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Abstract—The VINUM project seeks to address the shortage
of skilled labor in modern vineyards by introducing a cutting-
edge mobile robotic solution. Leveraging the capabilities of the
quadruped robot, HyQReal, this system, equipped with arm and
vision sensors, offers autonomous navigation and winter pruning
of grapevines reducing the need for human intervention. At
the heart of this approach lies an architecture that empowers
the robot to easily navigate vineyards, identify grapevines with
unparalleled accuracy, and approach them for pruning with
precision. A state machine drives the process, deftly switching
between various stages to ensure seamless and efficient task
completion. The system’s performance was assessed through
experimentation, focusing on waypoint precision and optimizing
the robot’s workspace for single-plant operations. Results indicate
that the architecture is highly reliable, with a mean error
of 21.5cm and a standard deviation of 17.6cm for HyQReal.
However, improvements in grapevine detection accuracy are
necessary for optimal performance. This work is based on a
computer-vision-based navigation method for quadruped robots
in vineyards, opening up new possibilities for selective task au-
tomation. The system’s architecture works well in ideal weather
conditions, generating and arriving at precise waypoints that
maximize the attached robotic arm’s workspace. This work is an
extension of our short paper presented at the Italian Conference
on Robotics and Intelligent Machines (I-RIM), 2022 [1].

Index Terms—Agricultural Robotics, Computer-Vision, Au-
tonomous Vineyard Navigation, Quadruped Control

I. INTRODUCTION

Fig. 1: IIT’s HyQReal quadruped robot in a Vineyard close
to Piacenza, Italy.

The wine industry has been experiencing a significant labor
shortage in vineyards worldwide1. Vineyards heavily rely
on seasonal workers, including international workforces, for
their labor needs. Consequently, they have been exploring the
potential of robotic automation of seasonal work to address
the labor shortage.

The VINUM2 project uses IIT’s HyQReal quadruped robot
to do the winter pruning of grapevines autonomously with the
Kivoa Gen3 robotic arm [2][3]; see Fig. 1, [4]. Quadruped
robots can navigate obstacles and adjust their movements
accordingly, making them well-suited for specific vineyards
representing a complex and dynamic environment. This im-
proved maneuverability in conjunction with a robotic pruning
arm leads to a more efficient pruning process and reduces the
need for manual labor. Ultimately, these benefits can contribute
to improved growth and yield of grapevines. For example,
HyQReal can move laterally as well as forward and backward.
This extra movement allows for more mobility when searching
for grapevines and more freedom of approach when moving
to detected grapevines [5].

To autonomously winter-prune grapevines, the VINUM
robot has to reliably and autonomously navigate vineyards,
arriving at each grapevine that needs winter pruning. To
reach each grapevine for pruning, the navigation stack has
to autonomously generate waypoints relative to the grapevine
which are ideal for the robotic workspace of the Kinova Gen3
arm attached to HyQReal, see Fig. 2. This approach allows
the robot to perform selective, plant-by-plant task automation
within the vineyard. The navigation pipeline uses an RGB-
D camera instead of a more expensive, intensive sensor like
LiDAR to make the system more cost-effective. However, an
RGB-D camera produces erroneous camera detections that
the architecture must overcome to be effective in a broader
array of conditions. This paper proposes a reliable navigation
architecture that generates precise waypoints based on RGB-
D computer vision and higher-level control algorithms for

1https://www.winemag.com/2021/12/07/wine-industry-labor-supply/
2https://vinum-robot.eu/979-8-3503-0121-2/23/$31.00 ©2023 IEEE
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quadruped robots.

Fig. 2: Kinematic workspace (in red) of the Kinova Gen3
manipulator arm mounted on HyQReal.

The proposed navigation stack moves autonomously
through vineyards, moving to precise waypoints autonomously
generated from camera input. The navigation stack uses com-
puter vision to detect the grapevine trunks and a filter using
a rolling average of the detections to eliminate noisy input. It
then generates waypoints to approach based on the detected
grapevine trunks. We implemented instance segmentation for
grapevine trunks using an RGB-D sensor. Detections of the
grapevine trunks are made using a Mask-RCNN trained off a
manually annotated dataset with over 500 images. Combining
the higher-level control with the grapevine detections makes
the basis for the VINUM navigation stack. We performed
a series of experiments with HyQReal, and our approach
achieved a mean of 21.5cm and a standard deviation of 17.6cm
of distance from the desired position. Since the kinematic
workspace of the Kinova Gen3 arm is larger than the distance
between the first and last spur of a single grapevine plant
(typically 70cm for a spur-pruned vine), the achieved results
are acceptable for this automated task.

The contributions of this proposed autonomous navigation
architecture are:

• Higher-level control algorithms for precise robot place-
ment, ideal for a robotic workspace to perform selective,
plant-by-plant task automation in the vineyard row.

• Algorithms for accurately generating navigation way-
points from RGB-D sensors during runtime, while navi-
gating down the vineyard row.

• A hand-annotated instance segmentation dataset of
grapevine trunks, used for the training of our Mask-
RCNN.

II. STATE OF THE ART

The development of autonomous robots and vehicles that
can navigate vineyards has significantly advanced in the field
[6].. While many of these robots are wheeled and move con-
tinuously throughout the vineyard row, some non-continuous
models require manually added waypoints. Currently, systems
can generate waypoints for autonomous navigation, but these
typically rely on initial aerial maps of the vineyard, which
limits their effectiveness in adapting to changing conditions
at runtime. The EU Project BACCHUS robot is a wheeled
vehicle under development to harvest grapes and care for

vineyards. The BACCHUS robot uses semantic segmentation
of vineyard trunks for accurate robot motion estimation and
consistent metric maps [7]. Our proposed navigation archi-
tecture takes the same segmentation approach, but it is used
to identify discrete positions for the robot to walk to instead.
Previous vineyard navigation has described moving down each
row, using a laser sensor, until there are no more grapevines
in a row [8]. Other navigation stacks also move autonomously
down vineyard rows, using laser scanners for perception
[9][10]. The EU Project CANOPIES aims to develop a human-
robot collaborative paradigm for harvesting and pruning in
vineyards1. It is a wheeled robot directed by human workers
to perform precision agriculture tasks. A similar autonomous
over-the-vineyard row robot is the ViTiBOT Bakus which
is used to improve vineyard help by removing herbicides
and using precision spraying. This solution does not include
stopping at each grapevine. YANMAR’s autonomous over-the-
row robot, YV01, does a similar task that autonomously sprays
vineyard rows without stopping at a specific grapevine2. An-
other wheeled robot for precision agriculture is the Agri.q02,
which is meant to work in unstructured environments in
collaboration with a UAV [11]. A navigation stack was created
for the wheeled Ackerman Vehicles in precision farming, path
planning from pose to pose [12]. There was autonomous
navigation outlined in the Echord++ GRAPE experiment,
which maps a vineyard that uses a wheeled robot and moves
to locations on the map to perform tasks [13]. Other proposed
navigation architectures use deep learning to understand a
camera’s depth sensors. However, their movement continues
down the vineyard row [14]. Other work has been done with
deep learning for navigation, where the robot learns to navigate
to the end of a vineyard row, but it is also in continuous
motion [15]. In the case where a robot would need to stop
at specific locations to prune, the navigation of the robot had
the locations inserted manually into its path [16]. Other robots
are built for the winter pruning of grapevines but do not have
autonomous navigation to reach the grapevines themselves
[17]. These autonomous robots are all-wheeled; most do not
have to stop at precise locations in the vineyard, and those that
stop at exact locations have manually inserted those locations
ahead of time. Work has been done in generating waypoints
for vineyards for navigation purposes. However, these works
take an initial aerial overview and derive a list of poses from
the initial map [18][19][20].

Our approach generates waypoints in real time as the robot
moves throughout the row without requiring initial drone map-
ping. This paper’s proposed quadruped navigation architecture
introduces a way to automate waypoint generation at runtime
for navigating to every plant in the vineyard for precision
agricultural tasks.

III. NAVIGATION ARCHITECTURE

The navigation architecture is a combination of higher-level
control and grapevine detection. The higher level control will

1www.canopies-project.eu
2https://www.yanmar.com/eu/campaign/2021/10/vineyard/
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decide on the robot’s movement path through a vineyard row
based on the waypoints generated from the grapevine trunks
detected. The grapevine detection is an instance segmentation
of grapevine trunks for HyQReal to approach for pruning. The
instance segmentation was done by training a Mask-RCNN
from Detectron2 [21].

A. Higher Level Control

Fig. 3: Navigation Flow.

The higher level control is a state machine for the robot
to move throughout a vineyard row, as illustrated in Fig. 3.
The process begins with an initial search to find the starting
lines for both sides of the row. The initial detections get sent
through a filter to find each detection’s rolling averages. From
the filtered detection points, the control will see the lines on
which the vineyard rows begin. After determining the vector
of the row, the waypoints are generated to approach.

During the initial search, the Mask-RCNN model classifies
random background objects as grapevines and gets multiple
detections of the same grapevine. Each new grapevine detec-
tion is filtered to sort through the noisy detections. Every time
a grapevine trunk was detected, a ROS subscriber would listen
to the detection and determine if the identified grapevine was
newly detected or detection of a grapevine had already been
found. These detections are processed in the Algorithm 1.

The filter performs clustering on a list of ”grapevine poses”.
The clustering is done based on the x and y positions of the
poses. If any new grapevine trunk detection was within a set
radius of a previously detected trunk, the new trunk detection
was combined with the established trunk by taking a rolling
average of the detections. The calculations are seen in the (1),
where p1x/y is the existing grapevine detection’s respective x
and y coordinate, p2x/2y is the new grapevine detection’s x,
and y coordinates and a is the number of times p1 has been
averaged to that point. The more detections a given point has,
the more reliable the point’s location.

p1x =
p1xa+ p2x

a+ 1
p1y =

p1ya+ p2y
a+ 1

(1)

After determining the grapevines, the robot has to approach
in parallel to the grapevines to prune correctly. To find the
correct destination point, initially, the robot determines the
orientation of the approach by calculating the vector of the
vineyards in a row. This is derived from a list of points found
in the initial search. Each possible row line could be found
using the determinant of the grapevine points detected from
the list of points, as shown in (2). If the determinant is 0, the
list of points is a line. In the real-world trials, however, the
determinant of the lines found was never 0. ϵ was used to set

Algorithm 1 Cluster Detections
Input: Grapevine Pose gp
Output: Poses of clustered grapevine trunks cgt

averaged Grapevine poses agp tupled with times averaged
ta (agp, ta)← empty
if agp = 0 then

agp← gp
ta← 1

else
for every pose tuple pt in agpt do

get x and y bottom and top around the grapevine’s
location

xb, xt, yb, yt
if xb ≤ tpx ≤ xt & yx ≤ tpy ≤ yt then

pose tuple x ptx = (ptx * ta + gpx) / (ta + 1.0)
pose tuple y pty = (pty * ta + gpy) / (ta + 1.0)
ta + 1

end if
end for
if gp is not in atp then

agp← gp
end if
cgt← all grapevine poses gp in agp where gpi’s gai >

2 times
end if

the determinant size of a line to allow for more leniency in
finding lines.

det

[
Xi Xj

Yi Yj

]
≤ ϵ (2)

The initial vector is determined by taking the closest
grapevine pose found gp, taking the subset of the found
lines which only have the ones with the closest pose A, then
determining the subset of A where gp is the first pose B in the
found line. Then take the line with the shortest distance from
B. The assumption is that after the initial search, a vineyard
row found would be a shorter line than the line found between
two rows. See Fig. 4.

Let G denote the set of all grapevine trunk poses. The
subset of lines found with the closest trunk pose to gp is
denoted by A = Li|Li ⊆ G,Li has the closest pose to gp.
The subset of lines in A, where gp is the first pose, is
denoted by B = Lj |Lj ∈ A, gp = first pose in Lj . The line
with the shortest distance from B is denoted by C =
minLj∈B distance between Lj and B. C determines the ini-
tial vector.

After the initial row vector for the robot is determined, the
robot must approach at a parallel offset at a desired distance
d to maximize the pruning arm’s robotic workspace. A new
transformation is created with the grapevine trunk at the center
to ensure a parallel approach. This transformation is calculated
using the angle of the row’s vector to the world frame. The
Euler angles are converted into a quaternion, and the grapevine
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Fig. 4: Segmented Grapevine trunk image showing three
detected grapevine trunks which are part of the initial line.

trunk’s x, y world positions are set to the center of the trunk
frame. Finally, the destination pose is determined by adding
an offset of d in the lateral direction of the grapevine.

The higher level control updates the vector for possible
deviances of grapevines as the robot moves along the row.
The robot then approaches the grapevines in parallel at a
desired distance that depends on the robot’s size and the arm’s
workspace.

After the robot has reached the determined location in the
vineyard, the control stack removes that grapevine from the
list of vines to approach. Next, the control will choose the
closest grapevine to the robot as its next target. This method
is continued until no more grapevines are identified in a row.

B. Grapevine Identification

Instance segmentation is a computer vision task that in-
volves identifying and segmenting individual objects in an
image or video. In the case mentioned, a Mask R-CNN is
used, for instance, segmentation, to detect grapevine trunks
in a vineyard. The Mask R-CNN is a two-stage deep learn-
ing model that generates region proposals and classifies and
segments the regions of interest.

Fig. 5: Result of the image segmentation to detect grapevine
trunks. (4 examples).

The training of the Mask R-CNN was done using Detec-
tron2, an open-source platform for object detection research.
500+ hand-annotated images of potted grapevines were created
and used for this training1. These annotated images helped the

1https://universe.roboflow.com/vinum/potted grapevines/dataset/2

neural network to learn the characteristics of grapevine trunks
and improved its ability to detect them in new, unseen images.

An aligned depth image was used to determine the depth of
the detection; the depth image provided the necessary infor-
mation to calculate the distance between the grapevine trunks
and HyQReal. This information was used to find the locations
of the grapevine trunks relative to the quadruped. However,
depth readings were not always reliable, so to account for
depth errors from the sensor, we created an algorithm to derive
the closest possible valid depth value, seen in Algorithm 2.

Algorithm 2 takes in two inputs: x and y, and computes
the corresponding 3D coordinates (realX, realY, realZ) of a
point in a given depth image depth. The algorithm first sets a
variable npixels to 2 and computes the depth image’s height h
and width w. It then enters a loop, where it gradually expands
a square around the point of interest, defined by the input x
and y, until the mean depth value in that square is found,
stored in the variable realZ. The loop continues until realZ
is no longer NaN or the square has reached the boundaries
of the depth image.

Once realZ is found, the function computes the corre-
sponding 3D coordinates using the intrinsic parameters of the
camera, stored in the camInfoMsg.K matrix and returns the
3D coordinates as realX, realY, realZ.

Algorithm 2 Reliable Depth Value
Input: 2D image coordinates (x, y), depth image depth,
camera information message camInfoMsg
Output: 3D real world coordinates (realX, realY, realZ)

nPixels← 2
h,w ← depth.shape
realZ ← NaN
i← 1
minY,maxY,minX,maxX ← y, y, x, x
while realZ is NaN and not ((minY == 0) and (minX ==
0) and (maxY == h - 1) and (maxX == w - 1)) do

minY ← clip(y − i ∗ nPixels, 0, h− 1.0)
maxY ← clip(y + i ∗ nPixels, 0, h− 1.0)
minX ← clip(x− i ∗ nPixels, 0, w − 1.0)
maxX ← clip(x+ i ∗ nPixels, 0, w − 1.0)
subImg ← depth[minY : maxY + 1.0,minX :

maxX + 1.0]
realZ ← nanmean(asarray(subImg))
i← i+ 1

end while
cx, cy, fx, fy ← camInfoMsg.K
realX ← (x− cx) ∗ realZ/fx
realY ← (y − cy) ∗ realZ/fy
return (realX, realY, realZ)

A Mask-RCNN previously trained in Detectron2 framework
was used [22]. The results of the trained network can be seen
in Fig. 5.
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IV. EXPERIMENTS

These experiments aim to determine the precision of the
waypoints generated for the quadruped robot to move to. They
aim to align the robot’s geometric center with the grapevine
trunk; this way, an arm mounted on the front of HyQReal is
in the center of the grapevine’s cordon and thus optimizes
the workspace of the arm for single-plant operations. Two

Fig. 6: Experimental setup in the lab with the quadruped
robot Aliengo.

rounds of testing were conducted; initially, the higher level
control was tested on Aliengo, then the architecture was moved
onto HyQReal. The higher level control was tested in a lab
using Unitree’s Aliengo robot. Aliengo was used to simplify
experiments since it is 21kg and 61cm long, as compared to
the 140kg and 1.3m length of HyQReal. Aliengo is equipped
with Intel’s Realsense D435 RGB-D camera. Red balls for
segmenting were used to test in the lab instead of the grapevine
trunks; see Fig. 7. The red balls are spaced out at about 80cm
from each other, the approximate distance that grapevines
are from each other. The setup of the experiment can be
seen in Fig. 6. How the precision of the robot approaching
a position was measured shown in Fig. 7. The tests were

Fig. 7: Measurement of Aliengo’s arrival at a position using
a laser pointer mounted onto the robot and the Image

Segmentation of Red Balls.

then repeated with HyQReal in the lab, equipped with the
ZED depth camera. HyQReal was also tested in the vineyard
at the University Cattolica of Piacenza with potted vines.
During the tests, the robot initially searches the area using
its RGB-D camera to segment the red balls. After the robot
finds the row of red balls, it approaches the first position
in the row. After the robot arrives at the initial pose, it
pauses for an automated task and updates its detections. This
process repeats until the row is finished and then stops. With
Aliengo, ten trials were conducted with five balls. A laser
pointer mounted on the robot’s torso was used to show the
point that Aliengo’s center of mass reached to measure the
error between the achieved destination point and the red ball.

Fig. 8: Piacenza experiment setup with HyQReal.

With HyQReal, five trials were conducted with three red
balls; see Fig. 8. The error was measured from the base
of the robotic arm mount on HyQReal to the center of the
grapevine’s cordon; see Fig. 9. Aliengo’s error of reaching the
destination point has a mean of 3.4cm and a standard deviation
of 2.2cm. HyQReal’s error of reaching the destination point
has a mean of 21.5cm and a standard deviation of 17.6cm. The

Fig. 9: Measurement of the shear to the center of the cordon.

tests showed a reliable higher-level control with repeatable
navigation. However, the results are significantly predicated
on an accurate initial search. The grapevine segmentation
was initially tested in Piacenza. However, the model trained
had difficulty generalizing different points of view needed for
identifying the grapevines, so we used red balls in the interim
to test the navigation architecture. In cases where HyQReal
did not accurately identify a grapevine, it would skip over.
In tests in Piacenza, there was fog one morning, and the ZED
camera could not make reliable detections, resulting in skipped
grapevines. However, when the grapevine search went well,
the robot reliably approached each grapevine.

V. CONCLUSION

This paper presented a method of computer-vision-based
navigation in vineyards for quadruped robots. This method will
allow for precise waypoint generation to perform selective task
automation. Our approach with HyQReal achieved a mean of
21.5cm and a standard deviation of 17.6cm of distance from
the desired position, which is sufficient for an automated task
in a vineyard.

The system’s architecture works reliably, generating and ar-
riving at precise waypoints that maximize the attached robotic
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arm’s workspace. However, there could be more accuracy
in grapevine detection as the RGB-D camera’s initial search
needs to be trained off more data for more robust detections.

The future steps for this architecture are to improve the
dataset created to train a more robust Mask-RCNN and
then the full integration of the navigation combined with
the pruning arm for VINUM autonomous winter pruning of
grapevines.
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