newton-Euler Algorithm

A∗ A star

ARA∗ Anytime Repairing A∗

MPC Model Predictive Control

QP Quadratic Programming

SQP Sequential Quadratic Programming

FSQP Feasible Sequential Quadratic Programming

xviii

acronyms xix

DDP Differential Dynamic Programming

LBFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

iLQR iterative Linear Quadratic Regulator

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CHOMP Covariant Hamiltonian Optimization for Motion Planning

CIO Contact Invariant Optimization

LCP Linear Complementarity Programming

MPCC Mathematical Program with Complementarity Constraints

BFP Best First Planning

VM Virtual Model

RL Reinforcement Learning

PI2 Policy Improvement with Path Integral

DMPs Dynamic Movement Primitives

HAL Hierarchical Apprenticeship Learning

PTSC Prioritized Task-Space Control

PCA Principal Component Analysis

ROS Robot Operating System

RT Real-Time

1
Introduction

Legged locomotion can deliver substantial advantages in unstructured real-world
environments as it can offer mobility unmatched by traditional vehicles. Such envi-
ronments are common in disaster relief, search and rescue, forestry and construc-
tion site scenarios. Nevertheless, most legged robots are still confined to structured
and flat terrain despite the significant efforts of the research community. These
approaches either use reactive behaviors to tackle small terrain changes or plan
kinematically foothold locations with relative terrain information. In fact, navigat-
ing such environments requires taking into account future terrain conditions (i.e.
motion planning). Planning of motion sequences can be split into separate sub-
problems (decoupled planning), i.e. motion and contact planning. Such approaches
reduce the combinatorial search space at the expense of the richness of complex
behaviors. In contrast, coupled planning approaches compute simultaneously con-
tact interactions and body movements. These methods can be posed as hybrid or
mode-invariant trajectory optimization problems. In theory, these approaches can
synthesize general behaviors, but they suffer from local minima, non-convexity
and/or discontinuity.

Motion planning for legged locomotion over rough terrain presents difficult
challenges because of the high-dimensionality and complexity of the problem. The
main questions that emerge are: (a) how should we model the terrain conditions?
(b) what kind of robot model do we need to plan efficient movements? (c) which
planning method is more suitable for rough terrain? and (d) how should we for-
mulate these motion planning problems?

Throughout this thesis, I will address these questions. First I develop a de-
coupled planning approach. This planner computes kinematically, a foothold se-
quence given a terrain costmap, and then generates a body trajectory from a cart-
table model that ensures dynamic stability. Second, I propose a novel coupled
planning method that uses a sequence of preview models (i.e. parametrized cart-
table models). Here motion, foothold locations and step duration are optimized
given a terrain costmap. Finally, I propose a hierarchical trajectory optimization
that computes movements with contact forces. This hierarchical trajectory opti-
mization method computes a feasible trajectory using the robot’s centroidal dy-
namics. It ensures that the joint torque limits are satisfied by applying the robot’s
full dynamics. All these approaches use different robot and terrain models, plan-
ning methods, and solvers (i.e. graph search, non-linear optimization, etc). In this
opening chapter, I present the main motivations of this thesis in detail. The chapter
finishes with a list of main contributions, and an overview of the thesis organiza-
tion.

1

2 introduction

Figure 1.1: Dogs have been trained for search and rescue in natural disaster in part be-
cause of their ability to navigate such environments. Like their biological coun-
terparts, legged robots can deliver substantial advantages that traditional vehi-
cles cannot offer. Unlike animals and human beings, legged machines can po-
tentially be deployed in dangerous environment, for example the Fukushima
Daiichi nuclear power plant.

1.1 Motivation

Crossing rough terrain is the main motivation for the development of legged ma-
chines since they can deliver a substantial benefit compared with traditional vehi-
cles. For instance legged machine can potentially navigate in challenging terrains
like their dogs (see Fig. 1.1). Nowadays, legged machines are restricted to rela-
tively easy rough terrain conditions. The main reason for this is the difficulty of
generating complex dynamic motions that allow them to cross different terrain
conditions. Many legged locomotion approaches have focused on the study of re-
active behaviors for robot stability without considering the terrain conditions (i.e.
“blind” locomotion). A reactive behavior is an instantaneous action that aims to
immediately stabilize the robot, i.e. it does not consider a horizon of future events.
These approaches can only tackle small changes in the terrain topology, and fur-
thermore, they cannot guarantee the successful accomplishment of the task.

Recently, trajectory optimization with contacts gained much attention in the
legged robotics community. It aims to overcome the previously mentioned draw-
backs of reactive locomotion approaches by considering a horizon of future events
(e.g. body movements and foothold locations). For example, it could potentially im-
prove the robot stability along a specific planning horizon given a certain terrain.
In spite of the promising benefits of trajectory optimization for rough terrain loco-
motion, most of the works focused on flat conditions. Conversely, in rough terrain
locomotion, the foothold locations and movements have to be carefully planned.

1.1 motivation 3

To ensure locomotion stability, the robot needs to “understand” the environment
through a perception system. The terrain modeling serves to quantify the terrain
difficulty, so that, the robot can plan foothold locations and movements. Note that
the terrain model can be used in two ways: for foothold selection and for foothold
interaction. Next, the robot has to evaluate different possible body motions and
foothold locations. The robot modeling helps to capture the fundamental dynam-
ics, while reducing an unnecessary set of robot behaviors (i.e. the search space).
Finally, different motion planning methods can be used for evaluating and making
decision about the set of possible actions (i.e decoupled or coupled planning). All
these elements are addressed in this thesis.

1.1.1 Terrain modeling

The terrain condition influences the foothold selection. For example, walking over
stepping stones requires selecting footholds along a path of stones. In the legged
robotics community few works have focused on terrain modeling for foothold
planning [44][40][81][87]. As a common practice, all these works quantify how de-
sirable it is to place a foot at a specific location given a specific cost value. The
cost values are computed from a set of geometric features of the terrain, where
each feature contributes to an individual cost value. On the other hand, the ter-
rain can also be modeled through constraint functions. In fact, Deits and Tedrake
[11] define a set of safe terrain regions using linear constraints. Other approaches
describe a set of possible contact interactions by using signed distance constraint
functions. However, this kind of terrain models do not provide enough informa-
tion for foothold selection, just foothold interaction. Instead, the terrain costmap
uses different geometric features (i.e. slope, curvature, height deviation, etc.) for
a more accurate description of the terrain topology. Nonetheless, it cannot fully
avoid dangerous terrain regions. In the case of terrain modeling as a costmap,
there is a remarkable difficulty in quantifying how desirable a footstep location is.
Nevertheless, expert demonstrations can be used to extract associated cost values.
A set of high-level expert advice (i.e. body path and footsteps) can be used to infer
the weights of the individual cost [44]. Additionally, a set of terrain templates can
be learned along an associated set of weights from expert-demonstrated footholds
[40].

In the above-mentioned methods, the terrain model has been used just for
foothold planning, not for full planning of motions and footholds. The problem
of motion and foothold planning can be formulated as a trajectory optimization
method. Both terrain representations, either cost or constraint functions, have a
strong impact on the solution of these problems. They reshape the landscape of
the search space (i.e. non-convexity of the problem), and affect how we can solve
it (i.e. gradient-based or stochastic-search optimization). Thus, the terrain model
needs to provide sufficiently descriptive information, which also has to be suitable
for trajectory optimization.

4 introduction

1.1.2 Robot modeling

The robot model allows us to evaluate different possible actions (e.g. body mo-
tion and foothold locations). The robot’s action can either be evaluated through
the geometry of motion or the influence of forces and torques acting on the
bodies, i.e. kinematics or dynamics, respectively. In foothold planning, kinemat-
ics models have been extensively used for even terrain [34][11] and rough ter-
rain [45][38][81][87]. These approaches use the robot’s kinematics for ensuring the
reachability of the foothold (e.g. joint position limits). Hence, we can only use
the robot kinematics if the body motion and the foothold planning are decoupled.
Compared with the dynamic model, the kinematics model has a search space with
a lower dimension, but it limits the set of possible robot’s actions, such as jump-
ing over a gap. A generalized gait adaptation needs to dynamically balance the
body between the gait transitions. In other words, it needs to consider the acting
internal forces. Another issues is that the robot’s kinematics cannot describe the
joint torque limits. These drawbacks stimulated the study of dynamic models in
the legged locomotion community.

Dynamic models can address these limitations by describing the system’s evolu-
tion given the contact configuration and forces (i.e. full dynamic model). Neverthe-
less, these models are often high-dimensional and nonlinear, which significantly
increases the complexity of the search space. Given that, reduced dynamic mod-
els have been proposed in the legged robotics community [64][21]. These dynamic
models aim to reduce the complexity of the motion planning problem by capturing
the legged locomotion dynamics (e.g. point-mass, inverted pendulum, cart-table,
etc.) or mapping the full dynamics to the centroidal one (e.g. contact wrench). This
dimensionality reduction often helps to describe the trajectory optimization prob-
lems in a way that is easier and faster to solve for a specific locomotion behavior.
In fact, some of these models describe the trajectory optimization problem as a
Quadratic Programming (QP) program [37][38][48], or relaxes the nonlinearities of
the problem [9][8][69]. But, these models cannot be used to synthesize a wide vari-
ety of behaviors because they capture the dynamics for a specific set of movements.
In these cases, the full dynamic model might be used for the motion generation
[71].

1.1.3 Motion planning

Whole-body motion planning is the process of finding motion and contact se-
quences. It can be classified as decoupled or coupled planning, depending on
the motions and contact sequences are independently or jointly computed, respec-
tively. Decoupled planners are the most studied in rough terrain locomotion be-
cause they reduce the problem complexity and computation time [38][45]. The
contact locations are found either from a predefined contact sequence or an unde-
fined contact sequence. The planned motion might maintain static or dynamic bal-
ance. Nonetheless, decoupled planners cannot synthesize a wide range of dynamic
movements such as rearing or gait transitions because we can only plan based on

1.2 contributions 5

the robot’s kinematics. In contrast, planning simultaneously the contact and mo-
tion sequences can potentially synthesize a wide range of behaviors (i.e. coupled
planning). But, these approaches often suffer from: (a) non-convexity on account
of switching multiple possible dynamics, (b) dynamic discontinuities owing to
contact forces. In practice this limits the discovery of new behaviors as we often
need to search from a warm-start point (i.e. a suggested behavior). Dealing with
these limitations is an open question. For instance, some works aim to overcome
these issues by applying stochastic optimization to simple parametric dynamic
models [56] or some others propose non-linear optimal control with smooth con-
tact models [60][61][22][63][78]. It is hard to synthesize a wide range of behaviors
in an online fashion. However, different approaches have been proposed to reduce
the computation time, i.e. by (a) linearizing the non-linear optimal control prob-
lem [63][69], or (b) transferring the optimized trajectories to motor policies using
machine learning techniques [50][59][57].

Traditionally, motion planners compute a trajectory that connects the actual
robot state to a desired goal position. These approaches have been used exten-
sively for computing a sequence of footholds due to the fact that we can easily
connect the desired body position with a set of foothold locations, e.g. [45][34].
These planner techniques are often one-shot method, i.e. they compute the full
plan just once. In contrast, for legged locomotion, it might be more convenient to
plan motions in the velocity space. Defining the velocity as user input, it might
improve the teleoperation of legged machines. Furthermore, velocity commands
are more suitable for receding horizon planning, and as a result, this will increase
the robustness of the overall task.

Considering the terrain conditions increases the complexity of the planning
problem, as this might increase the number of local minima and/or infeasible re-
gions. In fact, for coupled planning, the terrain model has only considered allowed
contact regions (e.g. [60]). These methods can deal with uneven terrain topologies
but they neglect important properties such as curvature and slope. In the same
way the robot model affects the complexity of the planning problem, too. Sim-
plified models often help to reduce the complexity of the trajectory optimization
problem but they limit the range of possible movements. Combining both, terrain
and robot model, in a suitable way in terms of computation time and solution
results is an exciting new frontier of research. This is the main motivation of this
thesis.

1.2 Contributions

To address the points described above, this thesis focused on the development of
three different planning techniques for dynamic whole-body locomotion on chal-
lenging terrain: (a) decoupled motion and foothold planning, (b) coupled motion
and foothold planning and (c) whole-body motion planning with contact forces.
These methods are developed primarily for quadrupedal robots but can be ex-
tended to other legged systems such as bipeds or hexapods, etc.

6 introduction

1.2.1 Decoupled motion and foothold planning

The challenge of decoupled planners lies primarily in increasing the complexity
of the generated motion while reducing the computation time. To the best of our
knowledge, up to now, decoupled approaches are limited in the versatility of move-
ments and computation time. For instance Kolter et al. [45] and Kalakrishnan et al.
[38] reduce the computation time but are still limited to small changes of the
robot’s yaw (heading). All these previous substantial developments were driven
by the DARPA Learning and Locomotion Program with a small quadruped robot
called Littledog (a robot that weighs 3 Kg).

Based on those ideas we developed a framework for dynamic legged locomotion
over challenging terrain, where the choice of appropriate footholds is crucial for
the success of the behavior (see Fig. 1.2) [54][86][31]. First, a hierarchical motion-
before-contact approach computes an approximated body-path and chooses appro-
priate footholds from a perception system. This perception system builds online
and onboard the terrain costmap. Next, an optimal body trajectory is generated ac-
cording to a dynamic stability metric to produce fast and natural dynamic whole-
body motions. A floating-base inverse dynamics controller, in combination with a
virtual model controller, generates feedback torques to account for tracking inac-
curacies. Compared with preliminary foothold planning methods, my method in-
creases the versatility of plans due to the fact that the foothold search regions
and sequences are defined accordingly with the body action plan. Furthermore, it
computes online and onboard plans (around 0.5 Hz) using the incoming percep-
tion information on commodity hardware. The whole-body motion generator can
also compute trajectory for different dynamic walking gait patterns.

The main contributions of this work are online terrain costmap building and
online foothold planning. The optimized dynamic whole-body motions – despite
irregular swing-leg sequences – are generated given a planned foothold sequence.
To execute the plan, the controller uses a combination of inverse-dynamics and
virtual-model control formulation that exploits the natural partitioning of the
robot’s dynamic equations. Overall, this framework aims to increase the auton-
omy, compliance and flexibility of legged robot locomotion in unstructured and
challenging environments. To the best of our knowledge, this framework is the
first that computes online and onboard foothold sequences and whole-body mo-
tions. Note that it has has been published after this work other frameworks that
compute online foothold sequences such as in [46]. The details of my perception
system and our framework are described in Chapters 3 and 4, respectively. This
work has been previously published in [54], and used it to cross various terrain in
[86].

1.2.2 Coupled motion and foothold planning

Gait adaptability to the terrain requires us to optimize the step duration while
considering appropriate foothold locations. To plan these movements, we need to
be able to balance dynamically and choose the foothold locations of the robot. This

1.2 contributions 7

Figure 1.2: Overview of the decoupled motion and foothold planning framework for
rough terrain locomotion. The perception and planning processes, on the left
of the figure, generate foothold sequences according to the terrain informa-
tion: terrain costmap and heightmap. The whole-body motion generator, in the
middle of the figure, computes a dynamic motion give a sequence of planned
footholds. Next, the desired movement is compliantly executed using a com-
bination of feedforward and feedback terms. All the processes are computed
online and onboard with their respective frequencies.

means we have to plan motions and footholds at the same time. Thus, I propose
a novel trajectory optimization method for legged locomotion over rough terrain
[52]. The problem is formulated as a coupled planning of Center of Mass (CoM)
motions and footholds, where the foothold locations are selected using the incom-
ing terrain costmap. The trunk height and attitude is planned, in a second step,
to cope with different terrain elevations (see Fig. 1.3). First, a sequence of control
parameters (the Center of Pressure (CoP) displacement, the phase duration and the
foothold locations) is optimized given the terrain costmap. Then, the CoM trajectory
and the swing-leg trajectory are jointly generated using a sequence of parametric
preview models and the terrain elevation map. To realize the low-dimensional
plan, the controller selects appropriate torque commands that are computed by
the combination of a trunk controller with a joint-space torque controller.

My trajectory optimization method increases the locomotion capabilities of the
previous framework compared with my decoupled planner. With this coupled
planner, the robot is able to cross terrain with fewer stepping stone terrain and
different elevations. My planning method is based on the following concepts: (a)
the terrain costmap to quantify how desirable it is to place a foot at a specific lo-
cation [54], (b) coupling the CoM planning with the foothold selection, (c) a trunk
attitude planner for coping with terrain elevations, (d) CoM planning and foothold
selection in the horizontal frame, which effectively decouples it from the trunk atti-
tude planning, (e) robot-centric planning for scaling the preview control actions to
different robot poses and (f) the trunk velocities are the high-level user commands
for practical teleoperation of the system.

The main contribution of this work is a novel trajectory optimization approach
for legged locomotion on rough terrain. In contrast to [56], my method consid-
ers terrain topologies (in the form of a terrain costmap) for foothold selection in

8 introduction

Trajectory
 Optimization

Trajectory
 Generation

Whole-body
 Controller

Optimal
Control

Optimal
Plan

User
Goals

Terrain
Costmap

Terrain
Heightmap

State

Command

Figure 1.3: Overview of the trajectory optimization framework for locomotion on rough
terrain. An optimal control sequence U∗ given the user’s goals, the actual state
s0 and the terrain costmap is computed offline. Given this optimal control
sequence, the optimal plan S∗ is generated in order to cope with the changes
in the terrain elevation through trunk attitude planning. Lastly, the whole-body
controller calculates the joint torques τ ∗ that satisfy friction-cone constraints.

the trajectory optimization. My planner can produce a wide range of different lo-
comotion behaviors despite the use of low-dimensional parametric models. The
combination of these models with stochastic-based exploration and receding hori-
zon planning helps us to automatically adapt the walking gait, that increases the
versatility of legged robots in rough terrain locomotion compared with decoupled
planners. Moreover, the various terrain elevations are tackled by modulating the
trunk height and attitude, and planning in the horizontal frame. Additional contri-
butions include trajectory optimization with different terrain costmaps, a suitable
terrain description through a cost function and a method for guaranteeing the dy-
namic stability when the robot adjusts the attitude of its trunk. To the best of our
knowledge, this approach is the first that jointly optimizes phase duration and
foothold selection while considering terrain topology. The details of my coupled plan-
ning method are described in Chapter 5. This work has been previously published
in [52].

1.2.3 Whole-body motion planning with contact forces

Whole-body motions can be planned using a set of simplified dynamic models that
capture the relevant locomotion quantities such as CoM and CoP, as in the coupled
motion and foothold planning approach. These models reduce significantly the di-
mensionality of the problem, but they are just representative for a subset of move-
ments (e.g. walking or hopping). However, most animal and human locomotion

1.2 contributions 9

Centroidal Trajectory
 Optimization

Full Trajectory
 Optimization

joints

CoM

contact points

contact force

Figure 1.4: Overview of the proposed hierarchical trajectory optimization. This hierarchi-
cal trajectory optimization method reduces the complexity of the motion plan-
ning problem by considering two different optimization phases: centroidal and
full trajectory optimization. First, the centroidal trajectory optimization phase
produces a locally optimal CoM motion using the centroidal dynamics model
[64], which does not consider joint dynamics (i.e. link’s CoM). Second, the full
trajectory optimization phase refines the CoM trajectory by applying the robot’s
full-dynamics and joint limits. Both optimization phases use complementarity
constraints to model the contact interactions.

behaviors involve dynamic motions and rich contact interactions. In fact complex
maneuvers need to consider dynamic movements and contact forces at the same
time. A good example is the jumping task because the contact forces play an im-
portant role in predicting the ballistic trajectory of the robot. Nevertheless, these
trajectory optimization problems are hard to solve due to the high-dimensional
search spaces and very nonlinear constraint functions, such as the contact forces
ones. Indeed contact forces abruptly change the behavior of the system, which cre-
ate discontinuities in the optimization landscape [60][71]. To alleviate these issues,
I propose a novel hierarchical trajectory optimization method [53] (see Fig. 1.4).
This finds feasible trajectories for tasks that require the exploration of different
contact sequences through highly-dynamic movements. We choose a set of jump-
ing tasks as examples, as these highlight the ability to explore the dynamical ca-
pabilities of the robot, in order to reach goals that are unreachable in a kinematic
manner. I validate my method in 2-DoFs leg called HyL.

The main contribution of this work is a novel hierarchical trajectory optimization
approach based on the divide and conquer principle (see Fig. 1.4). The hierarchical
trajectory optimization can produce a wide range of complex behaviors, without
scheduling a contact sequence, by reducing the search space to a fixed sequence of
commands. I use the fixed sequence of commands to generate a continuous motion
plan. The trajectory optimization approach is posed as a Mathematical Program
with Complementarity Constraints (MPCC). First, I prune the search space by find-
ing a feasible trajectory according to the robot’s centroidal dynamic. Second, I

10 introduction

impose the robot’s joint limits by optimizing with the full dynamic model. The de-
tails of my hierarchical trajectory optimization method are described in Chapter 6.
This work has been previously published in [53].

1.3 Thesis Outline

In this opening chapter, I introduced the main research topics, motivations and
contributions of this work. Each main contribution is presented in an individual
chapter (Chapters 4 to 6); these chapters build up the core of this thesis. The rest
of this thesis is organized as follows:

Chapter 2 This chapter introduces the state of the art in legged robot motion planning
for rough terrain locomotion, summarizing the main works in this field. An
overview of the different modules for legged locomotion is described in Sec-
tion 2.1. Section 2.2 introduces few relevant works focused on rough terrain
locomotion. Later, Section 2.3 explains in details the different motion plan-
ning methods which are classified in two categories (decoupled and coupled
planning). Finally, Section 2.4 explains how the presented related works are
connected with this thesis.

Chapter 3 This chapter describes the common elements used along all the planning
methods developed in this thesis, i.e. our robotic platform and perception
module for online mapping. Section 3.1 describes the quadrupedal robot
platform used for our experiments called HyQ, and its leg called HyL, and
introduces the various nomenclature used in quadrupedal robots along this
thesis. Section 3.2 explains the terrain perception system developed in this
thesis. Our motion planners use the terrain costmap (Section 3.2.1) and the
terrain heightmap (Section 3.2.2). Both maps are computed online and on-
board from a RGBD (Asus Xtion) camera data given the estimated body
position.

Chapter 4 This chapter presents a new framework for dynamic legged locomotion over
challenging terrain. A decoupled motion and foothold planning method is
proposed. Section 4.1 describes how the overall body-path and appropriate
footholds are chosen. Section 4.2 explains how dynamically stable whole-
body motions are generated based on an arbitrary footstep sequence. Sec-
tion 4.3 describes how desired motions are accurately and compliantly exe-
cuted. Section 4.4 evaluates the performance of our framework in real-world
experimental trials and pinpoints the main reasons behind trial-failure that
were encountered. Next, the possible factors that can limit the success of the
framework are identified (Section 4.5). Section 4.6 summarizes this work and
presents ideas and directions for future work.

Chapter 5 This chapter proposes a novel trajectory optimization method for dynamic
legged locomotion over rough terrain. The problem is formulated as a tra-
jectory and foothold optimization (i.e. coupled planning of CoM motions

1.3 thesis outline 11

and footholds), in which the terrain topology is considered. Section 5.1 de-
scribes how to generate the CoM trajectory from a sequence of parametric
preview models. Next, the trajectory optimization algorithm for legged lo-
comotion over rough terrain is described (Section 5.2). Section 5.3 describes
how to guarantee friction-cone constraint when a desired motion is accu-
rately and compliantly executed. Section 5.4 evaluates the performance of
the trajectory optimization approach in experimental trials, which shows the
improvements compared with a decoupled planning approach, and Section 5.5
discusses the improvement factors. Finally, Section 5.6 draws the conclusions
and presents ideas for future work.

Chapter 6 This chapter proposes a novel hierarchical trajectory optimization of whole-
body motions and contact forces. Our method describes the contact model
through a set of complementary constraints. Section 6.1 describes the hierar-
chical trajectory optimization approach proposed for dynamic motion plan-
ning. Section 6.3 evaluates the performance of the trajectory optimization ap-
proach in real-world experimental trials with a robotic leg. Next, Section 6.4
discusses how the hierarchical trajectory optimization helps to discover dif-
ferent behaviors before Section 6.5 summarizes this work and presents ideas
for future work.

Chapter 7 This chapter draws the conclusions and presents ideas for future work re-
garding of the research presented in this thesis.

2
Related Work

Legged locomotion might require to combine different elements such as planning
of motion sequences, discovery and learning new behaviors and reactive control
strategies. Thus, we present an overview of the different approaches for planning
of motion sequences, learning and discovery of new behaviors and reactive control
strategies. Later, we describe in detail a few relevant motion planning techniques
and frameworks for rough terrain locomotion. There are different approaches in
the literature such as methodical search algorithms, non-linear optimization and
reinforcement learning methods.

2.1 Overview

Accident and natural disaster sites require robots that are able to navigate over
rough and unstructured terrain, where legged robots, particularly quadruped
robots, are the better solution compared to humanoids or wheeled vehicles. Nev-
ertheless, the legged locomotion problem requires careful planning of motion se-
quences and accurate body control, sometime through highly dynamic phases (i.e.
jumping, rearing, etc). The most recent developments in rough terrain locomotion
were driven by the DARPA Learning Locomotion Program1, where LittleDog, a
small quadruped robot, was shown to traverse a rough terrain such as in Fig. 2.1.
In the same line, the Dynamic Legged Systems (DLS) lab of the Istituto Italiano di
Tecnologia has developed a torque-controlled quadruped robot called Hydrauli-
cally actuated Quadruped (HyQ), as is shown in Fig. 2.1, which was designed to
move over rough terrain and perform highly dynamic tasks such as jumping and
running with a variety of gaits.

Planning of Motion Sequences involves making decisions about the contact
point sequences and behaviors. The problem could be posed as decoupled or
coupled planning, i.e. by independently or jointly computing the CoM motions
and contact sequences, respectively. Decoupled planning is the most established
method for rough terrain locomotion [39][45][85] due to the fact that it reduces
the complexity of the problem by splitting it into a list of sub-problems. These
approaches might use optimization techniques [38][11] to achieve robust and fast
locomotion, or even methodical search2 [28][15]. In contrast, there is a new wave of
developments focusing on motion synthesis frameworks that plan simultaneously
sequences of contacts and behaviors [60][71], which enable more natural locomo-

1 For more information about the DARPA Learning Locomotion Program see [68].
2 Footstep transitions are methodically explored, by combining graph search and single-mode plan-

ning.

13

14 related work

Figure 2.1: Left: the LittleDog quadruped robot traversing a rocky terrain [68]. Right:
the two copies of HyQ robots, fully torque-controlled hydraulically actuated
quadruped robots [76].

tion. In theses approaches, the locomotion is stated as complex non-linear opti-
mization problems because of the discontinuous nature of contact forces. There
are two trends for motion synthesis, the first ones state it as an optimization prob-
lem with switching dynamics and discontinuous state transitions3 [62][28][15] or
with a predefined sequence of locomotion phases [56][33], and the second ones
use multi-contact dynamics methods in order to pose as a mode invariant trajec-
tory optimization problem4 [60][71][13]. Table 2.1 shows the different methods for
planning of motion sequences.

Learning and Discovery of New Behaviors can be solved using trajectory op-
timization in order to guide the policy searching [60][13]. These approaches al-
low us to easily search for a policy in high-dimensional spaces. They are based
on possible inaccurate models of the robot, i.e. they assume a perfect knowledge
of the system. In contrast, traditional machine learning approaches such as Re-
inforcement Learning (RL) compute optimal policies directly on measured data
and rewards from interactions with the environment [41][80]. Note that they are
not plagued by model inaccuracies. For instance Theodorou et al. [80] propose a
stochastic optimal control with path integral, called Policy Improvement with Path
Integral (PI2). This method learns parametrized policies that allows LittleDog to
jump over a gap. They use Dynamic Movement Primitives (DMPs)5 as parametrized
policies. DMPs have been proved to be a successful method for policy-based RL al-
gorithms [66][67][42]. Time-dependent Gaussian basis functions can also be used
as parametrized policy. In fact, Fankhauser [16] proposed a method that learns

3 This type of system are the so called hybrid ones.
4 It allows simultaneous optimization of contact and behaviors.
5 DMPs are canonical policies or differential equations with well-defined attractor properties that en-

code discrete and rhythmic motor skills; theses canonical policies were proposed by [36].

2.1 overview 15

Table 2.1: Brief overview of existing motion planning approaches, classified as decoupled
and coupled. Both decoupled and coupled approaches are sub-classified in dif-
ferent families: multi-model and hierarchical planning, and hybrid system and
mode-invariant planning, respectively.

Multi-modal planning Hierarchical planning

Hauser [26] Kolter et al. [45]

Hauser and Latombe [28] Kolter et al. [43]

Hauser et al. [30] Kalakrishnan et al. [40]

D
ec

ou
pl

ed

Escande et al. [14] Kalakrishnan et al. [39]

Escande et al. [15] Winkler et al. [85]

Hybrid system planning Mode-invariant planning

Mordatch et al. [56] Mordatch et al. [60]

El Khoury et al. [12] Tassa et al. [78]

C
ou

pl
ed

Nakanishi et al. [62] Erez et al. [13]

Posa et al. [71]

long vertical jumps and periodic hopping on ScarlETH6. They created a simple
policy library that allows to generate jumps towards a desired position by using a
linear interpolation between two neighboring learned policies.

Whole-Body Control must be robust against uncertainties and unexpected ter-
rain changes, and at the same time being able to generate accurate motions of
the robot. There is a risk of unbalancing the robot with high-gain controllers be-
cause this cannot adapt to unexpected contacts. One possible solution consists of
increasing the controller compliance by using feedforward torques. For instance
they can be computed using the inverse dynamics and predicted contact forces
[6][55], but the wrongly predicted contact forces will impact dramatically on the
controller tracking performance. In fact, these errors might produce inconsistent
desired whole-body trajectories (qd, q̇d, q̈d) which are required for computing the
desired torque commands. Thus, the Prioritized Task-Space Control (PTSC) frame-
work has been proposed to overcome these issues [10][84]. Such task-space con-
trollers provide a more appropriate methodology for planning and learning of
whole-body behaviors because they do not suffer from such inconsistencies. For
instance, through considerations on the Ground Reaction Forces (GRFs) constraints,
generated motions are able to easily adapt to uneven terrain scenarios. PTSC formu-
lations pose it as a conic optimization problem. Other examples compute optimal

6 ScarlETH is a planar one-legged robotic system and consists of a main body/base, a thigh and a
shank.

16 related work

control commands by using a template model7 [37][47], which might be imple-
mented using the Model Predictive Control (MPC) framework such as [13].

2.2 Legged Locomotion on Rough Terrain

In the literature the problem of legged locomotion over rough terrain has been
hierarchically decomposed in different modules. As a common ground, these ap-
proaches separate the problem basically into three components: 1) a high-level
planner, which plans a sequence of footsteps 2) a low-level planner, which plans
a trajectory for the body and 3) a low-level controller, which achieves the desired
body and feet trajectories in the face of disturbances. An important advantage
of a hierarchical decomposition is that it speeds up computation time. These ap-
proaches have proved to work successfully in practice.

2.2.1 Overview

Several works have proposed a general planning and control architecture for fast
and robust locomotion on rough terrain. Kolter et al. [45] propose three levels:
high-level planner, low-level planner and low-level controller. In the same vein,
Kalakrishnan et al. [39] use three main subsystems: 1) body path planner 2) foot-
step planner and 3) floating-base inverse dynamics controller as is shown in Fig. 2.2.
Furthermore, for exploiting the active compliance of the HyQ robot, Winkler et al.
[85] developed an adaptive controller that combines a virtual model controller
with a floating-base inverse dynamics controller.

In work [45], the high-level planner finds a set of feasible footsteps across the
terrain. They use a foot costmap that indicates the desirability of stepping at any
location in the terrain. For that, it is necessary to build a body costmap which av-
erages the foot costs around the default foot locations. An approximated body
path is found from the body costmap. This path is computed in a pre-processing
step using dynamic programming. Footholds are selected along the approximated
body path through a receding horizon branching search. At the low-level planner,
the desired trajectory of the robot’s CoM is computed for static stability. The static
stability projects the actual CoM position into the support triangle. Then, the de-
sired trajectory is calculated by moving the feet in a box pattern (i.e. from a lateral
viewpoint). Finally, joint-space PD controllers are used for tracking the desired
trajectories.

Kalakrishnan et al. [39] proposed an approach that learns offline a foothold
ranking function used for computing the terrain reward map. The robot motion
and footholds are computed online from an offline map. The approximated body
path is computed from the terrain reward map, which guides the robot through
regions with good footholds. Later, the footstep planner computes a set of opti-
mized footholds, for the next four steps, by using greedy search. A fixed pattern
of locomotion is used to reduced the search space. For every candidate foothold,

7 A template model captures the fundamental dynamics of the system

2.2 legged locomotion on rough terrain 17

(a) (b)

Figure 2.2: An overview of the planning and control architecture for quadruped locomo-
tion over rough terrain: (a) Kalakrishnan et al. [39] and (b) Kolter et al. [45] are
two examples of architectures developed for the DARPA Learning and Loco-
motion Challenge. These architectures decompose the problem in three compo-
nents: i.e. high-level planner, low-level planner and controller. The images are
copied from the aforementioned works.

the body pose generator maximizes the kinematic reachability and to avoid colli-
sion with the terrain. The body trajectory generator is formulated as a QP, which
uses a desired foothold sequence and the CoP stability condition for computing
the CoM trajectory. Finally Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP) generates a foot trajectory which avoids leg collisions (e.g. shin
collision) [88]. CHOMP uses an initial trajectory as seed.

2.2.2 Terrain modeling

In rough terrain locomotion, the footholds have to be selected carefully in order
to improve the stability and robustness of the task. A terrain model influences
the foothold selection process. In fact, the terrain model quantifies how desirable
it is to place a foot at a specific location. A set of geometric feature can be used
to quantify, e.g. through cost values, the cross-ability of a terrain. Furthermore, al-
lowed terrain regions can be described through a set of constraint or high-penalty
cost values.

In work [45], the high-level planner computes a set of feasible footsteps from a
terrain costmap. The planned footstep sequence aims to be robust against terrain

18 related work

difficulties, e.g. it prevents slipping and other undesired behaviors. As mentioned
above, the terrain costmap is used for computing the body and foot costmaps. The as-
sociated cost values are computed from different geometric features such as slope
and curvature. The total cost value is a linear combination of feature cost values,
i.e. g(rij) = wTφ(rij) where φ(rij) maps the feature to cost values. Nevertheless,
one of the major challenges of this approach is to properly tune the set of weights
w that allows the robot to successful cross the terrain. Kolter et al. [43] tackled this
problem by inferring the terrain model (or weights w) given a set of high-level
expert advices (i.e. body path and footsteps). The authors proposed to use the
Hierarchical Apprenticeship Learning (HAL) framework for solving this problem.
An important remark about the approach is that the performance depends on the
careful design of cost-value functions.

In contrast, Kalakrishnan et al. [40] use expert-demonstrated footholds for learn-
ing a set of terrain templates along associated set of weights. A terrain template is
a discretized height map of the terrain around the foothold, and it has an asso-
ciated feature value8. Manual building of a set of templates is time-consuming,
and it might be nearly impossible to attain a good generalization performance.
Thus, the authors propose a method that can simultaneously learn, from expert-
demonstrated footholds, a small set of templates and a foothold ranking func-
tion (i.e. the set of weights) per each template. Given a set of reachable footholds
F = {f1 · · · fn}, an expert foothold demonstration fc implicitly means that it pro-
vides the maximum reward (or minimum cost):

wTxc > wTxi ∀i ∈ F; i 6= n (1)

where x ∈ Rd is the feature vector computed from a selected subset of tem-
plates, w ∈ Rd is the weight vector (d number of template in the library), and
R(fi) = wTxi is the reward value of a determined foothold fi. The foothold rank-
ing function learning (i.e. learning of the weight vector w) can be posed as linear
classification problem. They compute the weight vector w, together with a selec-
tion of the template subset, by promoting the sparse solution in the linear binary
classifier (i.e. a l1-regularized logistic regression) that minimizes the following cost
function:

J =

m∑
i=1

− log
(

1

1+ exp (wTy)

)
+ λ‖w‖1 (2)

where m is the number of expert demonstrations, λ is the regularization param-
eter, and y ∈ Rd;∀y ∈ {+1,−1} is the classified demonstration. Note that all the
demonstrated footholds map to the target class +1 of the pairwise difference fea-
ture vectors (xc − xi) (see Eq. (1)). Once the sparse weight vector w is learned, the
templates with zero weight are discarded. The reward values are computed from
the feature value of the templates of the library. The feature value represents the
similarity between the template and the candidate foothold.

8 The feature vector xi is composed of two groups: terrain features, which encode information about
the terrain at the foothold, and pose features, which quantify all other relevant information like
progress towards the goal, stability margins, and collision margins

2.3 planning of motion sequences 19

2.3 Planning of Motion Sequences

In legged systems, planning of motion sequences can be stated as the process of
finding optimal contact interactions and motions. A feasible set of motions de-
pend on the selected contact interactions, and vice-versa; the motion and contact
sequences are coupled variables. In fact, a coupled planning approach jointly com-
putes the motion and contact sequences. One of the main problems with such
approaches is that the search space grows quickly, and the problem might be-
come intractable. There are several efforts to develop computationally efficient
algorithms by describing the system as hybrid [56][62][12] (Section 2.3.2.1) or con-
sidering the contact forces [60][71][13][78] (Section 2.3.2.2). The main motivation
of these techniques is to synthesize more general motions, but they might suffer of
local minima problems. On the other hand, decoupling into a set of subproblems
(i.e. contact and motion planning) reduces the search space, and as consequence,
the computation time. These approaches can be classified as multi-modal planning
[28][29][15] (Section 2.3.1.1) or hierarchical planning [45][39][89] (Section 2.3.1.2).
There is two classes of multi-modal planning: contact-before-motion and motion-
before-contact. In addition the hierarchical planning approach assumes a predefined
contact sequence (e.g. walking or trotting gaits). So it does not require to explore
different contact configuration transitions. This section reviews the state of the art
of these methods, and proposes the aforementioned classification.

2.3.1 Decoupled motion and contact planning

Contacts or impacts comprise of discrete state transitions through continuous mo-
tions. Each continuous motion is called a mode, where a mode defines a configura-
tion space9 given a determined contact interaction. The task of finding a sequence
of modes towards a specified goal is called multi-modal planning [26]. When there
is not a restriction about the choices of possible contacts is called multi-contact
planning [15]. Different methodical search methods (i.e. search-based planning al-
gorithms) can be used for finding the path between modes. On the other hand, we
can exploit the knowledge of a task such as walking by predefining a fixed con-
tact sequence (i.e. foothold sequence). Along this thesis I describe it as hierarchical
planning. Because the mode switches are predefined, it allows us to decompose
into contact and motion planning. For instance, Kolter et al. [45], Kalakrishnan
et al. [39] and Winkler et al. [85] decompose into a high-level planning (i.e. body-
path and foothold planning) and a low-level planning (i.e. CoM and foot trajectory
generation).

2.3.1.1 Multi-modal planning

In multi-modal planning, the configuration space Q consists of a set of n modes
Σ = {σ1 · · ·σn}. Every mode σ ∈ Σ is defined by a set of motion constraints such
as the active contact set. A configuration space can be partitioned into a set of

9 In motion planning, the configuration space defines a set of all possible robot configurations [49].

20 related work

(a) (b)

Figure 2.3: An overview of a multi-modal planning over contact sub-manifold (a) Moving
within the same family Σf from q1 to q2 requires transitioning to a different
mode σ ′ (figure copied from [28]) and (b) These transitions in any contact
sequence, or locomotion pattern of a 2D tripod robot (figure copied from [15]).

f disjoint modes Σ1 · · ·Σf (see Fig. 2.3). Given a goal state q2, the task of the
multi-modal planner is to plan a path through different lower-dimensional sub-
manifolds (i.e. a mode manifold Qσ) that connect to the initial state q1. For mov-
ing through different mode sub-manifolds it is required to find the set of transition
configurations10 q ′. The set of transition configurations define the contact sequence.
There are two mode transitioning approaches, implicit and explicit. Implicit meth-
ods generate a path in Qσ, and then check if any transition configuration exist
(i.e. motion-before-contact planning). Explicit methods sample one or more transi-
tion configurations from two adjunct mode sub-manifolds Qσ ∩ Qσ ′ , and plans a
single-mode path that connect them (i.e. contact-before-motion planning).

Different transition regions are computed given a set of adjacent modes (see
Fig. 2.4a,2.4b). Due to the large number of modes, it might be randomly selected
a subset of mode transitions for computing the single-mode paths [30]. Moreover,
a heuristic function might produce a smaller subset of modes that are likely to
contain a path to the goal [28]. Motion primitives can be used as domain knowl-
edge in order to guide the exploration toward promising choices [27]. Note that
this selection distributes a sparse number of modes across the configuration space.
Once the transition configurations are computed, probabilistic roadmaps can be
used to connect them [26] (see Fig. 2.4c). Finally, a set of roadmaps are selected in
order to compute a path from the start to the goal states (see Fig. 2.4d).

Escande et al. [15] propose a multi-contact planning algorithm that can plan a
sequence of movements without restricting the choices of possible contacts, i.e.
any part of the robot11 could be a contact point. This planner belongs to the class

10 If there is a transition configuration between the modes σ and σ ′, then it is said that σ ′ is an adjacent
mode of σ

11 Regions defined as possible contact areas.

2.3 planning of motion sequences 21

(a) (b)

(c) (d)

Figure 2.4: Multi-modal planning (copied from [26]); (a) there are 9 modes, where the
feasible spaces are white and the start and goal configuration are green and
red points, respectively; (b) the transition regions between the adjacent modes
are computed; (c) the roadmaps are built in each mode; and (d) the set of
roadmaps are connected.

22 related work

of contact-before-motion strategies. The contact planner spans a tree of possible
contacts using a potential-field, this is an adapted version of the Best First Planning
(BFP) algorithm. Then, a posture generator checks the feasibility of a certain contact
configuration. This problem is posed as a nonlinear optimization program, and
solved using the Feasible Sequential Quadratic Programming (FSQP) solver [14].

2.3.1.2 Hierarchical planning

Under the assumption of a predefined contact sequence, the hierarchical planning
decomposes the problem into two subproblems: motion and contact planning.
These assumptions are common in locomotion because we can impose a prede-
fined foothold sequence (or gait), as in works [45][39][85]. This decomposition
reduces the search space, and as a consequence the computation time.

high-level planning The high-level planner computes offline an approxi-
mated body path from the terrain costmap. Given the terrain costmap, the body
cost-to-go is calculated using the n best foothold locations, and the body attitude
cost (i.e. roll and pitch angles). The body cost reflects how desirable is a certain
CoM path in terms of the terrain conditions. The cheapest body path can be com-
puted using Dijkstra’s algorithm [85], Dynamic Programming algorithm [45] or
tree search approaches [73][34].

Once the body path is generated, a set of footsteps is planned along the approx-
imated body path from a greedy search [39][85] or a receding horizon branching
search [45]. Both approaches generate an online footstep sequence given a prede-
fined locomotion pattern. For quadrupedal walking gaits, two different pattern
of locomotion are successfully used: Left-Hind (LH), Left-Front (LF), Right-Hind
(RH), Right-Front (RF) [39][85] or RH, RF, LH, and LF [45]. The foothold selec-
tion minimizes the terrain cost [45] or might even minimize the cached terrain
cost, body attitude and static stability [39][85]. In addition, Kalakrishnan et al.
[39] proposed a pose finder system that optimizes the 6D pose of the robot body
(x,y, z, roll,pitch,yaw), where the x and y positions are defined according to
the stability criterion. The pose finder maximizes the kinematic reachability and
avoids feet collisions. Two main approaches exist: the first one is the cyclic coordi-
nate descent search technique, and the second one is a gradient-based optimizer
that uses floating-base iterative inverse kinematic algorithm.

low-level planning The low-level planner computes a desired body trajec-
tory and foot trajectories given a foothold sequence. The desired body trajectory
generator satisfies the static stability [45][85] or the dynamic one [39]. Kolter et al.
[45] propose to use the double support triangle as static criterion, i.e. moving the
CoM to the intersection point between the two support triangles and then to the
robot’s effective center12. In work [85], the CoM is moved from the center of the
support triangle to the feet average position of the next stance. Both approaches
generate the vertical body position based on the height of the feet raised by a

12 The robot’s effective center is calculated as the average positions of its four feet, i.e. stance posture.

2.3 planning of motion sequences 23

desired body height. The body pitch is calculated from the support polygon orien-
tation. In contrast to traditional CoM-based approaches (i.e. static stability), Kalakr-
ishnan et al. [39] use the CoP condition13, as dynamic stability criterion, and a
cart-table model. In this work, the step durations are predefined which ends up in
QP problem.

The foot trajectory generator has to consider leg collisions, e.g. shin collision.
For instance, Kolter et al. [45] and Winkler et al. [85] implemented a trivial ap-
proach that generates a swing-movement using a box pattern shape (i.e. from the
lateral viewpoint). In contrast, Kalakrishnan et al. [39] compute the trajectory in
two phases. First, an initial trajectory is generated between the start and goal po-
sition using piecewise quintic splines. This trajectory only guaranteed to avoid
collisions in the end-effector. Second, the trajectory is refined using a trajectory
optimizer called CHOMP [88].

2.3.2 Coupled motion and contact planning

From another standpoint, the motion planning could be solved by simultaneously
computing the motion and contact interactions, i.e. coupled planning. It might
be described through a hybrid system, i.e. by predefining a sequence of contact
switching. There exist two methods for describing the contact switching, i.e. time-
or state-based. Nakanishi et al. [62] demonstrated that a time-based hybrid system
can be used to tackle the problem of dynamic motion planning in robots with
passive compliant actuation. Furthermore, hybrid systems have been also used to
synthesize different bipedal locomotion gaits [56]. On the other hand, the contact
discontinuities can be described through smooth approximation of the contact
dynamics (i.e. contact forces) or complementary constraints [77]. These models
are used to describe the robot dynamics in a trajectory optimization problem. For
instance, they might be used to stabilize complex behaviors using a real-time MPC

in a humanoid robot [13][78], and for motion planning through contact-invariant
trajectory optimization [60][22] or contact models as complementary constraints
[71][9][22]. Note that the contact forces are part of the decision variables, whereas
in hybrid models, contact events are modeled as instantaneous discrete transitions.

2.3.2.1 Hybrid system planning

Motion planning with contacts can be posed as a hybrid optimization problem,
i.e. by describing the contact switching as state-based or time-based. The contact
switching can be modeled as a state-based hybrid system, but it is a nontrivial
optimization problem because it has to be posed as multi-point boundary value
problem with several interior-point constraints. In fact, Nakanishi et al. [62] sug-
gested to approximate it using a nonlinear time-based switching hybrid dynamic
representation, where the multiple phases of the movement are known. The au-
thors achieved highly dynamic motions for a realistic brachiating robot and a hop-
per. This approach computes an optimal feedback control law u = u(x,t) which

13 It also knows as the Zero Moment Point (ZMP) criterion [82].

24 related work

minimizes the composite cost, and simultaneously optimizes switching instances
t1, · · · , tk and the final time tf as well:

J = φ(x(tf)) +
k∑
j=1

ψj(x(t−j)) +
∫tf
t0

h(x, u)dt (3)

where φ(x(tf)) is the terminal cost, ψj(x(t−j)) is the via-point cost at j-th switching
instance and h(x, u) is the running cost. They solve it using an iterative Linear
Quadratic Regulator (iLQR) by approximating it with local quadratic model. This
optimization problem is subject to a time-based hybrid dynamic model. A time-
based hybrid dynamic model can be written as:

ẋ = fi(x, u), i ∈ I = {1, 2, · · · ,m}

x(t+j) =∆
ij−1,ij(x(t−j))

(4)

where fi : Rn ×Rm → Rn is the i-th subsystem, x ∈ Rn is a state vector, u ∈ Rm

is a control input vector and I is the set of indices for subsystems. They assume
an instantaneous discrete (discontinuous) state transition ∆ij−1,ij for j = 1, · · · ,k,
where x(t+j) and x(t−j) denote the post- and pre- transition states, respectively.

2.3.2.2 Mode-invariant planning

Above-mentioned techniques treat the discontinuous nature of the problem, which
results from contact forces or impacts, as discrete sequence of modes, e.g. by re-
stricting the search for a complete trajectory to a specified sequence of modes of
hybrid behaviors. In contrast, mode-invariant planning considers the contact dy-
namics by smoothing them [60][58][22] and/or describing them as complementary
constraints [60][71]. For instance, Mordatch et al. [60] introduced a Contact Invari-
ant Optimization (CIO) method that simultaneously optimizes the contacts and
the motions. CIO uses a scalar variable that indicates whether a potential contact
should be active in a given phase (mode) of the movement. CIO relaxes the contact
constraints which allows contact forces to act at a distance. On the other hand, the
contact forces can be posed as complementary constraints such as in the Linear
Complementarity Programming (LCP) formulation for multi-contact forward sim-
ulation [77]. Posa et al. [71] described the contacts as complementary constraints,
i.e. as a MPCC problem14.

smoothing of the contact dynamics Smoothing of the contact dynam-
ics allows us to reduce the complexity and computation time of the optimization
problem [78], and even to include a continuation procedure that helps to discover
different behaviors [60]. For instance, Erez et al. [13] and Tassa et al. [78] imple-
mented an online MPC machinery based on iLQR15. Note that due to the smoothing

14 A MPCC is a class of non-linear optimization problems in which complementary constraints are
imposed.

15 iLQR is a variant of the well-known Differential Dynamic Programming (DDP) algorithm with the
difference that it only uses the first derivatives of the dynamics.

2.3 planning of motion sequences 25

contact dynamics, they can evaluate very quickly the dynamics and its derivatives,
and still predict accurately the robot behavior. On the other hand, Mordatch et al.
[60] propose a set of auxiliary decision variables ci,φ(s) that indicate whether a po-
tential contact should be active in a given phase (i.e CIO), which helps to discover
different behaviors. Given a particular initial position of the robot and a goal, CIO

computes a sequence of movements and contact interactions for a predefined num-
ber of phases k and n end-effector. The optimal solution s∗ ∈ R(12(n+1)+n)k (i.e.

s∗ =
[
x1···k ẋ1···k c1···k

]T
) is computed by minimizing a composite cost function

g(s):
g(s) = gci(s) + gphysics(s) + gtask(s) + ghint(s) (5)

where gci is the contact-invariant cost, gphysics physics-consistency cost, gtask
the task cost and ghint a hint cost that shapes the exploration in the early iter-
ations (e.g. dynamic stability hint). As an important mark of the CIO is that it
transforms, due to the introduction of the auxiliary variable, a highly discontin-
uous and local-minima-prone search space into a slightly larger but much better-
behaved and continuous search space. The auxiliary variables do not only affect
the dynamics (i.e. gphysics by enabling and disabling contact forces) but also the
contact-invariant cost function:

gci(s) =
∑
t

ci,φ(t)(s)(‖ei,t(s)‖2 + ‖ėi,t(s)‖2) (6)

where ei,t(s) is a 4D contact-violation vector for end-effector i at time t. This cost
defines that if we have an active contact, a large value of ci,φ(t)(s), the optimizer
has to reduce the contact-violation vector, i.e. the ith end-effector must be touching
in the phase φ(t) at time t. On the other hand, the optimizer could find more
convenient that the ith end-effector does not make a contact in the phase φ(t),
thus, it will find large values for ‖ei,t(s)‖. But if the auxiliary variable ci,φ(t)

affects also the dynamics (i.e. gphysics) then the optimizer avoids to set all c’s to
zero. The physics-violation cost gphysics is defined as:

Jphysics(s) =
∑
t

‖Jt(s)T ft(s) + But(s) − τt(s)‖2 (7)

where Jt(s) ∈ R6n×d is the Jacobian matrix, ft(s) ∈ R6n is the vector of the contact
forces acting on all n end-effectors, B ∈ R6n×d is the mapping matrix of applied
forces/controls in the actuated space to the full space, ut(s) ∈ R6n are the applied
forces in the n end-effector and τt(s) denotes the inverse of the smooth dynamics.

The CIO is an unconstrained non-linear optimization problem, which is solved
using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm.
LBFGS is an iterative method for solving unconstrained non-linear optimization
problems using quasi-Newton methods.

contact forces as complementary constraints The robot interaction
with the environment causes discontinuities in the dynamics due to the contact
forces. The contact forces can be modeled as complementary constraints [77]. For

26 related work

instance, some multi-contact engines solve the contact constraints using numeri-
cal solutions of linear or non-linear complementary problems (LCPs and NCPs).
The complementary-based contact model imposes a hard-constraint in the opti-
mization problem, instead of relaxation of contact forces that allow them to act
at a distance (e.g. CIO approach). Note that it might generate dynamically infea-
sible trajectories. These type of constraints represent the combinatorial nature by
describing them as orthogonal and positive. For example a contact model can be
described as:

0 6 λn̂i ⊥ φi(q) > 0 (8)

where λn̂i is the contact force acting along the surface normal at the ith end-effector
(i.e. contact point) and φi(q) is the signed distance between the ith contact point
xi and the surface Si given a joint position q.

The trajectory optimization problem could be solved using direct and shooting
methods. A shooting method can be plagued by poorly conditioned gradients,
which is why direct methods are widely used for planning in robotic systems. Posa
et al. [71] posed it as direct transcription method and included complementary
constraints, i.e. the contact forces are part of the decision variables. In the literature,
this kind of problems are called MPCC.

min
h,q[k],u[k],λ[k]

φ(q[k]) + h
N∑
k=1

L(q[k− 1], τ [k],λ[k]) (9)

which is subject to full dynamic constraints and contact model constraints. They
transcribe the full dynamic constraint by applying an Euler-backward integration
rule.

2.4 Summary

In this chapter, we present an overview of the state of the art in motion planning
for legged systems. We classify the motion planners as decoupled and coupled
ones. At the same time, we sub-classify the decoupled and coupled planning in
terms of how they are formulated. The decoupled planners use kinematic models
for selecting contact interactions, but we can plan dynamic motions in the hierar-
chical planning family. On the other hand, the coupled planners compute contact
and motion using dynamic models. This allows us to increase the capabilities of
the robot by planning dynamic motions. The hybrid system planners reduce the
computation time, and complexity of the problem, but they are still limited to a cer-
tain kind of movements (e.g. walking gait). Additionally, we present an overview
of the different rough terrain locomotion frameworks. In contrast to general plan-
ning methods, these frameworks consider the terrain topology for foothold plan-
ning. Finally, different robot models have been studied along all these planning
techniques.

Based on these preliminary works, in this thesis we develop three different plan-
ning methods: one decoupled and two coupled ones. We use different robot dy-
namic models: cart-table, contact wrench and full dynamics; in addition to the

2.4 summary 27

kinematic models. Furthermore, we formulate the motion planning problem in
different ways as: graph search, quadratic optimization, non-linear optimization
and stochastic optimization. Finally, we developed a perception system that builds
an online terrain costmap. We use this terrain costmap in different planning tech-
niques.

3
Robotic System and Perception Module

This chapter describes the HyQ and the HyL robots; the platforms used in the
experiments of this thesis. Furthermore, it describes the perception system that we
developed for rough terrain locomotion. This system builds a terrain costmap and
heightmap from the incoming point-cloud data on commodity sensor. In this thesis,
we use the RGBD (Asus Xtion) camera. The terrain costmap and heightmap are
common components between the different motion planning methods developed
in this thesis.

3.1 HyQ

HyQ is a hydraulically actuated quadruped robot developed by the Dynamic Legged
Systems (DLS) Lab at the Istituto Italiano di Tecnologia (IIT) [76][75]. HyQ has been
designed to perform highly-dynamic motions such as trotting and jumping, as
well as, to carefully navigate over rough terrain. Different potential applications
are targeted by this robot such as search and rescue, forestry technology, and con-
struction. The robot is fully torque-controlled which enables to actively control the
compliance [5][4]. It roughly has the dimensions of a goat, i.e. 1.0 m×0.5 m×0.98 m
(length×width× height). The leg length ranges from 0.339-0.789 m and the hip-to-
hip distance is 0.75 m. HyQ’s weight is approximately 85 kg, it varies depending on
the number of onboard computers and exteroceptive sensors such as cameras and
lasers. The Left-Front (LF), Right-Front (RF), Left-Hind (LH) and Right-Hind (RH)
legs are represented as brown, yellow, green and blue, respectively (see Fig. 3.1b).

The robot is equipped with 12 active Degree of Freedoms (DoFs). Each leg has
three joints: Hip Abduction/Adduction (HAA), Hip Flexion/Extension (HFE) and
Knee Flexion/Extension (KFE). The HyQ robot is actuated by 8 hydraulic cylinders
(HFE and KFE) and 4 hydraulic rotary motors (HAA), which are driven by high
performance servo-valves (bandwidth around 250 Hz). At every piston rod ends,
there are load-cells that measure the forces of the pistons, and as result the joint
torques can be computed through the mechanism kinematics (Fig. 3.1a). Similarly,
a custom torque sensor provides direct measurement of the HAA torques. All the
joints are equipped with high-precision encoders: relative and absolute encoders.
For all the experiments presented in this thesis, HyQ has two onboard computers:
a Pentium i5 with Real-Time (RT) Linux (Xenomai) patch, and a Pentium i5 with
Linux. The PC with Xenomai processes the low-level controller (hydraulic-actuator
controller) at 1 KHz which communicates with the proprioceptive sensors through
EtherCAD boards. Additionally, this PC runs the high-level controller (robot con-
troller) at 250 Hz. Both RT threads (i.e. low- and high- level controllers) communi-
cate through shared memory. The non-RT PC processes the extereoceptive sensors

29

30 robotic system and perception module

(a)

HIP A/A

HIP F/E

KNEE F/E

LF

LH
RH

RF

(b)

Figure 3.1: HyQ: the Hydraulic actuated Quadruped robot. The HyQ robot is actuated by 8

hydraulic cylinders (hip flexion/extension and knee flexion/extension) and 4

hydraulic rotary motors (hip abduction/adduction). (a) A picture of HyQ with
the Asus Xtion camera and the MultiSense SL sensor developed at Carnegie
Robotics. (b) Kinematic structure of the HyQ robot. The color of the legs are
brown, yellow, green, blue for the Left-Front (LF), Right-Front (RF), Left-Hind
(LH) and Right-Hind (RH) legs, respectively. Each leg has three joints Hip Ab-
duction/Adduction (HAA), Hip Flexion/Extension (HFE) and Knee Flexion/Ex-
tension (KFE). Note that we use the RGB color convention for drawing the base
frame.

for generating the map and then computing the plans. Later, the motion plan is
sent to the high-level controller through a RT-friendly communication (i.e. using
Robot Operating System (ROS) as interprocess communication). The characteristics
and features of the HyQ robot are summarized in table 3.1.

3.1.1 HyL

The Hydraulically actuated Leg (HyL) weighs approximately 11 kg. HyL is a 1D
floating-base system with 2 actuated joints. The HFE and KFE joints are the two
actuated ones, and the base is constrained to move on a vertical slider, as is shown
in Fig. 3.2b. Similarly to HyQ, the actuated joints are equipped with precision en-
coders and load-cells. Moreover, the base is equipped with a relative encoder that
allows us to estimated the base position. The leg is controlled with two controllers
that run in a real-time PC as HyQ.

3.2 Perception

This section describes the pipeline of acquisition and evaluation of terrain infor-
mation. We implemented an onboard terrain information server that holds and
continuously updates the state of the environment. We show how this informa-
tion is processed and transformed to a qualitative metric of the terrain geometry.

3.2 perception 31

Table 3.1: System overview of the HyQ robot

dimensions 1.0 m×0.5 m×0.98 m (LxWxH)

link lengths & weights hip (HAA-HFE): 0.08 m, 2.9 kg

upper leg (HFE-KFE): 0.35 m, 2.6 kg

lower leg (KFE foot): 0.35 m, 0.8 kg

weight 85 kg

active DoFs 12

HAA actuators double-vane rotary hydraulic actuators

HFE/KFE actuators asymmetric hyd. cylinders with hinge joint

joint motion range 90
◦ (HAA), 120

◦ (HFE, KFE)

max. torque [HAA] 120 Nm (peak torque at 20 MPa)

max. torque [HFE/KFE] 181 Nm (peak torque at 20 MPa)

position sensors position 80000 cpr in all joints

torque sensors custom torque (HAA), loadcell (HFE, KFE)

onboard computer Pentium i5 with real-time Linux (Xenomai)

controller rate 1 kHz

(a)

+
-

+-

+

-

(b)

Figure 3.2: HyL: a single hydraulically-actuated and fully torque-controlled leg of the
quadruped robot HyQ [76]. The HyL robot has a total number of 3 DoFs: 1D
floating-base system vertically along the slider qb1 with 2 actuated joints
(qq1 ,qq2).

32 robotic system and perception module

Figure 3.3: The HyQ robot mapping the terrain using Octomap [35]. The voxel map is gen-
erated from RGBD (Asus Xtion) camera data given the estimated body position.
The RBGD sensor is mounted on a PTU that scans the terrain. The body position
is estimated with an Extended Kalman Filter that integrates the leg kinematics
with an IMU sensor [2]. The occupancy map is built with a 2 cm resolution.

We use a terrain information server to hold the geometric perception data and
simplify the access to terrain information queries. The required information for
the motion planning, e.g. the terrain costmap and the terrain heightmap of the envi-
ronment around the robot, is computed based on the information that this server
holds. We use an RGBD sensor (Asus Xtion) mounted on a scanning Pan and Tilt
Unit (PTU) at the front of the robot to produce raw point cloud data. This data
is subsequently voxelized and stored in an efficient tree-based data structure, as
an Octomap occupancy grid [35]. This provides a probabilistic representation that
handles sensor noise and represents both free and occupied space. Octomap uses
a hierarchical data structure, for spatial subdivision in 3D, called octrees. An octree-
based 3D map representation is designed to allow for efficient map updates and
for copying (for more details see [35]). This multi-resolution volumetric represen-
tation is used for speeding up the computation time of the geometric features.
Fig. 3.3 shows the HyQ robot mapping the terrain using Octomap. We use a 2 cm
resolution occupancy map because we found out that it is sufficient for the esti-
mation of the features values, and it allows us to build online terrain costmaps
(Section 3.2.1).

3.2 perception 33

Figure 3.4: A set of surface normals are extracted from the RBGD sensor. The surface
normals are estimated from the eigenvalues and eigenvectors computed from
the nearest neighbors of a query point.

3.2.1 Terrain costmap

The terrain costmap quantifies how desirable it is to place a foot at a specific lo-
cation. The cost value for each voxel in the map is computed using geometric
terrain features as in [85]. Namely we use the standard deviation of height values, the
slope and the curvature as computed through regression in a 6 cm×6 cm window
around the cell in question; the feature are computed from a voxel model (2 cm res-
olution) of the terrain. For instance, the estimating surface normals and curvatures
are computed from a set of neighboring occupied voxels. Though many different
normal estimation methods exist, the surface normal can be estimated through an
analysis of the eigenvector and eigenvalues, also known as Principal Component
Analysis (PCA), of the set of nearest neighbors (for more information, including
the mathematical equations of the least-squares problem, see [74]). Note that the
surface normal is computed from the eigenvector that has the smallest eigenvalue
λ0, and the surface curvature σ as follows:

σ =
λ0

λ0 + λ1 + λ2
(10)

Fig. 3.4 shows a set of estimated surface normals from the occupancy map of a
cobblestone terrain. We compute the normals, and other geometric features, with
4 cm of resolution (i.e. costmap resolution). Note that the terrain costmap uses
a different discretization resolution of the occupancy map. The terrain costmap

34 robotic system and perception module

Figure 3.5: The costmap generation from RGBD (Asus Xtion) camera data. The RBGD sen-
sor is mounted on a PTU that scans the terrain. An occupancy map is built with
a 2 cm resolution. Then the set of features is computed and the total cost value
per pixel is calculated. In addition, a heightmap is created with a resolution of
2 cm in z. The cost values are represented using a color scale, where blue is the
minimum cost and red is the maximum one.

is incrementally built based on the aforementioned features and updated locally
whenever a change in the map is detected. For computing the terrain costmap, we
define an area of interest around the robot of 2.5 m×5.5 m that uses a cell grid
resolution of 4 cm. The cost value for each pixel of the map is computed as a
weighted linear combination of the individual feature T(x,y) = wTT(x,y), where
w and T(x,y) are the weights and feature values, respectively. Fig. 3.5 shows the
generation of the costmap from the onboard RGBD sensor. The cost values are
represented using a color scale, where blue is the minimum cost and red is the
maximum one.

3.2.2 Terrain heightmap

The terrain heightmap allows the robot to estimate the vertical component (i.e. z-
direction) of the footstep. Indeed the body/swing trajectory can be approximately
planned to place the foot at the correct height. A lower resolution of the heightmap
helps the robot to properly establish a footstep, which improves the overall execu-
tion. This feature is particularly important when the contact forces are estimated
through the joint torque sensors, as the HyQ robot does. The heightmap is com-
puted using the same resolution (4 cm) as the costmap in the (x,y)-plane. Along
the z-direction we desire higher accuracy to step safely onto obstacles, so we use
a resolution of 2 cm. In essence, the heightmap is a 21/2-dimensional projection of

3.2 perception 35

the costmap that can be more efficiently handled by the subsequent steps of the
motion and foothold planning. For instance, the terrain costmap associates the
cost value to the higher occupied voxel.

4
Decoupled Motion and Foothold
Planning

Natural locomotion over rough terrain requires simultaneous computation of foot-
step sequences, body movements and locomotion behaviors, i.e. coupled plan-
ning. In this chapter, we split the planning and control problem into a set of sub-
problems, following a decoupled planning strategy. First, we plan a sequence of
footholds by planning an approximate body path (Section 4.1). The approximate
body path is computed from a sequence of planned body actions (Section 4.1.1).
Then we choose locally the footholds locations (Section 4.1.2). Second, we generate
a body trajectory that ensures dynamic stability and achieve the planned foothold
sequence (Section 4.2). We achieve a compliance execution by combining a virtual
model with a floating-base inverse dynamic controllers (Section 4.3).

In the literature there are few coupled planner methods [79][60][71][9]. One of
the main problems with such approaches is that the search space grows quickly
and searching becomes unfeasible, especially for systems that need solutions in
real-time. In contrast, we use a lattice representation (i.e. body movement primi-
tives) for planning foothold sequence. Our hierarchical foothold planner increases
the versatility of the body movements (e.g. discretized yaw–changing movements
instead of continuous changes) compared to state-of-the-art approaches [45][81][40].
We reduce the computation time using a terrain-aware heuristic function which es-
timates the cost-to-go. We generate a CoM trajectory that ensures dynamic stability
and needs no knowledge of a predefined gait. For that, it checks if the next swing
leg is diagonally opposite of the current swing leg. If so, the disjoint support tri-
angles require a four-leg support phase for the optimization to find a solution.
Both, the foothold and motion planners, increase the versatility of the planned
motions compared to previous works. Furthermore, our framework builds online
the terrain costmap and computes online the foothold sequence. Fig. 4.1 shows an
overview of our perception, planning and control framework for dynamic legged
locomotion over rough terrain.

All the material presented in this chapter has been previously published in
different works. The main contribution of this thesis is a hierarchical foothold
planning method [53], which is used in [86]. We explained our motion planning
and execution in [86]. Finally, we presented our full framework for dynamic legged
locomotion over challenging terrain in work under-review [31].

37

38 decoupled motion and foothold planning

Figure 4.1: An overview of our perception, planning and control framework. The percep-
tion and planning processes, on top of the figure, generate foothold sequences
according to the terrain information [31]. The next level uses planned footholds
to generate dynamic whole-body motions and compliantly executes them us-
ing a combination of feedforward and feedback terms.

4.1 Foothold Planning

This section describes the motion planner, consisting of two main elements: the
body action planner that decides the general direction of movement, and the foothold
sequence planner that chooses specific footholds. Finally, we describe the (re-)planning
and costmap updating process during execution.

4.1 foothold planning 39

The overall task is to plan online an appropriate sequence of footholds F that
allows a quadruped robot to traverse a challenging terrain toward a body goal
state (x,y, θ). To accomplish this, the motion planning problem is decoupled into:
body action and foothold sequence planning. The body action planner searches
a bounded sub-optimal solution around a growing body-state graph. Then, the
foothold sequence planner selects a foothold around an action-specific foothold
region of each planned body action.

Decoupled approaches reduce the combinatorial search space at the expense of
locomotion capabilities. State-of-the-art approaches produce plans that are limited
by the “richness” of the action space. In contrast, my approach employs a lattice
representation that aims to increase the number of feasible body movements com-
pared with previous works. For that, the foothold search regions depend on the
given body action, i.e. forward/backward, diagonal, etc.

4.1.1 Body action planning

Body action planning over challenging terrain needs to consider the varying dif-
ficulty of the terrain areas, obstacles, types of actions, potential leg collisions, po-
tential body orientations and kinematic reachability. Thus, given a terrain costmap
(see Section 3.2.1), the body action planner computes a sequence of body actions
that maximize the cross-ability of the terrain. The cross-ability describes how desir-
able is a determined body path in terms of the terrain conditions. It is quantified
by computing a body cost. The body action plans are computed by searching over
a body-state graph that is built using a set of predefined body movement primitives
(see Fig. 4.2). Anytime Repairing A∗ (ARA∗) is used to find the optimal action se-
quence [51]. A terrain-aware heuristic function is used to expand the node inside
the OPEN list; for more details about the different lists (i.e. OPEN, INCONS and
CLOSED used in ARA∗ see [51]). The body-action-based planning is described in
pseudo-code in Algorithm 1.

4.1.1.1 Graph construction

The body-state graph is constructed using a lattice-based adjacency model. The
lattice representation is a discretization of the action space into a set of feasible
body movements. The body-state graph represents the transition between differ-
ent body-states (nodes) and it is defined as a tuple, G = (S,E), where each node
s ∈ S represents a body-state and each edge e ∈ E ⊆ S × S defines a potential
feasible transition from s to s′. A sequence of body-states (or body poses (x,y, θ)
where it represents the 2D position and yaw angle, respectively) approximates the
body trajectory that the controller will execute. An edge defines a feasible tran-
sition (body action) according to a set of body movement primitives. The body
movement primitives are defined as body displacements (or body actions), which
ensure feasibility together with a feasible footstep region. A feasible footstep re-
gion is defined according to the body action.

40 decoupled motion and foothold planning

Figure 4.2: A sketch of the body action graph. The objective is to find a sequence of actions
a from the current body state s = (x,y, θ) to the goal state g, that minimizes the
accumulated action costs c(s, a). For simplicity only three possible actions are
shown, namely move left (al), right (ar) and forward (af). The optimal action
sequence {al, ar, . . . , ar} found through ARA∗ is shown in red.

Given a body-state query, a set of successor states are computed using a set
of predefined body movement primitives (line 15). A predefined body movement
primitive connects the current body state s = (x,y, θ) with the successor body state
s′ = (x ′,y ′, θ ′). The graph G is dynamically constructed since the associated cost
of transition cbody(s, s′) depends on the current and next states (or current state
and action) (line 17). In fact, the feasible foothold regions change according to each
body action, which affect the value of the transition cost. Moreover, an entire graph
construction could require a greater memory pre-allocation and computation time
than available (onboard computation). Fig. 4.3 shows the graph construction for
the body action planner. The associated cost of every transition cbody(s, s′) is com-
puted using the footstep regions (line 19). These footstep regions depend on the
body action in such a way that they ensure feasibility of the plan, as is explained
in Section 4.1.1.4. For every expansion, the footstep regions of LF (brown squares),
RF (yellow squares), LH (green squares) and RH (blue squares) legs are computed
given a body action.

The resulting states s′ are checked for body collision with obstacles, using a pre-
defined area of the robot, and invalid states are discarded. For legged locomotion
over challenging terrain, obstacles are defined as unfeasible regions to cross, e.g. a
wall or tree. In fact, the obstacles are detected when the height deviation w.r.t. the
estimated plane of the ground is larger than the kinematic feasibility of the system
in question HyQ. The obstacle map is built with 8 cm resolution since the amount
of time for collision checking would increase significantly for higher resolutions.

4.1.1.2 Body cost

The body cost describes how desirable it is for the robot to be at a specific area of
the terrain, and by evaluating a sequence of such areas and costs we understand
how difficult/desirable it would be to cross a terrain with a given body path. This
cost is designed to maximize the cross-ability of the terrain while minimizing the

4.1 foothold planning 41

Algorithm 1 Computes a set of body action over a challenging terrain using
ARA∗ search over a growing body-state graph.

1:

2: Data: Inflation parameter ε, time of computation tc
3: Result: a body action plan Q = [q0, q1, · · · , ql]
4: function computeBodyActionPlan(sstart, sgoal)
5: set ε and computation time tc
6: g(sstart) = 0;g(sgoal) = ∞
7: OPEN = {sstart}; INCONS = CLOSED= ∅
8: while (ε > 1 and tc < t) do
9: decrease ε

10: OPEN = OPEN ∪ INCONS; CLOSED = ∅
11: // fval(s) = g(s) + εh(s)
12: while (fval(sgoal) > minimum fval in OPEN) do
13: remove s with minimum fval from OPEN
14: insert s into CLOSED
15: generate action(s) from body primitives
16: for all u ∈ action(s) do
17: compute s′ given u
18: compute the footstep regions given s′

19: compute cbody(s, s′) from footstep regions
20: if g(s′) > g(s) + cbody(s, s′) then
21: g(s′) = g(s) + cbody(s, s′)
22: add s 7→ s′ to policy s′ = π(s)
23: if s′ is not in CLOSED then
24: insert (s′,fval(s′)) into OPEN
25: else
26: insert (s′, fval(s′)) into INCONS
27: end if
28: end if
29: end for
30: end while
31: end while
32: reconstruct body action plan Q from π(·)
33: return Q
34: end function

path length. The body cost function cbody is a linear combination of: terrain cost
ct, action cost ca, potential leg collision cost cpc, and potential body orientation
cost cpo. The cost of the transition from the body state s to s′ is defined as follows:

cbody(s, s′) = wbt ct(s) +waca(s, s′)

+wpccpc(s) +wpocpo(s), (11)

where wbt , wa, wpc and wpo are the weights of terrain, action, potential leg and
collision costs, respectively.

42 decoupled motion and foothold planning

Figure 4.3: Illustration of graph construction of the least-cost path. The associated cost of
every transition cbody(s, s′) is computed using the footstep regions. For every
expansion, the footstep regions of LF (brown squares), RF (yellow squares), LH

(green squares) and RH (blue squares) are computed according to a certain
body action.

For a given current body state s, the terrain cost ct is evaluated by averaging
the best n-footsteps terrain cost values around the foothold regions of a nominal
stance (nominal foothold positions). The action cost ca is defined by the user ac-
cording to the desirable actions of the robot (e.g. it is preferable to make diagonal
body movements than lateral ones). The potential leg collision cost cpc is com-
puted by searching potential obstacles in the predefined workspace region of the
foothold, e.g. near to the shin of the robot. In fact, a potential shin collision is
detected around a predefined region, which depends on the configuration of each
leg as shown in Fig. 4.4. This cost is proportional to the height defined around
the footstep plane, where red bars represent collision elements. Finally, the poten-
tial body orientation cpo is estimated by fitting a plane in the possible footsteps
around the nominal stance for each leg.

4.1.1.3 Reducing the search space

Decoupling the planning problem into body action and foothold planning avoids
the combinatorial search space explosion. This allows us to compute plans quickly
(∼1.5 sec on average for our benchmark trials which around 40 steps), and develop
a closed-loop foothold planning approach that can deal with changes in the envi-
ronment. Nevertheless the reduced motion space might not explore solutions that
are better cost-wise but are not part of the solution set imposed by the action set.
In contrast to previous approaches [45][81][39][87][85], our foothold planner uses a
lattice-based representation of the configuration space, i.e. we represent the space
using an abstract graph which is embedded in the Euclidean space. Our lattice

4.1 foothold planning 43

h

Figure 4.4: Computation of the potential shin collision. The potential shin collisions are
detected around a predefined region (red bars). The computed cost is propor-
tional to the height defined (red lines) around the footstep plane (dashed black
lines), where blue height differences do not contribute to the cost.

representation uses a set of predefined body movement primitives that allows us
to apply a set of rules that ensure feasibility and reduce the search space.

The body movement primitives are defined as 3D actions, a ∈ (∆x,∆y,∆θ), of
the body that discretize the search space. We define a set of different movements
such as: forward and backward, diagonal, lateral and yaw-changing motions.

4.1.1.4 Ensuring feasibility

Our lattice representation allows the robot to search a body-action plan according
to a set of predefined body movement primitives. The body movement primitives
also define nominal feet positions and accordingly transitions. This way we chose
nominal positions that undertake to increase the quadruped’s supporting-triangle
area, and as a consequence, to improve the conditions of the subsequent quadratic
optimization problem for the whole-body motion generation phase that follows in
Section 4.2.

We classify the actions into six types of movement primitives: forward/back-
ward, right/left, forward-left/backward-right, forward-right/backward-left, clock-
wise and counter-clockwise. Fig. 4.5 illustrates the footstep regions according to
the type of body movement primitives. These footstep regions are defined to in-
crease the triangular support areas, improving the execution of the whole-body
plan.

4.1.1.5 Heuristic function

The heuristic function guides the search toward promising body actions, improv-
ing the efficiency of the search. Heuristic-based search algorithms require that

44 decoupled motion and foothold planning

the heuristic function is admissible and consistent. Often, when planning within
Cartesian spaces, heuristic functions estimate the cost-to-go by computing the Eu-
clidean distance to the goal. Such heuristic functions do not consider the terrain
difficulty and geometry, and often under or over-estimate the cost-to-go consider-
ably. In contrast, we present a terrain-aware heuristic function that considers the
terrain geometry and produces an estimated cost-to-go according to the already
acquired knowledge of the environment.

The terrain-aware heuristic function estimates the cost-to-go (i.e. body actions)
by averaging the terrain cost locally and estimating the number of footsteps to the
goal:

h(s) = −R̄F(‖g − s‖), (12)

where R̄ is the average cost and F(‖g − s‖) is the function that estimates the num-
ber of footholds from the current state s to the goal state g.

4.1.1.6 Ensuring online planning

Open-loop, or offline, planning approaches fail to deal adequately with changes
in the environment. In real scenarios, the robot has a limited range of perception
that makes open-loop planning approaches unreliable. Closed-loop planning con-
siders the changes in the terrain conditions, and uses predictive terrain conditions
for non-perceived regions, improving the robustness of the plan. Dealing with re-

Figure 4.5: Different footstep search regions according to the body action. These footstep
regions ensure the feasibility of the plan. Moreover, these predefined regions
increase the triangular support areas, improving the execution of the whole-
body plan. The brown, yellow, green and blue squares represent the footstep
search regions for LF, RF, LH and RH feet, respectively.

4.1 foothold planning 45

planning and updating of the environment information requires that the informa-
tion is managed in an efficient search exploration of the state space. We manage to
reduce the computation time of building a costmap by computing the cost values
from a voxelized map1 of the environment. Additionally, we (re-)plan and update
the information using ARA∗ [51]. ARA∗ ensures provable bounds on sub-optimality,
depending on the definition of the heuristic function. Note that the terrain-aware
heuristic function guides the search according to terrain conditions.

4.1.2 Local foothold planning

Given the desirable body action plan, Q = (xd, yd,θd), the foothold sequence
planner computes the sequence of footholds that reflects the intention of the body
action. A local greedy search procedure selects the optimal footstep target. Given
a planned body action, it is defined a footstep search region where the foothold
is locally searched. For every planned body action, the foothold planner finds the
4-next footholds, where the foothold sequence is predefined given the body action.
Algorithm 2 describes how the foothold sequence is selected given a body action
plan.

Algorithm 2 Computes a foothold sequence given a body action plan.
1:

2: Data: foothold horizon F
3: Result: a foothold sequence F
4: function computeFootholdSequence(Q)
5: set horizon F
6: for qi=0:F ∈ Q do
7: for i=0:3 do
8: compute the sequence of foothold e given qi
9: generate possible FOOTHOLD(e, qi)

10: compute the greedy solution fmin
11: add fmin to F
12: end for
13: end for
14: return F
15: end function

4.1.2.1 Footstep cost

The footstep cost describes how desirable is a foothold target, given a body state
s. The purpose of this cost function is to maximize the locomotion stability given
a candidate set of footsteps. The footstep cost cfootstep is a linear combination of:

1 A voxelized map is a volumetric discretization of the environment, i.e. a grid discretization in 3D
space

46 decoupled motion and foothold planning

terrain cost ct, support triangle cost cst, shin collision cost cc and body orientation
cost co. The cost of certain footstep fe is defined as follows:

cfootstep(fe) = wftct(f
e) +wstcst(fe)

+wccc(fe) +woco(fe), (13)

where fe defines the Cartesian position of the foothold target e (foot index). We
consider as end-effectors: the LF, RF, LH and RH feet of HyQ.

The terrain cost ct is computed from the terrain cost value of the candidate
foothold, i.e. using the terrain costmap (see Section 3.2.1). The support triangle
cost cst depends on the inradii of the triangle formed by the current footholds and
the candidate one. As in the body cost computation, we use the same predefined
collision region around the candidate foothold. Finally, the body orientation cost
co is computed using the plane formed by the current footsteps and the candidate
one. We calculate the orientation of the robot from this plane.

4.2 Motion Planning

The planned body trajectory ensures that the robot is dynamically stable at every
time step. As in the approach [39], the CoM trajectory respects dynamic constraints
without explicitly generating a CoP trajectory. We extend this approach by enabling
completely unconstrained2 swing-leg sequences and adaptation of four-leg support
times according to the robot’s motion.

For a CoM trajectory to be feasible it must be continuous and double differ-
entiable. This way we avoid steps in accelerations that produce discontinuous
torques. It is crucial for the inverse dynamics computation, and furthermore can
damage the hardware and affect stability. Ensuring that the robot’s CoM follows a
fifth-order polynomial as:

x(t) = axt
5 + bxt

4 + cxt
3 + dxt

2 + ext+ fx (14)

satisfies both requirements. Note that x(t) refers to the position of the CoM at
time t, and the lateral component (i.e. y(t)) is equally described. Generating an
optimal CoM trajectory represented by one spline can thus be reduced to find a set
of optimal polynomial coefficients:

q = {ax . . . fx,ay . . . fy} ∈ R12. (15)

Describing the body trajectory for multiple steps by one polynomial restricts
the movement. Hence, we describe the trajectory as a spline composed of multiple
quintic polynomials. At each spline junction we require the last state (t = Ti) of
spline i to be equal to the first state (t = 0) of the next spline i+1 as:

(x, ẋ, ẍ)it=Ti = (x, ẋ, ẍ)i+1t=0, (16)

where x = [x,y, z] is the CoM position and p = [px,py,pz] is the CoP position.
This ensures double differentiability and continuity of the trajectory, required

by the floating-base inverse dynamics.

2 Not constrained to any specific gait sequence (e.g. the McGhee gait), the legs can swing in any order.

4.2 motion planning 47

(a) (b)

Figure 4.6: (a) The cart-table model; the base of the table is formed by the feet that are in
stance (in contact) while this model assumes that all the robot’s mass is point-
concentrated on the accelerating cart on top of the table. (b) The CoM trajectory
is represented by a series of 5

th order polynomials that are constrained to have
sequentially equal boundary values. At each (evaluated) point in time, we con-
strain the CoP to lie inside the support polygon that the stance feet form, thus
the system is in a dynamically stable state.

4.2.1 Dynamic stability

To execute the planned footholds, a body trajectory must be found that ensures a
stable stance at all time instances. In case of slow and static movements the CoM

must be inside the current support polygon, i.e. the polygon formed by the legs in
stance. For dynamic movements with large body accelerations we use the cart-table
model (Fig. 4.6) [37] described by:

px = x−
zẍ

z̈+ g0
, (17)

where px and x are the position of the CoP and the CoM respectively, z describes
the height of the robot with respect to the feet, z̈ is the vertical acceleration of the
body and g0 represents the gravitational acceleration.

Dynamic stability is achieved by keeping the CoP inside the current support
triangle instead of the CoM. This constraint is modeled by expressing the support
triangle by three lines l of the form px+ qy+ d = 0. The CoP is considered to be
inside a support triangle, if the following conditions3 are met at every sampling
interval:

plpx + qlpy + rl > 0 for l = 1, 2, 3. (18)

In reality there exist discrepancies between the CoP position from the model and
the real robot. Additionally, desired body trajectories cannot be perfectly tracked
as modeling, sensing and actuation inaccuracies are hard to avoid. Therefore, it is
best to avoid the border of stable configurations by shrinking the support triangles
by a stability margin r (see Fig. 4.7). Because of this, there is no continuous CoP

trajectory when switching between diagonally opposite swing legs, as the support
triangles are disjoint. We allow a transition period (four-leg support phase) during
which the CoP is only restricted to the shrunk support polygon created by the four
stance feet.

3 The direction of the inequality sign depends on the line convention.

48 decoupled motion and foothold planning

Figure 4.7: Disjoint support triangles due to the added stability margin r. When switching
between swinging the LF to RH the CoP must move from the blue to the pink
support triangle. Since all four feet are in stance during this phase, the CoP is
only restricted by the red support polygon.

4.2.1.1 Minimizing accelerations (Cost function)

In addition to moving in a dynamically stable way, the trajectory should accelerate
as little as possible during the execution period T . This increases possible execu-
tion speed and reduces required joint torques. As in [38] this is achieved by adding
a cost function of the form:

g = wx

∫T
0

ẍ2(t)dt+wy

∫T
0

ÿ2(t)dt (19)

to the quadratic program.
The directional weights w penalize sideways accelerations (wy = 1.5wx) more

than forward-backward motions, since sideways motions are more likely to cause
instability. This torque-minimization function can also be viewed as a regulariza-
tion term. We solve the resulting convex QP using a freely available QP solver,
namely QuadProg++ [23].

4.2.1.2 Irregular swing-leg sequences

We allow a completely irregular sequence of steps for the CoP optimization. Our tra-
jectory generator needs no knowledge of a predefined gait. For every step it checks
if the next swing leg is diagonally opposite of the current swing leg. If so, the dis-
joint support triangles require a four-leg support phase in the optimization. This
allows a greater decoupling from the foothold planner, which can generate swing
leg sequences in any order useful for the success of the behavior.

4.3 control and execution 49

4.2.1.3 Feasible four-leg support time

In addition to inserting a four-leg support phase, the duration t4ls of this phase
affects the quality of locomotion. A too short time requires large accelerations that
might cause slippage in the feet when executed. A too long time on the other hand
reduces locomotion speed and can oppose the natural dynamics of the system.

We adapt the four-leg support times according to the robot’s motion using
t4ls = r · tswing, where r is the stability margin of the support triangles, and
tswing is the duration of a leg swing. This formulation respects the movement
of the robot to overcome the stability margins of both support triangles. Further-
more, it complies to the body velocity imposed by tswing. The more accurate the
CoP describes the dynamics of the system, the smaller the margin r can be chosen,
effectively reducing the four leg-support time and increasing locomotion speed.
In case of perfect correspondence between model and reality and perfect trajec-
tory tracking, a stability margin is not necessary. The four-leg support phase can
be eliminated (t4ls = 0), since the CoP can move smoothly between any support
triangle of the walking gait.

4.2.2 Trunk attitude and swing-leg trajectory

To avoid kinematic limits the height of the robot follows the average height of the
stance legs, raised by a desired ground clearance. The body pitch adapts to the
difference between the height of the front and the hind legs, whereas the body roll
depends on the difference between the height of the left and the right legs.

We adapt the swing leg trajectory based on the start and the goal foothold. If the
goal foothold lies higher than the start, we raise the lift height as in [85] to avoid
collisions. Furthermore, we swing outward to avoid potential collisions, e.g. with
a stair step, while swinging up as in [85]. For steps on flat ground the lift height
is low with no outward motion to increase speed.

4.3 Control and Execution

Dynamic whole-body motions require orchestrated and precise actuation of all
the joints. Simple PD joint position controllers do not suffice for such motions,
especially when considering uncertainties in the environment and/or model inac-
curacies. We use a control scheme (Fig. 4.1) that combines a virtual model with a
floating-base inverse dynamics controller.

After receiving an arbitrary sequence of footholds from the footstep planner, the
whole-body motion generator calculates desired (feedforward) accelerations ẍd

for the body and a virtual model (VM) control loop adds feedback accelerations
ẍfb should the robot deviate from the desired trajectory. The inverse dynamics
produce the majority of the joint torques which are combined with a low-gain joint-
space PD controller to compensate for possible model inaccuracies. The computed

50 decoupled motion and foothold planning

reference torques are then tracked by the low-level torque controller [5][3]. Note
that x describes the linear and rotational coordinates of the body as:

x = (xcog, Rb), ẋ = (ẋcom,ωb), ẍ = (ẍcom, ω̇b), (20)

where Rb ∈ R3×3 is a coordinate rotation matrix representing the orientation of
the base w.r.t. the world frame and ωb ∈ R3 is the angular velocity of the base.

4.3.1 Virtual Model

The feedback action which compensates for possible inaccurate execution and drift
is created by a virtual spring and damper system as in [32]. The linear/rotational
springs map an error in position/orientation into a force Fvm and torque Tvm
acting on the robot body (Fig. 4.8) as:

Fvm = Px(xdcom − xcom) + Dx(ẋdcom − ẋcom)

Tvm = Pθe(RdbR>b) + Dθ(ωdb −ωb),
(21)

where the superscript d refers to the desired values dictated by the whole-body
motion generator and non-superscript values describe the state of the robot as es-
timated by the on-board state estimator [2]. We define e(.) : R3×3 → R3 as a map-
ping from a rotation matrix to the associated rotation vector [7], and Px, Dx, Pθ, Dθ ∈
R3×3 as the positive-definite diagonal matrices of proportional and derivative
gains, respectively. Expressing the body feedback action in terms of forces and
moments allows us to give the virtual model gains a physical meaning of stiffness
and damping and thus can be intuitively set and used.

Since the inverse dynamics computation requires reference accelerations, we mul-
tiply the forces/moments (wrench) Wvm = (Fvm, Tvm) with the inverse of the
composite rigid body inertia, Ic, of the robot at its current configuration. Adding
this body feedback acceleration to the desired body acceleration produced by the
whole-body motion generator creates the 6D reference acceleration (linear/rota-
tional) for the inverse dynamics computation as:

ẍref = ẍd + I−1c Wvm. (22)

By combining a feedforward acceleration ẍd with a body-feedback acceleration,
we achieve accurate tracking while maintaining a compliant behavior. This is cru-
cial for robots that physically interact with their environment, in real-world sce-
narios.

4.3.2 Floating- Base Inverse Dynamics

The floating-base inverse dynamics algorithm calculates the joint torques required
to execute the reference body accelerations. We can partition the dynamics equa-

4.4 results 51

Mx, My, Mz

Fx, Fy, Fz

desired
current

Figure 4.8: A virtual model control scheme is used to close a feedback loop at the robot-
body level [32]. Effectively, this is a PD tracking controller that tries to minimize
the error between the desired and current body state (position and orientation).
This produces the feedback wrench (Wvm) that is then transformed to the
feedback body acceleration, ẍfb.

tion of the robot into the unactuated base coordinates qb (nb = 6 equations for our
case) and the active joints’ coordinates qq (nq = 12 equations), e.g. [20], as:

H(R, q)

[
q̈b
q̈q

]
+

[
hb
hq

]
(R, q,ω, q̇)︸ ︷︷ ︸

b

=

[
0

τ

]
+

[
JTcb
JTcq

]
λ, (23)

where H is the floating-base mass matrix, h = (hb, hq) is the force vector that ac-
counts for Coriolis, centrifugal, and gravitational forces, λ are the ground contact
forces, and their corresponding Jacobian Jc =

[
Jcb Jcq

]
. τ is the vector that holds

the inverse-dynamics torques that are calculated.
The left hand term, b = (bb, bq), can be computed efficiently using the Feather-

stone implementation of the Recursive Newton-Euler Algorithm (RNEA) [17]. Since
the CoM acceleration ẍrefcom is defined in a frame aligned with the base frame but
with the origin in the CoM, a translational coordinate transform bXcom is per-
formed to get the 6D base spatial acceleration: q̈b = bXcomẍref, as in [17].

By partitioning the dynamics equation, as in (23), and given that the base is not
actuated, we can directly compute, in a least-squares way, the vector of ground
reaction forces λ from the first nb equations, λ = J+cbbb, where ()+ denotes the
Moore-Penrose generalized inverse. The last n equations are used to produce the
reference joint torques, τ id = bq − JTcqλ.

4.4 Results

The following section describes the experiments conducted to validate the effec-
tiveness and quantify the performance of our framework. The first set of exper-
iments is designed to evaluate the capabilities of our motion planner. We use a

52 decoupled motion and foothold planning

Figure 4.9: The planning benchmarks used to analyze the quality of the produced plans.
Top left: stepping stones; Top right: pallet; Bottom left: stair; Bottom right: gap.

set of benchmarks of realistic locomotion scenarios (see Fig. 4.9): stepping stones
(top right), pallet (top left), stair (bottom right) and gap (bottom left). In these
experiments, we compared the cost, number of expansions and computation time
of ARA∗ against A star (A∗) using our lattice representation. The results are based
on 9 predefined goal locations. In the next experiment the robot must plan online
with dynamic changes in the terrain. In the experiment that follows after, we show
the online planning and perception results. Finally, we validate the performance
of our locomotion framework with the HyQ robot.

4.4.1 Evaluation of path and foothold planning

4.4.1.1 Initial plan results

The stepping stones, pallet, stair and gap experiments evaluate the initial plan
quality (see Table 4.1) of our approach using A∗ and ARA∗. To this end, we plan a
set of body actions and foothold sequences between 9 predefined goal locations,
approximately 2 m away from the starting position, and compare the cost and
number of expansions of the body action path, and the planning time of ARA∗

against A∗. Three main factors contribute to the decreased planning time while
maintaining the quality of the plan:

First, the lattice-based representation (using body movement primitives) consid-
ers versatile movements in the sense that it allows us to reduce the search space
around feasible regions (feasible motions) according to a certain body action, in

4.4 results 53

contrast to grid-based approaches that ensure the feasibility by applying rules that
are unaware to body actions. Second, our terrain-aware heuristic function guides
the tree expansion according to terrain conditions in contrast to a simple Euclidean
heuristic. Finally, the ARA∗ algorithm implements a search procedure that guaran-
tees bounded sub-optimality in the solution given a proper heuristic function [51].
Fig. 4.10 shows the initial plan of A∗ and ARA∗.

The plans that ARA∗ produces within the given time budget are on average twice
as costly as the plans of A∗. Nevertheless, this allows for a dramatic decrease of
the time it takes to compute a path, 333.9 sec for A∗ versus 1.7225 sec for ARA∗,
while any extra time budget can be used to optimize (repair) the computed path.
These results were obtained in the onboard PC on HyQ, i.e a Pentium i5 with Linux
kernel. Note that ARA∗ can be let to run until exhaustion, inc which it would match
the characteristics in final path cost and computational time of A∗.

4.4.1.2 Online planning and perception

Using a movement primitive-based lattice search reduces the size of the search
space significantly, leading to responsive planning and replanning the next set of
steps. In our experimental trials, we chose a lattice graph resolution (discretization)
of 4 cm for x/y and 1.8◦ for θ and goal state is never more that 5 m away from the
robot. In these trials, the plan/replan frequency is approximately 0.5 Hz.

On the other hand, the efficient occupancy grid-based mapping allows us to
incrementally build up the model of the environment and focus our computations
to the area of interest around the robot body, generating plans quickly. This allows
us to locally update the computed costmap and incrementally build the costmap
as the robot moves with an average response frequency of 2 Hz.

We generate swift and natural dynamic whole-body motions from an n-step
lookahead optimization of the body trajectory that uses a dynamic stability met-
ric, the CoP. A combination of floating-base inverse dynamics and virtual model
control accurately executes such dynamic whole-body motions with an actively
compliant system [86]. Our locomotion system is robust due to a combination of
online planning and compliance control, as presented in Section 4.3.

Table 4.1: Cost of the plan (Cost), number of expansions (Exp.) and computation time
(Time, in seconds) averaged over 9 trials of A∗ and ARA∗.

A∗ ARA∗

Terrain Cost Exp. Time Cost Exp. Time

S. Stones 364.7 3191 428.7 597.4 12.1 1.59

Pallet 269.2 270 271.2 587.7 12.7 1.74

Stair 306.1 306 308.1 646.4 12.7 1.55

Gap 325.6 326 327.6 647.0 13.0 2.01

54 decoupled motion and foothold planning

Figure 4.10: The body action (green line) and foothold sequence plan of A∗ (top) and ARA∗

(bottom) given the costmap (grey scale). The brown, yellow, green and blue
points represent the planned footholds of the LF, RF, LH and RH feet, respec-
tively.

4.4.2 Trials

The first experiment starts with a flat, obstacle-free terrain. After the robot has
planned initial footholds, a pallet is placed into the terrain (Fig. 4.11). Later we
show the terrain costmap, the planned footholds, and the execution of an initial
plan in Fig. 4.12. In the next experiments the robot must climb one and two pallets
of dimensions 1.2 m × 0.8 m × 0.15 m. The height of one pallet is equal to 20%
of the leg length. Furthermore we show that the robot traverses a gap of 35 cm,
which is approximately half the length between the front and hind hips. The final

4.4 results 55

Figure 4.11: (Re-)planning and perception on-board. The left image presents the plan for a
flat terrain, then, the right image reflects the re-planning and updating of the
costmap (grey scale map). The green, brown, blue and yellow points represent
the planned footholds of the LH, LF, RH, RF legs, respectively. The green line
represents the body path according to action plan.

Figure 4.12: Snapshots of pallet trial used to evaluate the performance of our planning
approach. From top to bottom: planning and terrain costmap; execution of
the plan in HyQ.

experiment consist of two pallets connected by a sparse path of stepping stones.
The pallets are 1.2 m apart and the stepping stones lie 0.08 m lower than the pallets.

For each experiment, we specify the s = (x,y, θ) goal state. The foothold planner
finds a sequence of footsteps of an arbitrary order, which the controller then exe-
cutes dynamically. We validate the performance of our framework in 4 scenarios
as seen in Fig. 4.13 and compare it to our previously achieved results (Table 4.2)
on the same benchmark tasks. Additionally, Fig. 4.14 shows an overview of the
benchmark trials along with generated footholds and body motion plans.

4.4.3 Evaluation of whole-body motion generation and execution

We evaluate the performance of the our locomotion framework in few differ-
ent point of view: perception and (re-)planning, speed while dynamically stable,
model accuracy, avoiding kinematic limits and stability despite irregular swing-leg
sequences. All these aspects evaluate individually the performance of the foothold
and motion planner.

56 decoupled motion and foothold planning

Figure 4.13: Snapshots of 4 experimental trials used to evaluate the performance of our
framework. From top to bottom row: crossing a 15 cm hight pallet; climbing
a stair-like structure consisting of two stacked pallets; traversing a 35 cm gap
and crossing a sparse set of stepping stones. In addition, Fig. 4.14 gives and
overview of the chosen footholds, planned body paths and executions on this
set of benchmark trials.

Table 4.2: Forward speed and success rate of experiments averaged over 10 trials and com-
pared to previous results from [85].

Speed [cm/s] Success Rate [%]

Terrain Curr. Prev. Ratio Curr. Prev. Ratio

Step. Stones 7.3 1.7 4.2 60 70 0.9

Pallet 9.5 2.1 4.5 100 90 1.1

Two Pallets 10.2 1.8 5.8 90 80 1.1

Gap 12.7 - - 90 0 -

4.4.3.1 Perception and (re-)planning

Efficient occupancy grid-based mapping and focusing our computations to an area
of interest around the robot body greatly increase computation speed. This allows
us to incrementally build a model of the environment and update the terrain
costmap at a frequency of 2 Hz. Using the action-based search graph together
with ARA∗ allows us to replan footholds at a frequency of approximately 0.5 Hz
for goal states up to 5 m.

4.4 results 57

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

x (m)

y
 (

m
)

(a) Stepping over a pallet.

−0.5 0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

x (m)

y
 (

m
)

(b) Crossing a 35cm gap.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

x (m)

y
 (

m
)

(c) Stair-climbing.

−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

x (m)

y
 (

m
)

(d) Crossing a sparse set of stepping-stones.

Figure 4.14: Overview of experimental trials. Filled circles represent color-coded footholds,
i.e. the brown, yellow, green and blue represent the LF, RF, LH and RH feet,
respectively. The gray squares represent pallet and stepping-stone geometries.
The solid blue line is the desired dynamically-stable body trajectory, while
the red dashed line is the actual trajectory that the robot achieves. Possible
reasons behind this difference are discussed in Section 4.5.

58 decoupled motion and foothold planning

4.4.3.2 Speed while dynamically stable

The pallet climbing and gap experiments show the speed (Table 4.2) that our frame-
work can achieve: This is due to the fact, that the body can move faster while
still being stable, since we are using a dynamic stability criterion. All accelerations
and decelerations are optimized, so that the CoM never leaves the support polygon.
In addition, since we are not directly producing torques with the virtual model
feedback controller, but only accelerations for the inverse dynamics controller our
feedback actions also respect the dynamics of the system. Furthermore, the du-
ration of the four-leg-support phase is significantly reduced: It is much faster to
move the CoM from one support triangle to another one.

4.4.3.3 Model accuracy

Walking over a 35 cm gap (approximately half the length between front and hind
hips) shows the stability of the robot despite of dynamic motions. When crossing
the gap the robot accelerates up to a body velocity of 0.5 m/s and is able to decel-
erate again without losing balance. This shows, that the simple cart-table model is
a sufficient approximation for large quadrupeds performing locomotion tasks.

4.4.3.4 Avoiding kinematic limits

Attempting to cross the gap with a statically stable gait would overextend the
legs, since large body motions are required to move the robot into statically stable
positions. Dynamic motions allow us to keep the CoM closer to the center of all
four feet, since stability can be achieved by appropriate accelerations, avoiding
kinematic limits.

4.4.3.5 Stability despite irregular swing-leg sequences

Walking over the stepping stones demonstrates the ability of the controller to exe-
cute irregular swing-leg sequences in a dynamically stable manner. Fig. 4.15 shows
how starting from a lateral sequence gait (LH-LF-RH-RF) the foothold sequence
changes to traverse these irregularly placed stepping stones. Despite this, the gen-
erated CoM trajectory (colored solid line, bottom) is dynamically stable, since the
CoP (asterisk) is always kept inside the current support triangle. When comparing
the actual (top) and desired (bottom) CoM trajectories, a tracking error is evident.
By keeping the CoP e.g. r = 6 cm away from the stability borders, we are robust
even against these inaccuracies.

The whole body motion generator inserts four-leg-support phases (red section)
only whenever it detects disjoint support triangles in the swing-leg sequence.
While executing steps 1 and 2 (Fig. 4.15) no four-leg-support phase is necessary,
because the triangles are not disjoint. Only after returning to swing the right-front
leg, the robot requires a four-leg support phase for the CoP to transition from the
green (LH) to the yellow (RF) support triangle at (x,y) = (1.1, 0).

4.4 results 59

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

y
(m

)

12

3

Estimated CoM

(a) Stepping stones execution

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

y
(m

)

4-leg-support

* CoP

CoM

LF RF LH RH

(b) Stepping stones plan

Figure 4.15: (a) The body motion when walking over the stepping stones is shown in
black. The planned footholds are shown and the irregular step sequence
LF(1)→ LH(2)→ RF(3) is highlighted (red circles). (b) The 3 shrunk support tri-
angles corresponding to the highlighted step sequence brown→ green→ yel-
low are shown. Additionally the planned CoM (solid line) and CoP trajectory
for the duration of these 3 steps is illustrated (asterisk). While the CoM (solid
line) does not reach the support triangles, the CoP does, causing dynamic sta-
bility. When switching between disjoint support triangles (green → yellow)
four-leg support phases are inserted (red) to allow a smooth transition.

60 decoupled motion and foothold planning

4.5 Discussion

In this section we will identify possible factors that can limit the success of our
framework (failures). This is according to the trials that we have performed over a
substantial period of working with the HyQ.

(1) The cart-table model estimates the CoP position but neglects the angular com-
ponents of the motion of the body which can lead to inaccurate evaluation of the
CoP within the support polygon. This does not affect the behavior when the atti-
tude of the robot does not change but can affect stability going up or down stairs,
crossing uneven stepping stones, etc., and the body trajectory changes along roll,
pitch and yaw. In practice HyQ never generates angular body accelerations that
can move the CoP that far away from the simplified estimate point. In addition the
stability margin, r, that is defined inside the support polygon, ensures that error
in estimation, model inaccuracies or the use of the simplified CoP measure, do not
impact the robot’s stability. Section 5.1 will present a methodology to guarantee
dynamic walking with trunk attitude modulation.

(2) Unwanted foot-slippage can impact the performance of our framework. This
can happen when the acceleration of the body is significant and one or some of the
feet slip backwards, or when a foot is only slightly loaded so subsequent “push-
ing" backwards results in the foot sliding. The former occurs due to non-explicitly-
bounded body acceleration at the body trajectory optimization phase and due to
no friction-cone constraints in the inverse dynamics torque calculation step. The
latter is also attributed to the lack of friction-cone constraints at the inverse dynam-
ics torque calculation, while setting a minimum loading threshold, i.e. a minimum
loading value beyond which to consider a leg as in stance, can solve this problem.
In practice this limits the forward velocity that can be achieved by the framework,
as large accelerations can result in slippage, and limit behaviors within conserva-
tive bounds. Approaches that include friction-cone constraints can be applied. In
the next chapter we show a QP-based optimization of inverse dynamics, that limits
the GRFs within the estimated friction-cone approximations and ensures adequate
loading for all stance legs as presented in [19].

(3) Last, accurately estimating the state of the robot has also proven a challeng-
ing task. An adequately reliable state-estimate is important for executing planned
walks, as foot placement directly depends on the estimate of the body position.
In addition, the body-level feedback loop that the Virtual Model (VM) implements
also depends on the body state estimate. This estimate generally slowly drifts in
yaw, something that affects the position estimate and subsequently distorts the
maps created over a longer time period. Using vision approaches can eliminate
drift and improve the state estimate but up to now this has been beyond the scope
of our research. Currently we have been working in the developing of state esti-
mation algorithms for quadrupedal locomotion over rough terrain [?]. Another
source of state estimate error is foot-slippage, as the algorithm used assumes that
stance feet do not move with respect to the world frame. This can produce sudden
jerks that can affect the inverse dynamics loop and also cause the position estimate

4.6 conclusion 61

to drift. We believe that by alleviating the foot-slippage problem we would also
considerably increase state estimation accuracy.

4.6 Conclusion

In this chapter, we presented a dynamic whole-body locomotion framework that
executes versatile movements that are planned on-board. We showed, how se-
quences of footsteps are planned given a body action plan, and how a change
in the environment causes the foothold generator to replan footholds online. We
used a set of predefined body movement primitives to reduce the computational
demand of planning, and compute plans online using incoming terrain informa-
tion. We presented a whole body motion planner, which is able to generate a CoP-
stable body trajectory despite irregular swing-leg sequences to execute footholds
dynamically.

Decoupling motion and foothold planning increase the computation time by
reducing the search space. In these approaches, the foothold selection can just
consider the robot’s kinematic model, which limits the locomotion capabilities of
our system (e.g. step time modulation). As a consequence the dynamic trajectory
generator requires to tune an appropriate step time given a foothold sequence.
Furthermore, the foothold planning may not be able to plan for more complex ter-
rain conditions such as stepping stones with fewer stones. In Chapter 5, we show
how a coupled motion and foothold planning approach increases the capabilities
of the locomotion system. This planning approach adapts the step duration and
can tackle more complex stepping stones terrains.

The cart-table model reduces the dimensionality of the problem but neglects
the angular momentum of the motion, which is required for climbing up and
down tasks. However, our experiments show that we can tackle terrain with small
elevation with the cart-table model. In Section 5.1 we develop a novel method
that ensures dynamic stability (i.e. the CoP condition) while the trunk attitude is
adapted. For that, the stability margin is used to allow the robot to limit the trunk
attitude adjustment. We limit the trunk attitude accelerations because it allows us
to bound the maximum applied CoM torque. In fact, this will limit the difference
between the CoP and Centroidal Moment Pivot (CMP) points. And as result the CoP

condition cannot guarantee dynamic stability if the CMP does not stay inside the
support polygon.

The discretization of the terrain model shows good performance in terms of
foothold selection and computation time. We could represent the different ter-
rain benchmark with the aforementioned geometric features: standard deviation
of height values, the slope and the curvature. Furthermore, a terrain model as
costmap is a suitable description for motion planning in rough terrain as shown in
other works [45][38][85]. Other ways of modeling the terrain can be implemented
with constraint but they might increase the complexity of problem. Furthermore,
the terrain costmap might not be a convex function, which increases the problem
complexity. Section 5.2 presents a method that addresses these issues.

62 decoupled motion and foothold planning

In the next chapter, we bring the kinematic planning (i.e. foothold planner) and
the dynamic execution closer. The idea is to produce desired state trajectories and
footholds through a single trajectory optimization problem (i.e. coupled planning).
Additionally, we develop a QP-based controller where it ensures that the GRFs

respect the friction-cone constraints.

5
Coupled Motion and Foothold Planning

In this chapter, we address the locomotion as a coupled planning problem of CoM

motions and footholds, where the foothold locations are selected using a terrain
costmap while the trunk height and attitude are adapted for coping with differ-
ent terrain elevations (see Fig. 5.1). First, we jointly generate the CoM trajectory
and the swing-leg trajectory using a sequence of parametric preview models and
the terrain elevation map (Section 5.1). Then, we optimize a sequence of control
parameters (the CoP displacement, the phase duration and the foothold locations)
given the terrain costmap (Section 5.2). To realize the low-dimensional plan, the
controller selects appropriate torque commands, which are computed by the com-
bination of a trunk controller with a joint-space torque controller (Section 5.3).
The proposed trajectory optimization method increases the locomotion capabili-
ties compared to the decoupled planner presented in the previous chapter. All the
material presented in this chapter has been previously published in [52].

In motion planning, terrain adaptation and automatic gait discovery can be
posed as general trajectory optimization method, similar to [60][9][63][71]. Nonethe-
less, these optimization methods often suffer from local minima, limiting their ap-
plicability to rough terrain locomotion. Often, challenging terrain conditions may
increase the nonconvexity of the problem, and defining a good enough warm-start
point might not be possible. Moreover, automatic walking pattern generation in-
creases the number of local minima, especially in rough terrain locomotion. For
instance there are multiple choices for stepping stones crossing, i.e. by adjusting
the step duration to maximize the safety of the task, and at the same time, to
minimize the energy consumption. We can described the gait with a set of low-
dimensional parametrized models, similar to [56]. Low-dimensional parametrized
models allow us to combine stochastic-based optimization solvers that properly
handle the aforementioned challenges.

5.1 Trajectory Generation

This section describes the low-dimensional trajectory generation from an opti-
mized sequence of control parameters and a given terrain heightmap. We generate
the horizontal CoM trajectory and the 2D foothold locations using a sequence of
low-dimensional preview models. In order to cope with the terrain elevation, we
modulate the trunk attitude and height using an estimate of the support plane,
and the maximum allowed angular accelerations of the trunk (for more details see
Section 5.1.1.2). We describe the sequence of control parameters w.r.t. the horizon-
tal frame, which allows us to decouple the CoM and trunk attitude planning.

63

64 coupled motion and foothold planning

Trajectory
 Optimization

Trajectory
 Generation

Whole-body
 Controller

Optimal
Control

Optimal
Plan

User
Goals

Terrain
Costmap

Terrain
Heightmap

State

Command

Figure 5.1: Overview of the trajectory optimization framework for locomotion on rough
terrain. We compute offline an optimal control sequence U∗ given the user’s
goals, the actual state s0 and the terrain costmap. Given this optimal control
sequence, we generate the optimal plan S∗ that copes with the changes in
the terrain elevation through trunk attitude planning. Lastly, the whole-body
controller calculates the joint torques τ ∗ that satisfy friction-cone constraints.

5.1.1 Preview model

Preview models are low-dimensional representations that describe and capture
different locomotion behaviors, such as walking and trotting, and provide an
overview of the motion [56]. Reducing the dimensionality of the optimization
problem we can generate complex locomotion behaviors and their transitions.
This is more suitable for rough terrain as it simplifies the problem landscape. In
the literature, different models that capture the legged locomotion dynamics have
been studied [21][64] such as point-mass, inverted pendulum, cart-table, or contact
wrench.

Our preview model decouples the CoM motion from the trunk attitude1 (Fig. 5.2).
For the CoM motion, we use the cart-table template [37]. The cart-table model
(linear inverted pendulum) encompasses a point mass assumption which has no
angular momentum. However, to control the attitude we need to apply a torque
to the CoM. High centroidal moments (e.g. due to high trunk angular acceleration)
can hamper the postural stability condition (e.g. causing shifts on the CoP that can
move it out of the support polygon [70]) making the robot losing its capability to
balance. Consequently, for the attitude planning, we limit the maximum moments
applied to the CoM by limiting the maximum angular acceleration and setting a
correspondent margin for the CoP on the support polygon (Section 5.1.1.2).

1 In this thesis, with trunk attitude we refer to roll and pitch only.

5.1 trajectory generation 65

Figure 5.2: A trajectory obtained from a low-dimensional model given a sequence of opti-
mized control parameters and the terrain heightmap. The colored spheres rep-
resent the CoM and CoP positions of the terminal states of each motion phase.
The CoP spheres lie inside the support polygon (same color is used). Note that
color indicates the phase (from yellow to red). The trunk adaptation is based
on the estimated support planes in each phase. Since the control parameters
are expressed in the horizontal frame [1], the horizontal CoM trajectories and
the trunk attitude are decoupled.

5.1.1.1 CoM motion

In our previous work [86], we showed that for fixed step durations, the CoP move-
ment is approximately linear, i.e.:

pH(t) = pH0 +
δpH

T
t. (24)

Note that pH = (xH,yH) ∈ R2 is the horizontal CoP position, δpH ∈ R2 the
horizontal CoP displacement and T is the phase duration.

Applying this linear control law in the cart-table model, we derive an analytic
solution for the horizontal dynamics [56]:

xH(t) = β1eωt +β2e−ωt + pH0 +
δpH

T
t, (25)

where the model coefficients β1,2 ∈ R2 depend on the actual state s0 (horizontal
CoM position xH0 ∈ R2 and velocity ẋH0 ∈ R2, and CoP position), the trunk height
h, the phase duration, and the horizontal CoP displacement:

β1 = (xH0 − pH0)/2+ (ẋH0 T − δp
H)/(2ωT),

66 coupled motion and foothold planning

β2 = (xH0 − pH0)/2− (ẋH0 T − δp
H)/(2ωT),

where ω =
√
g/h and g is the gravity acceleration.

5.1.1.2 Trunk attitude

A trunk attitude modulation is required when the terrain elevation varies. A sim-
ple approach consists of aligning the trunk with respect to the estimated support
plane, avoiding that the robot reaches its kinematic limits. On the other hand,
adjusting the trunk attitude requires applying a moment at the CoM, and as con-
sequence, the CoP p ∈ R3 will be shifted by a proportional amount ∆p (for more
details see Eq. (28) in [70]):

∆px = −τcomy/mg, (26)

∆py = τcomx/mg,

where τcomy , τcomx are the horizontal components of the moment about the CoM.
By exploiting a simplified flywheel model for the inertia of the robot we can link
these moments to the CoP displacement ∆p (rewritten in vectorial form) and to the
angular acceleration ω̇:

τcom = Iω̇, (27)

∆p = τcom ×mg. (28)

where I ∈ R3×3 is the time-invariant inertial tensor approximation of the cen-
troidal inertia matrix of the robot. Therefore, we can guarantee the CoP condition
by limiting the angular accelerations ω̇max (i.e. the allowed applied moments) and
setting a corresponding safety margin r on the support polygon (as in Section 4.2.1)
in our optimization (Section 5.2.3) as:

r = ‖(Iω̇max)×mg‖. (29)

Therefore, we adapt the trunk attitude in such a way that it does not affect the
CoP condition (i.e. by using the maximum allowed angular acceleration ω̇max).
Note that we compute ω̇max given the stability margin r (i.e., the support polygon
margin).

We employ cubic polynomial splines to describe the trunk attitude motion (pitch
and roll). The attitude adaptation can be done in different phases. For instance,
we can compute the required angular accelerations given the phase duration and
guarantee that it does not exceed the allowed angular accelerations. The trunk
height is computed given the estimated support plane and we keep it constant
along one phase.

5.1.2 Preview schedule

Describing quadrupedal locomotion can be achieved through a sequence of differ-
ent preview models — a preview schedule. Using this, the robot can automatically

5.2 trajectory optimization 67

WORLD

BASE

STANCE

Figure 5.3: Sketch of different variables and frames used in our optimization. The footshift
δfLF is described w.r.t. the stance frame. The stance frame is calculated from
the default posture and expressed w.r.t. the base frame.

discover different foothold sequences by enabling or disabling different phases in
our optimization process.

In the preview schedule, we build up a sequence of control parameters that
describes the locomotion action of the n phases:

U =
[
us/f1 · · · us/fn

]
, (30)

where usi =
[
T δpH

T
]T

and ufi =
[
T δpH

T
δfl

T
]T

are the preview control
parameters for the stance and step phases, respectively. Additionally, the footshift
δfl is described w.r.t. the stance frame (Fig. 5.3), which is calculated from the
default posture of the robot. Note that n is the number of phases, and l is the foot
index.

We describe a dynamic walking gait as a combination of 6 different preview
phases or timeslots (i.e. n = 6) where 4 of them are step phases. Our combination
of phases is stance, LH swing phase, LF swing phase, stance, RH swing phase and RF

swing phase2. With this fixed preview schedule, we can describe different walking
patterns by assigning a zero duration to a specific phase (Ti = 0).

5.2 Trajectory Optimization

The trajectory optimization step computes an optimal sequence of control parame-
ters U∗ used for the generation of the low-dimensional trajectories (Section 5.1). We

2 The robot is in stance phase when all the feet are on the ground.

68 coupled motion and foothold planning

formulate this as a receding horizon trajectory optimization problem, where the
current timeslot is optimized while taking future timeslots into account. The hori-
zon is described by a predefined number of preview schedules N with n timeslots
or phases (e.g. our locomotion cycle has 6 timeslots). Considering future phases
presents several advantages for rough terrain locomotion. It enables us to gener-
ate desired behaviors that anticipate future terrain conditions, and it results in
smoother transitions between phases.

In our approach, the optimal solution at the current phase i comprises of a set of
control parameters u∗i describing the duration of phase T∗i , the CoP displacement
δpH

∗
i , and the footshift δf∗i of the corresponding phase. We define the footshift

in the nominal stance frame which corresponds to the default posture. Note that
there are phases without foot swing. To the best of our knowledge, our approach
is the first that jointly optimizes phase duration and foothold selection, while
considering terrain conditions. This contribution has been presented in [52].

5.2.1 Receding horizon planning

Given an initial state s0, we optimize a sequence of control parameters inside a
predefined horizon, and apply the optimal control of the current phase. We find
the sequence of control parameters U∗, through an unconstrained optimization
problem, given the desired user commands (trunk velocities):

U∗ = argmin
U

∑
j

ωjgj(S(U)), (31)

where S =
[
s1 · · · sNn

]
is the sequence of preview states. The preview state

is defined by the CoM position and velocity (x, ẋ), CoP position p and the stance
support region F, i.e. s =

[
x ẋ p F

]
, where F =

[
f1 · · · fj

]
is defined by the

position of the active feet fj. We solve the trajectory optimization using the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [25]. CMA-ES is capable of
handling optimization problems that have multiple local minima, such as those
introduced by the costmap and the phase duration. In the description of our opti-
mization problem, we use soft-constraints as these provide the required freedom
to search in the landscape of our optimization problem. The cost functions and
soft-constraints gi(S) describe: 1) the user command tracking with step duration
and length, and travel direction, 2) the CoM energy, 3) the terrain cost, 4) stability
soft-constraint, i.e. the CoP condition, and 5) the preview model soft-constraint, i.e.
the linear inverted pendulum.

5.2.2 Cost functions

We encode the desired body velocity from the user by mapping it into a ‘default’
step duration and length. Additionally, the CoM trajectory should accelerate as
little as possible during the phases. Note that this implicitly reduces the required

5.2 trajectory optimization 69

joint torques. We evaluate the step duration and length in every locomotion phase
i as follows:

gstep−duration =

(Nn∑
i=1

(ti − i Tstep)

)2
, (32)

gstep−length =

(Nn∑
i=1

(di − i dstep)

)2
, (33)

where ti is the sum of individual durations until phase i, Tstep the desired step
duration, di = dT (xi − x0) is the displacement of the CoM along the desired travel
direction expressed in the horizontal frame (defined by the desired yaw angle),
and dstep is the desired step length.

To encourage movements in the desired travel direction, we penalize lateral drift
just in the 4-feet stance phase:

gstep−drift =

(Ns∑
i=1

d⊥i

)2
, (34)

where s is the number of 4-feet stance phase per locomotion cycle, d⊥i is the or-
thogonal vector of the desired travel direction. Note that step duration and length
define the desired linear velocity and the lateral drift defines the desired yaw
angular velocity of the trunk. This choice of cost terms encourages equal trunk
velocities between all the locomotion phases.

Minimizing the changes in the CoM accelerations reduces the required joint
torques. We achieve this by applying:

gcom−energy =

Nn∑
i=1

∫Ti
0

‖ẍ‖2(t)dt. (35)

To cope with different terrain difficulties, we compute a costmap from an on-
board sensor as described in Section 3.2.1. The costmap quantifies how desirable
it is to place a foot at a specific location using geometric features such as height
standard deviation, slope and curvature. This allows the robot to negotiate different
terrain conditions (Fig. 5.4). Thus, given a footshift and CoM position, we compute
the foothold location cost as:

gterrain = wTT(x,y), (36)

where w and T(x,y) are the weights and feature values, respectively. We use a cell
grid resolution of 4 cm, approximately equal to the robot’s foot size, and the terrain
features are computed from a voxel resolution of 2 cm (described in Section 3.2.1).
As in [54], we demonstrated that this coarse map is a good trade-off in terms of
computation time and information resolution for foothold selection. We cannot
guarantee convexity in the terrain costmap, which has to be considered in our
optimization process.

70 coupled motion and foothold planning

5.2.3 Soft-constraints

As mentioned in Section 5.1.1.2, the CoP trajectory must be kept inside the support
polygon which is shrunk by a margin r. This margin guarantees dynamic stability
when a maximum moment is applied to the CoM (Section 5.1.1.2). We use a set of
nonlinear inequality constraints to describe the support region:

l(F)T
[

p

1

]
> 0, (37)

where l(·) ∈ Rl×3 are the coefficients of the l lines, F the support region defined
from the selected foothold locations, and p the CoP position. Note that the stability
constraints are nonlinear as a consequence of adding the foothold positions as
decision variables.

Due to the decoupling of the horizontal and vertical motions, we implement a
preview model soft-constraint that ensures the cart-table height is approximately
equal to:

h = ‖x − p‖ (38)

where x and p are the CoM and CoP positions, respectively. Note that when the
cart-table is falling down, the CoM trajectory increases exponentially in (25). This
effect arises from the fact that we decouple the horizontal and vertical dynamics,
hence adding this soft-constraint guarantees the validity of the model.

To reduce the computation time, we impose both soft-constraints only in the
initial and terminal time of each phase as they will be guaranteed in the entire
phase. In fact, the linear CoP trajectory will belong to the convex support polygon if
the initial and terminal positions are inside this region. We ensure this by limiting
the foothold search region, i.e. by bounding the footshift (see Fig. 5.3). These soft-
constraints are described as quadratic cost terms.

5.3 Control and Execution

Compared with Section 4.3, the motion of the robot body (CoM and trunk orienta-
tion) is controlled by a trunk controller developed by our group [19] that computes
the joint torques necessary to achieve the desired motions without violating fric-
tion constraints.

At the joint-space level, an impedance controller is acting in parallel to address
unpredictable events, such as a foot slippage on an unknown surface. This con-
troller receives a set-point which is consistent with the body motion in order to
prevent a conflicting target with the trunk controller. In nominal operations the
biggest part of the torques is generated by the trunk controller.

The aim for balancing is to control the position of the robot’s CoM, and the
orientation of the trunk (base link). We compute a desired linear acceleration for

5.3 control and execution 71

Figure 5.4: A costmap allows the robot to negotiate different terrain conditions while fol-
lowing the desired user commands. The costmap is computed from onboard
sensors as described in Section 3.2.1. The cost values are continuous and rep-
resented in color scale, where blue is the minimum and red is the maximum
cost.

the CoM (ẍdcom ∈ R3) and the trunk angular acceleration (ω̇db ∈ R3) using a PD
control law written in the operational space, i.e. a virtual model of the form:

ẍdcom = Px(xdcom − xcom) + Dx(ẋdcom − ẋcom),

ω̇db = Pθe(RdbR>b) + Dθ(ωdb −ωb), (39)

where xdcom ∈ R3 is the desired CoM position, and RbRdb ∈ R3×3 are the rotation
matrices representing the actual and desired orientation of the trunk respectively,
e(.) : R3×3 → R3 is a mapping from a rotation matrix to the associated rotation
vector, ωb ∈ R3 is the angular velocity of the base.

As shown in [65], if the CoM velocity is used as a generalized velocity instead
of the base velocity, the robot’s dynamic equations get simplified. In this case, we
can write the centroidal robot dynamics as in [64]:

m(ẍcom + g) =
c∑
i=1

fi = Fcom, (40)

IGω̇b + İGωb =

c∑
i=1

(pcom,i × fi) = Γ , (41)

where IG is the instantaneous centroidal composite rigid body inertia that rep-
resents the aggregate rigid body inertia of the entire robot computed at its CoM,

72 coupled motion and foothold planning

pcom,i ∈ R3 is a vector going from the CoM to the position of the ith foot defined in
an inertial world frame, c is the number of contact points and f1, . . . , fc ∈ R3 are
the GRFs. Since our platform has nearly point-like feet, we assume that it cannot
generate moments at the contacts, but only pure forces. Furthermore, we neglect
the term İGωb since we can assume the legs to be massless. For instance, the leg
masses represent the 8% of the robot weight.

Then, the desired wrench Wd = [Fdcom
T ,ΓdT]T can be computed from the de-

sired CoM linear and trunk angular accelerations and by rewriting (41) in matrix
form, we can then map Wd into GRFs:

[
I3×3 . . . I3×3

[pcom,1×] . . . [pcom,c×]

]
︸ ︷︷ ︸

A


f1
...

fc


︸ ︷︷ ︸

f

=

[
m(ẍdcom + g)

IGω̇
d
b

]
︸ ︷︷ ︸

b

. (42)

The redundancy in the mapping yields 6 equations with up to 12 unknowns as
we can have up to 4 feet on the ground. Hence, we can form a quadratic optimiza-
tion problem aiming to satisfy additional optimality criteria, such as ensuring that
the ground reaction forces lie inside the friction cones and fulfilling the unilater-
ality of the GRFs [19]. We approximate the friction cones with square pyramids to
express them as linear inequality constraints:

fd = argmin
f∈R3

(Af − b)>(Af − b) + f>Wf

s. t. d < Cf < d̄,
(43)

where f>Wf is a regularization term to keep the solution bounded. We use the
QuadProg++ library [23], an open-source QP solver based on an active set algo-
rithm, to solve the optimization in real-time.

In a second step we map the optimal solution fd into desired joint torques
τd ∈ Rn (where n is the number of joints) considering the gravitational/Coriolis
contribution h(q, q̇):

τff = h − SJ>c (f
d), (44)

where Jc ∈ Rk×n+6 is the stacked Jacobian of the contact points (k = 3 is the
number of kinematically constrained DoFs) and S =

[
0n×6 In×n

]
is a matrix that

selects the actuated degrees of freedom.
Finally, the trunk controller torques τff are summed with the joint PD torques

to form the desired torque command τd that is sent to the low-level joint-torque
controllers [5][3]:

τd = τff + PD(qd, q̇d), (45)

where qd ∈ Rn, q̇d ∈ Rn are the desired joint positions and velocities, respec-
tively.

5.4 results 73

5.4 Results

To evaluate our approach, we first validate the trunk attitude modulation (pitch
and roll) for dynamic walking on flat terrain. Subsequently, we quantify the capa-
bilities of our framework through a set of different terrain conditions: crossing a
gap and a set of sparse stepping stones. For that, we plan and execute dynamic
walking behaviors which enable the robot to adapt to different terrain conditions
given the high-level user commands (desired trunk velocity: step duration and
length, and travel direction).

5.4.1 Dynamic attitude modulation

First, we showcase the automatic adjustment of the trunk attitude, during a dy-
namic walk, as illustrated in Fig. 5.5a. To evaluate the attitude modulation feature,
we plan a fast3 dynamic walk with an average body velocity of 0.18 m/s. We use
a constant costmap for generating the corresponding footholds, thus the resulting
locations come from the dynamics of walking itself, while maximizing the stabil-
ity of the gait. We define a stability margin of r = 0.1 m for all our optimizations
which is good trade-off between modeling error and allowed trunk attitude ad-
justment in HyQ. The maximum allowed angular acceleration is computed using
the trunk inertia matrix of HyQ, which results in 0.11 rad/s2. Note that the trunk
attitude planner uses the maximum allowed angular velocity as explained in Sec-
tion 5.1.1.2.

The resulting behavior shows HyQ successfully walking while changing its trunk
roll and pitch angles. Note that the trunk attitude planner adjusts the roll and
pitch angles given the estimated support region at each phase. Fig. 5.5b shows
the tracking performance for initial trunk attitude of 0.17 and 0.22 rad in roll and
pitch, respectively. In addition, Fig. 5.5c shows the attitude modulation, which is
accomplished in the first 6 phases (i.e. one cycle of locomotion).

5.4.2 Locomotion on challenging terrain

We tested our approach on various challenging terrains: gap and stepping stones
with different terrain heights. For all these scenarios, we computed the costmap
using the standard deviation of the height values, which is estimated through a regres-
sion in a 4 cm×4 cm window around the cell of interest. The costmap is built using
a resolution of (4 cm×4 cm×2 cm) in (x,y, z), respectively. The higher resolution
value in z reduces the different between the time that is expected the foothold and
the detected one. Reducing the foothold error improves the tracking performance
of the controller since the desired base and joint positions and velocities are consis-
tent to each other. We weigh equally and manually the desired user command and
terrain costs, with a small weight for the CoM energy cost (around 5%). Both soft-
constraints have higher weights, which ensures that their targets are met provided

3 fast for common walking gait velocities of HyQ

74 coupled motion and foothold planning

(a) Dynamic walking and trunk modulation

(b) CoM tracking performance

(c) Trunk attitude modulation

Figure 5.5: (a) Dynamic attitude modulation. The initial trunk attitude is 0.17 and 0.22

radians in roll and pitch, respectively. (b) Body tracking when walking and
dynamically modulating the trunk attitude. The planned CoM (magenta) and
the executed trajectory (white) are shown together with the sequence of sup-
port polygons, CoP and CoM positions. Note that each phase is identified with
a specific color. (c) A lateral view of the same motion shows the attitude cor-
rection (sequence of frames), and the cart-table displacement. Note that we
use the RGB color convention for drawing the different frames. In (b)-(c) the
brown, yellow, green and blue trajectories represent the LF, RF, LH and RH foot
trajectories, respectively.

5.4 results 75

Figure 5.6: Snapshots of experimental trials used to evaluate the performance of our tra-
jectory optimization framework. (a) crossing a gap of 25 cm while climbing up
6 cm. (b) crossing a gap of 25 cm while climbing down 12 cm. (c) crossing a set
of 7 stepping stones. (d) crossing a sparse set of stepping stones while dealing
with different stone elevations (6 cm)

with enough exploration steps to the CMA-ES solver. We hand-tune the weights in
such a way that produce good results in the different terrain benchmarks, and at
the same time, that ensure the soft-constraints. Note that we do not need to define
an initial guess, and moreover this might not even help the search due to changes
in the terrain topology. We used the same stability margin and allowed angular
acceleration (as in Section 5.4.1) for the trunk attitude planner, and our horizon is
N = 1, i.e. 1 cycle of locomotion or 4 steps.

Crossing a gap and/or trunk attitude adaptation tends to overextend the legs,
since large motions are required (Fig. 5.6a). To avoid kinematic limits, we defined
a foot search region that ensures leg kinematic feasibility up to 12 cm of terrain
height difference, as is illustrated in Fig. 5.6b. For instance, we generated a trajec-
tory with two stepping stones 6 cm higher to the other ones. These terrain irreg-
ularities produce a trunk modulation in roll and pitch as can be observed in the
second sequence. The execution performance on stepping stones with and without
changes in terrain elevation is shown in Fig. 5.6c,5.6d. Compared with our previ-
ous work [86], we increased the walking velocity by approximately 114%, while
also modulating the trunk attitude. Furthermore, the foothold error is on average
less than 2 cm, which increases the success rate of the stepping stones trials to
90%; an increment of 30% when compared with our previous work [86]. In Ta-
ble 5.1, we compare the performance of the coupled planner with the decoupled
planner (Chapter 4). The results of averaged speed and success rate comprise the
trials with different terrain elevations. Thus, for the latest results, we also increase
the complexity of the different terrains. The computation time is approximately
around 10 min, much longer than the decoupled planner case (around 2 sec, see
Table 4.1).

76 coupled motion and foothold planning

Table 5.1: Forward speed and success rate of experiments averaged over 10 trials and com-
pared to the decoupled planner results from [86].

Speed [cm/s] Success Rate [%]

Terrain Curr. Prev. Ratio Curr. Prev. Ratio

Step. Stones 15.6 7.3 2.14 90 60 1.5

Gap 14.1 12.7 1.11 78 0 -

This trajectory optimization framework uses as input the desired trunk veloci-
ties, which can generate intuitively locomotion policy given the desired velocity
from a common user-interfaces, e.g. joystick. Moreover, optimizing a sequence of
control parameters will potentially allow us to integrate reactive behaviors, which
are important for increasing the robustness of the locomotion.

5.5 Discussion

As in Chapter 4, we have performed a substantial number of trials with the HyQ.
We used the similar terrain environments for benchmarking (Chapter 4). In this
section we describe the factors that improve the overall performance of the task.

(1) Coupled motion and foothold planning allows us to consider the dynamics
for the foothold selection. This is an important factor especially for automatic
walking pattern adaptation due to changes in the step duration. Compared with
our previous results (Chapter 4), HyQ can cross terrains with only 7 stones (the
same pallet distance) which was not able with the previous method (i.e. 9 stones
terrain). For instance, in the previous method described in Chapter 4, the body
motion cannot adapt dynamically to the allowed terrain regions (i.e. kinematic
foothold planning), which reduces the number of possible foothold locations. The
coupled planning improves the foothold selection, while it allows the robot to
modulate the step duration. Furthermore, HyQ can cross terrains with different
elevations since the foothold selection considers the body motion. For example,
climbing up or down a gap tends to overextend the legs, since large motions are
required (Fig. 5.6a). To avoid kinematic limits, the coupled planning ensures leg
kinematic feasibility up to 12 cm of terrain height difference for the defined foot
search region with respect to the base frame (as illustrated in Fig. 5.3). Note that
the foothold selection always searches in a region where the kinematic constraint
are ensured independently of the body velocity. All these factors are important for
increasing the capabilities of our locomotion system. In fact, the coupled planning
allows HyQ to cross faster, e.g 114% in walking speed for stepping stones.

(2) A linear displacement of CoP per phase produces good practical results, i.e.
it describes the CoM movement as expected from the preliminary results of the
Chapter 4 (see Fig. 4.15b). This assumption allows us to describe the optimization

5.5 discussion 77

problem with a sequence of low-dimensional parameterized models, which are
based on the cart-table template. In other words, we can describe the movement
as a sequence of control parameters. The main advantage of this model represen-
tation is that it can be combined with stochastic-based optimization solvers, thus,
it can solve the local minima issue by including the terrain topology and adapt-
ing the walking pattern timing. On the other hand, stochastic-based optimization
tends to increase the computation time due to the non-convexity nature of the
problem. In addition, optimizing a sequence of control parameters is also conve-
nient for learning locomotion policies due to the dimensionality reduction, and
for integrating with reactive behaviors such as a step reflex controller for obstacle
negotiation [18].

(3) In contrast to Chapter 4, we systematically address the trunk attitude adjust-
ment that ensures dynamic walking. For that, we found a relationship between the
applied torques to the CoM and the displacement of the CoP. Later we connected it
with the stability margin by assuming a time-invariant inertial tensor approxima-
tion of the inertia matrix. Experimental results with HyQ validated this assumption
on flat dynamic walking and rough terrain locomotion. Due to this novel method,
HyQ increased its locomotion capabilities by crossing different rough terrain with
significant terrain elevation changes. Furthermore, this method can be applied to
other legged systems such as bipedal ones.

(4) Higher walking speed increases the probability of foot-slippage, when one
or some of the feet slip backwards, or when a foot is only slightly loaded so subse-
quent “pushing" backwards results into foot sliding. Both events are more likely to
happen in a terrain with different elevations due to errors in the state estimation or
noise in the perception sensors. Including friction-cone constraints in the inverse
dynamics torque calculation step has shown to generate movements without foot
sliding in the experiments [19]. Nevertheless, state estimation errors and noise in
the perception sensors can produce deviation from the planned trajectories, i.e.
due to the unexpected contact events. This affects the overall execution perfor-
mance of the locomotion. As a consequence replanning motions and integrating
reactive behaviors can overcome these limitations. Despite of the current limita-
tions, HyQ showed an increase of 114% in the walking speed and a decreased in
foothold execution error (from 8 to 4 cm) compared with the results of Chapter 4.

(5) Considering the terrain topology increases the complexity of the trajectory
optimization problem. For instance, we cannot guarantee convexity in the ter-
rain model (i.e. terrain costmap). Moreover, optimizing the step duration intro-
duces many local minima in the problem landscape. Imagine that the robot can
choose to cross the terrain by selecting proper foothold locations, adapting the
step durations, or a combination of both. For solving these issues, we propose a
low-dimensional parametrized model which allows us to solve the optimization
problem with stochastic-based exploration. We also impose the constraints as soft,
which help the exploration. This is probably the biggest limitation of consider-
ing terrain topologies in trajectory optimization. Nevertheless, we can tackle these
issues by transferring the set of optimized control parameters to a locomotion mo-
tor policy. For that, different machine learning algorithms have been proposed in

78 coupled motion and foothold planning

the literature [50][57]. These techniques are called guide policy search. Note that
they combine the advantages of trajectory optimization (i.e. using model for ex-
ploring the search space), and policy learning (i.e. the automatic evaluation and
self-improvement of the policy).

5.6 Conclusion

In this chapter, we presented a trajectory optimization approach for locomotion
on rough terrain that directly uses terrain information. The approach delivers
an optimal CoM motion and corresponding optimal foothold locations. Moreover,
the solution takes into consideration the trunk attitude modulation required for
a dynamic walking. We employ a combination of parametric preview models,
stochastic-based exploration and receding horizon planning for successfully cross-
ing over various rough terrain.

We demonstrated how the combination of an impedance controller —which pre-
vents friction cone violations— alongside a trunk controller can compliantly, yet
accurately, track the desired whole-body motion. Real-world experimental trials
with the HyQ robot crossing over challenging terrain demonstrated the capabili-
ties of our framework. Compared with our previous results [86][54] (Chapter 4),
we improved the locomotion without any loss of performance. HyQ walked faster
while making trunk attitude adjustments. Moreover, the accuracy of execution was
improved, as the error between desired and achieved footholds was reduced from
8 cm to approximately 4 cm. This increased the success rate in the stepping stones
by around 30%.

We validated that linear displacement of CoP per phase produces similar results
to the Chapter 4. This assumption allows us to describe a movement as a sequence
of parameters. Experimental results suggest that combining CoM trajectories and
foothold selection produces better solutions in terms of avoiding joint limits (both
in position and torques). In fact, the foothold locations help to minimize the CoM

energy, thus it reduces the applied joint torques.
Future work includes integrating reactive behaviors, such as haptic triggering

of stance and step reflex. The aim is to increase the robustness of the locomo-
tion, for coping with errors in the terrain perception and state estimation. Another
extension can be the automatic gait discovery in rough terrain locomotion, i.e.
transition from walking to trotting, and vice-versa, while crossing rough terrains.
Finally, working towards online planning is a crucial feature for real applications,
which takes around 10 min for every task (i.e. gap and stepping stones).

In the next chapter, we propose a trajectory optimization method that considers
a set of possible contact forces. This method allows the robot to decide whether
or not to establish a contact. In this case we use a 2-DoFs leg of HyQ mounted to a
vertical slider) Additionally, it takes into account torque/joint limits, and friction-
cone constraints. The future aim of this approach is to produce even more dynamic
motions such as jumping and rearing, during which fewer or no legs are in contact.

6
Whole-body Motion Planning with
Contact Forces

One of the aspects that was not addressed in the previous motion planning ap-
proaches is the contact forces optimization. Both approaches use a predefined se-
quence of locomotion phases for generating the desired CoM motion. These meth-
ods are suitable for specific behaviors such as walking gaits, but they cannot syn-
thesize more general behaviors. If we want to synthesize general behaviors, we
need to consider the contact forces too. This problem is often hard to solve since
contact forces produce discontinuities in the dynamics. For tackling this challenge,
we present a hierarchical trajectory optimization approach for planning dynamic
movements with unscheduled contact sequences. First, we find a feasible CoM mo-
tion according to the centroidal dynamics of the robot (Section 6.2.1). Then, we
refine the solution by applying the robot’s full-dynamics model, where the feasi-
ble CoM trajectory is used as a warm-start point (Section 6.2.2). To accomplish the
unscheduled contact behavior, we use complementarity constraints to describe the
contact model, i.e. environment geometry and non-sliding active contacts. Both
optimization phases are posed as MPCC. All the material presented in this chapter
has been previously published in [53].

In this chapter, we are concerned with finding feasible trajectories for complex
tasks, i.e. tasks that require the exploration of different mode sequences through
highly-dynamic movements. We choose a set of jumping tasks as examples, as
these highlight the ability to explore the dynamical capabilities of the robot (i.e.
2-DoFs leg, for more details see Section 3.1.1) in order to reach goals that are un-
reachable in a kinematic manner. In fact, the trajectory optimization method com-
putes whole-body motions that achieve goals that cannot be reached in a kinematic
fashion.

6.1 Hierarchical Planning

This work was motivated by the observation that most animal and human locomo-
tion behaviors involve dynamic motions through contact interactions. For instance,
kangaroos are dynamic jumpers that use hopping as the main locomotion strategy.
Indeed, in kangaroo locomotion, highly-dynamic movements and contact forces
play an important role for finding efficient locomotion trajectories.

Although such dynamic maneuvers are undoubtedly beneficial, planning and
execution of these whole-body trajectories is challenging due to the loss of control
authority during flight phases and undefined contact events. We tackle it by gener-
ating a whole-body trajectory toward a body goal state (desired body height) that

79

80 whole-body motion planning with contact forces

Centroidal Trajectory
 Optimization

Full Trajectory
 Optimization

robot's CoM

joints

CoM

contact points

contact force

floating-base

contact force

Figure 6.1: The proposed hierarchical trajectory optimization reduces the complexity of
the motion planning problem by considering two different optimization phases:
centroidal and full trajectory optimization. First, the centroidal trajectory opti-
mization phase produces a locally optimal CoM motion using the centroidal
dynamics model [64], which does not consider joint dynamics (i.e. link’s CoM).
Second, the full trajectory optimization phase refines the CoM trajectory by ap-
plying the robot’s full-dynamics and joint limits. Both optimization phases use
complementarity constraints to model the contact interactions.

ensures a dynamic motion plan through contact interactions. To accomplish this,
we describe the contact model using complementarity constraints which defines
our approach as a mode-invariant trajectory optimization.

6.1.1 Generating dynamic motions

Consider a rigid body system with n degrees of freedom, of which nb are floating-
base degrees of freedom. The state of the robot is represented by its floating-base
and actuated joint components, q = (qb, qq). Additionally, the robot has p end-
effector or contact points.

The system’s evolution depends on the internal joint torques, τq, and the contact
force, λj, applied at the jth end-effector. This evolution is subject to robot and en-
vironmental constraints such as: joint limits and environment geometry. Exploring
different mode switches (contact events) and dynamic movements could produce
unsuccessful locally optimal solutions. We improve the solutions by applying a
hierarchical trajectory optimization. In the first phase, we model the system’s evo-
lution with the centroidal dynamics, i.e. in the CoM space. Then, we impose joint
dynamics and limits using a full-dynamic model. Fig. 6.1 presents an overview of
our hierarchical trajectory optimization approach.

6.1 hierarchical planning 81

6.1.1.1 Centroidal-dynamic model

The robot dynamics can be projected at the CoM, i.e. the centroidal dynamics of the
robot. In a full floating-base system (nb = 6 DoFs), the centroidal-dynamic model
describes the rate of change of linear and angular momentum of CoM with respect
to the inertial frame of reference [64]. The rate of change of linear and angular
momentum is determined by contact forces λj, gravitational force mg and the
motion of the robot’s links

mẍ =

p∑
j=0

λj +mg (46)

Ḣc(q, q̇) =
p∑
j=0

(rj − x)×λj (47)

where m is the total mass of the robot, x ∈ R3 is the CoM position, λj ∈ R3 is
the contact force applied at the jth end-effector, Hc ∈ R3 is the centroidal angu-
lar momentum and rj ∈ R3 is the end-effector position. The centroidal angular
momentum is computed through the computation of the Centroidal Momentum
Matrix (CMM) as defined in [64].

6.1.1.2 Full-dynamic model

The full-dynamic model enables us to compute the joint efforts given a whole-body
state (q, q̇, q̈) subject to contact forces λj. We partition the dynamics equation of
the robot into the unactuated floating-base DoFs qb (nb equations) and the active
robot joints qq (nq equations):

H(q)

[
q̈b
q̈q

]
+

[
cb
cq

]
(q, q̇) −

p∑
j=0

JTbj
JTqj

λj︸ ︷︷ ︸
b=ID(model,q,q̇,q̈)

=

[
0

τq

]
(48)

where H ∈ Rn×n is the floating-base inertial matrix, c = (cb, cq) ∈ Rn is the force
vector that accounts for Coriolis, centrifugal, and gravitational forces, λj ∈ R3

are the ground contact forces at the jth end-effector (i.e. point feet), and their
corresponding Jacobian, Jj =

[
Jbj Jqj

]
∈ R3p×n and τq ∈ Rnq are the joint

efforts that we wish to calculate.
The left-hand term b = (bb, bq) is computed efficiently using the Featherstone

implementation of the RNEA [17].

6.1.2 Contact model

In dynamic movements, contact forces play an important role, e.g. a jumping or
hopping task. Traditional approaches compute trajectories given a predefined con-
tact sequence. These approaches do not exploit the fact that an optimized mode
switching could be required for the success of a certain task.

82 whole-body motion planning with contact forces

A contact event occurs when a signed distance to the surface is strictly zero, and
additionally, there is a contact force acting along the surface normal. Moreover, a
null normal contact force is expected when the contact is inactive, i.e. a positive
signed distance. In other words, normal contact forces and signed distances are
orthogonal and positives functions (49). Additionally, we desire that active contacts
do not slide. Such condition implicates an orthogonality between normal contact
forces and tangential velocities (50). In the optimization literature [77], constraints
with combinatorial nature, such as the set of contact model equations (49)(50), can
be described as complementarity constraints

0 6 λn̂j ⊥ φj(q) > 0 (49)

0 6 λn̂j ⊥ ṙt̂j(q, q̇) > 0 (50)

where λn̂j is the contact force acting along the surface normal at the jth end-effector
(i.e. contact point), φj(q) is the signed distance between the jth contact point rj
and the surface Si, and ṙt̂j(q, q̇) is the velocity of the contact point along the tangen-
tial surface. Contact-point positions and velocities are calculated efficiently using
spatial algebra.

6.2 Trajectory Optimization

Planning problems without scheduled contact sequences are often hard to solve
since the contact forces produce discontinuities in the dynamics. Here, we tackle
this issue by applying a hierarchical trajectory optimization scheme, which uses
different dynamic models in a two-phase manner. Using a different (simpler) dy-
namic model in the first optimization phase, we impose a dynamic relaxation, that
helps to explore different mode switches. Thus, we find a feasible CoM motion
in terms of the robot’s centroidal dynamics. Then, we refine it by applying the
full-dynamic model in the second, more complex, trajectory optimization phase.

6.2.1 Centroidal trajectory optimization

The centroidal trajectory optimization step computes a feasible CoM trajectory
through the mapping of contact forces inside the centroidal dynamics. The CMM

maps the robot’s generalized velocities to its spatial momentum (for more details
see [64]). We sample the trajectory in N knot-points with a fixed-time duration h.
In this optimization phase, the decision variables of the optimization problem are
the robot position q, the robot velocity q̇, the CoM position x, the CoM velocity ẋ,
the contact forces λ, and the end-effector (contact) positions r. The cost function
evaluates the trajectory in terms of the desired high-level goal of the task w(q) as:

min
q[k],q̇[k],x[k],ẋ[k],

Hc[k],Ḣc[k],λ[k],r[k]

h

N∑
k=1

(
‖w(q[k]) − w(q∗[k])‖Qq

)
(51)

6.2 trajectory optimization 83

where w(q) constructs a task-specific value from relevant features of the task,
and ‖w(q[k]) −w(q∗[k])‖Qq computes its associated quadratic cost given a desired
robot position q∗. Note that ‖x‖Q is an abbreviation for the quadratic cost xTQx.

We transcribe the centroidal dynamics differential equations (47) to algebraic
ones by applying an Euler-backward integration rule with a fixed-time step h

x[k− 1] − x[k] + hẋ[k] = 0 (52)

Hc[k− 1] − Hc[k] + hḢC[k] = 0 (53)

m(ẋ[k] − ẋ[k− 1]) − h

(
p∑
j=0

λj[k] +mg

)
= 0 (54)

Ḣc[k] −
p∑
j=0

(rj[k] − x[k])×λj[k] = 0 (55)

where the centroidal angular momentum is computed from the CMM, A(q), as is
explained in [64], i.e. Hc[k] = A(q[k])ẋ[k]. Additionally, we impose contact position
constraints in order to describe the contact interactions

rj[k] −κj(q[k]) = 0 (56)

where κj(·) is the direct kinematic function which computes the position of the
jth end-effector. We also include joint position and velocity limits.

qlq 6 qq 6 quq (57)

q̇lq 6 q̇q 6 q̇uq . (58)

To describe different possible mode switches, we add contact position and ve-
locity constraints. These constraints are described as complementarity constraints
as follows

λn̂j [k],φj(q[k]) > 0 (59)

λn̂j [k]φj(q[k]) = 0 (60)

λn̂j [k]
(

rt̂j [k] − rt̂j [k− 1]
)
= 0. (61)

We approximate the contact velocity as contact displacement along the tangen-
tial surface. Note that a contact velocity constraint does not guarantee zero dis-
placement between knots.

6.2.2 Full trajectory optimization

Once a feasible, and locally optimal, CoM trajectory is computed, we use this CoM

trajectory as a warm-start point of the full trajectory optimization phase. We tran-
scribe the full-dynamic model with the same time step value of the centroidal
trajectory optimization phase. In this optimization phase, we formulate the prob-
lem with the following decision variables: the robot position q, the robot velocity
q̇, the joint efforts τq and the contact forces λ.

84 whole-body motion planning with contact forces

In this stage, the cost function also considers the joint effort energy of the move-
ment τq as

min
q[k],q̇[k],
τ [k],λ[k]

h

N∑
k=1

(
‖w(q[k]) − w(q∗[k])‖Qq + ‖τq[k]‖R

)
. (62)

We apply the same integration rule to the full-dynamic differential equation (48).
Additionally, we add a selection matrix B in order to impose a null wrench vector
to the floating-base:

q[k− 1] − q[k] + hq̇[k] = 0 (63)

H[k] (q̇[k] − q̇[k− 1])

+h
(

c[k] −
p∑
j=0

Jj[k]Tλj[k]
)
− Bτ [k] = 0

(64)

where the contact forces are determined using the complementarity constraints
(59)(60)(61).

In the full trajectory optimization phase, we impose position and velocity bounds
(57)(58), and additionally joint effort bounds

τ lq 6 τq 6 τuq . (65)

We derive a continuous motion plan, from the N optimized knot-points, using
a polynomial interpolation. Both optimization phases model contact interactions
using complementarity constraints. In general, optimization problems with com-
plementarity constraints are difficult to solve because constraint qualifications are
hard to satisfy. We solve the MPCC using interior point method as this is faster
than a Sequential Quadratic Programming (SQP) algorithm when the number of
complementarity constraints increases [72]. We use the Ipopt library [83]. We relax
the orthogonality between the complementarities, for example λn̂j [k]φj(q[k]) = 0

is posed as λn̂j [k]φj(q[k]) 6 0. For more information about different interior point
methods see [72].

6.3 Results

We conduct three experimental trials with the HyL robot: jumping task, small step
jumping (10 cm of height) and big step jumping (15 cm of height). For each exper-
iment, we specify the goal state of the robot’s trunk1, and the desired final joint
position as a terminal cost. The hierarchical trajectory optimizer finds a sequence
of footsteps through dynamic movements without a predefined order, which the
controller then executes dynamically. We use a PD controller and the planned joint
efforts as feedforward inputs. We validate the performance of our framework in 3

different examples as seen in Fig. 6.2, and compare against the full dynamic opti-
mization (Table 6.1) on the same benchmark examples. The first example consists

1 In this chapter, with robot we refer to the HyL robot

6.3 results 85

Figure 6.2: Snapshots of three experimental trials with the HyL robot (Section 3.1.1) used to
evaluate the performance of our hierarchical trajectory optimization approach.
From top to bottom: jumping task; small step jumping (10 cm of height); big
step jumping (15 cm of height).

of reaching a goal that is kinematically not feasible, called the jumping task. In the
next examples, the step-jumping tasks, the robot has to reach and keep the desired
trunk height, which is done through two different step: a small step (10 cm) and a
big step (15 cm).

6.3.1 Motion through dynamical relaxation

We focus on finding trajectories that are only feasible when dynamics and contact
forces are considered. This motion planning approach describes contact events in
a MPCC problem. Since the problem is non-convex, the hierarchical optimization
tends to guide the exploration away from infeasible regions through dynamical
system relaxation, i.e. centroidal to full dynamics. This dynamical relaxation helps
to reduce the computation time and cost value. For instance this approach finds a
counter-movement jump (a transitory movement). In contrast to the squat jump, the
counter-movement jump involves a preliminary lift off the ground that maximizes
the jump height and minimizes the control energy using the system’s inertia (see
Fig. 6.3), since this reduces the cost value.

These experiments suggest that dynamical system relaxation is key for finding
successful motion plans. Table 6.1 shows the time and cost reduction of our ap-
proach compared with a single full trajectory optimization. We can see that the
hierarchical optimization approach tends to have better performance in complex
tasks. Nevertheless, in general, the central tendency (median) of the computation
time reduction is decreased, while, on average, we improve the quality of the
solution (cost reduction). In average, the computation time, of the hierarchical
trajectory optimization, for the jumping and step jumping tasks are 1 and 8 min,
respectively. For this comparison, I define a set of 8 different goal states (i.e. trunk
height ranging from 0 to 35 cm) for computing the time and cost reduction of our
approach.

86 whole-body motion planning with contact forces

Table 6.1: Time and cost reduction over 8 trials compared to a single full trajectory opti-
mization.

Time reduction [%] Cost reduction [%]

Task Md. Av. Md. Av.

Jumping 10.36 0.0 0.0 1.44

Step Jumping 48.29 30.46 0.0 12.91

6.3.2 Reaching goals that are kinematically not feasible

The jumping task demonstrates the ability of exploring the dynamical capabilities
of the robot in order to reach goals that are not kinematically possible. In this par-
ticular case, we desire to reach with the trunk, a height of 0.85 cm w.r.t. the ground
(or 0.27 cm with respect to the initial position), which is kinematically not feasi-
ble. Thus, our hierarchical motion planner explores different mode sequences in
order to plan a dynamically feasible motion. In Fig. 6.3, the robot plans a counter-
movement jump (around 7 cm) without being predefined. In counter-movement
jumps, a preliminary downward movement is executed which increases the jump
height because the robot is carried by its own inertia. Then, a fast movement of
the foot is planned considering a desired task behavior, e.g. joint position in the
apex point.

6.3.3 Discovery of new contacts

For the success of some tasks, it is crucial to exploit the environmental condi-
tions, e.g. reaching and keeping a desired trunk position that is kinematically not
reachable. So, imagine that we want to keep a desired trunk position but due to
gravitational forces this is not possible with just a vertical jump. Instead, we need
to climb onto an obstacle to accomplish this. With the hierarchical trajectory op-
timization, we can plan such kind of maneuvers. In fact, Fig. 6.4 shows that this
motion planner solves these tasks by defining a foothold on top of an available
step. Note that a pre-defined footstep sequence is not required to find such kind
of solutions.

6.4 Discussion

We conducted trials with the HyL robot (for more details see Section 3.1.1) per-
forming highly-dynamic and challenging tasks, which demonstrate the capability
of the hierarchical trajectory optimization method. A set of jumping tasks were
used, as these highlight the ability to explore the dynamical capabilities of the
robot and different contact sequences, that cannot be achieved in a kinematic man-

6.4 discussion 87

0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

−0.050.000.050.100.150.20

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

0.25

initial state

final state

lift-off

Figure 6.3: Optimized CoM and foot trajectory for a jumping task that shows a dynamic
movement through different phases: thrust and flight. We can see that the
hierarchical optimization maximizes the jump energy by planning a counter-
movement jump, i.e. a preliminary downward movement.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

−0.050.000.050.100.150.200.250.30

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

initial state

final state

lift-off

Figure 6.4: Optimized CoM and contact sequence for reaching and keeping a desired trunk
position (big step jumping), which is not reachable with just a vertical motion.
The hierarchical trajectory optimization finds a transitory foothold in order to
keep the desired trunk position. After landing in the planned foothold, the
trunk moves up until the desired goal.

88 whole-body motion planning with contact forces

ner. In this section we briefly discuss the improvements of the novel hierarchical
trajectory optimization compared with state-of-the-art approaches.

(1) Generating automatic behaviors with a predefined schedule is a hard prob-
lem due to the high-dimensionality of the search space and the nonconvexity of
the problem. The hierarchical trajectory optimization improves the quality of the
solution and computation time. In the centroidal trajectory optimization step, the
main goal is to find a trajectory that is feasible in terms of centroidal dynamics and
contact forces. Next, the full trajectory optimization step ensures that the robot is
able to execute that movement by considering the robot’s joint limits (i.e. posi-
tion, velocity and torques limits). Since we ensure the robot’s joint limits, we can
validate this method in the real system unlike previous works [60][9][22].

(2) The contact model, through complementary constraints, adds discontinuities
in the optimization problem. When a contact event changes its state (i.e. active to
inactive, or vice-versa), we cannot compute the gradient. Therefore, the problem
cannot be solved using gradient-based solvers such as interior-based methods (e.g.
IPOPT [83]) or sequential quadratic methods (e.g. SNOPT [24]). In practice this
limitation means that the trajectory optimization requires to define good warm-
start point and smoothing in those transitions. In other words, we are constrained
to describe a rough path of the movements, which limits the applicability of these
techniques. In fact, previous works have addressed this issue by smoothing the
contact forces, inside the trajectory optimization [60] or as numerical relaxation
to the complementary constraints [77], and exploiting reduced models [9]. Nev-
ertheless, those works have been validated just in simulation. In our hierarchical
trajectory optimization, we combined both ideas in order to discover new contact
interactions, and at the same time, guarantee the joint limits of the system. The
step-jumping task shows the capability of the hierarchical trajectory optimization
to figure out different contact sequences. Compared with a simple jumping task,
the former requires more computation time (around 8 times, i.e. 8 min compared
with 1 min), and easier to find unfeasible solutions, due to contact switching re-
quires to run a number of iteration that relax the contact constraints. Note that the
jumping task has less contact switches than the step jumping tasks.

(3) We demonstrated how a hierarchical trajectory optimization improves the
computation time and quality of the solution (i.e. it reduces the cost value) in
simpler robot than HyQ. In the literature, several works demonstrated the capa-
bilities either of the full trajectory optimization [71] or the centroidal dynamic
optimization [8] in higher-dimensional systems. In those approaches, the authors
need to predefined a good enough warm-start point (i.e. initial trajectory of the
movement). This limits the applicability of the above-mentioned motion planners.
We believe that our hierarchical trajectory optimization method will similarly im-
prove the solution and computation time in higher-dimensional system such as
HyQ. With this motion planner, we expect that HyQ will be able to jump long gaps,
and to plan aggressive maneuvers such as rearing. Furthermore, including contact
forces allows the planner to make contact in other parts of the robot, e.g. climbing
up an obstacle using the knees.

6.5 conclusion 89

(4) In general, trajectory optimization produces motion plans for a fixed se-
quence of points, N knot-points. The continuous motion plan is obtained by ap-
plying a polynomial interpolation. However, the polynomial interpolations cannot
predict accurately changes in the contact forces, which generally happen in less
than 10 ms. Reducing the step integration will approximate more accurate the
robot’s dynamics but it will increase considerably the computation time. On the
other hand, a longer step integration might increase the complexity of the problem
due to the model inaccuracies

6.5 Conclusion

In this chapter we presented a hierarchical trajectory optimization approach for
planning dynamic movements through unscheduled contact sequences. First, the
hierarchical trajectory optimization finds a feasible CoM motion according to the
centroidal dynamics of the robot. Then, a second phase of optimization consid-
ers the full-dynamics of the robot. In both phases a set of complementarity con-
straints model the contact interaction. We demonstrated that, with this approach,
the robot can plan a different movements that consider the full-dynamics and
joint effort limits of the robot. We believe that these considerations are crucial for
highly-dynamic locomotion tasks, i.e. step-jumping tasks that cannot be accom-
plished in a kinematic fashion. For instance, a kinematic model cannot compute
a motion plan that ensures the joint torques limits of the robot. It is shown how
the hierarchical trajectory optimization improves the solutions and significantly
reduces the computation time, compared with the full dynamic optimization. Ex-
perimental trials with a robotic leg performing highly-dynamic and challenging
tasks demonstrate the capability of this planning approach.

Future works include generation of motion plans given a library of synthesized
motions, improving the quality of the solutions, and permitting online computa-
tion and execution.

7
Conclusion and Future Work

In this thesis we introduced a new framework for dynamic legged locomotion over
challenging terrain. We developed a decoupled motion planner, a foothold planner
that selects foothold positions from a terrain costmap, and a motion planner that
ensures dynamic stability. We identified the weak points of decoupled planning
techniques. We proposed two coupled motion planners that tackle the identified
limitations of the decoupled motion planning. Each motion planner method aims
to increase the mobility of legged robots over challenging terrains. Nevertheless,
this increase in mobility produces an increase in complexity too. In this chapter
we summarize the results of these findings and present ideas and directions for
future work.

7.1 Conclusion

In this thesis we started by presenting a new dynamic whole-body locomotion
framework for rough terrain locomotion. In this framework the motion planner
orchestrates the perception and execution modules. The perception module quan-
tifies how desirable it is to place a foot at a specific location by building a terrain
costmap and terrain heightmap. The execution module sends precise torque com-
mands that track accurately and compliantly the desired motions. We plan sepa-
rately the motion and the foothold sequence. We showed how the foothold planner
computes online and onboard (∼ 0.5 Hz) a sequence of footholds. We proposed a
whole-body motion planner that ensure dynamic stability despite irregular swing-
leg sequences generated by the foothold planner. We demonstrated how the robot
executed accurately, yet compliantly, the desired whole-body motions by combin-
ing a virtual model and floating-base inverse dynamic controllers. We presented
the performance of our framework in real-world experimental trials.

Next, we brought the kinematic foothold planning and the dynamic execution
closer together. The goal was to produce desired state trajectories and footholds
through a unified trajectory optimization problem (i.e. coupled planning) that
takes into consideration the robot’s dynamic and terrain topology. This approach
delivers an optimal CoM motion and corresponding optimal foothold locations.
We decoupled the horizontal and vertical dynamics by ensuring that the trunk at-
titude adjustments will not invalidate the CoP condition. In our trajectory optimiza-
tion method, we employed a combination of parametric low-dimensional models,
stochastic-based exploration and receding horizon planning. This method allows
us to tackle the nonconvexities as a consequence of optimizing the stepping dura-
tion and considering the terrain topologies (i.e. terrain costmap). Note that state
of the art stochastic-based exploration can solved low-dimensional optimization

91

92 conclusion and future work

problems. We showed how the robot can cross various terrains with an increase
in the complexity compared with the decoupled planner. In fact the terrain has
few safe regions to step and different elevations. We demonstrated that a linear
displacement of CoP per phase produces good practical results. This increased the
success rate of the stepping stones trials to 90%, an increment of 30%, compared
to the decoupled motion planner. Finally, we demonstrated how the combination
of an impedance controller, that ensures the friction cone constraints, alongside a
trunk controller can compliantly, yet accurately, track the desired whole-body mo-
tion. With this execution performance, we reduced the error between desired and
achieved footholds locations (from 8 cm to approximately 2 cm), and increased the
achievable walking velocities (from 0.12 m/s to 0.18 m/s). In fact this increased the
success rate in the stepping stones by around 30%.

The decoupled and coupled motion planners are able to generated specific be-
haviors such as the walking gait. However, some terrain conditions cannot be
successfully crossed with a pre-specified behavior/gait. Hence it is required to
synthesize more general behaviors. In such cases, we need to consider the contact
forces, but they are often hard to solve due to discontinuities. Thus, we proposed
a hierarchical trajectory optimization approach for planning dynamic movements
through unscheduled contact sequence. Our hierarchical trajectory optimization
computes a feasible CoM motion that satisfies the robot’s centroidal dynamic. Later,
we ensure the robot’s joint limits constraints by optimizing, in a second step, the
robot’s motion using the full dynamic of the system. We showed that our hierar-
chical trajectory optimization increases the range of planned movements, and yet
ensures the robot’s joint limits (cost reduction until 12.9% compared to a single full
trajectory optimization). We also demonstrated that our method reduces the com-
putation time upto 48.3% compared to a single full trajectory optimization. To our
best knowledge, our trajectory optimization, with unscheduled contact sequence,
method is the first that has been validated in a real robot.

In this thesis, we proposed a set of different motion planning methods for dy-
namic whole-body locomotion on challenging terrain. We studied the advantages
and disadvantages of coupled and decoupled motion and foothold planning. In
our planners, we built a unified method for quantifying the terrain difficulty (i.e.
terrain costmap). We showed that our terrain model is suitable for decoupled and
coupled planning, as well as for graph searching or trajectory optimization. We
showed that reduced models (such as cart-table and the contact wrench) allow us
to better formulate the trajectory optimization while also considering the terrain
topology. We demonstrated that coupled planners increase the locomotion capa-
bilities, but also the computation time. Finally, we showed that contact forces play
an important role for synthesizing a wider range of motions. These motion plan-
ners provide the ability to increase the mobility of legged machines in challenging
terrain.

Previous research in rough terrain locomotion have mainly focused on gener-
ating reactive behaviors that tackle small terrain changes or selecting kinemati-
cally foothold locations. On the other hand, legged motion planning community
focused on planning complex whole-body behaviors but assuming flat terrain con-

7.2 future work 93

ditions. In contrast, we consider that navigating over challenging domains requires
taking into account future terrain conditions and also generating complex whole-
body behaviors (i.e. motion planning). For that, our motion planners have to con-
sider the terrain conditions as well as the robot’s dynamics. Thus, this thesis con-
tributed to close the gap between locomotion approaches and motion planning
methods. With this, we increased the legged locomotion capabilities in rough ter-
rain.

7.2 Future work

The work presented in this thesis was focused on increasing the locomotion ca-
pabilities of legged machines. Both the coupled motion and foothold planner and
the whole-body motion planner with contact forces cannot compute trajectories on-
line due to the nonconvexity of these optimization problems. Re-planning can deal
with unexpected terrain changes and execution errors, thus increasing the success
rate of the task. In future work, we would like to develop a method that can gener-
ate plans online. A promising direction is to transfer a set of optimized trajectories
into a control policy. Several machine learning algorithms have been proposed in
the literature, in the form of guided policy search. With these methods, we will
aim to interactively generate complex behaviors that incorporate high-dimensional
sensory modalities such as vision (i.e. the terrain costmap).

The coupled planner optimizes a sequence of control parameters. In fact, a walk-
ing gait can be described by a set of parameters and not a trajectory. The descrip-
tion through parameters helps us to integrate reactive behaviors such as haptic
triggering of stance and step reflex into planned motions. We recognize the im-
portance of having reactive behaviors, even in planned motions, for overcoming
unexpected events. Future work will aim to increase the robustness of the loco-
motion. For instance, these reactive behaviors could stabilize the robot in cases
of unexpected terrain changes that cannot be perceived (e.g. terrain changes un-
der the legs). Additionally, reactive behaviors could increase the robot stabilize in
unstable and dynamic terrain or even against push forces.

We showed that a terrain costmap is a suitable model for trajectory optimiza-
tion. It allows the robot to properly select foothold locations. We used different
terrain features (i.e. slope, curvature, height deviation, etc.) for computing an as-
sociated cost value. However, there is a remarkable difficulty in quantifying how
desirable a footstep location (i.e. cost value) is. One exciting future work will be
to self-improve the terrain model by exploiting the robot’s experiences. In an ideal
scenario the robot plans a motion according to its understanding of the terrain
difficulty. Then after the execution, the robot updates/improves its understanding
of the terrain difficulty according to this experience. With this approach, we aim
to be able to build a terrain model suitable for all the possible topologies.

There are few hardware limitations that decreases the performance of our mo-
tion planners. For instance, the robot’s torque limits and range of motion limits
the different possible maneuvers in stairs climbing and gap crossing with differ-
ent elevations. Furthermore, the lack of foot force sensors compels us to estimated

94 conclusion and future work

the GRFs, which reduces significantly the execution of the planned motions, espe-
cially in cases of trunk attitude adaptation. Including these sensors will improve
the overall performance in the execution of the planned motions.

Bibliography

[1] Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E. R., and Caldwell,
D. G. (2013). A Reactive Controller Framework for Quadrupedal Locomotion on
Challenging Terrain. In IEEE International Conference on Robotics and Automation
(ICRA).

[2] Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy,
D., and Siegwart, R. (2012). State Estimation for Legged Robots - Consistent
Fusion of Leg Kinematics and IMU. In Robotics: Science and Systems Conference
(RSS).

[3] Boaventura, T., Focchi, M., Frigerio, M., Buchli, J., Semini, C., Medrano-Cerda,
G. A., and Caldwell, D. G. (2012a). On the role of load motion compensation
in high-performance force control. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS).

[4] Boaventura, T., Medrano-Cerda, G. a., Semini, C., Buchli, J., and Caldwell, D. G.
(2013). Stability and performance of the compliance controller of the quadruped
robot HyQ. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1458–1464. Ieee.

[5] Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., and Caldwell,
D. G. (2012b). Dynamic torque control of a hydraulic quadruped robot. In
IEEE International Conference on Robotics and Automation (ICRA), pages 1889–1894.
IEEE.

[6] Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., and Schaal, S. (2009). Com-
pliant quadruped locomotion over rough terrain. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 814–820.

[7] Caccavale, F., Natale, C., Siciliano, B., and Villani, L. (1999). Six-DOF
impedance control based on angle/axis representations. IEEE Transactions on
Robotics and Automation, 15:289–300.

[8] Dai, H. and Tedrake, R. (2016). Planning Robust Walking Motion on Uneven
Terrain via Convex Optimization. In IEEE International Conference on Humanoid
Robots.

[9] Dai, H., Valenzuela, A., and Tedrake, R. (2014). Whole-body Motion Planning
with Simple Dynamics and Full Kinematics. In IEEE International Conference on
Humanoid Robots.

[10] de Lasa, M., Mordatch, I., and Hertzmann, A. (2010). Feature-based locomo-
tion controllers. ACM Transactions on Graphics, 29(4):1.

95

96 bibliography

[11] Deits, R. and Tedrake, R. (2014). Footstep Planning on Uneven Terrain with
Mixed-Integer Convex Optimization. In IEEE International Conference on Hu-
manoid Robots.

[12] El Khoury, A., Lamiraux, F., and Taix, M. (2013). Optimal motion planning
for humanoid robots. In IEEE International Conference on Robotics and Automation
(ICRA), volume 0, pages 3136–3141. IEEE.

[13] Erez, T., Lowrey, K., Tassa, Y., Kumar, V., Kolev, S., and Todorov, E. (2013). An
integrated system for real-time Model Predictive Control of humanoid robots.
In IEEE/RAS International Conference on Humanoid Robots.

[14] Escande, A., Kheddar, A., and Miossec, S. (2006). Planning support contact-
points for humanoid robots and experiments on HRP-2. In IEEE International
Conference on Intelligent Robots and Systems, pages 2974–2979.

[15] Escande, A., Kheddar, A., and Miossec, S. (2013). Planning contact points for
humanoid robots. Robotics and Autonomous Systems, 61(5):428–442.

[16] Fankhauser, P. (2012). Optimizing Robotic Single Legged Locomotion with Rein-
forcement Learning. PhD thesis, Swiss Federal Institute of Technology Zurich.

[17] Featherstone, R. (2008). Rigid Body Dynamics Algorithms. Springer US, Boston,
MA.

[18] Focchi, M., Barasuol, V., Havoutis, I., Semini, C., Caldwell, D. G., Barasuol,
V., and Buchli, J. (2013). Local Reflex Generation for Obstacle Negotiation
in Quadrupedal Locomotion. International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Machines (CLAWAR), pages 1–8.

[19] Focchi, M., del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D. G.,
and Semini, C. (2017). High-slope terrain locomotion for torque-controlled
quadruped robots. Autonomous Robots, 41(1):259–272.

[20] Fujimoto, Y., Obata, S., and Kawamura, A. (1998). Robust biped walking
with active interaction control between foot and ground. In IEEE International
Conference on Robotics and Automation (ICRA), volume 3.

[21] Full, R. and Koditschek, D. (1999). Templates and anchors: neuromechani-
cal hypotheses of legged locomotion on land. Journal of Experimental Biology,
202(23):3325–3332.

[22] Gabiccini, M., Artoni, A., Pannocchia, G., and Gillis, J. (2015). A Computa-
tional Framework for Environment-Aware Robotic Manipulation Planning. In
International Symposium on Robotics Research (ISRR).

[23] Gaspero, L. D. (2016). Quadprog++: A C++ library for Quadratic Program-
ming which implements the Goldfarb-Idnani active-set dual method.

bibliography 97

[24] Gill, P. E., Murray, W., and Saunders, M. A. (1997). Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM Jouranl on Optimization, 12:979–
1006.

[25] Hansen, N. (2014). CMA-ES: A Function Value Free Second Order Optimiza-
tion Method. In PGMO COPI 2014, Paris, France.

[26] Hauser, K. (2008). Motion Planning for Legged and Humanoid Robots. PhD thesis,
Stanford University.

[27] Hauser, K., Bretl, T., Harada, K., and Latombe, J.-c. (2006). Using motion
primitives in probabilistic sample-based planning for humanoid robots. In In
proceedings of the Workshop on the Algorithmic Foundations of Robotics (WAFR).

[28] Hauser, K. and Latombe, J. C. (2009). Multi-modal Motion Planning in Non-
expansive Spaces. The International Journal of Robotics Research (IJRR), 29(7):897–
915.

[29] Hauser, K. and Ng-Thow-Hing, V. (2010). Randomized multi-modal motion
planning for a humanoid robot manipulation task. The International Journal of
Robotics Research (IJRR), 30(6):678–698.

[30] Hauser, K., Ng-Thow-Hing, V., and Gonzalez-Baños, H. (2011). Multi-modal
motion planning for a humanoid robot manipulation task. The International
Journal of Robotics Research (IJRR).

[31] Havoutis, I., Mastalli, C., Winkler, A., Focchi, M., Caldwell, D. G., and Semini,
C. (under-review). Planning, Perception and Whole-Body Control of Dynamic
Quadrupedal Locomotion. Journal on Autonomous Robots (AURO).

[32] Havoutis, I., Semini, C., and Caldwell, D. G. (2014). Virtual model control for
quadrupedal trunk stabilization. In In Dynamic Walking.

[33] Herdt, A., Diedam, H., Wieber, P.-B., Dimitrov, D., Mombaur, K., and Diehl, M.
(2010). Online Walking Motion Generation with Automatic Footstep Placement.
Advanced Robotics, 24(March 2015):719–737.

[34] Hornung, A., Dornbush, A., Likhachev, M., and Bennewitz, M. (2012). Any-
time search-based footstep planning with suboptimality bounds. In IEEE Inter-
national Conference on Humanoid Robots (IROS).

[35] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W.
(2013). OctoMap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots.

[36] Ijspeert, A., Nakanishi, J., and Schaal, S. (2002). Movement imitation with non-
linear dynamical systems in humanoid robots. In IEEE International Conference
on Robotics and Automation (ICRA), volume 2, pages 1398–1403. IEEE.

98 bibliography

[37] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and
Hirukawa, H. (2003). Biped walking pattern generation by using preview con-
trol of zero-moment point. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1620–1626.

[38] Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., and Schaal, S. (2010a). Fast,
robust quadruped locomotion over challenging terrain. In IEEE international
conference on Robotics and Automation (ICRA).

[39] Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., and Schaal, S. (2010b).
Learning, planning, and control for quadruped locomotion over challenging
terrain. The International Journal of Robotics Research (IJRR), 30(2):236–258.

[40] Kalakrishnan, M., Buchli, J., Pastor, P., and Schaal, S. (2009). Learning locomo-
tion over rough terrain using terrain templates. In IEEE International Conference
on Intelligent Robots and Systems (IROS), pages 167–172.

[41] Kober, J., Bagnell, J. A., and Peters, J. (2009). Reinforcement Learning in
Robotics: A Survey. The International Journal of Robotics Research (IJRR).

[42] Kober, J. and Peters, J. (2010). Policy search for motor primitives in robotics.
Machine Learning, 84(1-2):171–203.

[43] Kolter, J. Z., Abbeel, P., and Ng, A. Y. (2008a). Hierarchical apprenticeship
learning with application to quadruped locomotion. In Neural Information Pro-
cessing Systems (NIPS).

[44] Kolter, J. Z., Kim, Y., and Ng, A. Y. (2009). Stereo vision and terrain modeling
for quadruped robots. In IEEE International conference on Robotics and Automation
(ICRA), pages 3894–3901.

[45] Kolter, J. Z., Rodgers, M. P., and Ng, A. Y. (2008b). A control architecture for
quadruped locomotion over rough terrain. In IEEE International Conference on
Robotics and Automation (ICRA), pages 811–818.

[46] Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F.,
Koolen, T., Marion, P., and Tedrake, R. (2015). Optimization-based locomotion
planning, estimation, and control design for Atlas. Autonomous Robots.

[47] Kuindersma, S., Permenter, F., and Tedrake, R. (2013). An Efficiently Solvable
Quadratic Program for Stabilizing Dynamic Locomotion. CoRR, abs/1311.1839.

[48] Kuindersma, S., Permenter, F., and Tedrake, R. (2014). An Efficiently Solvable
Quadratic Program for Stabilizing Dynamic Locomotion. In International Confer-
ence on Robotics and Automation (ICRA), pages 2589–2594, Hong Kong, China.

[49] Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers.

[50] Levine, S. and Koltun, V. (2014). Learning Complex Neural Network Policies
with Trajectory Optimization. In International Conference on Machine Learning
(ICML), volume 32.

bibliography 99

[51] Likhachev, M., Gordon, G., and Thrun, S. (2004). ARA*: Anytime A* with
Provable Bounds on Sub-Optimality. In Advances in Neural Information Processing
Systems 16: Proceedings of the 2003 Conference (NIPS-03). MIT Press.

[52] Mastalli, C., Focchi, M., Havoutis, I., Radulescu, A., Calinon, S., Buchli, J.,
Caldwell, D. G., and Semini, C. (2017). Trajectory and Foothold Optimization
using Low-Dimensional Models for Rough Terrain Locomotion. In IEEE Inter-
national Conference on Robotics and Automation (ICRA).

[53] Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G., and Semini, C. (2016).
Hierarchical Planning of Dynamic Movements without Scheduled Contact Se-
quences. In IEEE International Conference on Robotics and Automation (ICRA).

[54] Mastalli, C., Winkler, A., Havoutis, I., Caldwell, D. G., and Semini, C. (2015).
On-line and On-board Planning and Perception for Quadrupedal Locomotion.
In IEEE International Conference on Technologies for Practical Robot Applications
(TEPRA).

[55] Mistry, M., Buchli, J., and Schaal, S. (2010). Inverse dynamics control of float-
ing base systems using orthogonal decomposition. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3406–3412. IEEE.

[56] Mordatch, I., de Lasa, M., and Hertzmann, A. (2010). Robust physics-based
locomotion using low-dimensional planning. ACM Transactions on Graphics,
29(4):1.

[57] Mordatch, I., Lowrey, K., Andrew, G., Popovic, Z., and Todorov, E. (2015).
Interactive Control of Diverse Complex Characters with Neural Networks. In
International Conference on Neural Information Processing Systems (NIPS), NIPS-15,
pages 3132–3140, Cambridge, MA, USA. MIT Press.

[58] Mordatch, I., Popović, Z., and Todorov, E. (2012a). Contact-invariant opti-
mization for hand manipulation. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’12, pages 137–144. Eurographics Association.

[59] Mordatch, I. and Todorov, E. (2014). Combining the benefits of function ap-
proximation and trajectory optimization. Robotics: Science and Systems.

[60] Mordatch, I., Todorov, E., and Popović, Z. (2012b). Discovery of complex
behaviors through contact-invariant optimization. ACM Transactions on Graphics,
31(4):1–8.

[61] Mordatch, I., Wang, J. M., Todorov, E., and Koltun, V. (2013). Animating
human lower limbs using contact-invariant optimization. ACM Transactions on
Graphics, 32(6):1–8.

[62] Nakanishi, J., Radulescu, A., and Vijayakumar, S. (2013). Spatio-temporal
optimization of multi-phase movements: dealing with contacts and switching
dynamics. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5100–5107. IEEE.

100 bibliography

[63] Neunert, M., Farshidian, F., Winkler, A. W., and Buchli, J. (2016). Trajectory
Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds.
ArXiv preprint arXiv:1607.04537.

[64] Orin, D. E., Goswami, A., and Lee, S. H. (2013). Centroidal dynamics of a
humanoid robot. Autonomous Robots, 35:161–176.

[65] Ott, C., Roa, M. a., and Hirzinger, G. (2011). Posture and balance control for
biped robots based on contact force optimization. In IEEE International Confer-
ence on Humanoid Robots, pages 26–33.

[66] Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with
policy gradients. Neural networks: the official journal of the International Neural
Network Society, 21(4):682–97.

[67] Peters, J., Vijayakumar, S., and Schaal, S. (2005). Natural Actor-Critic. In
European Conference on Machine Learning (ECML), pages 280–291, Porto, Potugal.

[68] Pippine, J., Hackett, D., and Watson, A. (2011). An Overview of the Defense
Advanced Research Projects Agency’s Learning Locomotion Program. Int. J.
Rob. Res., 30(2):141–144.

[69] Ponton, B., Herzog, A., Schaal, S., and Righetti, L. (2016). A Convex Model
of Momentum Dynamics for Multi-Contact Motion Generation. arXiv preprint
arXiv:1607.08644.

[70] Popovic, M. B., Goswami, A., and Herr, H. (2005). Ground Reference Points
in Legged Locomotion: Definitions, Biological Trajectories and Control Implica-
tions. The International Journal of Robotic Research (IJRR), 24:1013–1032.

[71] Posa, M., Cantu, C., and Tedrake, R. (2013). A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of Robotics
Research (IJRR).

[72] Raghunathan, A. U. and Biegler, L. T. (2005). An Interior Point Method for
Mathematical Programs with Complementarity Constraints (MPCCs). Journal
on Optimization, 15(3):720–750.

[73] Rebula, J. R., Neuhaus, P. D., Bonnlander, B. V., Johnson, M. J., and Pratt,
J. E. (2007). A controller for the littledog quadruped walking on rough terrain.
In IEEE International Conference on Robotics and Automation (ICRA), pages 1467–
1473.

[74] Rusu, R. B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Hu-
man Living Environments. PhD thesis, Computer Science department, Technische
Universitaet Muenchen, Germany.

[75] Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., Focchi, M., Caldwell,
D. G., and Buchli, J. (2015). Towards versatile legged robots through ac-
tive impedance control. The International Journal of Robotics Research (IJRR),
34(7):1003–1020.

bibliography 101

[76] Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., and
Caldwell, D. G. (2011). Design of HyQ – a Hydraulically and Electrically Ac-
tuated Quadruped Robot. Institution of Mechanical Engineers Part I: Journal of
Systems and Control Engineering, 225(6):831–849.

[77] Stewart, D. and Trinkle, J. (2000). An implicit time-stepping scheme for
rigid body dynamics with Coulomb friction. In IEEE International Conference
on Robotics and Automation (ICRA).

[78] Tassa, Y., Erez, T., and Todorov, E. (2012). Synthesis and stabilization of com-
plex behaviors through online trajectory optimization. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[79] Tassa, Y. and Todorov, E. (2010). Stochastic Complementarity for Local Con-
trol of Discontinuous Dynamics. In Robotics: Science and Systems (RSS).

[80] Theodorou, E., Buchli, J., and Schaal, S. (2010). Reinforcement Learning of
Motor Skills in High Dimensions: A Path Integral Approach. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), number 4, pages 2397–2403.

[81] Vernaza, P., Likhachev, M., Bhattacharya, S., Kushleyev, A., and Lee, D. D.
(2009). Search-based planning for a legged robot over rough terrain. In IEEE
International Conference on Robotics and Automation (ICRA).

[82] Vukobratović, M. and Borovac, B. (2004). Zero-moment point: thirty five years
of its life. International Journal of Humanoid Robotics, 1(01):157–173.

[83] Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1):25–57.

[84] Wensing, P. M. and Orin, D. E. (2013). Generation of dynamic humanoid
behaviors through task-space control with conic optimization. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3103–3109. IEEE.

[85] Winkler, A., Havoutis, I., Bazeille, S., Ortiz, J., Focchi, M., Caldwell, D. G.,
and Semini, C. (2014). Path planning with force-based foothold adaptation
and virtual model control for torque controlled quadruped robots. In IEEE
International Conference on Robotics and Automation (ICRA).

[86] Winkler, A., Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G., and Semini,
C. (2015). Planning and Execution of Dynamic Whole-Body Locomotion for a
Hydraulic Quadruped on Challenging Terrain. In IEEE International Conference
on Robotics and Automation (ICRA).

[87] Zucker, M., Bagnell, J. A., Atkeson, C., and Kuffner, J. (2010). An Optimization
Approach to Rough Terrain Locomotion. In IEEE International Conference on
Automation and Robotics (ICRA).

102 bibliography

[88] Zucker, M., Ratliff, N., Dragan, a. D., Pivtoraiko, M., Klingensmith, M., Dellin,
C. M., Bagnell, J. a., and Srinivasa, S. S. (2013). CHOMP: Covariant Hamiltonian
optimization for motion planning. The International Journal of Robotics Research
(IJRR), 32(9-10):1164–1193.

[89] Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J. A., Atkeson, C. G.,
and Kuffner, J. (2011). Optimization and learning for rough terrain legged loco-
motion. The International Journal of Robotics Research (IJRR), 30(2):175–191.

	Dedication
	Abstract
	Declaration
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 Terrain modeling
	1.1.2 Robot modeling
	1.1.3 Motion planning

	1.2 Contributions
	1.2.1 Decoupled motion and foothold planning
	1.2.2 Coupled motion and foothold planning
	1.2.3 Whole-body motion planning with contact forces

	1.3 Thesis Outline

	2 Related Work
	2.1 Overview
	2.2 Legged Locomotion on Rough Terrain
	2.2.1 Overview
	2.2.2 Terrain modeling

	2.3 Planning of Motion Sequences
	2.3.1 Decoupled motion and contact planning
	2.3.2 Coupled motion and contact planning

	2.4 Summary

	3 Robotic System and Perception Module
	3.1 HyQ
	3.1.1 HyL

	3.2 Perception
	3.2.1 Terrain costmap
	3.2.2 Terrain heightmap

	4 Decoupled Motion and Foothold Planning
	4.1 Foothold Planning
	4.1.1 Body action planning
	4.1.2 Local foothold planning

	4.2 Motion Planning
	4.2.1 Dynamic stability
	4.2.2 Trunk attitude and swing-leg trajectory

	4.3 Control and Execution
	4.3.1 Virtual Model
	4.3.2 Floating- Base Inverse Dynamics

	4.4 Results
	4.4.1 Evaluation of path and foothold planning
	4.4.2 Trials
	4.4.3 Evaluation of whole-body motion generation and execution

	4.5 Discussion
	4.6 Conclusion

	5 Coupled Motion and Foothold Planning
	5.1 Trajectory Generation
	5.1.1 Preview model
	5.1.2 Preview schedule

	5.2 Trajectory Optimization
	5.2.1 Receding horizon planning
	5.2.2 Cost functions
	5.2.3 Soft-constraints

	5.3 Control and Execution
	5.4 Results
	5.4.1 Dynamic attitude modulation
	5.4.2 Locomotion on challenging terrain

	5.5 Discussion
	5.6 Conclusion

	6 Whole-body Motion Planning with Contact Forces
	6.1 Hierarchical Planning
	6.1.1 Generating dynamic motions
	6.1.2 Contact model

	6.2 Trajectory Optimization
	6.2.1 Centroidal trajectory optimization
	6.2.2 Full trajectory optimization

	6.3 Results
	6.3.1 Motion through dynamical relaxation
	6.3.2 Reaching goals that are kinematically not feasible
	6.3.3 Discovery of new contacts

	6.4 Discussion
	6.5 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future work

	Bibliography

