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Abstract—There is a dramatic shortage of skilled labor for
modern vineyards. The Vinum project is developing a mobile
robotic solution to autonomously navigate through vineyards for
winter grapevine pruning. This necessitates an autonomous navi-
gation stack for the robot pruning a vineyard. The Vinum project
is using the quadruped robot HyQReal. This paper introduces
an architecture for a quadruped robot to autonomously move
through a vineyard by identifying and approaching grapevines
for pruning. The higher level control is a state machine switch-
ing between searching for destination positions, autonomously
navigating towards those locations, and stopping for the robot
to complete a task. The destination points are determined by
identifying grapevine trunks using instance segmentation from
a Mask Region-Based Convolutional Neural Network (Mask-
RCNN). These detections are sent through a filter to avoid
redundancy and remove noisy detections. The combination of
these features is the basis for the proposed architecture.
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I. INTRODUCTION

Fig. 1: HyQReal in Vineyard.

There is a major shortage of labor in vineyards across the
world. Vineyards rely on seasonal labor, which in a lot of cases
includes international workforces. Seasonal labor shortages
began with the COVID-19 pandemic and have continued
since1. Vineyards have looked towards robotic automation of
seasonal work to account for the labor shortage.

The Vinum project is built on the HyQReal quadruped
robot that is being developed to autonomously do the winter
pruning of grapevines, see Fig. 1 [8]. To accomplish this,

1https://www.winemag.com/2021/12/07/wine-industry-labor-supply/

the Vinum robot has to autonomously navigate vineyards,
arriving at each grapevine that needs winter pruning. This
extended abstract introduces a navigation architecture based
on computer vision for quadruped robots. Previous vineyard
navigation has described moving down each row, using a
laser sensor, until there are no more grapevines in a row
[7]. Other navigation stacks have been developed which also
move down rows but they use laser scanners for perception
[2]. Our proposed navigation stack initializes itself with a
search of a vineyard row and will choose whether to start
from right or left. It uses computer vision to detect the
grapevines and a filter to average the detections and eliminate
noise. In other papers, grapevine trunks were identified using
instance segmentation [5]. We implemented a similar sensor
navigation control using a RGB-D for grapevine trunk image
segmentation. So, detections of the grapevine trunks are made
using a Mask-RCNN trained off a created dataset with 100
images. The combination of the higher level control with the
grapevine detections makes the basis for the Vinum navigation
stack.

The contribution of this extended abstract is a navigation
for precise placement of quadruped robots moving through
vineyard rows. It will allow for precise robot placement within
the vineyard that is ideal for a robotic workspace. This allows
the robot to perform selective, plant-by-plant task automation
within the vineyard. A series of experiments were preformed
with the Aliengo robot and our approach achieved a mean of
3.36cm and standard deviation of 2.19cm of distance from the
desired position, which is sufficient for an automated task.

II. STATE OF THE ART

As of today, different robots and vehicles have been de-
veloped that can move autonomously throughout vineyards.
These robots either move continuously throughout the row
and/or are not quadrupeds. The EU Project BACCHUS robot
is a wheeled vehicle that is under development to harvest
grapes and take care of vineyards. The BACCHUS robot uses
semantic segmentation of vineyard trunks for its localization
[5]. Our proposed navigation architecture takes the same
segmentation approach but it is used to identify positions for
the robot to walk to instead. The EU Project CANOPIES is
aimed at developing a human-robot collaborative paradigm for
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harvesting and pruning in vineyards1. It is a wheeled robot
that works over the vineyard row. A similar autonomous over
the vineyard row robot is the ViTiBOT Bakus which is used
to improve vineyard help by removing herbicides and using
precision spraying. This solution does not include stopping at
each grapevine. YANMAR’s autonomous over-the-row robot,
YV01, does a similar task that autonomously sprays vineyard
rows, without stopping at a specific grapevine2. A proposed
wheeled robot for precision agriculture is the Agri.q02 which
is meant to work in unstructured environments in collaboration
with a UAV [6]. A navigation stack was created for the
wheeled Ackerman Vehicles in percision farming, path plan-
ning from pose to pose [3]. There was autonomous navigation
outlined in the Echord++ GRAPE experiment which maps a
vineyard that uses a wheeled robot and moves to locations on
the map to perform tasks [1]. These autonomous robots are
all wheeled and most do not have to stop at precise locations
in the vineyard. The proposed navigation architecture of this
paper is quadruped navigation based on previous techniques
used for localization to find precise positions for automated
tasks to take place such as winter pruning and harvesting
grapes.

III. NAVIGATION ARCHITECTURE

The navigation architecture is a combination of higher-level
control and object detection. The higher level control will
make decisions on its movement path through a vineyard row
based on the grapevine trunks detected. The object detection
was done by training a Mask-RCNN from Detectron2 [9].

A. Higher Level Control

Fig. 2: Navigation Flow.

The higher level control is a state machine for the robot
to move throughout a vineyard row, as illustrated in Fig. 2.
It begins with an initial search to find the starting lines for
both sides of the row. The user can set initially if they want
the robot to move to the left or right of the row. The initial
detections get sent through a filter which will find the rolling
averages of each detection. From the filtered detection points,
the control will find the lines on which the vineyard rows
begin.

The robot has to approach parallel to the grapevines for it to
be able to prune properly. To find the correct destination point,
initially, the robot determines the orientation of the approach
by calculating the vector of the vineyards in a row. This is

1www.canopies-project.eu
2https://www.yanmar.com/eu/campaign/2021/10/vineyard/

derived from a list of points found in the initial search. It
updates the vector for possible deviances of grapevines as the
robot moves along the row. The robot then approaches the
grapevines in parallel at a desired distance that depends on
the robot size and the workspace of the arm.

After the robot has reached the determined location in the
vineyard, it removes that grapevine from the list of vines to
approach. Next, the control will choose the closest grapevine
to the robot as its next target. It will continue this method until
there are no more grapevines to identify in a row.

B. Grapevine Identification

Instance segmentation using a Mask-RCNN is used to detect
the grapevine trunks in a vineyard. The training of the neural
network was done in Detectron2 using 100 hand annotated
images of potted grapevines. The corresponding depth of the
detections is found by using the aligned depth image and
from there the grapevine locations are found in relation to
the quadruped.

Fig. 3: Result of the image segmentation to detect grapevine
trunks. (4 examples).

IV. EXPERIMENTS

A. Higher Level Control

1) Goals: The goals of these experiments are to determine
the precision of moving the robot’s center of mass to desired
positions. They are aimed to align the geometric center of
the robot with the grapevine trunk, this way an arm mounted
on the front of the robot is in the center of the grapevine’s
main cordon, and thus optimizes the workspace of the arm for
single-plant operations, such as pruning.

Fig. 4: Experiment setup.

2) Setup: The higher level control was tested in a lab using
Unitree’s Aliengo robot. Aliengo was used for simplification
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Fig. 5: Measurement of Aliengo’s arrival at a position.

of experiments since it is 21kg and 61cm in length. Aliengo
is equipped with Intel’s Realsense D435 RGB-D camera. Red
balls for segmenting were used to test in lab instead of the
grapevine trunks. The red balls are spaced out at about 80cm
from each other, the approximate distance that grapevines are
from each other. The setup of the experiment can be seen in
Fig. 4. How the precision of the robot approaching a position
was measured is shown in Fig. 5.

3) Tests: The robot does an initial search of the area using
its RGB-D camera to segment the red balls. After it finds the
row of red balls, it approaches the first position in the row.
After the robot’s arrival at the initial position, it pauses for
an automated task and update its detections. It repeats this
process until the row is finished and then stops.

Ten trials were conducted with five balls. To measure the
error between the destination point and the red ball, a laser
pointer was used to show the point that Aliengo’s center of
mass reached.

4) Results: The error of reaching the destination point is
a mean of 3.36cm and standard deviation of 2.19cm. The
accompanying video shows complete trials.

B. Grapevine Identification

1) Goals: The goal of this is to test how well the Mask-
RCNN was trained for working in vineyards.

2) Setup: The training of the neural network was done in
Detectron2 using the framework set up in the paper [4].

3) Tests: The results were tested on a previously recorded
video of a potted vineyard at University Cattolica of Piacenza
during winter.

4) Results: Outputs from the model are shown in Fig. 3.
Currently the model needs to be trained on more data for
robustness and for functionality in other vineyards as well.

V. CONCLUSION

This paper presented a method of computer-vision based
navigation in vineyards for quadruped robots. This method
will allow for precise placement to preform selective task
automation.

The control architecture works accurately with the exper-
iments in the lab, and the trunk detections from the image
segmentation can accurately identify grapevine trunks. The

quadruped can reach a desired destination position with a mean
error of 3.36cm error.

The next steps for this architecture is combining the
grapevine trunk semantic segmentation with the higher level
control to test in the field. The dataset created for this project
has to be expanded to train a more robust Mask-RCNN as
well.
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