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Load-bearing Assessment for Safe Locomotion of Quadruped Robots

on Collapsing Terrain

Vivian S. Medeiros, Giovanni B. Dessy, Thiago Boaventura, Marcelo Becker, Claudio Semini,
and Victor Barasuol

Abstract—Collapsing terrains, often present in search and
rescue missions or planetary exploration, pose significant chal-
lenges for quadruped robots. This paper introduces a robust
locomotion framework for safe navigation over unstable surfaces
by integrating terrain probing, load-bearing analysis, motion
planning, and control strategies. Unlike traditional methods that
rely on specialized sensors or external terrain mapping alone, our
approach leverages joint measurements to assess terrain stability
without hardware modifications. A Model Predictive Control
(MPC) system optimizes robot motion, balancing stability and
probing constraints, while a state machine coordinates terrain
probing actions, enabling the robot to detect collapsible regions
and dynamically adjust its footholds. Experimental results on
custom-made collapsing platforms and rocky terrains demon-
strate the framework’s ability to traverse collapsing terrain while
maintaining stability and prioritizing safety.

Index Terms—Quadruped robots, terrain probing, collapsing
terrain, model predictive control

I. INTRODUCTION

N recent years, the deployment of quadruped robots for

real-world applications has become a reality, and several
commercial robots are already available on the market. Sig-
nificant research efforts in this field are now directed toward
making the legged locomotion system more robust to different
challenging scenarios by leveraging perceptive and tactile
information about the environment.

Navigating challenging terrains is critical in planetary ex-
ploration, remote inspections, or construction sites, where
unstable or collapsing surfaces are often encountered and pose
significant risks [1], [2]. To mitigate these risks, a safety
assessment of the terrain can be performed by analyzing the
terrain map generated by a perception system to identify
and avoid potentially unsafe paths [3]-[5]. Machine learn-
ing techniques often segment or classify terrain types from
camera images to detect unstable regions [6], [7]. However,
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Fig. 1: On the top left, the Aliengo robot traverses a customized
collapsing terrain with moving planks; on the top right, a terrain
with collapsing rocks. On the bottom left, the selection of probing
positions is aided by the terrain map (orange square); on the bottom
right, the contact force envelope optimized for the probing leg.

using exteroceptive sensing alone for traversability analysis,
especially cameras, can be degraded due to poor lighting, re-
flective surfaces, and sensor occlusion [8]. Moreover, because
exteroceptive sensors only provide surface-level observations,
terrain stability can only be estimated indirectly, often relying
on visual appearance rather than physical interaction.

For this reason, several previous works have included pro-
prioceptive information for traversability estimation to increase
safety in legged locomotion. These approaches combine inter-
nal sensing with visual or depth data to enhance terrain un-
derstanding, using techniques such as supervised learning [9],
terrain mapping under vegetation [10], multimodal sensing
frameworks integrating semantic labels and physical property
estimation [11], and reinforcement learning-based control [12].

While these approaches enhance safety by incorporating
physical interaction with the environment, they often focus on
surface geometry and assume visually flat terrain is structurally
sound. However, even a terrain that would seem safe for
foot placement may not support a contact force without
collapsing. An example scenario is extra-planetary terrain,
often composed of loose soil and sliding rocks. In general,
terrain probing provides an effective way to analyze terrain
stability [13], which consists of applying a certain force to
the terrain before stepping on it to ensure it can support
the required forces for locomotion. However, current terrain-
probing approaches often rely on either the use of a robotic
arm for probing [11], [14] or the installation of special foot
sensors, such as force/torque sensors and IMUs, which can
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be expensive and require changes in the design of the robot’s
leg [13], [15], [16]. Previous works utilized, e.g., haptic explo-
ration and unsupervised learning for foothold robustness [13];
classified granular terrain through impact-induced oscillations
measured by foot-mounted force/torque and IMU sensors [16];
and combined probing with sensor-equipped arms and vision
data to create traversability maps [14].

A few approaches have studied legged locomotion in col-
lapsing terrains without using specific force sensors. Haddeler
et al. [17] proposed a real-time digital double framework that
uses discrepancies between a legged robot and its synchro-
nized digital twin to predict terrain collapsibility. However, the
approach only aims to estimate collapse, and no reactive action
has been implemented or tested to prevent falls. Conversely,
Tennakoon et al. [18] integrate terrain probing into the walking
cycle of a hexapod robot, allowing it to test footholds before
fully committing to a step. The approach was validated on
terrains with styrofoam and hidden gaps.

A. Contributions

Overall, most previous studies in traversability for legged
locomotion either do not consider the load-bearing capabilities
of the terrain [9]-[12], or assess terrain collapsibility by using
specially designed foot sensors [13], [15], [16] or robotic
arms [11], [14]. This paper proposes a legged locomotion
system robust to collapsing terrains, integrating perception,
planning, and control mechanisms to ensure safe navigation.
Compared to [18], our approach can traverse more challenging
terrains and allows the use of an elevation map of the terrain
for foothold planning. The proposed framework also shows
improved speed and stability thanks to the aid of MPC.
Furthermore, one of the challenges of terrain probing with
quadruped robots is the reduced support polygon for base
stabilization during probing, which is a less concerning issue
for hexapod robots due to the higher number of legs.

To summarize, the main contributions of this paper are:

« A motion planning strategy that assesses the terrain load-
bearing capabilities by computing the GRF envelope for
each leg and probing the terrain accordingly to find safe
foothold positions on collapsible terrain. Unlike prior
approaches that rely on fixed probing forces, robotic
arms, or foot-mounted sensors, the proposed method
derives and applies the required probing forces directly
from trajectory optimization and joint torque/position
measurements, without requiring specialized hardware.

o An MPC formulation designed to track the desired motion
while balancing support polygon and probing constraints,
prioritizing stability;

o Experimental validation in rocky terrain and seamlessly
flat collapsing terrain with and without terrain mapping.

II. LocOMOTION FRAMEWORK FOR LOAD-BEARING
ASSESSMENT IN COLLAPSING TERRAIN

Figure 2 provides an overview of the proposed locomotion
framework. Inspired by the strategy humans use when navi-
gating potentially unsafe terrain, the robot probes the terrain
before stepping on it to ensure it can support the load of

its movement. During this process, the robot applies force to
planned foothold positions while stabilizing its base using the
remaining three legs.

The magnitude of the probing force at each foothold is
computed after optimizing the robot’s motion over a full stride
and determining the maximum GRF envelope for the probing
leg. By avoiding the use of a fixed probing force, this adaptive
approach prevents the use of under- or overestimated contact
forces, thereby improving energy consumption. If a terrain col-
lapse is detected during contact, the robot quickly removes the
foot from the unsafe location, selects an alternative foothold,
and repeats the process until a stable position is identified,
allowing safe progression.

The selection of probing footholds, collapse detection, and
coordination of probing actions are managed by a state ma-
chine. Motion planning is handled by an MPC that com-
putes the robot trajectory while enforcing probing-specific
constraints such as support polygon and force limits. The use
of the MPC allows the system to handle conflicting objectives
(stability vs. terrain probing) by weighting them appropriately
in the cost function, in addition to improving robustness
against model uncertainties.

The MPC trajectories are tracked by a whole-body con-
troller (WBC) based on virtual Cartesian impedance [19].
The WBC computes the joint actuation torques required to
track a desired wrench at the robot center of mass (CoM),
derived from the desired trajectories. Additionally, the WBC
compensates for the external disturbances estimated by a
momentum observer [8].

A. Terrain Mapping and Visual Foothold Adaptation

To improve efficiency, a robot-centric 2.5D elevation map
of the terrain [3] can be used to guide the selection of probing
points and eliminate visible unsafe regions. Given a set of
target foothold positions, a vision-based algorithm analyzes
the surrounding grid cells on the map, identifying the closest
safe region. The method used for the terrain classification is
the Visual Foothold Adaptation (VFA) [4], which classifies
the safety of a grid cell based on several heuristic criteria,
including terrain roughness, leg collision, and map uncertainty.

Figure 3 depicts the output of the VFA, which is called the
foothold heightmap, a 15x15 square and discrete representa-
tion of the terrain where each pixel describes the height of
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Fig. 2: A simplified overview of the proposed framework.
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Fig. 3: Safe regions for foot placement computed by the VFA
algorithm for a scenario with a step. The white spheres indicate
the regions of the foothold heightmap safe for foot placement, and
the black spheres indicate the unsafe regions. They are enclosed by
2D polygons (orange, blue, yellow, and purple), which are used as
constraints in the TO.

the terrain. Inside the foothold heightmap, the safe foothold
positions are indicated with a white sphere, while the unsafe
footholds are marked with a black sphere. The VFA also
returns the optimal position for foot placement, which is the
safe point closest to the desired touch-down position of the
leg. From the VFA output, it is possible to get the boundaries
of the safe region around the target foothold and compute
the corresponding 2D convex polygon, which is added as a
constraint for foothold placement in the TO.

B. Trajectory Optimization

A key component of the proposed approach is the op-
timization of the robot’s trajectory for a full stride before
each probing step to determine the GRF envelope at the next
foothold. The optimization accounts for the movement of the
probing leg and the subsequent three legs, all of which affect
the forces required at the probing location.

The optimization problem is formulated as:

t
mini(n}ize / L(x(t),u(t),t)dt, (1a)
u(t t;
subject to x(t;) = x4, (1b)
x = f(x,u,t), (1c)
g(xa u, t) =0, (1d)
h(x,u,t) > 0, (1le)

where x(t) is the robot state, u(t) is the control input, x;
is the initial robot state at time ?;, ¢y is the final time, and
L(x(t),u(t),t) is the cost function. The goal is to find the
control action that minimizes this cost subject to the initial
condition (1b), system dynamics (lc), and equality (1d) and
inequality (le) constraints.

1) Inputs: the TO receives as input: the robot’s current
state x;; the target position and orientation for the robot’s
base; the reference touch-down positions and the convex safe
regions around them, both previously computed by the VFA;
the elevation map of the terrain; and the index of the current
probing leg to define the contact sequence.

2) System Dynamics: the robot dynamics is represented by
a Centroidal Dynamics (CD) model [20]. The state vector
is defined as x = (heom, Qb, q;) € R'?T™ and the input
vector is u = (£, ..., £, , @;) € R3"T" where heop, is

Cne

the centroidal momentum, qp is base pose (position and
orientation), q; are the joint positions, f., are the contact
forces and q; are the joint velocities. The base position and
the contact forces are expressed in the world frame, and the
orientation of the base is expressed using ZYX-Euler Angles.

3) Reference generation: the reference trajectory for the
robot’s base is computed by a linear interpolation between
the initial and final positions. Swing reference trajectories
are computed between the current and reference touch-down
positions as a combination of two quintic splines based on
the parameters for the swing motion, such as lift-off velocity,
touch-down velocity, and step height. The gait pattern for the
locomotion is the crawl, with one leg moving at a time, and the
total duration of the stride is 4.0 s. Inverse kinematics compute
joint position and velocity references corresponding to the
desired base and feet trajectories. The reference centroidal
momentum is set to zero, and the reference for contact forces
is such that it distributes the robot’s weight equally to all legs
in contact.

4) Cost function: it is defined by the quadratic cost related
to tracking the reference states and inputs for the trajectory:

1 2 1 2
L(X7uat) :i HX - XdHQ + 5 ||11 - ud||R+

1 , 1 ) 2
B} Ipi — Pi,rewap T3 Vi = Virerllw, -

where R, Q, W, and W, are positive definite weighting
matrices. x4 is the reference state, uy is the reference for the
input vector, and p; and v; are the positions and velocities for
the feet, respectively.

5) Equality and Inequality Constraints: for stance legs, the
end-effector velocity in the world frame is constrained to zero
and a friction cone constraint, ¥, is enforced defined by the
terrain surface normal N and the friction coefficient, assumed
to be p. = 0.5. For swing legs, zero contact force is enforced,
and a reference velocity trajectory v;,.y is constrained in
the normal direction of the terrain, allowing foot placement
optimization in the tangential direction.

if i € G,

Vi = 0’ fci € ?(ﬁ7 ,u’C)) (3)
Vi’ﬁzvi,ref; 1f1¢€,

f., =0,
where v; is the end-effector velocity in the world frame, and
C is the set of all legs in contact at a given time.
The foot placement constraint is formulated as a set of
linear inequality constraints with respect to the touch-down
foot positions p;:

A;-p;,+b; >0, 4

where A; € R**3 and b; € R* define 4 half-space constraints
in 3D. Each half-space is defined by an edge of the 2D polygon
from the VFA and the surface normal of the corresponding
convex region. Other inequality constraints are joint limits
(position and velocity) and contact force limits. The inequality
constraints are handled as relaxed log-barrier functions in the
cost function in the same way as proposed in [21].

In blind locomotion, the VFA is completely disabled. In
this case, no convex safe regions are defined around the target
touch-down positions, and the trajectory optimization (TO)
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outputs probing footholds that coincide with the initial targets.
The same applies when VFA is enabled but no map is available
(e.g., missing sensor data), where the “safe region” defaults to
the entire plane.

6) GRF envelope: The result from the TO is the whole-
body trajectory and control input for the robot’s next motion
stride. From there, we can extract the VFA-adapted touch-
down positions for all legs and the GRF envelope at the next
probing position. Figure 4(a) shows the resulting motion for
a flat terrain in simulation. The GRF envelope for probing
is obtained by computing the maximum and minimum force
in each direction (x, y, and z) during the stance phase at
the touch-down position of the probing foot, as indicated in
Fig. 4(b).

C. Perceptive MPC

Once the TO provides the foot contact positions and forces,
an MPC performs real-time motion planning, enabling contin-
uous adjustments based on real-time perception and feedback.
At each iteration of the MPC, the optimization problem de-
fined in (1) is solved using the most recent state measurement
for a 1.0 s horizon. The optimized control policy is applied to
the robot until the next MPC update occurs.

The MPC formulation used in this work is based
on [21]. The main differences are: first, the VFA [4]
was used for the foothold placement constraints instead of
elevation_mapping_cupy [22]; second, the input loop-
shaping, collision avoidance, and gait adaptations features
were not used; and, third, the reference foothold positions are
not computed via Raibert heuristic, instead they are defined
from the TO. The system dynamics, costs, and constraints
remain the same as those for the TO (1), but additional
constraints are included to handle terrain probing.

The probing procedure involves applying each force of
the optimized GRF envelope on the probing position for
100 ms each. During probing, the robot must remain stable
to allow quick recovery in case of a collapse. These tasks
are accomplished by including two new constraints to the
MPC formulation: the support polygon and the probing force

f, f,
f, £, 16

T

0 1
0.5 1 15
t[s]
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Fig. 4: Trajectory optimization: (a) the optimized feet trajectories are
represented with colored lines: yellow, blue, purple, and orange. The
probing leg is the right-front, and the GRF envelope is indicated by
the orange force vectors on the target foot position; (b) the maximum
and minimum forces are marked in red, green, and blue, for the x,
y, and z-direction, respectively. These forces together compose the
GRF envelope. To prevent slippage on the legs, all forces must be
contained inside the friction cone, indicated in light red in (a).

constraints. The first one is activated from the moment the
probing leg lifts off until the probing of that leg is complete.
This helps ensure that the robot is in a statically stable
condition until a safe position is achieved. On the other hand,
the probing force constraint is only active during the probing
phase and imposes the contact forces on a given foot to track
a desired force profile.

Figure 5 shows the probing being performed in simulation.
Note how the CoM projection (small blue sphere) lies within
the limits of the support polygon. Since the probing strategy
involves a constant statically stable condition, the support
polygon constraint neglects eventual accelerations of the base,
and a set of linear inequality constraints gives it:

A(qgj)-ryY+bs—a>0, 5)

where A, and b, define the linear constraints as functions
of the current foothold positions, obtained through forward
kinematics from the joint positions q;; ry"? is the 2D CoM
position projected in the polygon in the direction of gravity;
and « is a safety margin which offsets the support polygon
inwards to increase robustness. In case of probing, all the feet
are in contact with the terrain, and it should be clear that the
concept of support polygon is being extended to include a
condition in which all four feet are in the support phase, but
the support polygon is defined only by the legs that are not
probing the terrain. The probing force constraint is an equality
constraint given by

f; =7

7 7

ifi € C, (6)

where f? is the desired probing force. This constraint is only
activated during the stance phase of the probing foot.

Both the support polygon and the probing force constraints
are included in the MPC formulation as soft constraints
by adding a penalty to the cost function as a relaxed log-
barrier function. As these constraints are opposing, using soft
constraints gives flexibility to the formulation for avoiding
problems in convergence. Typically, to apply a large force to a
foothold position, the base should be moved closer to the foot
itself, but the support polygon constraint prevents this from

Fig. 5: Terrain probing: the blue spheres are the next probing
footholds, and the red spheres indicate the alternative probing po-
sitions for the current probing leg (right-hind). The orange arrows
indicate the GRF envelope computed by the optimization. The limits
of the support polygon constraint are indicated with the red polygon.
The smaller blue sphere is the projection of the robot’s CoM on the
terrain in the direction of gravity. The green spheres are the probing-
around positions to ensure safety in the region around the probing
point. The contact forces are indicated with the green arrows.
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happening. As a result, contact forces are distributed primarily
between the two legs forming a diagonal with the probing foot,
leaving the other two with low contact forces (Fig. 5). The
parameters of each constraint were adjusted to prioritize the
support polygon constraint for safety in the event of collapse.
However, this means that the probing force might be slightly
lower than required [1]. Table I shows the parameters used for
the MPC inequality constraints. The parameters for the soft
inequality constraints were tuned as recommended in [23].
Their work concluded that the barrier function weighting
parameter ¢ mainly influences the robot’s performance, while
the relaxation parameter § primarily controls the tolerance
for constraint violations. The smaller the ¢, the closer the
constraint is to a hard constraint.

Constraint \ I \ 1)
Friction cone constraint 10.0 0.1
Foot placement constraint 0.1 0.005

Joint positions limits 0.1 0.01
Joint velocity limits 0.1 0.1
Contact force limits 1.0 0.5
Support polygon constraint | 100.0 | 0.02
Probing force constraint 0.7 0.7

TABLE I: Barrier function parameters for the inequality con-
straints in the MPC with the probing-related constraints.

D. State Machine

A key component of the system is a state machine that
manages the probing actions for each leg, detailed in Fig. 6.
The main steps of the state machine are described below.

1) PRE_OPT: The first step is to define the target state for
the robot, computed as 10 cm (25% of leg height) forward in
the desired direction of motion, defaulting to the x-direction
in base frame. Subsequently, the reference foothold positions
are defined based on forward kinematics, considering the
target base position at a nominal joint configuration. The base
height and orientation (pitch and roll) are adapted to the local
surface normal, which is constantly computed by fitting a
plane through the most recent foot contact positions [8], [24].

2) SEND: Once the target state and the reference footholds
are defined, they are given as input to the VFA, which
computes the foothold heightmaps and the closest safe position
for foothold placement, as described in Sec. II-A. When
used, visual-based terrain mapping only accelerates foothold
selection, while probing guarantees load-bearing safety of the
terrain.

3) OPT: In this step, a TO that considers the VFA terrain
information for foot placement is performed, computing the
ideal probing position and GRF envelope required for that
point to withstand the robot’s motion. The output is not only
the maximum force magnitude, but also its direction, which
increases the chances of collapse detection during probing.

After the optimization, the terrain-adapted probing position
and the GRF envelope are provided as input to the MPC, which
runs continuously at 100 Hz in parallel to the state machine.
Before moving the leg to the probing point, the current foot

IDLE I“
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P - Define target state
- Define footholds positions
and alternatives
> SEND
- Update the foothold position
; based on the attemptldx .
- Send reference footholds to VFA [ %

+ Waits 1.0 second

OPT

- Get local estimated terrain
- Get VFA patches
- Optimize trajectory for one stride
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- attemptldx = 0

- probingLeg = 0

Fig. 6: State machine description for the stepping-probing strategy
that enables legged locomotion in potentially collapsing terrain.

positions are stored as the latest safe positions on the terrain.
Each safe foothold is only updated after a successful probing.
This is important to enable the robot to return to a safe
condition if all attempts to find a non-collapsible foothold fail.
Furthermore, three alternative foothold positions, each spaced
7.5 cm apart!, are defined in front of the probing position in
case of collapse, indicated with the red spheres in Fig. 5.

4) MOVE and DETECT_CONTACT: The next step is to
move the foot to the respective probing position (MOVE).
First, the robot moves its base into the support polygon formed
by the other three legs. The leg starts the swing trajectory
once the base reaches a safe position. As soon as the foot
lifts off from the ground, the algorithm triggers a state that
waits for a contact detection (DETECT_CONTACT). If the
contact is supposed to happen, but no contact is detected, the
foot continues descending until contact is measured or the
maximum leg extension is reached. If, on the other hand,
an early contact is detected, the probing process starts in
the detected contact position. This logic is particularly useful

IThis parameter was defined based on the size of the robot, specifically
the distance between front and hind legs, and might require adjustments for
larger or smaller robots.
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when performing the load-bearing assessment blindly, without
terrain information. However, drifts in the state estimation
and the elevation mapping make this logic useful even when
exteroceptive information is available. Furthermore, the foot
position at the moment of contact is essential for collapse
detection during probing.

Considering that the robot is in quasi-static condition during
the load-bearing assessment, the force estimate at the contact
point can be obtained by the full rigid-body dynamics of the
quadruped robot [25] as:

f;=—(I7(@) " (n —hi(qi i g)) (7)

where J}(q;) is the Jacobian transpose from joint to Cartesian
space, h;(q;,q;,g) is the vector of centrifugal, Coriolis and
gravity torques for leg 7, and 7; are the joint torques for that
leg. Contact is detected if the normal component of the contact
force is above a predefined threshold.

Moreover, the foot is considered in contact only after
three successive positive contact measurements, which helps
prevent false contacts from noise data or oscillations that arise
naturally from the impact with the terrain. In case of leg over-
extension and no contact detection, the leg is kept in the air
until the next alternative probing position is computed. If a
contact is detected, the terrain probing is initiated again.

5) PROBE: In this step, the support polygon and probing
constraints are enabled in the MPC, as described in Sec. II-C.
If all the forces in the envelope are applied to the terrain and
no collapse is detected, an additional measure of safety is
employed to make sure that not only is the foothold position
stable, but also the region around it (PROBE_AROUND). For
that, the robot also probes four points around the original
foothold (front-back-left-right) in a 2.5 cm radius, which is
determined by the radius of the robot’s footpad. The terrain is
considered safe only if no collapse is detected at all probing
positions. This process is repeated for the next leg until all
the legs have probed the terrain and the robot has completed
a full stride cycle. This continues until the user stops the
probing state machine. One downside of this process is that
the robot moves at a much slower velocity to probe all points
in the terrain before moving. Ideally, potentially dangerous
or collapsible terrain regions could be predetermined so that
the robot can apply the stepping-probing strategy only when
necessary.

Collapse is detected based on the displacement of the
foot during force probing. The foot position is stored after
the leg moves to the probing point (MOVE) and contact
is detected (DETECT_CONTACT). If, during probing, the
difference between the current foot position and the stored
one is higher than 3 cm?, terrain collapse is assumed and the
leg is removed from the probing point and kept elevated until
a new probing point has been chosen by the TO (LEG_UP).
For the LEG_UP motion, a new reference state for the robot
is provided to the MPC in which the robot base is positioned
inside the support polygon, and the probing leg is elevated at
a fixed position below the hip.

>This parameter was defined empirically based on collapsing tests in
different terrains, including foam, paper, and moving rocks.

In a condition where none of the alternative probing points
in the vicinity of the desired foot positions are safe, the leg
returns to the previous safe position (RETURN_SAFE), and
the state machine is stopped until the user or a high-level path
planning system provides a new direction of motion.

ITI. RESULTS
A. Implementation

The entire framework was implemented in C++, and ROS
was used to communicate between the MPC and the WBC.
For both the TO and the MPC, the optimal control problem is
solved using a multiple shooting approach based on Sequential
Quadratic Programming (SQP). The toolbox for solving the
optimal control problem is OCS2 [26]. The time horizon for
the MPC was set as 1.0 s, with a sampling time of 0.015 s,
and the MPC frequency was set to 100 Hz, which was fast
enough to recompute the motion plans and react to collapse
detections. On average, the computational cost for solving the
TO was 100 ms for optimizing the entire motion. The WBC
runs at 250 Hz, and the desired contact force computed by
the MPC is provided as a bias for the computation of the joint
actuation torques.

B. Experimental Results

The proposed approach was validated with simulations
and experimental tests in collapsing terrain with and without
mapping information®. Two main scenarios were tested: a
custom-made platform with tilting planks and a terrain with
unstable and collapsing rocks. The custom-made terrain is
composed of wooden planks attached to a central beam. Each
plank is 200x 250 mm, and the terrain is composed of 4 rows
each, with a total length of 1 m. A spring is attached at the
end of each plank, so the plank acts as a lever when a force is
applied. This is an adequate scenario for testing because the
VFA would not help in avoiding unsafe parts of the terrain,
since the planks are arranged uniformly and close enough to
each other that the map hardly detects any gap between them,
as shown in Fig. 7.

1) Terrain with tilting planks: The robot could cross the
collapsible terrain both in blind locomotion and with the VFA
information from the elevation mapping. The traversal was
concluded in 6.5 minutes, on average4, while maintaining
the expected stability along the trajectory. Figure 8(a) shows

3Video:https://www.youtube.com/watch?v=uTiwrigGOVU
4Average computed from 5 complete traversals for the robot starting at
different initial positions.

Fig. 7: On the left, the custom-made collapsing terrain; on the right,
the corresponding elevation map shows a seemingly stable and flat
surface.
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snapshots of the traversal. Snapshots 1 and 2 show the
collapse reaction: in 1, the robot starts probing the terrain
on the collapsible part of the plank, causing it to move;
and in 2, the collapse is detected and the robot immediately
removes the foot from the ground while maintaining the
base in a stable condition. Snapshots 3 and 4 show that the
robot could find stable foothold positions along the terrain
to support its locomotion. As expected, most safe positions
were encountered on top of the beams that hold the planks,
as shown in snapshot 3. However, due to the knowledge of
the terrain’s collapse limit, the robot can also balance itself
and keep stable in the transition area in the vicinity of the
beam (snapshot 4). Figure 8(b) shows a condition where the
probing-around strategy prevented the foot from being placed
dangerously close to the edge of the plank, which could
have caused the robot to fall. When the robot probed the
point forward to the original probing foothold, a collapse was
detected, and a new foothold was chosen. Lastly, Figure 8(c)
shows the baseline approach, which relies solely on the MPC
without probing constraints, failing to traverse the terrain as
the robot’s legs became trapped beneath the planks. This
comparison demonstrates that an MPC-only controller, even
though effective on many rough terrains, fails in collapsing
scenarios where dynamic recovery is not possible, whereas
the proposed framework succeeds.

2) Terrain probing: The core part of the proposed approach
is probing the terrain with the actual required GRF envelope.
However, a trade-off exists between GRF tracking and the
robot’s stability. Figure 9 shows a comparison of the contact
forces computed by the MPC during leg probing in non-
collapsible terrain without the support polygon constraint (top
row) and with it (bottom row). Without the support polygon
constraint, the MPC can fully track the optimized GRF enve-
lope; however, the robot’s CoM projection can move outside
the polygon defined by the non-probing legs, which would
cause failure to react to terrain collapse. Adding the support
polygon constraint ensures safety by maintaining the CoM
within a stable region, but it increases the tracking error of the
GRF envelope during probing. Nonetheless, the experiments
confirm that the applied probing force remains sufficient to
detect collapsible terrain and prevent falls. Furthermore, the

Fig. 8: (a) Snapshots of the robot successfully traversing the collaps-
ing terrain with tilting planks; (b) Probing around strategy prevented
the robot’s foot from being placed in a region too close to an edge;
(c) Fail in traversal using the baseline MPC approach.
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Fig. 9: Comparison plots between the optimized GRF envelope, in
orange, and the optimized contact force generated by the MPC and
provided as input to the WBC (in blue). On the right, the polygon
formed by the non-probing legs (in dark blue) and the robot’s CoM
projection (dark red dots). The first row shows the results without
the support polygon constraint during probing, and the second row
shows the results with it.

f IN]

f,[N] ‘—MPC
= ‘, - -actual

GRF eny

76.5
t[s]

70.5 71
tIs]

70.5 71 70
t[s]

Fig. 10: Comparison plots between the optimized GRF envelope, in
orange, the optimized contact force by the MPC, in blue, and the
actual force obtained from joint torque measurements from the real
robot, in dashed red.

WBC was able to track the desired contact forces successfully,
as shown in Fig. 10. One approach tested to reduce the GRF
envelope tracking error while preserving the necessary support
polygon constraint was reducing the base pose tracking gains
during the probing phase. This would allow higher angular
acceleration of the base, enabling the desired contact force to
be applied at the foot while keeping the CoM projection within
the support polygon. However, the resulting high acceleration
references caused excessive motor current and power limits on
the real hardware, a limitation of the experimental platform
used in this study.

3) Terrain with missing planks: Figure 11 shows a scenario
in which the VFA could help with foothold placement before
probing by identifying unsafe terrain regions. A few planks
were removed from the custom-made collapsible terrain so
the VFA could locate them as not traversable and guide the
foothold selection. Note how probing is still necessary since
the safe region selected by the VFA is still collapsible.

4) Terrain with loose rocks: One important collapsing
scenario encountered in real-world applications is a terrain
with loose rocks and bricks. Figure 12 shows the robot
traversing such terrain in the most challenging condition, blind
locomotion. Since the stones are loose, the robot probes several
positions until it finds a safe one and keeps itself balanced on
the rocks throughout the path.

IV. CONCLUSIONS

This paper presented a novel framework for safe quadruped
robot locomotion on collapsing terrains, addressing the chal-
lenges of terrain stability. By integrating trajectory optimiza-
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Fig. 11: The robot traverses the terrain with some planks removed.
On the right, it is visible that the hole in the terrain is marked as
unsafe by the VFA, and the foothold selection (blue square) was on
the traversable part of the terrain, outside the hole.

Fig. 12: The robot successfully traverses loose rock terrain.

tion and MPC, the proposed approach assesses the load-
bearing capacity of the terrain by computing the GRF envelope
for each leg and probing the surface to find safe foothold
positions on collapsible terrain without requiring specialized
hardware. A state machine coordinates probing actions and
collapse recovery, ensuring continuous operation even in un-
predictable environments. Experimental results demonstrated
successful traversal of collapsing platforms and rocky terrains,
with and without the terrain elevation map. The framework
improved stability, reduced the risk of falls, and optimized
locomotion performance by incorporating both proprioceptive
and perceptive feedback.

Future work will explore scaling the method to higher-
speed locomotion and leveraging visual semantics to reduce
unnecessary probing. Unlike the current VFA, which relies
on geometric heuristics from elevation maps, semantic clas-
sification (e.g., rock, sand, vegetation) could help filter out
obviously unsafe regions and prioritize where probing is most
valuable. Probing, however, remains essential for load-bearing
verification in rocky or visually flat terrains, where visual cues
alone are insufficient.

REFERENCES

[11 A. Dettmann, S. Planthaber, V. Bargsten, R. Dominguez, G. Cerilli,
M. Marchitto, G. Fink, M. Focchi, V. Barasuol, C. Semini, and R. Marc,
“Towards a generic navigation and locomotion control system for legged
space exploration,” in Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA), 2022.

[2] H. Kolvenbach, P. Arm, E. Hampp, A. Dietsche, V. Bickel, B. Sun,
C. Meyer, and M. Hutter, “Traversing steep and granular martian analog
slopes with a dynamic quadrupedal robot,” Field Robotics, vol. 2, no. 30,
p. 910-939, 2022.

[3] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping
for mobile robots with uncertain localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3019-3026, Oct 2018.

[4] O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi,
M. Pontil, D. G. Caldwell, and C. Semini, “Fast and continuous foothold
adaptation for dynamic locomotion through cnns,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2140-2147, 2019.

[5] S. Fahmi, V. Barasuol, D. Esteban, O. Villarreal, and C. Semini,
“Vital: Vision-based terrain-aware locomotion for legged robots,” IEEE
Transactions on Robotics, pp. 1-20, 2022.

[6] M. E Ginting, S.-K. Kim, O. Peltzer, J. Ott, S. Jung, M. J. Kochenderfer,
and A.-a. Agha-mohammadi, “Safe and efficient navigation in extreme
environments using semantic belief graphs,” in 2023 IEEE Int. Conf. on
Robotics and Automation (ICRA), 2023, pp. 5653-5658.

[71 H. Zhang et al., “Traversability-aware legged navigation by learning
from real-world visual data,” 2024. [Online]. Available: https:
/larxiv.org/abs/2410.10621

[8] M. Focchi, R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G.
Caldwell, and C. Semini, Heuristic Planning for Rough Terrain Loco-
motion in Presence of External Disturbances and Variable Perception
Quality. Cham: Springer International Publishing, 2020, pp. 165-209.

[9] M. Elnoor, A. J. Sathyamoorthy, K. Weerakoon, and D. Manocha,
“Pronav: Proprioceptive traversability estimation for legged robot navi-
gation in outdoor environments,” IEEE Robotics and Automation Letters,
vol. 9, no. 8, pp. 7190-7197, 2024.

[10] T. Homberger, L. Wellhausen, P. Fankhauser, and M. Hutter, “Support
surface estimation for legged robots,” in 2019 Int. Conf. on Robotics
and Automation (ICRA), 2019, pp. 8470-8476.

[11] P. Ewen, H. Chen, Y. Chen, A. Li, A. Bagali, G. Gunjal, and R. Vasude-
van, “You’ve got to feel it to believe it: Multi-modal bayesian inference
for semantic and property prediction,” Robotics: Science and Systems,
2024.

[12] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[13] M. A. Hoepflinger, M. Hutter, C. Gehring, M. Bloesch, and R. Siegwart,
“Unsupervised identification and prediction of foothold robustness,” in
2013 IEEE Int. Conf. on Robotics and Automation. 1EEE, pp. 3293—
3298.

[14] G. Haddeler, M. Y. M. Chuah, Y. You, J. Chan, A. H. Adiwahono, W. Y.
Yau, and C.-M. Chew, “Traversability analysis with vision and terrain
probing for safe legged robot navigation,” Frontiers in Robotics and Al,
vol. 9, p. 887910, 2022.

[15] K. Tokuda, T. Toda, Y. Koji, M. Konyo, S. Tadokoro, and P. Alain,
“Estimation of fragile ground by foot pressure sensor of legged robot,”
in Proceedings 2003 IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics (AIM 2003). 1EEE, pp. 447-453.

[16] H. Kolvenbach, C. Birtschi, L. Wellhausen, R. Grandia, and M. Hutter,
“Haptic inspection of planetary soils with legged robots,” IEEE Robotics
and Automation Letters, vol. 4, no. 2, pp. 1626-1632, 2019.

[17] G. Haddeler, H. P. Palanivelu, Y. C. Ng, F. Colonnier, A. H. Adiwahono,
Z. Li, C-M. Chew, and M. Y. Chuah, “Real-time digital double
framework to predict collapsible terrains for legged robots,” in 2022
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2022,
pp- 10387-10394.

[18] E. Tennakoon, T. Peynot, J. Roberts, and N. Kottege, “Probe-before-step
walking strategy for multi-legged robots on terrain with risk of collapse,”
in 2020 IEEE Int. Conf. on Robotics and Automation (ICRA). 1EEE,
pp- 5530-5536.

[19] S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, “Passive whole-body
control for quadruped robots: Experimental validation over challenging
terrain,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2553—
2560, 2019.

[20] D. E. Orin, A. Goswami, and S. Lee, “Centroidal dynamics of a
humanoid robot,” Auton. Robots, vol. 35, no. 2-3, pp. 161-176.

[21] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Per-
ceptive locomotion through nonlinear model-predictive control,” IEEE
Transactions on Robotics, vol. 39, no. 5, pp. 3402-3421, 2023.

[22] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
gpu,” in 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 1EEE, 2022, pp. 2273-2280.

[23] C. Feller and C. Ebenbauer, “Relaxed logarithmic barrier function based
model predictive control of linear systems,” IEEE Transactions on
Automatic Control, vol. 62, no. 3, pp. 1223-1238, 2017.

[24] C. Gehring, C. Dario Bellicoso, P. Fankhauser, S. Coros, and M. Hutter,
“Quadrupedal locomotion using trajectory optimization and hierarchical
whole body control,” in 2017 IEEE Int. Conf. on Robotics and Automa-
tion (ICRA), 2017, pp. 4788-4794.

[25] M. Camurri, M. Fallon, S. Bazeille, A. Radulescu, V. Barasuol, D. G.
Caldwell, and C. Semini, “Probabilistic contact estimation and impact
detection for state estimation of quadruped robots,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 1023-1030, 2017.

[26] F. Farshidian er al., “OCS2: An open source library for optimal
control of switched systems,” [Online]. Available: https://github.com/
leggedrobotics/ocs?2.


https://arxiv.org/abs/2410.10621
https://arxiv.org/abs/2410.10621
https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2

	Introduction
	Contributions

	Locomotion Framework for Load-bearing Assessment in Collapsing Terrain
	Terrain Mapping and Visual Foothold Adaptation
	Trajectory Optimization
	Perceptive MPC
	State Machine

	Results
	Implementation
	Experimental Results
	Terrain with tilting planks
	Terrain probing
	Terrain with missing planks
	Terrain with loose rocks


	Conclusions
	References

