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Abstract— Many algorithms for control, optimization and
estimation in robotics depend on derivatives of the underlying
system dynamics, e.g. to compute linearizations or gradient di-
rections. However, we show that when dealing with Rigid Body
Dynamics, these derivatives are difficult to derive analytically
and to implement efficiently. To overcome this issue, we extend
the modelling tool “RobCoGen” to be compatible with Auto
Differentiation. Additionally, we propose how to automatically
obtain the derivatives and generate highly efficient source
code. Finally, we demonstrate an example application using
Trajectory Optimization to underline the potential gain of using
these derivatives in a control setting.

I. INTRODUCTION

Most robotic systems consist of multiple rigid links con-
nected via joints. This includes entire systems such as robotic
arms, legged robots or exoskeletons, but also components
like robotic hands or integrated actuators. We can mathe-
matically model these systems using Rigid Body Dynamics.
The latter typically results in non-linear differential equations
for which computing a closed-form solution is intractable.
Therefore, many state-of-the-art approaches in control, esti-
mation, optimization and planning rely on iterative, gradient-
based algorithms which compute linear approximations of
the given system equations. These algorithms include Opti-
mal Controllers such as Linear Quadratic Regulators (LQR),
optimal estimation approaches such as Kalman Filters and
Batch Estimation, as well as parametric design optimization
and Trajectory Optimization (e.g. Direct Transcription, Di-
rect Multiple Shooting and Differential Dynamic Program-
ming).

To obtain the required derivatives for these algorithms,
there are several options. Often, analytic expressions
“manually-derived” on paper are considered the ideal solu-
tion since they are accurate and fast to compute. However,
as shown later, the expressions obtained from deriving Rigid
Body Dynamics derivatives manually are fairly complex and
difficult to optimize. Therefore, they often lead to poor
runtimes. Additionally, the manual process is error prone.
To avoid this step, symbolic toolboxes such as Matlab [1],
Mathematica [2] or Maxima [3] can be employed. These
tools apply known calculus rules in order to symbolically
determine the derivative. While this approach is viable in
theory, in practice the derivative expressions easily get too
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large to be suitable for a computationally efficient implemen-
tation.

As a shortcut to the previously mentioned approaches,
Numeric Differentiation (Num-Diff) is frequently used. In
this method, the input to the function to be differentiated
is perturbed in each input dimension to obtain an approxi-
mation of the derivative using finite differences. However,
these methods are prone to numeric errors and they are
computationally costly when the input dimension is high.

As another option, Auto Differentiation can be used. Auto
Differentiation (Auto-Diff) is a programming “trick” for ob-
taining the derivatives from source code instructions. Auto-
Diff provides the same accuracy as analytical derivatives but
also the comfort of obtaining the derivatives in an automated
fashion. Furthermore, Auto-Diff derivatives usually have
lower complexity than unoptimized analytical derivatives.

A. Auto Differentiation Tools

Over the years, several Auto Differentiation tools have
been developed. Auto-Diff can be achieved by Source Code
Transform, i.e. parsing the (uncompiled) source code and
generating code for the derivatives. However, for advanced
programming languages such as C++, this is challenging
to implement. Hence, where supported by the programming
language, tools often rely on operator overloading, where
instead of a normal numeric type, a special Auto-Diff
type is injected into the function to be differentiated. It is
then used to build an expression graph which later can be
differentiated using the chain rule. Popular tools in C++
that employ operator overloading are e.g. Adept [4], Adol-
C [5], CppAD [6] and FADBAD++ [7]. While all these
tools are based on the same approach, there are significant
differences both in performance as well as in functionality
[8]. The performance difference usually stems from the
implementation of the expression graph, i.e. how fast it can
be differentiated and evaluated. In terms of functionality,
especially higher order derivatives make a key difference.
They are difficult to implement and thus not supported by
many tools. In this work, we are not proposing a new Auto-
Diff tool but rather discuss how the existing tools can be
leveraged when working with Rigid Body Dynamics.

B. Contributions

Auto-Diff is already widely used in the mathematical
optimization community - but it is only slowly gaining pop-
ularity in the robotics community. In this work, we illustrate
the potential of using Auto-Diff for robotics. We demon-
strate that it outperforms analytical derivatives in terms
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of computational complexity while preventing significant
overhead in obtaining them. To employ Auto-Diff on Rigid
Body Dynamics, we extend our open source modelling tool
“RobCoGen” [9] to be Auto-Diff compatible. The resulting
framework allows for obtaining optimized derivatives of
well-known Rigid Body Dynamics quantities and algorithms
as used by most optimization, estimation and optimal control
based algorithms.

Furthermore, rather than directly applying Auto-Diff at
runtime, we perform an Auto-Diff code-generation step for
the derivatives. In this step, the dynamic expression graph
is converted to pure C code. This eliminates the overhead
of the expression graph, which we demonstrate is crucial
for good performance. Furthermore, the resulting C code is
real-time capable and can be run on micro-controllers, in
multi-threaded applications or even on GPUs. This allows
for directly using it in hard real-time control loops and
embedded platforms but also for massive sampling in data
driven methods. Since RobCoGen is an open source library,
we provide the community with a tested, efficient and easy
to use tool for modelling, analyzing and controlling Rigid
Body Systems. As an example use case, we apply it to
a Trajectory Optimization approach. The results from this
example application underline the benefits of using Auto
Differentiation for Rigid Body Dynamics.

C. Related Work

Existing libraries that implement auto differentiable Rigid
Body Dynamics are rare. Drake [10] supports Auto-Diff
for gradient computations of dynamics. However, it relies
on Eigen’s [11] Auto-Diff module which cannot provide
higher order derivatives and does not support code-generation
for derivatives. Also, the code is not optimized for speed.
Instead, it relies on dynamic data structures, which introduces
significant overhead and limits the usability of the library for
hard real-time, multi-threaded and embedded applications.
MBSlib [12] also provides Auto-Diff support and does so
in a more rigorous manner. Yet, it also relies on dynamic
data structures, limiting efficiency and potential embedded
and control applications. It is unclear whether MBSlib
is compatible with any existing Auto-Diff code-generation
framework. There are also efforts of deriving simplified
analytic derivatives of Rigid Body Dynamics [13]. However,
the resulting expressions have to be implemented manually
and do not necessarily fully exploit efficient Rigid Body
Dynamics algorithms, leading to more complex expressions
with runtime overhead. A thorough discussion on this issue
is presented in Section II. A comparison between Symbolic
and Automatic Differentiation for Rigid Body Kinematics
is conducted in [14]. However, the authors do not perform
a code-generation step for Auto-Diff which, as we will see
later, significantly improves performance.

There is considerable research on how to use Auto-Diff to
model and simulate Rigid Body systems, e.g. [15], [16], [17].
However, this work is focused on solving the Rigid Body
Dynamics differential equations in order to obtain equations
of motions rather than explicitly computing their derivatives.

Similar approaches are also used to perform a sensitivity
analysis or parametric design optimizations, as e.g. in [18].
However, this research field is only partially concerned with
explicit derivatives of kinematics and dynamics algorithms.
Additionally, metrics such as complexity and runtime, which
are crucial for online control and estimation, are not the
primary focus of this community.

II. RIGID BODY DYNAMICS AND KINEMATICS

When dealing with Rigid Body Systems, we are usually in-
terested in one or multiple of the following quantities (or el-
ements of those): forward/inverse dynamics, forward/inverse
kinematics, the transforms between joints/links and end-
effector/contact Jacobians. In robotics, Rigid Body Dynamics
are often expressed as

M(q)q̈ + C(q, q̇) + G(q) = JT
c (q)λ+ ST τ (1)

where q represents the rigid body state in generalized
coordinates, M is the Joint Space Inertia Matrix, C are the
Coriolis and centripetal terms, G is the gravity term, Jc is
the contact Jacobian, λ are external forces/torques, S is the
selection matrix and τ represents the joint forces/torques.
S maps input forces/torques to joints and is used to model
underactuated systems. In case of a fully actuated system
with directly driven joints, S is identity. For readability, we
drop the dependency of these quantities on q and q̇ in the
following.

A. Forward Dynamics and its Derivatives

If we want to know how a system reacts to given joint
torques and external forces, we can compute the forward
dynamics expressed as

fd(q, q̇, τ) = q̈ = M−1(JT
c λ+ ST τ −C −G) (2)

Featherstone [19] shows that computing M (without
inverting it) already has a worst-case complexity O(n3)
where n is the number of rigid bodies, which makes naively
evaluating (2) very expensive. Therefore, he proposes several
algorithms for factorizing M and its inversion. Additionally,
he also propses the Articulated Rigid Body Algorithm, which
computes the entire forward dynamics equation (2) and only
has complexity O(n).

To get the derivatives of (2) we can naively apply the chain
rule:

∂(fd)

∂q
=
dM−1

dq

(
JT

c λ+ ST τ −C −G
)

(3)

+ M−1

(
dJT

c λ

dq
− dC

dq
− dG

dq

)
∂(fd)

∂q̇
= M−1 dC

dq̇
(4)

∂(fd)

∂τ
= M−1ST (5)



 P r e p r i n t   O c t o b e r   2 6 ,   2 0 1 6   
 A c c e p t e d   f o r   p u b l i c a t i o n   a t   t h e   2 0 1 6   I E E E   I n t e r n a t i o n a l   C o n f e r e n c e   
 o n   S i m u l a t i o n ,   M o d e l l i n g ,   a n d   P r o g r a m m i n g   f o r   A u t o n o m o u s   R o b o t s , 
 S a n   F r a n c i s c o

If we were to further simplify the expression we could use
the following identities

dM−1

dq
= M−1 dM

dq
M−1 (6)

dM

dq
=

N∑
n=0

∂JT
n

∂q
θnJn + JT

nθn
∂JT

n

∂q
(7)

where n is the index of a rigid body, θn is its fixed
inertia matrix and Jn is its state dependent Jacobian. The
identity in Equation (7) has been derived in [13] and similar
identities are presented for dC

dq , dC
dq̇ and dG

dq . But even
without looking at these additional identities, two issues with
analytical derivatives become prominent: First, the expres-
sions are fairly large and error prone to implement. Second,
there is significant amount of intermediate calculations in
the forward dynamics that must be handled carefully to
avoid re-computation. Thus, there are three tedious, manual
steps involved in implementing analytical derivatives: Care-
ful derivation of the formulas, their correct implementation
and intelligent caching of intermediate results. As we show
in the experiments, Auto-Diff takes care of all three steps, al-
leviating the user from all manual work while still providing
an equally fast or even faster implementation.

B. Inverse Dynamics and its Derivatives

If we want to know what joint torques are required to
achieve a certain acceleration at a certain state, we can
compute the inverse dynamics by solving Equation (1) for τ .
In case we actuate all joints directly, S is an identity matrix
and we get

id(q, q̇, q̈) = τ = Mq̈ + C + G− JT
c λ (8)

For the inverse dynamics computation, Featherstone
presents an efficient algorithm, the Recursive Newton-Euler
Algorithm [19], which again has complexityO(n) and avoids
computing M and other elements explicitly.

For the fully actuated case, the inverse dynamics deriva-
tives are defined as

∂(id)

∂q
=
dM

dq
q̈ +

dC

dq
+
dG

dq
− dJT

c

dq
λ (9)

∂id

∂q̇
=
dC

dq̇
(10)

∂id

∂q̈
= M (11)

If we were to analytically simplify these equations further,
we could again use the identity in Equation (7) and other
identities presented in [13].

In case of an under-actuated robot, such as floating base
robots, we can obtain the inverse dynamics by using an
(inertia-weighted) pseudo-inverse of S to solve Equation (1)
for τ as described in [20]. This is only one possible choice
for computing floating base inverse dynamics [21]. However,
it will serve as an example and the following discussion

extends to the other choices as well. The inertia-weighted
pseudo-inverse is defined as S̄ = M−1ST (SM−1ST )−1

and leads to the inverse dynamics expression

id(q, q̇, q̈) = τ = (SM−1ST )−1q̈+ S̄
T

(C+G−JT
c λ) .

(12)
The derivatives of the inverse dynamics then become

∂(id)

∂q
=
d(SM−1ST )−1

dq
q̈ +

dS̄
T

dq
(C + G− JT

c λ)

+ S̄
T

(
dC

dq
+
dG

dq
− dJT

c

dq

)
(13)

∂(id)

∂q̇
= S̄

T dC

dq̇
(14)

∂(id)

∂q̈
= (SM−1ST )−1 . (15)

Similar to the forward dynamics case, we see that the
derivative expressions become large and their implementa-
tion is error prone. Additionally, without careful optimiza-
tion, we might accidentally introduce significant overhead in
the computation, e.g. by not caching intermediate results.

C. Higher-Order Derivatives

In Subsections II-A and II-B we presented the first-order
derivatives of the forward and inverse dynamics. However,
for some optimal control algorithms such as Differential
Dynamic Programming (DDP), we might need second order
derivatives of the dynamics in case we want to include
them in the system dynamics and/or the cost functions. If
we want to further analytically differentiate the derivatives,
we have to apply the chain rule to them, resulting in
even larger expressions. At this point it becomes highly
questionable if analytic derivatives should be implemented
manually. Since symbolic computation engines also apply the
chain rule and only have limited simplification capabilities,
these approaches will face the same issues for second order
derivatives. This might also be part of the reason why second
order optimal control algorithms, such as DDP, are only
rarely applied to more complex robotic systems. Instead,
algorithms that approximate the second order derivatives are
usually preferred [22]. When using Auto-Diff, we can easily
obtain second order derivatives and hence do not face this
limitation.

III. AUTO DIFFERENTIATION WITH ROBCOGEN

A. The Robotics Code Generator

The Robotics Code Generator (RobCoGen) is a com-
puter program that, given the description of an articulated
robot, generates optimized code for its kinematics and dy-
namics [9]. A simple file format is available to provide
the description (model) of the robot. Currently, RobCoGen
generates both C++ and Matlab code, implements coor-
dinate transforms, geometric Jacobians and state-of-the-art
algorithms for forward and inverse dynamics, as described
in [19].
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B. Derivatives for RobCoGen

RobCoGen does not natively support any code genera-
tion for derivatives of rigid body kinematics or dynamics.
However, it can be easily extended to generate C++ code
suitable for Auto Differentiation in order to leverage other
tools specifically designed for that purpose, such as CppAD.
The changes required to support Auto-Diff essentially reduce
to generating code templated on the scalar type (rather than
using standard float or double). This simple change
enables the use of a variety of Auto-Diff tools based on
operator overloading, yet does not prevent the regular usage
of the generated code.

It is important to note that RobCoGen uses code-
generation to create robot specific Rigid Body Dynamics
code. This is not to be confused with Auto-Diff code-
gen, which uses Rigid Body Dynamics code to compute
a derivative function, which is then translated into source
code. In this work, we apply Auto-Diff codegen to the
output of RobCoGen. Thus, there are two sequential, entirely
unrelated code-generation steps involved in this work. First,
RobCoGen generates the dynamics and kinematics functions.
Then Auto-Diff codegen uses those to create the derivative
source code. We will always indicate which type of generated
code we are referring to, i.e. whether we refer to the dynam-
ics/kinematics generated by RobCoGen or to the derivatives
generated using Auto-Diff codegen1.

Since RobCoGen implements the most efficient algorithms
for dynamics (e.g. the Articulated Rigid Body algorithm
for forward dynamics), and since the lowest achievable
complexity of Auto-Diff derivatives is proportional to the
complexity of the original function [23], it follows that, at
least theoretically, we can obtain the most efficient deriva-
tives from RobCoGen as well.

C. Implementation in RobCoGen

Since the interoperability with Auto-Diff tools is ongoing
development within the RobCoGen project, we implemented
a proof of concept of the approach by modifying existing
RobCoGen generated code for the quadruped robot HyQ [24]
and a 6 DoF robotic arm.

Our goal is to make the entire RobCoGen generated code
auto-differentiable. Thus, we add a scalar template to all
algorithms which compute one of the following quantities:

• Forward dynamics: Articulated Rigid Body Algorithm
• Inverse dynamics: Recursive Newton-Euler Algorithm
• Homogeneous-coordinate transforms
• Coordinate transform for spatial vectors
• Jacobians
• Rigid Body quantities such as M , C and G

We further template all input and parameter types, including
state, joint torques, external forces, all inertia parameters

1While the implementation of both code generation steps differs signif-
icantly, the goal is the same. In both cases, specialized code is generated
instead of using general dynamic data structures. This eliminates the
overhead of transversing such data structures, checking for dimensions, sizes
and branches. Furthermore, static data structures are easier to implement on
embedded systems and to use in hard real-time applications.

etc. Therefore, also uncommon derivatives, e.g. derivatives
of inverse dynamics with respect to inertia parameters can
be obtained. This feature can be useful for design optimiza-
tion or parameter estimation applications. Also, Auto-Diff
derivatives of essential Rigid Body quantities such as the
Joint Space Inertia Matrix M can be computed. This allows
to use Auto-Diff to generate custom derivatives for special
applications, e.g. when using Pseudo-Inverse based inverse
dynamics as shown in Subsection II-B. In such a case, the
derivatives in Equations (13) - (15), can still be obtained
from Equation (12) using Auto-Diff. The user only has to
ensure that the computation of the Pseudo-Inverse is auto-
differentiable as well. Furthermore, the user can also generate
derivatives of transforms and Jacobians, e.g. for task space
control or kinematic planning.

By templating the entire library, the user can specify
which methods or quantities to differentiate. Therefore, the
differentiation can be tailored to a specific use case, e.g.
by computing only required parts of a Jacobian or applying
the “Cheap Gradient Principle” [23]. Another benefit is that
not all derivatives are generated but only the ones required.
To demonstrate how to select and generate derivatives, we
provide a reference implementation described below.

D. Reference Implementation of Auto Differentiation

In order to validate the performance and accuracy of the
Auto-Diff compatible version of RobCoGen, we provide a
reference implementation. For this implementation, we use
CppAD as our Auto-Diff tool. CppAD is very mature, well
documented, supports higher derivatives and provides an ef-
ficient implementation. Still, evaluating the expression graph
for computing derivatives comes at an overhead. Therefore,
we also employ CppADCodeGen [25], which can generate
bare C code for derivatives using CppAD.

Since CppAD operates on scalars rather than full matrices,
the generated derivative code is only using scalar expressions
and cannot leverage advanced compiler optimizations such as
vectorization. While this leads to a slight decrease in perfor-
mance, the generated code is dependency-free and can easily
be run on embedded systems or GPUs. Additionally, memory
for intermediate results of the derivative computation can
be allocated statically. Thus, the generated code can be run
in hard real-time control loops. Despite the fact that the
generated code is static, it can be parametrized. Therefore,
Rigid Body Dynamics parameters such as mass, Inertia or
Center of Mass can be changed at runtime if required. Thus,
the generated code is specialized to a certain morphology
rather than a specific robot or a set of dynamic properties.

IV. RESULTS

To evaluate the performance of our Auto-Diff approach,
we first test the derivatives separately in terms of complexity
and accuracy. This test is performed on a model of the
underactuated quadruped HyQ, which has a floating base and
three joints per leg. In a second test, we use the Auto-Diff
derivatives in a Trajectory Optimization approach to verify
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Fig. 1. Comparison between different approaches to compute the forward
dynamics derivative with respect to joint torques τ . We measure absolute
computation time as well as the number of atomic instructions of the
compiled code. Clearly, Num-Diff performs worst. Auto-Diff at runtime
performs slightly better. However, Auto-Diff codegen and the analytic
factorization perform best. The naive analytic inverse performs significantly
worse than both. This underlines that naively implemented analytical
derivatives can be significantly inferior to Auto-Diff.

their practical gain. This test is carried out on a model of a
fully actuated six degree of freedom robotic arm.

A. Accuracy, Number of Instructions and Timings

In order to compare the different derivative methods, we
look at the derivative of the forward dynamics with respect
to the joint forces/torques as shown in Equation (5). To
ensure that we are computing a dense derivative, we ignore
the floating base part of the equation but focus on the
bottom right corner of the expression. For the comparison,
the derivatives are obtained from different implementations:
Single-sided numerical derivatives, Auto-Diff at runtime,
Auto-Diff codegen and analytical derivatives. For the analyti-
cal derivatives we have two implementations. One computes
M using Featherstone’s Composite Rigid Body algorithm
and later naively inverts it by using Eigen’s general LLT

solver. The second analytical implementation uses the Rigid
Body Dynamics specific LTL factorization of M−1, which
exploits sparsity. Such factorization is described in [19] and
implemented by RobCoGen.

We first verify the accuracy by measuring the norm of the
difference between the derivative matrices. As expected, the
analytical methods and Auto-Diff agree up to machine preci-
sion (< 10−13). Numerical differentiation however deviates
by around < 10−6 from all other implementations. While
this is small, we will see that it can make a difference in a
Trajectory Optimization example.

Additionally, we compare the runtime as well as the
number of atomic instructions of all derivative methods. In
this test, we average over 10,000 computations and enable the
highest optimization level of our compiler. The results of this
test are shown in Figure 1. This test shows two interesting
findings: Firstly, there is a very significant difference between
the Auto-Diff generated derivative code and the Auto-Diff
computation at runtime. The generated code is much faster,
which is possibly a result of removing the overhead of
travelling through the expression graph and enabling the
compiler to optimize the code. Secondly, we see that –
despite the fact that the RobCoGen’s factorization of M−1

exploits the sparsity and structure of the problem – it is
not able to outperform the Auto-Diff generated derivative in
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Fig. 2. Comparison between Numeric Differentiation (’ND’) and Auto Dif-
ferentiation using code-generation (’AD’) for the computation of three tpyes
of derivatives. In the forward dynamics we implement Equations (3)+(4)
while in the inverse dynamics we use Equations (9) -(11). Additionally,
the derivatives of end-effector position and velocity with respect to the
rigid body state q and q̇ are timed. We can see that Auto-Diff codegen
outperforms Num-Diff by a factor of about 10-20x.

terms of instructions and runtime. The factorization is still
about 10% slower than Auto-Diff codegen. This strongly
underlines the hypothesis that even carefully implemented
analytical derivatives are usually equally or more expensive
than those generated by Auto-Diff. On the other hand,
naively implemented derivatives, even though analytic, can
lead to significant overhead. This overhead, as present in the
analytical inversion, is over 600% in the test above.

Finally, we test more complex expressions. We compare
the derivatives of the forward dynamics as well as of the
fully-actuated inverse dynamics both taken w.r.t. the state, as
shown in Equations (3)+(4) and Equations (9)-(11) respec-
tively. Also here, we are not using the naive implementations
but efficient Featherstone algorithms for all derivative types.
Additionally, we time the computation of the end-effector
position p and velocity ṗ differentiated with respect to the
full state, q and q̇. Here, p and ṗ are expressed in a fixed
inertial frame (“world” frame). The forward kinematics to
be differentiated are given by p = T eeq and ṗ = Jeeq̇
wher T ee and Jee are end-effector transform and Jacobian
respectively. We compute the forward kinematics derivatives
for all four feet of the quadruped simultaneously. Since we
do not have optimized analytical derivatives available for this
test, we compare the performance of Num-Diff to the one of
Auto-Diff codegen. The results are shown in Figure 2. While
the difference in runtime between Num-Diff and Auto-Diff
codegen is not as large as in the previous example, it is still
significant. Auto-Diff codegen is about 10-20x faster than
Num-Diff in all three cases. Since approaches like Trajectory
Optimization rely heavily on computing derivatives, we
evaluate in the next experiment how much of a practical
difference this speedup makes.

B. Trajectory Optimization using Direct Multiple Shooting

As a practical test, we apply the Direct Multiple Shooting
(DMS) method [26] to a Trajectory Optimization task on a
model of a robotic arm. DMS is a widely-spread approach
for numerically solving Optimal Control Problems. An orig-
inally infinite-dimensional optimal control problem can be
transformed into a Nonlinear Program (NLP) by discretizing
it into a finite set of state and control decision variables.



 P r e p r i n t   O c t o b e r   2 6 ,   2 0 1 6   
 A c c e p t e d   f o r   p u b l i c a t i o n   a t   t h e   2 0 1 6   I E E E   I n t e r n a t i o n a l   C o n f e r e n c e   
 o n   S i m u l a t i o n ,   M o d e l l i n g ,   a n d   P r o g r a m m i n g   f o r   A u t o n o m o u s   R o b o t s , 
 S a n   F r a n c i s c o

Those are used for forward integrating the so-called ‘shots’,
which are matched at the nodes using continuity constraints.
DMS can handle inequality path constraints, e.g. task space
obstacles or control input constraints. A detailed description
of the method is beyond the scope of this paper and we refer
the interested reader to [27] for an overview. However, we
showcase the performance gain for DMS when using Auto-
Diff generated derivatives of Rigid Body Dynamics instead
of numerical derivatives.

We have implemented a custom DMS problem generator
which hands over the resulting Nonlinear Program to off-
the-shelf NLP solvers. Amongst others, it achieves efficiency
through exploiting the inherent block-sparse structure of the
DMS constraint Jacobian. We are using a standard fourth
order Runge-Kutta (RK4) integration scheme for propagating
the shots, and its analytic derivative for calculating the tra-
jectory sensitivities w.r.t. neighbouring decision variables on
the fly. The sensitivities are functions of the system dynamics
derivatives w.r.t. state and control at every integration sub-
step in time, which can be evaluated efficiently using the
Auto-Diff generated derivatives.

In this example, we use DMS for planning optimal tra-
jectories for a fixed-base 6 DoF robotic arm. The task
considered is computing optimal state and input trajectories
between an initial and a desired joint configuration which
avoid a static, spherical task-space obstacle. The setup is il-
lustrated in Figure 3. Between experiments, we vary different
parameters: single/multi threaded implementation, the NLP
solvers (SNOPT [28] / IPOPT [29]) and the type of Rigid
Body Dynamics derivatives (Auto-Diff codegen / Num-Diff).
Additionally, we use two different sets of initial and terminal
joint configurations. The first set corresponds to initial and
final states with a fully stretched arm, whereas the second
one features initial and final joint configurations with a
bent elbow. For each problem, we select a time horizon of
4.0 seconds and discretize it into 20 equally spaced shots.
We choose zero-order hold interpolation of the control inputs
between the nodes and propagate the system state with a
constant RK4 step-size of 50 ms. The initial guess for the
state decision variables consists of zero joint velocities and
equidistantly spaced joint positions that are obtained by
direct interpolation between the initial and terminal joint
configuration. The initial guess for the control input decision
variables are the steady-state joint torques computed by the
Recursive Newton Euler inverse dynamics evaluated at the
corresponding states. For obstacle avoidance, we define a
discrete number of collision points on the last three links of
the robot. For each of those collision points, an inequality
path constraint results at every node of the DMS problem.

Despite varying parameters, the solvers always converge
to the same two solutions for the straight and the bent elbow
scenario. Figure 3 shows the resulting trajectory for the case
of the bent elbow. In this illustration, we can see the effect of
not only performing collision checking on the end-effector.
If we were to only check collisions at the end-effector (red),
the trajectory would follow the surface of the sphere, leading
to collisions in the parent link of the end-effector. Instead, a

Fig. 3. A screenshot of the Direct Multiple Shooting planning environment
showing the 6 DoF robot arm, a static, spherical obstacle and the resulting
optimal trajectory plotted for the end-effector frame. Since collision check-
ing is not only performed on the end-effector but on discrete points on the
lower links, the end-effector trajectory does not follow the sphere’s surface.

collision free trajectory is found.
To assess the performance, we look at the runtime and

the number of iterations that the solvers require for the
different scenarios. All tests are run on an Intel Xeon E5
processor. Figure 4 summarizes the results. The scenario is
indicated by the solver (’IPOPT’/’SNOPT’) and the joint
configurations (straight ’|’ and bent ’>’ elbow). It is evident
that independent of the scenario and the solver, Auto-Diff
codegen outperforms Num-Diff in runtime by a factor of
usually 200% or more. In three out of four cases, Auto-
Diff also uses slightly less iterations. Furthermore, Auto-
Diff reduces the difference between the multi threaded and
single threaded implementation and we obtain runtimes per
iteration of less than 10 ms. This would even allow for
running Direct Multiple Shooting as a single-iteration Model
Predictive Controller at 100 Hz.

V. DISCUSSION AND OUTLOOK

In this work, we propose how Auto-Diff can be efficiently
applied to Rigid Body Dynamics algorithms. Based on this
study we extended our open source Robotics Code Generator,
enabling full Auto Differentiation compatibility. Further, we
underline the importance of generating source code for
the derivatives obtained from Auto-Diff, avoiding the usual
overhead during evaluation. The resulting derivative code
outperforms even carefully hand-designed and optimized
analytical derivative implementations. In a practical example,
we show that Auto-Diff codegen can significantly improve
performance in control and optimization applications.

Currently, we are finalizing tests on the beta implementa-
tion of RobCoGen’s Auto-Diff feature. Additionally, we are
applying the presented approach to improve the runtime of
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Fig. 4. Comparison between Num-Diff (‘ND’, blue) and Auto-Diff codegen
(‘AD’, yellow) for various test cases. We vary solvers (IPOPT/SNOPT), the
number of threads (1/8) and the task (straight ’|’ or bent ’>’ elbow). Results
show that Auto-Diff codegen is significantly faster in runtime, especially in
single core operation. Also, with one exception, Auto-Diff requires less
iterations than Num-Diff to converge to the same solution.

our Trajectory Optimization algorithms, enabling their usage
as online planners and Model Predictive Controllers.

SOURCE CODE AND EXAMPLE CODE

The latest version of RobCoGen is available
at https://bitbucket.org/mfrigerio17/
roboticscodegenerator, where we will also release
the Auto-Diff compatible version. As an example, the Auto-Diff
compatible RobCoGen output for the quadruped HyQ as well
as all derivative timing and accuracy tests are available at
https://bitbucket.org/adrlab/hyq_gen_ad.
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